
Modeling and verification of memory architectures with AADL and REAL

Stéphane Rubini, Frank Singhoff
LISyC - University of Brest - UEB
20, Avenue Le Gorgeu, CS 93837

29238 Brest Cedex 3, France
{stephane.rubini,frank.singhoff}@univ-brest.fr

Jérôme Hugues
Université de Toulouse, ISAE

10, Avenue E. Belin
31055 Toulouse Cedex 4, France

jerome.hugues@isae.fr

Abstract—Real-Time Embedded systems must respect a wide
range of non-functional properties, including safety, respect of
deadlines, power or memory consumption. We note that correct
hardware resource dimensioning requires taking into account
the impact of the whole software, both the user code and the
underlying runtime environment. AADL allows one to precisely
capture all of them. In this article, we evaluate the AADL
modeling to define memory architectures, and then verification
rules to assess that the memory is correctly dimensioned. We
use the REAL domain-specific language to express memory
requirements (such as layout or size) and then validate them
on a case-study using the VxWorks real-time kernel.

Keywords-AADL, constraint language, REAL, architecture,
verification, memory architecture

I. INTRODUCTION

Real-time embedded systems usually have a limited
amount of resources and specially a limited amount of mem-
ory resources. Besides, embedded micro-controllers memory
mixes different kinds of storage: volatile or permanent, data
or code, etc. Thus, engineers need to optimize memory us-
age, and thus to model precisely both the memory layout of
the target system, and the requirements of their applications
prior to check they actually match.

In this article, we investigate how such configuration and
verification operations can be made at early stage in a model-
driven engineering process. We discuss the use of AADL
(Architecture and Analysis Description Language) to model
a real-time embedded system, including specific properties
to model its memory layout.

AADL is a textual and graphical language for model-
based engineering of embedded real-time systems that
has been approved and published as SAE Standard AS-
5506A [1]. This language provides several components
categories that define the physical storage components such
as hard disks, ROM or RAM components. Software com-
ponents (processes, data) can be attached to memories,
defining resource allocation. AADL components may have
properties. Information provided by component properties
can be related to the component behavior, the way it will be
implemented or anything else that make it possible to per-
form AADL model analysis. AADL properties are defined
in pre-defined property sets but AADL also allows designers

to define new component properties in user-defined property
sets.

Yet, we note that the pre-defined property sets do not
help defining precisely the kinds and layout of memory
components. We propose additional property sets to model
the logical design of memory components, like permanent
storage (flash memory, hard disk), memory pages or memory
segments of RAM, etc. This would help engineers to model
specific memory layouts, data mapping onto memory or
memory segments that are shared by several processors in
multiprocessor architectures.

In addition to this set of properties, we specify legality
rules in order to check that AADL models of memory layout
are compliant with the targeted systems. For this purpose,
we use the REAL domain specific language. We illustrate
this approach with a complete case study on the VxWorks
operating system.

This article is organized as follows. In the next section,
we give an overview of memory organization, by focusing
on the distinctive features of embedded systems. Section III
gives some guidelines to model address space layout with
AADL. Section IV discusses verifications that we can expect
from the type of models presented in previous section,
using the REAL AADL annex language. Finally, section V
concludes this article and briefly describes some possible
further works.

II. ABOUT MEMORY LAYOUT MODELS

In a typical computer architecture, the processor com-
municates with the physical devices which are mapped
by the decoding hardware within a single address space.
Devices may have different kinds of memory components,
or memory-mapped I/O registers. Usually, the width of the
address bus limits the range of addresses that the processor
may access to. Within the address space, some areas may
be forbidden, because no memory device is associated with
them or because processor implementation do not allow such
address to be used.

The speed of today’s high-performance processor is lim-
ited by the main memory slowness (typically composed of
DRAM cells). Hierarchical structures aim to mask this per-
formance gap, by exploiting the spacial and temporal locality

of memory accesses. Within this structure, caches memories
constitute an intermediate level which stores a subset of the
memory references, that have the more chance to be accessed
in a near future, according to the principle of locality. The
virtual memory management completes the hierarchy with
mass storage devices like hard drives; it provides a large
capacity and some memory protection features. Today, this
hierarchical memory structure is supported by all desktop
computers.

But, embedded systems use a larger range of memory
organizations. To minimize power dissipation, cost, or to
respect real-time constraints such systems blend various
memory technologies. Within a same address space may
reside permanent ROM or EEPROM/FLASH memories,
rapid scratch-pad SRAMs or large capacity DRAMs. Cache
memories may also be found, but the non-deterministic
access time to memory words that this structure involves, can
be a major drawback for real-time system implementations.
A precise knowledge of the memory layout is needed to
build an application in that context. Characteristics like the
read access time, the number of supported write cycles,
the permanence of the storage,... must be considered in
the design and building process. For example, often used
program variables can be put on a scratch-pad memory to
increase the performance of the system [2].

Operating systems organize the usage of the memory
space by splitting it into segments assigned to the storage of
different kinds of information. Processor hardware require-
ments, such as the interrupt vector location, the address bus
width, or the growing direction of the execution stack must
be obviously considered in this organization. Some segments
are reserved for the storage of the operating system internal
data or code. Others will be initialized when an application is
loaded. The text, BSS and data segments are usually used to
store respectively the application code, uninitialized global
variables and initialized global variables. The location of
these segments within the address space are defined by the
link editor and the loader, according to a configuration file
called a linker script.

General purpose operating systems assign a private ad-
dress space to each process, cut off from the other ones. An
address in this space is said virtual or logical, and requires
a translation before to be send into the physical address
space. Hardware devices (i.e. Memory Management Unit)
and operating system services support address translations.

However, embedded operating systems may implement
another approach where all the processes share a unified
address space. Hardware virtual memory support is optional
in that context, even if the associated protection and security
features remain significant. For example, Windows CE 5.0
splits the memory space into 32 MB slots, where each
slot is bound to one process, and large memory blocks are
located to a shared segment called Large memory Area.
VxWorks operating system considers tasks as object modules

sysMemTop() System memory pool

Size of 0x1000 Interrupt stack
Boot code and data

end symbol system image
(Text, data, BSS)

0x1000
Initial stack

0x0900
Exception messages

0x0800
Boot line

0x0700
Reserved

0x0120
Interrupt vectors

0x0000

Figure 1. Memory layout of VxWorks for the MC68040 processor

dynamically linked with the operating system kernel and
manages only a unique address space. So, each target system
has its own memory layout.

Figure 1 lists the memory layout of the VxWorks kernel
for a MC68040 processor. This layout defines the location of
user code in the System memory pool, and several memory
areas reserved by the kernel for both the kernel image and
interrupt vectors.

The previous discussion shows that, especially for em-
bedded systems, the memory layout may change from one
target to another and may be complex. In a context of
limited resources, the model of a system must encompass
a description of the memory layout, which can be used to
check compliance with the application needs or to guide the
building process.

III. MODELING MEMORY ARCHITECTURES WITH AADL

In this section, we present AADL. Then we show how to
model with AADL hardware and software memory archi-
tectures and especially how software memory architectures
are mapped on hardware memory architectures. We also
introduce AADL extensions that were required for such a
purpose.

A. AADL

AADL is a textual and graphical language for model-
based engineering of embedded real-time systems. It has
been published as an SAE Standard AS-5506A [1]. AADL
is used to design and analyze software and hardware archi-
tectures of embedded real-time systems. Many tools provide
support for AADL: Ocarina implements Ada and C code
generators for distributed systems [3], TOPCASED [4],
OSATE [6] and Stood [5] provide AADL modeling features,
the Fremont toolset [7] and Cheddar implement AADL
performance analysis methods [8]. An updated list of sup-
porting tools can be found on the official AADL web
site http://www.aadl.info.

An AADL model describes both the hardware part and the
software part of an embedded real-time system. Basically,

http://www.aadl.info

an AADL model is composed of components types and
implementations of different categories: data, threads or
processes (components modeling the software side of a sys-
tem), processors, memories, devices and buses (components
modeling the hardware side of a system). A data component
represents a data structure in the program source text. It may
contain sub-programs that act as accessors. A thread is a
sequential flow of control that executes a program and can
be implemented by an Ada task or a POSIX thread. AADL
threads can be dispatched according to several policies: a
thread may be periodic, sporadic, etc. An AADL process
models an address space. In the most simple case, a process
contains threads and data. Finally, processors, memories,
buses and devices represent hardware components running
one or several applications. Relevant to our study, memory
components define storage area for code and data.

B. Modeling hardware memory architectures with AADL

memory a d d r e s s s p a c e end a d d r e s s s p a c e ;
memory implementat ion a d d r e s s s p a c e . boa rd
subcomponents

ram : memory memory segment . impl {
Base Address => 016#00000000#;
Byte Count => 016#00400000#; } ;

d e v i c e s r e g i s t e r s : memory memory segment . impl {
Base Address => 016# FFFF0000 # ;
−− . . . };

p r o p e r t i e s
Base Address => 016#00000000#;
Byte Count => 002#1#32; −− 32 b i t s a d d r e s s bus

end a d d r e s s s p a c e . boa rd ;

Figure 2. Memory architecture for a flat address space

Memory components can form a hierarchy, to reflect
complex memory layouts and address space. In the figure 2,
we define a flat address space of 4GB (32 bits) where
the memory addresses ranging from 0 to 0x400000 are
RAM memory, and addresses starting at 0xFFFF0000
represent I/O registers. This layout is used by embedded
processors that map I/O to memory like PowerPC or LEON3
processors.

From this example, we may derive general principles
to model memory architectures: the basic entity we use
to model a memory layout is the segment. A segment is
a memory component associated to a range of memory
address, which is localized in the memory layout by the
properties Base_Address and Byte_Count.

As we presented in section II, different kinds of mem-
ory exist. Thus, we introduce a new property set, called
Memory_Segment_Properties. Property examples of
this property set are:

• segment_kind, precises the segment type: address
space or memory segment.

• An address space represents only a range of memory
addresses. The property address_kind models the
actual implementation of the address:

– physical: the address selects directly a word
stored in a memory component (in fact a semi-
conductor memory);

– logical: the address selects a word stored in
a memory component, optionally after an address
translation. Some word may be bound to one or
several logical addresses, depending of the address
redirection;

– virtual: the address selects a word stored in the
main memory, or in a slower secondary memory
device, such as hard drive for example;

– io_register: words mapped at such address
space are produced by an input/output instruction,
and are expected to address registers to control or
communicate with input/output devices.

• A memory segment represents a set of memory words
accessible within a range of addresses. Memory words
completely cover this address range i.e. one and only
one word is mapped to each address.

In addition to these properties, we have to define addi-
tional legality rules to enforce that these memory layout
models are correct. Hence, the following requirements shall
be respected in all AADL models:

• Address spaces may contain subcomponents of address
space or memory segment type. If a real storage is
associated, directly or not, to a sub-range of an address
space, such a range must be covered by a memory
segment.

• Memory segments can only contain subcomponents of
memory segment type. If subcomponents exist, they
must cover all the address range of their segment
container.

• Memory segments have access capabilities for read,
write or execute operations, due to their realization
technologies, and access restrictions due to operating
system protection. The property Access_Type gives
a list of the allowed operations on a segment. If a
segment contains sub-segments, its access rights must
be included in the access rights of all its sub-segments.

C. Modeling software view of memory with AADL

In addition to the modeling of hardware memory, we note
we have also to model the software view of the memory.
Any operating system uses the existing hardware memory to
map its own internal structures (task control block, interrupts
vector table, exception message, etc) into the memory, and
then will allocate several memory areas to user code.

Compared to hardware memories, software-view of the
memory can be made more specific: each segment can define
its access mechanism as execute, read; or its kind (text
for code, data for global variables) following linker scripts
conventions.

The AADLv2 language and the ARINC653 annex docu-
ment define properties for modeling both. Yet, we note the

following limitations:

• The defined memory kinds do not cover all possible
combinations as mandated by real-time operating sys-
tem linker scripts options: they only list read or write
memories as available. We cannot tag a memory as
heap, data, etc;

• The access mechanism lacks the execute flag for indi-
cating a memory segment can hold code that can be
executed. This feature is required to model precisely
security operations;

• Finally, it lacks support for indicating different modes
of operation of a memory: for example, the write
accesses into a FLASH are limited, and their speed
may change with respect to the memory state.

Thus, we propose to modify existing property sets to
make the enumerator Supported_Memory_Kind and
Supported_Access_Type part of the AADL_Project
property set. This would allow the designer to enrich it
depending on actual project needs.

We also propose to extend the property
ARINC653::Access_Type to denote a list of
Supported_Access_Type instead of a single one.

This allows for the modeling of complex memory layout
as seen in real-time operating system kernel configuration,
as in figure 3.

memory implementat ion memory segment . sys tem image
subcomponents

s e g t e x t : memory memory segment . impl {
Base Address => 016#001000#;
a r i n c 6 5 3 : : Memory Kind => t e x t ;
a r i n c 6 5 3 : : Access Type => (e x e c u t e , r e a d) ;
Byte Count => 3000 ; } ;

s e g b s s : memory memory segment . impl {
Base Address => 016#003000#;
a r i n c 6 5 3 : : Memory Kind => b s s ; } ;

s e g d a t a : memory memory segment . impl {
Base Address => 016#002000#;
a r i n c 6 5 3 : : Memory Kind => d a t a s e g ; } ;

p r o p e r t i e s
Base Address => 016#001000#;
a r i n c 6 5 3 : : Memory Kind => image ;

end memory segment . sys tem image ;

Figure 3. Memory architecture for a VxWorks kernel image. Some
properties, like Byte Count in this example, may be omited if they are
unknown in the early stages of the design process.

Like hardware memory layout, we have to define addi-
tional legality rules. We have three concerns to address:

1) Memory segments are consistent: no overlap of seg-
ments, contiguous segments, availability of at least one
executable segment, etc;

2) The software view of the memory matches the hard-
ware view: 1) the address of each segment matches ex-
isting hardware segment; 2) access mechanism (read-
/write) are compatible;

3) The user code fits in the dedicated memory area.

D. Binding AADL hardware memory architectures to soft-
ware views of memory

Once software and hardware views of the memory are
defined, we have to bind them. Figure 4 shows how to take
advantage of the Actual_Memory_Binding property to
attach the software view of the memory to the process, and
the hardware view of the memory to the processor.

sys tem implementat ion vxworks . impl
subcomponents

p r o c e s s 1 : p r o c e s s node a . impl ;
l o g i c a l a s : memory a d d r e s s s p a c e . vxworks ;
p h y s i c a l a s : memory a d d r e s s s p a c e . mv162 ;
p r o c e s s o r 1 : p r o c e s s o r MC68040 . impl ;

p r o p e r t i e s
Actual Memory Binding

=> (r e f e r e n c e (l o g i c a l a s)) a p p l i e s t o p r o c e s s 1 ;
−− B i n d i n g ‘ ‘ s o f t w a r e−view ’ ’ memory t o t h e p r o c e s s
Actual Memory Binding

=> (r e f e r e n c e (p h y s i c a l a s)) a p p l i e s t o p r o c e s s o r 1 ;
−− B i n d i n g ‘ ‘ hardware−view ’ ’ memory t o t h e p r o c e s s o r
A c t u a l P r o c e s s o r B i n d i n g

=> (r e f e r e n c e (p r o c e s s o r 1)) a p p l i e s t o p r o c e s s 1 ;
end vxworks . impl ;

Figure 4. Mapping memories architecture

This model being complete, we can now check its consis-
tency using the REAL checker. We discuss how to imple-
ment these additional legality rules in the next section.

IV. DEFINING AND ENFORCING MEMORY
ARCHITECTURAL CONSTRAINTS

A. The REAL annex language

REAL (Requirement Enforcement Analysis Language)
is a domain-specific language, implemented as an AADL
language annex. It aims at checking constraints enforcement
on architectural descriptions at the specification step, saving
significant time over verification at execution time. REAL
pursues multiple design goals:

• Enabling easy navigation through AADL model ele-
ments. To do so, we defined REAL as a DSL (Domain
specific Language) based on AADL meta-model con-
cepts to ease writing of constraints, and on set theory
to ease definition of constraints;

• Allowing for modularity through definition of separate
constraints that can be later combined.

• Being integrated to the AADL as an annex language,
so that constraints are coupled to models in the model
repository.

REAL is based on set theory and associated mathematical
notations. The basic unit of REAL is a theorem. A theorem
verifies an expression over all the elements of a set that is
called the range set.

Range set are defined using universal quantifiers (∀, ∃)
and AADL-specific keywords (like property_exists or
is_bound_to) are used to fetch all entities matching a
particular predicate. This allows one to build sets whose

elements are AADL entities (connections, components or
subprogram calls). Verification can then be performed on
either a set or its elements by stating Boolean expressions.

In order to write complex expressions, one can use prede-
fined sets, which contain the instances of the AADL model
of a given type, or build intermediary sets, using relations
between elements of sets (e.g. returns the elements of the
set A which are subcomponents of elements of set B).

Subtheorems calls can be used to extract values computed
from range sets - thus allowing constructs like get all
the instances of threads which periodicity is equal to the
minimum periodicity in the system. These can also be used
to define pre-required constraints on the model.

In [9], we have discussed the integration of REAL as an
annex language in Ocarina. We demonstrated it is relevant
to check specific constraints related to annex documents like
the “Data Modeling Annex” or the “ARINC653 Annex” an-
nex documents. These annexes were using simple predicates
to check the validity of some combinations of properties.

In the following, we emphasize on REAL capabilities to
check more complex predicates, based on subcomponents
hierarchy (memory layout), and arithmetic on properties.

B. Constraints definitions

In the following, we review the set of constraints we
defined to model software and hardware views of memory.
We note there are four classes of constraints to satisfy: gen-
eral considerations about the memory layout, constraints on
alignment to match processor requirements, general software
constraints and finally operating system specific constraints.
We review each of them:

1) General memory layout constraints: These theorems
check whether the memory layout as described by the AADL
model is consistent with its definition. For example:

• A memory segment contains only memory segments
(address space segments are forbidden). Figure 5 shows
the implementation of the REAL theorem checking this
property.

• Within a memory segment, the sum of the sub-memory
segment size must be less than or equal to the memory
segment container size. This requirement is restricted
to a simple equality if the size of the segment and its
sub-segments are known.

• Within an address space segment, the sum of size of all
sub-segments (memory or address space) must be less
or equal to the container size (see figure 6).

• Within a memory segment, sub-segments must cover
all the address range. This requirement can only be
checked if the segment and its sub-segments are located
within the address range, i.e. their base_address
and Byte_Count properties are known.

• Sub-segments do not overlap, and their address ranges
are included in the address range of the memory
segment or address space container.

theorem c h e c k m e m o r y s e g m e n t s t r u c t u r e
foreach seg i n Memory Set do
sub segmen t s := {x i n Memory Set |

p r o p e r t y e x i s t s (seg ,
” Memory Segment Proper t i e s : : Segment Kind ”) and

property (seg , ” Memory Segment Proper t i e s : : Segment Kind ”)
= ”memory”

and Is Subcomponent Of (x , seg) } ;
sub memories := {x i n sub segmen t s |

p r o p e r t y e x i s t s (x ,
” Memory Segment Proper t i e s : : Segment Kind ”) and

property (x , ” Memory Segment Proper t i e s : : Segment Kind ”)
= ”memory” } ;

check (sub segmen t s = sub memories) ;
end c h e c k m e m o r y s e g m e n t s t r u c t u r e ;

Figure 5. First REAL theorem example. Within a memory segment that
describes a range of memory words, sub-segments cannot be ”address
space” segment. The sub segments set contains all the sub-segments of
a given segment, including unexpected ”address space” segments. The
sub memories set contains only its memory sub-segments. These two sets
must be equal.

theorem c h e c k a d d r e s s s p a c e s i z e
foreach seg i n Memory Set do
sub segmen t s := {x i n Memory Set |

Is Subcomponent Of (x , seg) } ;
v a r s e g s i z e :=

i f (p r o p e r t y e x i s t s (seg , ” Byte Count ”))
t h e n property (seg , ” Byte Count ”) e l s e 0 . 0 ;

check (c a r d i n a l (sub segmen t s) = 0
or n o t p r o p e r t y e x i s t s (seg , ” Byte Count ”)
o r sum (property (sub segments , ” Byte Count ”))<= s e g s i z e) ;

end c h e c k a d d r e s s s p a c e s i z e ;

Figure 6. Second REAL theorem example. The sum of the size of
sub-segments must be less or equal of the container segment size. The
sub segment set contains the list of sub-segments. The seg size variable
stores the size of the container segment. The reduction function sum
computes the sum of the ”Byte Count” property values for all elements
of the set sub-segments.

2) Software binding constraints: The theorems check
that software components memory requirements match the
resources provided by the hardware memory.

• Process, i.e. the software components that are included
in the system, accesses the memory through its private
logical address space. Then, to select a real memory
word, a processor, maybe through a MMU, produces
addresses within a physical address space; also, a
processor must be bound to one physical address space
description (see III-D). Thus, each process must be
bound to one logical address space description and to
one processor, and a physical address space bound to a
processor. This ensures there exists a physical support
for the logical memory space.

• All the access types supported by a segment must be
also supported by all its sub-segments.

• In memory systems that do not involve memory address
translation, all the memory words must have the same
location in the logical and in the physical address space.
Each memory segment localized in the logical space is
bound to a memory segment described in the physical

theorem c h e c k a l l o w e d a c c e s s
foreach m i n Memory Set do

good segments :={x i n Memory Set |
Is Subcomponent Of (x , m) and (
n o t p r o p e r t y e x i s t s (x , ” a r i n c 6 5 3 : : Access Type ”) o r
I s I n (property (m, ” a r i n c 6 5 3 : : Access Type ”) ,

property (x , ” a r i n c 6 5 3 : : Access Type ”))) } ;
s egmen t s :={x i n Memory Set | Is Subcomponent Of (x , m)} ;

check (c a r d i n a l (good segments) = c a r d i n a l (segmen t s)) ;
end c h e c k a l l o w e d a c c e s s ;

Figure 7. Third REAL theorem example. The REAL operator Is In is
used to check whether all the access rights of a segment are included in
the rights of its sub-segments.

space, at an including address range.
• For a given process, the sum of the sizes of the text

segments within its logical address space is greater than
the sum of its thread code sizes.

• Text segments must be at least executable and readable.
3) Additional VxWorks constraints: Finally, these theo-

rems model requirements are related to the VxWorks kernel:
• Within the system image segment, the sub-segments are

ordered in memory as follow: text, data, and BSS.
• At the application start time, the sum of the thread stack

size are less or equal than the system memory pool size.

C. Evaluation of the theorems
We note REAL provides appropriate support to model and

then check all these constraints. We defined 21 theorems to
be validated, forming 300 SLOCs (Source Line of Code)1

We note these constraints can be easily implemented using
simple queries while exercising navigation capabilities of
REAL through the AADL model.

We evaluated all theorems using a model of the Motorola
MV 162 board, a board compatible with VxWorks 5.x. We
defined its hardware memory components and the software
view of the memory. We also defined a toy software example
that defines some memory requirements. We could check all
theorems on this model.

Having a DSL greatly helps in structuring each theorem:
accessors to be build queries on the model are direct basic
constructs of the language. This reduces the learning curve,
but also eases the review of each theorem to ensure it
matches requirements informally defined.

Since REAL is implemented as part of Ocarina, the
validation process is also fully automated, and quite efficient.
On the model we tested, there is no noticeable performance
hit when adding the validation of all 21 theorems.

V. CONCLUSION

Real-time embedded systems must demonstrate all re-
sources are correctly dimensioned. This is quite challeng-
ing since embedded systems use particular memory types
(volatile or permanent) and mappings.

1The AADL models and the REAL theorems are available at the follow-
ing URL : http://pagesperso.univ-brest.fr/∼rubini/Research/Memory model

In this paper, we showed how the combined use of
new AADL properties and REAL constraints can support
the correct modeling and evaluation of memory layouts.
We illustrated our approach using the VxWorks real-time
operating system and a complete case study.

Evaluating memory requires a priori modeling of the
target environment, and a posteriori evaluation of the mem-
ory consumption of each block (real-time operating system,
subprograms, thread stack, etc). We use Ocarina to generate
all glue code, and thus evaluate the cost of each software
elements. By injecting these values in the model, and eval-
uating REAL constraints on the model, we close the loop
and complete the memory consumption analysis.

Future work will consider more complex bindings for
multi-core multi-memory systems. The use of such complex
layout has a deep impact on performances. Modeling such
architecture is required to extend the range of analysis
supported by AADL.

REFERENCES

[1] SAE, “Architecture Analysis and Design Language (AADL)
AS-5506A,” The Engineering Society For Advancing Mobil-
ity Land Sea Air and Space, Aerospace Information Report,
Version 2.0, Tech. Rep., January 2009.

[2] O. Avissar, R. Barua, and D. Stewart, “An Optimal Memory
Allocation Scheme for Scratch-Pad-Based Embedded Sys-
tems,” ACM Transactions on Embedded Computing Systems,
vol. 1, no. 1, pp. 6–26, November 2002.

[3] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “Rapid Proto-
typing of Distributed Real-Time Embedded Systems Using the
AADL and Ocarina.” In 18th IEEE/IFIP International Work-
shop on Rapid System Prototyping (RSP’07), Porto Allegre,
Brazil, Jun. 2007.

[4] P. Farail, P. Gaufillet, A. Canals, C. L. Camus, D. Sciamma,
P. Michel, X. Crégut, and M. Pantel, “TOPCASED : An Open
Source Development Environment for Embedded Systems,”
Chapter 11, From MDD Concepts to Experiments and Illus-
trations, ISTE Editor, pp. 195–207, September 2006.

[5] P. Dissaux, “Using the AADL for mission critical software
development,” 2nd European Congress ERTS, EMBEDDED
REAL TIME SOFTWARE Toulouse, January 2004.

[6] SEI, “OSATE : An extensible Source AADL Tool Environ-
ment,” SEI AADL Team technical Report, December 2004.

[7] O. Sokolsky, I. Lee, and D. Clark, “Schedulability Analysis
of AADL models .” International Parallel and Distributed
Processing Symposium, IPDPS 2006,, Apr. 2006.

[8] F. Singhoff, A. Plantec, P. Dissaux, and J. Legrand, “In-
vestigating the usability of real-time scheduling theory with
the Cheddar project.” Journal of Real-Time Systems, Springer
Verlag, vol. 43, no. 3, pp. 259–295, November 2009.

[9] O. Gilles and J. Hugues, “Expressing and enforcing user-
defined constraints of AADL models,” in Proceedings of the
5th UML& AADL Workshop (UML&AADL 2010), University
of Oxford, UK, Mar. 2010, pp. 337–342.

http://pagesperso.univ-brest.fr/~rubini/Research/Memory_model

	Introduction
	About memory layout models
	Modeling memory architectures with AADL
	AADL
	Modeling hardware memory architectures with AADL
	Modeling software view of memory with AADL
	Binding AADL hardware memory architectures to software views of memory

	Defining and enforcing memory architectural constraints
	The REAL annex language
	Constraints definitions
	General memory layout constraints
	Software binding constraints
	Additional VxWorks constraints

	Evaluation of the theorems

	Conclusion
	References

