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Abstract

Interference within a multi-core architecture may have
several origins. Understanding where interference
comes from is mandatory for verification and certifica-
tion purposes. Unfortunately, the complexity of current
architectures makes it difficult to quantify such inter-
ference. In this article, a new approach is introduced
that enables benchmark configurations to isolate and
quantify interference. An experiment with DMA inter-
ference is presented and shows a WCET overhead of up
to 0.26% at 25 Mbit/s. This experiment was also able
to discover and identify interference related to DMA,
such as interruptive flow overhead, around 3% for 25
Mbit/s, or packet transmission memory access overhead,
around 9% for 25 Mbit/s.

1 Introduction
Predicting the temporal behavior of tasks running in a multi-
core system is hard due to the number of various interference
that tasks may suffer [1]. Many approaches have attempted
to quantify interference. Several are model-based [2], which
involves modeling the system and, for example, simulating
its execution. Other methods involve measurement on the
system itself [3] by running it under different scenarios to
obtain the interference and its impact.

Problem Statement The context of this article is flight
software for space missions. Such mission-critical software
undergoes a cycle of reviews during which schedulability
analysis must be performed to justify the designed real-time
architectures. For example, PLATO [4] flight software archi-
tecture was justified using an AADL model and simulations
with Cheddar [5] as early as the Preliminary Definition Re-
view (PDR).

When schedulability is investigated in such a context, and
when a multi-core architecture is used, it may be difficult
to model all interference that could occur because of the
hardware mechanisms and their interactions.

Contribution In this article, a new approach is introduced
to understand the interference that an application may suffer
when running on a multi-core architecture. The proposed
approach enables the production of a set of configurations,
which are combinations of different viewpoints of the target
platform and the application. These configurations can then
be used to associate metrics (collected at execution time) and
interference (produced by one or more components).

The rest of the article is organized as follows. Section 2
presents background. Section 3 introduces the method pro-
posed to quantify interference, following in section 4 by an
example and preliminary results obtained from it. Finally,
related works and the conclusion complete the article, respec-
tively in sections 5 and 6.

2 Background
This section introduces the notions and terms required to
understand the proposed benchmarking method.

2.1 Multi-core Architecture and Interference
In this article, interference is a delay in the task execution
time caused by the action of another component in the system.

A multi-core architecture is composed at least of two cores
and, generally, of one or further cache units. In addition, each
architecture provides a set of hardware mechanisms to ensure
robustness, reliability, performance. . .

With this type of architecture, the interference suffered by
a task may come from different sources [1]. From a hard-
ware point of view, DMA transfers, for example, generate
hardware interrupts for each packet of sent data. Another
example is Compare and Swap (CASA) instructions that lock
the memory bus for execution. When two tasks use the same
cache unit, the miss rate may increase, and accesses to the
main memory may cause additional delays due to such inter-
ference. From a software point of view, the activity of other
tasks in the system may be another source of interference.
The use of a memory bus may be concurrent with the activity
of tasks producing memory accesses on other cores. Shared
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Figure 1: Interference Analysis Process

memory locked by tasks, or any preemption are also sources
of interference.

In this work, we consider all sources of interference.
2.2 Benchmark
A benchmark is an application designed to be run on a tar-
get platform to evaluate its performance. For example, the
Mälardalen benchmark suite [6] aims to evaluate WCET
(Worst Case Execution Time). PapaBench [7] provides a
set of applications useful for scheduling analysis. From the
point of view of interference in a multi-core architecture, Ro-
dinia [8] offers a representative set of multi-core applications.
Splash-2 [9], and its extension Splash-4 [10], provide a set
of applications characterized in particular by their memory
traffic. The latter allows us to show interference related to
memory bus.
2.3 GERICOS
GERICOS [11] is a C++ framework developed by LESIA
for space applications. This framework offers an integrated
solution for rapidly developing multi-core applications us-
ing an AMP (Asymmetric MultiProcessing) approach. The
framework allows the developer to define application archi-
tectures and the assignment of each component to each core.
The C++ classes implementing the application are defined
independently of the core on which they will run. GERICOS
also provides services to measure task WCET and WCRT
(Worst Case Response Time). However, in GERICOS, there
is no means to quantify the delays for each interference that
contributes to WCET.

3 Proposed Approach
In a multi-core architecture, it may be difficult to obtain the
accurate delay resulting of a specific interference. The WCET,

even though it is supposed to be measured in isolation, may
suffer interference from the hardware resources that interact
with the system in the background.

Our work aims to quantify all interference through metrics,
but in this article we illustrate with an example concerning
only hardware resources. In this article, two metrics are
considered: the WCET and WCRT. A method is proposed to
configure a benchmark, and, with a set of experiments, deduce
the delay caused by a hardware resource. First, we explain
what we mean by benchmark configuration. Second, we
present the proposed analysis process. Finally, we introduce
examples of benchmark configurations that will be used in
the next section of this article.
3.1 Benchmark Configuration
A benchmark configuration is produced from 3 viewpoints
represented by (A) in figure 1. A configuration is the assign-
ment of the various components of the 3 viewpoints on the
target platform. In addition, one or more victim tasks are also
defined in each benchmark configuration. Victim tasks are
tasks from which the metrics are retrieved after benchmark
execution to measure delays related to interference.

The first viewpoint is related to the kind of application the
benchmark will run. The proposal is to design and run a set
of applications that stress the system in a particular way. For
example, in this article, as [12], two types of applications are
investigated: MemoryBound applications that are composed
of a task making memory accesses during its execution, and
ComputeBound which runs a task taking CPU time only, i.e.
without any memory access.

The second viewpoint models any hardware entities and mech-
anisms that may raise a potential interference. For example,
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Figure 2: The 3 viewpoints for the GR712RC board

most of the current multi-core architectures have different
levels of cache or hardware interruption types. Each of these
entities may be modeled since they may cause interference.

The last viewpoint models system artifacts that may change
the scheduling or the synchronization of the task composing
the benchmark. For example, GERICOS provides the concept
of GscSharedResource that enforces critical section on
shared data with spin locks and mutexes. In this viewpoint
are also specified the scheduling policy, the operating system
and the allocation resource policies.

Figure 2 is a 3-viewpoint model of the benchmark for the
GR712RC board used in the section 4. Each line represents
a configuration. Each column stores either a quantity or a
boolean indicating whether the element is activated or not.
For example, configuration 1.1 uses 2 cores and the instruc-
tion cache is enabled. In the Application view, MemoryBound
is a task that constantly performs memory accesses, and Com-
puteBound which only takes CPU time without memory any
accesses. SpwSender and SpwReceiver are tasks that
respectively send and receive data packets on the SpaceWire
ports of the board. Finally, InterruptBound is a task that
generates hardware interrupts during its execution.

At hardware viewpoint, we have to specify, the number of
cores used during execution, data and instruction cache units,
IRQ interrupts and DMA transfers from SpaceWire ports
(which can be enabled or not).

The last viewpoint, i.e. the system viewpoint, contains GERI-
COS concepts, such as the InterCoreManager, a task in
charge of the communications between cores. Notice that
several concepts in this viewpoint, such as spinlock or the
operating system, may be not specific to GERICOS.

3.2 Analysis Process
We now describe how benchmark configurations are expected
to be used iteratively to understand how interference occurs.

The analysis process is shown in figure 1. The process con-
sists of iteratively running several benchmark configurations.

In the benchmark configuration phase (A), two benchmark
configurations are produced at least. The first, named the
victim configuration, suffers desired interference. The second
configuration, named reference configuration, does not suffer
any interference. The reference configuration execution is
compared to the victim configuration execution to discover
interference.

Benchmark configurations are executed on the platform in
(B), and from the victim tasks, a set of metrics is retrieved
(i.e. WCET and WCRT).

In (C) and (D), metrics retrieved from configuration execution
helps the user to understand whether components contribute
or not to interference on the victim tasks. At those steps, two
outcomes are possible: either the number of executed configu-
rations is sufficient to understand interference, or interference
is not identified and the analysis process is repeated.

To sum up the method, we derive benchmark configurations
to progressively eliminate undesired interference until the in-
terference created by a specific hardware resource is isolated,
or at least quantified. The interest of this method is to be
able to characterize, using a configuration cycle, interference
caused by a specific hardware resource.

In this article, we focus on WCET and WCRT to quantify
interference. Notice that other metrics could be mandatory to
understand the system behavior. For example, CPU load or
DMA transfers can be the indicator of a background activity.
Furthermore, Cache information such as the L1 or L2 hit/miss
rates may reveal precious information on memory usage and
can explain interference origin. Hardware counters would be
used also for such a purpose.

3.3 Example
We now illustrate the proposed method with a use case in
which we expect to quantify interference due to bus con-
tention during DMA transfers.

The hardware viewpoint in figure 4 models two GR712RC
boards. Each board is a Dual-Core LEON3FT SPARC V8 pro-
cessor with a 32KiB L1 cache for each core and 4 SpaceWire
ports. The GR712RC block diagram is represented in figure 3.

We model this system as 6 configurations. Each of them
represents different steps to isolate interference and will be
used to run the benchmark. To investigate the impact of DMA
transfers on bus contention different measurements are done
with different transfer rates. All the results are discussed in
the next section.

The first configuration, named 1.1, is the reference config-
uration. In this configuration, a task named SpwEmitter,
which periodically sends data packets on the SpaceWire net-
work, is assigned and run to core0. On the other core, called
core1, runs the task SpwReceiver which is receiving pack-
ets emitted from the core0. Connection (A) in the figure 4
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Figure 3: GR712RC Block Diagram

models such communication. The victim task, Compute-
Bound, is placed on core1. The victim task, by its nature,
cannot be subject to interference from memory accesses and
is therefore used as a reference. The second configuration,
named 1.2, is the 1.1 configuration when ComputeBound is
replaced by MemoryBound.

The third configuration is the reference configuration, noted
2.1, is similar to the first configuration but SpwReceiver is
moved on the core0. The objective is to isolate the victim task
on the core1, i.e. not suffer interference from the presence of
SpwReceiver on the same core. The fourth configuration,
named 2.2, is the 2.1 configuration when ComputeBound is
replaced by MemoryBound.

The fifth configuration is the reference configuration,
noted 3.1, SpwEmitter is assigned on core0 of Board2.
SpwRmapConfigurator is run on core1 of Board1. Com-
munications between the two boards are modeled by the con-
nection (B) of figure 4. The task SpwReceiver is replaced
by SpwRmapConfigurator in this benchmark configura-
tion. The victim task is assigned on the core0 of Board1 to
fully isolate it of all perturbations, except the bus contention
created by the SpaceWire network during DMA operations.
The sixth configuration, named 3.2, is the 3.1 configuration
when ComputeBound is replaced by MemoryBound.

victimTask*

Concept1* Concept2*

(A)

(B)

Figure 4: Example of a benchmark configuration

The next section shows the results when running the bench-
mark configurations above.

4 Evaluation
In this section, we illustrate the proposed analysis process
with an experiment. This section presents the goal, the details

of the experiment process, and the results obtained.

The aim of this experiment is to characterize the interference
of bus contention in a DMA transfer context. To quantify this
interference, a communication is generated on a SpaceWire
network which creates DMA transfers and then generates
contention on the memory bus.

The system is evaluated with various data rates on the
SpaceWire network: 0.5 Mbit/s, 1 Mbit/s, 5 Mbit/s, 10 Mbit/s
and 25 Mbit/s. In the configurations, in order to ensure packet
transmission, the tasks responsible for sending and receiving
data have higher priority levels than the victim tasks. The size
of a packet is constant. The period of the sending task defines
the data rate. The victim tasks are executed 10 times, with an
execution time of 1 second and a period of 10 seconds. Statis-
tics related to tasks, such as WCET, are measured through
the GscMethodReport class of GERICOS. GscMethodReport
provides a set of functions that will be called by the task itself
to measure and record data.

We apply the process proposed in section 3 by configuring
and running the benchmark with 6 configurations. The results,
shown below, compare the overhead due to interference on the
WCET of the victim tasks. Each graph shows the results of
two comparable configurations for a different type of victim
task.

First, we configure the benchmark according to the configura-
tions 1.1 and 1.2 described in section 3, run it, and get results
of figure 5. In this figure, the overhead of ComputeBound
and MemoryBound are closer, respectively of 11,41% and
11,33% for 25 Mbit/s, which means suffered interference is
the same. However, ComputeBound does not use the memory
bus, so interference should not be found for this task with
these configurations. In fact, the first configuration creates
interference than even a task that does not access memory
suffer. It is caused by SpwReceiver, which is on the same
core, and has a higher priority than the victim task. Such
results lead us to investigate the system performance with the
configurations 2.1 and 2.2.
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Figure 5: Throughput for configurations 1.1 and 1.2

Figure 6 shows the results for the configuration 2.1 and 2.2,
described in section 3. In this figure, we show the Compute-
Bound overhead curve rises more slowly than MemoryBound
overhead curve, reaching a gap of 0.86% at 25 Mbit/s. This
indicates a difference in suffered interference which cannot
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be related to the contention on the memory bus, as 89.69% of
the interference perceived by MemoryBound is also perceived
by ComputeBound. This may be due to the number of inter-
ruptions caused by DMA transfers, which are performed on
the same board as the task being analyzed. To investigate this
assumption, we run the next configurations.
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Figure 6: Throughput for configurations 2.1 and 2.2

To complete the analysis, we run the benchmark with the
configurations 3.1 and 3.2, and get the results of the figure
7. Now, ComputeBound suffers no interference with an over-
head of 0.1 ms between 10 Mbit/s and 25 Mbit/s; whereas
MemoryBound suffers interference of up to 0.26% overhead at
25 Mbit/s. Assuming that the performance gap between Com-
puteBound and MemoryBound is due to memory accesses, it
means that we succeeded to isolate interference created by
DMA accesses on the memory bus with this last experiment.
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Figure 7: Throughput for configurations 3.1 and 3.2

In the 3 figures presenting the results, a curve called theoreti-
cal overhead is displayed. In the case of the PDR of PLATO
project, interference of DMA transfers was estimated by a
theoretical computation. Our experiments showed that this
theoretical computation predicted an interference overhead
of 7.33 times higher than those measured for 25 Mbit/s with
configuration 3.2. This is explained because theoretical com-
putation was carried out with the assumption that all DMA
accesses are concurrent and have the highest priority, which
is a pessimistic case that does not occur with configurations
3.1 and 3.2. In figure 5 and 6, the measurements show higher
values than the theoretical curve because the measures are
composed of different interference origins and not only from

DMA memory bus contention, this motivated configurations
3.1 and 3.2 to better isolate DMA interference.

Furthermore, DMA transfers using SpaceWire also cause
interrupts on reception, and memory accesses on transmis-
sion. Figures 5, 6 and 7 show the overhead caused by these
two mechanisms. Switching the SpwReceiver to core1
in configurations 2.1 and 2.2, shows that interrupts related
to reception no longer interfere with the victim task. This
leads to a loss of about 3% overhead for 25 Mbit/s between
the curves in figure 5 and 6. Similarly, for configurations
3.1 and 3.2, the packet emission is no longer on the same
board as the victim task, so it no longer competes for access
to the memory bus. This reduces overhead by about 9% for
25 Mbit/s between the curves on the figure 6 and 7.

In conclusion, by applying the proposed method, the set of
configurations that was produced enabled us to characterize
the interference of bus contention in a DMA context. In ad-
dition, within the PLATO context, the measurements demon-
strated the pessimism of the theoretical evaluation. Finally, all
the curves enable us to make assumptions about the overhead
caused by other mechanisms resulting from DMA transfers.

5 Related Works
A lot of works deals with interference management in multi-
core architectures. Interference can be either predicted, mea-
sured or mitigated by proposing software and/or hardware
designs that reduce them [13].

In [12], the author introduces a method to quantify inter-
ference by measurements. He focuses on several hardware
components such as shared L1 and L2 caches by experimen-
tations with memory bound and compute bound benchmarks.
Applied benchmarks are similar to the one we have used in
our configuration process.

In contrary, the multi-phases task model [14] avoids interfer-
ence with the PREM model [15]. Tasks are designed as set
of different phases that limit memory bus interference. The
main drawback of this approach is to not support legacy pro-
grams. Supporting legacy programs is mandatory for systems
targeted by the configuration process we propose.

Several benchmarks provide means to understand interfer-
ence. Rodinia [8] and Splash-2 [9] are examples of them.
Interference analysis with these benchmarks focuses on mem-
ory interference and does not consider many others such as
interruption, DMA or operating system interference. Our
approach expects to quantify any type of interference.

6 Conclusion
In this article, a method to isolate and evaluate interference in
multi-core architectures is proposed. The approach consists of
running several configurations of a benchmark and measuring
task metrics to understand how interference contributes to the
metrics. An experiment has shown that the proposed method
can characterize, from a set of configurations, interference of a
shared hardware resource through the WCET. For the PLATO
mission, the theoretical computations for such interference,
for 25 Mbit/s, were 3.25 times higher than our measurements
which estimated it to 0.26% of the WCET. This demonstrates
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the pessimism of the theoretical results and the accuracy of the
benchmarking method we proposed. Finally, the experiment
was also able to identify interference related to DMA, such as
interruptive flow overhead, around 3% or packet transmission
memory access overhead, around 9%.

In the future, we expect to evaluate the method on more
complex architectures such as GR740RC, a naked quad-core
with different cache levels and interference reduction mech-
anisms. Furthermore, this article has presented a method
that gives users the ability to design benchmark configura-
tions according to their understanding of the system behavior,
which can be difficult to achieve. In the next steps, we expect
to help users by defining configuration design patterns for
specific hardware resource patterns. Finally, the hardware
architecture of the GR712RC does not provide statistics on
system interactions. More and more architectures are intro-
ducing performance counters [16] [17] [18] [19], notably the
GR740RC. Performance counters may contribute to quanti-
fy/identify interference. We plan to integrate these counters
in our benchmark configuration process.
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