
Composition of Design Patterns : from the modeling of
RTOS synchronization tools to schedulability analysis

Vincent Gaudel, Frank Singhoff, Alain
Plantec

Université Européenne de Bretagne, France
Université de Bretagne Occidentale

Lab-STICC/CNRS UMR 6485
20 avenue Le Gorgeu, 29238 Brest, France

{gaudel,singhoff,plantec}@univ-brest.fr

Pierre Dissaux, Jérôme Legrand
Ellidiss Technologies
24, quai de la douane
29200 Brest, France

{pierre.dissaux,jerome.legrand}@ellidiss.com

ABSTRACT
This article deals with performance verification of architec-
ture models of real-time embedded systems. We investigate
scheduling analysis of multi-tasks applications running on
real-time operating systems (RTOS in this article). Schedul-
ing analysis on these types of system can be performed
with the real-time scheduling theory, but applying it is a
complicated task. To allow designer to automatically ap-
ply this theory, we propose several architectural design pat-
terns. Each architectural design pattern models a classical
task synchronization or communication protocol available in
RTOSes. In this article, we focus on those design patterns
composition. We show how to compose the proposed de-
sign patterns and how scheduling analysis can be run with
them.

1. INTRODUCTION
This article deals with critical real-time systems. The valida-
tion of such systems is crucial and various means have been
proposed for such purpose. Real-time scheduling provides
tools to validate such systems, especially analytic methods
called feasibility tests. Yet, their use implies a high level
of expertise in the real-time scheduling theory: the common
draw to all these feasibility tests is that they need the system
to fulfill a set of specific assumptions called applicability con-
straints. Unfortunately, the large number of feasibility tests
and applicability constraints make the use of such methods
difficult. That may explain why they are unused in many
practical cases, although it could be profitable [1].

We propose a method to assist designers in the process of
selecting feasibility tests. To do so, we present five architec-
tural design patterns. Each of these design patterns mod-
els a communication or a synchronization protocol between
tasks that usually exist in real-time operating systems. We
define those design patterns by sets of assumptions on prop-
erties of architectural models that models both the software

and the executive environment (e.g. RTOS and the under-
lying hardware) of a critical real-time system. We propose
an algorithm able to verify whether an architecture model
is compliant with one of our design patterns, i.e. whether
the architecture model meets all the assumptions defining
the design pattern. In case of compliance, feasibility tests
can be automatically suggested to the architectural model
designer.

In this article, the contribution is double. We provide a de-
tailed definition of these architectural design patterns. We
also focus on the analysis of architecture models composed
of several of our design patterns. Indeed, an application run-
ning on top of a real-time operating system may use several
communication and synchronization tools.

This paper is organized as follows. In section 2 we present
our approach. Section 3 contains a detailed description of
our architectural design patterns. Section 4 discuss the com-
position of such design patterns. In section 5 we expose an
evaluation of the approach. Related works follow in section
6, before conclusion in section 7.

2. APPLYING REAL-TIME SCHEDULING
THEORY TO REAL-TIME ARCHITEC-
TURE MODELS

In this section, we present our approach. First we introduce
what we mean by feasibility test. Then, we present Cheddar,
the schedulability analysis tool we use to verify schedulabil-
ity and to model architectures of real-time systems. Then,
we describe how we make possible to automatically apply
Cheddar on real-time system architecture models.

2.1 Feasibility Tests
Real-time scheduling theory enables designers to analyze the
temporal behavior of a set of tasks with the use of analytic
methods called feasibility tests. For example, Liu and Lay-
land [2] have defined a simple model of tasks, called periodic
tasks, that are only characterized by three parameters : a
deadline (Di), a period (Pi), and a capacity (Ci). A peri-
odic task models a function of the system that has the fol-
lowing behavior : each time a periodic task Ti is activated,
it has to perform a job whose execution time is bounded
by Ci units of time and this job must be completed before
Di units of time after the corresponding task release time.



Those parameters can be used to compute feasibility tests.
Feasibility tests evaluate different performance criteria: pro-
cessor utilization factor, worst case response time, deadlocks
and priority inversions due to data access, memory footprint
analysis, etc. Liu et al. have proposed a simple feasibility
test shown by equation (1). This feasibility test computes
the processor utilization factor for a system compliant with
the following assumptions: all tasks are periodic, indepen-
dent and synchronous; the scheduler is a preemptive Earliest
Deadline First.

n∑
i=1

Ci

Pi
≤ 1 (1)

If this equation is met, it implies that all task’s deadlines will
be met at execution time. This feasibility test is a necessary
and a sufficient condition when ∀ Ti : Di = Pi.

We see that applying a feasibility test to a system requires
that the system has to meet a set of architectural assump-
tions. In the next sections, those assumptions will be called
applicability constraints. An applicability constraint can ex-
press various properties of architecture components such as
task periodicity, scheduling protocol, communication proto-
col, etc.

2.2 Cheddar: a schedulability tool
Our approach is developed within the Cheddar Project [3],
an analysis environment for real-time systems. Cheddar al-
ready implements numerous feasibility tests. Yet, an ar-
chitecture designer has to select feasibility tests applica-
ble to his architecture model, which is complicated. Ched-
dar provides an architecture language, called Cheddar ADL,
to model real-time systems. This architecture language is
based on a meta-model. The Cheddar ADL meta-model is
written in the EXPRESS language [4] and provides all the
tools we need to model our architectural design patterns.
EXPRESS enables the definition of OCL(Object Constraint
Language)-like constraints [5] on the meta-model instances.

2.3 Automatic selection of feasibility tests to
verify architecture models

To help a system designer to automatically select feasibility
tests that are compliant with his architecture model, we have
defined five real-time architectural design patterns called:
Time-Triggered, Ravenscar, Blackboard, Queued buffer and
Unplugged. Each of those design patterns provides an ar-
chitectural solution to a synchronization problem between
tasks by defining an inter-task communication protocol that
is implemented in usual RTOS. There exists numerous other
synchronization paradigms that could justify such specifi-
cations. In a first approach, we have selected inter-task
synchronization/communication paradigms that are either
classic industrial practices, or defined by standards related
to RTOS.

For example, the Ravenscar design pattern is related to the
Ada 2005 Ravenscar profile [6] that provides asynchronous
communication between tasks with mutexes or semaphores.
The Blackboard and Queued buffer design patterns model
communication services that exist in standard RTOS API
ARINC 653 [7]. And the time-triggered design pattern mod-
els a classical mean to implement lock free task communica-
tion [8].

With these design patterns, the process to select and apply
feasibility tests to an architecture model can be decomposed
in three steps. (1) We proceed to an analysis of the architec-
ture model in order to verify its compliance with the one of
the architectural design patterns proposed above [9]. This
verification allows us to propose a first list of feasibility tests.
(2) Then, we evaluate additional lists of applicability con-
straints in order to select the relevant feasibility tests. (3)
Finally, the selected feasibility tests are automatically com-
puted by Cheddar in order to assess scheduling analysis of
the architecture model.

An architecture model can be a composition of those design
patterns, which makes this analysis complex. In this article,
we propose a simple method to master architectural design
pattern composition in this context. We therefore focus on
the step (1).

3. REAL-TIME ARCHITECTURAL DESIGN
PATTERNS

In this section, we present several design patterns modeling
synchronization and communication mechanisms of RTOSes.
Mechanisms considered here are mutexes, semaphores and
also queues of messages that may used to implement classi-
cal producer-consumer or readers-writers synchronizations.
Those mechanisms are provided by most of RTOSes such as
VxWorks, RT-Linux or RTEMS.

In the sequel, we first define what we mean by architectural
design pattern. Then, we present how those design patterns
are expressed. Finally, we propose five design patterns mod-
eling the synchronization and communications mechanisms
introduced above.

3.1 Defining architectural design patterns
In the literature, a pattern is defined as ”a solution to a
recurring problem in a context” [10] and can be seen as a
”three part rule, which expresses a relationship between a
context, a problem and a solution” [11].

In the context of real-time systems, [12] and [13] proposed to
group design patterns in three levels corresponding to three
phases of design: architectural, mechanistic and detailed de-
signs:

Architectural design deals with large-scale strategic de-
cisions such as scheduling policies, global system prop-
erties, interactions between components, global behavior
among others.

Mechanistic design deals with the construction of group
of components that interact to design a particular mecha-
nism (a communication buffer for instance) or function.

Detailed design deals with lower concerns as data typ-
ing, internal algorithm and other details of a particular
component.

Mechanistic design patterns can be seen as ways to instan-
tiate solutions to architectural design patterns, and detailed
design patterns as ways to instantiate solutions to mecha-
nistic ones. The design patterns we proposed are part of the
architectural level as we do no assumptions on how RTOS
synchronization and communication mechanisms are imple-



mented.

Furthermore, their context is related to the design of real-
time systems in which task synchronization and communica-
tion are implemented thanks to a RTOS. Finally, the prob-
lem addressed by each pattern is the analysis that has to
be performed in order to validate the temporal behavior of
the targeted system. Then, each of our design pattern pro-
poses a solution to evaluate the system schedulability by the
selection of relevant feasibility tests.

3.2 How we model architectural design pat-
terns

Riehle et al. defines the form of a pattern as ”a finite number
of visible and distinguishable components and their relation-
ships” [14].

To express the component of each of our architectural de-
sign patterns, we use Cheddar ADL. Cheddar ADL is an
architecture language that allows Cheddar’s users to model
the architectures on which they expect to perform schedul-
ing analysis. Figure 1 is a summary of the main concepts
of Cheddar ADL. In the sequel, we assume that architec-
ture models are composed of instances of entity processor,
task, buffer, shared resource or dependency.

Figure 1: Part of the Cheddar ADL entities

An architectural design pattern is defined by a set of con-
straints on the elements of the architecture upon which we
expect to run scheduling analysis. We use different types of
constraints:

(a) constraints on the type and number of components,

(b) constraints on the connections between those com-
ponents,

(c) constraints on properties of those components.

Constraints of types (a) and (b) are contained in the archi-
tecture level and fit perfectly the Riehle et al. definition.
Usually, one does not use constraints of type (c) in the defi-
nition of architectural design patterns, because they belong
at the mechanistic level, but the context of our design pat-
terns (hard real-time critical systems) forces us to use them.
Indeed, some extra properties of the communication proto-
col need to be constrained. For instance, the protocol to
share a data with the use of a mutex protected access has
to implement a mechanism to prevent priority inversion.

The meta-model of Cheddar ADL is extended by the models
of all applicability constraints of the feasibility tests that
may be assigned to each design pattern. Each applicability
constraint is modeled using EXPRESS.

3.3 Examples of architectural design patterns
Let see now some examples of design pattern expressed ac-
cording to Cheddar ADL. We propose here five patterns
modeling classical synchronization or communications mech-
anisms provided by RTOSes.

Each of these examples assumes the same uniprocessor ex-
ecution environment. It is also assumed that this execution
environment meets the following applicability constraints:

R0: There is a unique processor.

R1: The scheduling policy of the processor must be ei-
ther earliest deadline first, fixed priority with rate
monotonic priority assignment, deadline monotonic
priority assignment or any other fixed priority as-
signment.

R2: Preemptivity of the scheduler must be specified.
R3: The scheduler is not allowed to use any quantum.
R7: There is no hierarchical scheduling.

Most of RTOSes are compliant with these constraints. In-
deed, many RTOSes are compliant with POSIX 1003 and
this standard is able to meet the execution environment con-
straints presented above. The POSIX 1003 scheduling model
assumes a preemptive fixed priority scheduler (then rules R1
and R2 are met). If all tasks have different priorities, then
R7 and R3 are also met.

Finally, constraints R0 is not related to RTOS, but is most of
time also met since multi-processor architectures are mostly
unused in current real-time critical systems.

3.3.1 Time-triggered communications
The first design pattern is modeling time-triggered commu-
nications between tasks [8].

Context: With time-triggered communications, task com-
munications are achieved without any RTOS synchronization
tool. The communications between tasks require a shared
memory but there is no need to protect it with a mutex or
a semaphore. Task communication is achieved with timing
synchronization. For example, each task can read its input
from shared memory at dispatch time and writes its output
on shared memory at completion time.

Problem: This design pattern is simple to analyze: from the
perspective of real-time scheduling theory, tasks can be seen
as independent. It requires the designer to apply numer-
ous simple and efficient feasibility tests based or processor
utilization factor or on worst case response time.

Solution: The constraints defining this design pattern can
be expressed as follow:

R4: All tasks are periodic.
R5: There is no buffer entity.
R6: There is no shared resource entity.

3.3.2 Ravenscar
The second design pattern is related to asynchronous com-
munications between tasks.



Context: In Ravenscar, tasks communicate with shared re-
source under the control of inheritance ceiling priority proto-
col. Ravenscar assumes that shared resources are protected
by semaphores. Semaphores can be used to build multi-
ple synchronization protocols such as critical sections, read-
ers/writers, producers/consumers, etc. But Ravenscar re-
stricts the use of semaphores to mutex protected access to
shared resources.

Problem: Here, additional analysis need to be performed:
threads are not independent and the worst case response
time analysis must take into account the waiting time due to
critical sections and shared resource accesses.

Solution: The constraints defining this design pattern are
the following:

R8: All tasks are either periodic or sporadic.
R9: There is at least one shared resource entity.
R5: There is no buffer entity.

R10: For each shared resource, there is at least two tasks
that are accessing it.

R11: Allowed sharing resource protocols are PIP, IPCP
or PCP.

R12: If PCP or IPCP are used, resource’s ceiling priority
must be higher or equal to all priorities of resource
dependent tasks.

R13: if PIP is used, dependent tasks cannot share more
than one shared resource.

3.3.3 Blackboard
The two next design patterns are related to task communi-
cation mechanisms that exist in the ARINC 653 RTOS API
standard.

Context: Blackboard implements the readers/writers com-
munication protocol: only the last value produced can be
consumed by tasks.

Problem: In this case, before computing the same analysis
than the ones of Ravenscar, one has to analyze shared re-
source blocking time. Indeed, accesses to shared resources
are more complex (i.e. different semaphores for readers and
writers for instance).

Solution: The constraints defining this design pattern are
the following:

R4: All tasks are periodic.
R5: There is no buffer.

R14: There is at least one readers/writers communica-
tion.

R15: Readers and writers cannot perform the same
semaphore accesses.

3.3.4 Queued buffer

Context: Queued buffer implements a producers/con-
sumers communication protocol. We assume that messages
are handled according to a FIFO protocol.

Problem: This pattern requires the same schedulability
analysis than Blackboard. Moreover, one has to analyze

the memory footprint of buffers and also to check that pro-
duction rates do not exceed consumption rates in order to
prevent loss of data.

Solution: This extra analyze can be done using queuing
theory models[15].

R4: All tasks are periodic.

R16: There is at least one buffer entity.
R17: For each buffer, the queue size must be bounded.

R18: Number of items produced and consummated by
each task at each of its dispatch must be specified.

R19: Times of messages production and consumption
must be specified.

3.3.5 Unplugged
Finally, this last design pattern simply models independent
tasks, i.e. tasks that do not communicate nor synchronize
with others.

Context: The unplugged design pattern models indepen-
dent tasks.

Problem: The analysis of such systems is the same that for
the time-triggered design pattern.

Solution: The constraints defining this design pattern are
the following:

R4: All tasks are periodic.
R19: All tasks are independent.

4. COMPOSITIONS OF REAL-TIME ARCHI-
TECTURAL DESIGN PATTERNS

In the previous section, we have introduced our design pat-
terns. In practice, applications running on top of a RTOS
are usually a composition of these design patterns. In this
section, we introduce the notion of architectural design pat-
tern composition. Then we expose a static analysis of pos-
sible compositions for feasibility tests selection.

4.1 Architectural design patterns composabil-
ity

A real-time system architecture is a compound system of two
architectural design patterns, if it is composed of two parts
compliant with two different architectural design patterns.
i.e. a system mixing two synchronization or communication
protocols. Two architectural design patterns are compos-
able if it is possible to use a strategy enabling a schedula-
bility analysis of a system composed of those two patterns.
The architectural design patterns presented here suppose an
uniprocessor environment with no hierarchical scheduling.
Hence the system depends on a single scheduler and schedu-
lability analyzes apply to all tasks it schedules. Therefore,
feasibility tests enabling the analysis of the whole system at
once needs to be selected.

One solution to select feasibility tests for a compound sys-
tem is to consider that it is compliant with one of the design
pattern composing it. For example, a system composed of a
set of tasks compliant with the Time-Triggered design pat-
tern and another set of tasks compliant with Ravenscar, is
analyzed as compliant with Ravenscar. Ravenscar is said
dominant over Time-Triggered.

A design pattern A is dominant over a design pattern B
if the compound system of A and B can be analysed as if
it was compliant with A only. Then, a compound system
is analyzable if there is a unique instance design pattern
dominant over the design patterns of all other instances.
The feasibility tests selection is done as if the whole system
is compliant with the dominant design pattern.



4.2 Static analysis of architectural design pat-
terns composition

The correctness of the analysis coupled with a dominant
design pattern on a compound system needs to be proven.
The compound system needs to fulfill all applicability con-
straints of the dominant design patterns. Hence, we proved
that the combination of the two parts of the model meets all
the applicability constraints of the dominant design pattern.
Figure 2 gives an example of proof by contradiction for the
composition of Ravenscar with Time-Triggered.

Proof R8 Let S = Sub1 ∪ Sub2 a real-time system
composed of Ti tasks. Let Sub1 = {T1, ..., Tn} the sub-
part of S compliant with Time-Triggered. Let Sub2 =
{Tn+1, ..., Tm} the subpart of S compliant with Raven-
scar.
Lets consider that the restriction ”R8: All tasks are ei-
ther periodic or sporadic.” is not met by S. Since Sub2 is
compliant with Ravenscar, it meets R8.
Therefore, ∃ Tfail ∈ Sub1 a task neither periodic nor
sporadic.
Sub1 is compliant with Time-Triggered. Thus, it is com-
pliant with the applicability constraint ”R4: All tasks are
periodic.”.
So Sub1 contains Tfail and meets R4, which is a contra-
diction. Therefore the applicability constraint R8 must
be met by S.

Figure 2: Example of proof by contradiction that
Ravenscar is dominant over Time-Triggered. The
same proof must be made for all applicability con-
straints of Ravenscar.

Figure 3 provides all proven design patterns combinations.
Each combination of composable patterns have been proven:
the compliance of the compound system to all constraints of
the dominant design pattern have been checked.

ADPs Unpl T-T Rav B-B Q-B

Unpl Unpl T-T Rav B-B Q-B
T-T T-T T-T Rav B-B Q-B
Rav Rav Rav Rav ∅ ∅
B-B B-B B-B ∅ B-B ∅
Q-B Q-B T-T ∅ ∅ Q-B

Figure 3: Table of dominant design patterns for
each supported composition. The first line and
column contain the composed architectural design
patterns (ADPs), and intersection between each
line and column contains the compound design pat-
tern. Empty squares are the combinations for which
the design patterns are not composable, or not
proven to be composable. In this table, Design
patterns are Unplugged(Unpl), Time-Triggered(T-
T), Ravenscar(Rav), Blackboard(B-B) and Queued
Buffer(Q-B).

5. EVALUATION
For the evaluation of our approach and the prototype, we
aim to validate multiple points: the prototype itself (robust-
ness, scaling, generated applicability constraints, ...) and

the proposed approach. The evaluation consists in testing
the implementation of a design pattern recognition proto-
type with generated architectures covering all applicability
constraints and design patterns. The prototype used for this
evaluation is an update of the one used in our previous works
[9]

We have designed an architecture generator. Architectures
are generated following input parameters: the types of ar-
chitecture elements and their numbers. The elements taken
into account are any type of task, buffer, dependency, mes-
sage and resource. The execution environment is uniproces-
sor.

ADPs Unpl T-T Rav B-B Q-B

Unpl 25 25 25 25 25
T-T ∅ 25 50 50 50
Rav ∅ ∅ 25 50 50
B-B ∅ ∅ ∅ 25 50
Q-B ∅ ∅ ∅ ∅ 25

Uncompliant 10 10 10 10 10

Figure 4: Table of generated architectures.

First, we generate architectures compliant with one design
pattern, with a number of tasks and communication varying
from 10 to 500. Second, for each previously generated ar-
chitectures, we add a random number of communication or
dependency which are part of another design pattern. For
instance, buffers were added to an architecture compliant
with the Time-triggered design pattern.

Third, we modified architecture models that were compliant
with our design patterns to evaluate each applicability con-
straint. For example, a Time-Triggered architecture model
with an extra sporadic task is generated in order to evaluate
the constraint R4. Figure 4 gives an overview of the number
of generated architectures.

In the sequel, we detected the compliance (or non-compliance)
of each generated architecture to an architectural design pat-
tern. The names of the recognized design pattern, or the
constraints that were not met are stored in a file. The selec-
tion or non-selection of design patterns for each architecture
is then manually validated.

This evaluation has been performed under Ubuntu 12.04
LTS on a processor Intel CoreTM i5-2430M CPU @ 2.40GHz
× 4 with 6,0GiB RAM memory. This evaluation shows that
our prototype is robust to scaling, which is important from
an industrial perspective. Moreover, the computation time
required to check the compliance and to select feasibility
tests is linear to the number of tasks in the system and
varies from 10ms for the smallest systems (10 tasks × 10
dependencies) to 1950ms for the biggest systems (500 tasks
× 1000 dependencies). Finally, all the unmet applicability
constraints of the third set of architectures have been found.

6. RELATED WORKS
Numerous works deal with the use of design patterns and
analysis of application running on top of RTOSes. Douglass
et al. [12] define a handbook for real-time systems design



patterns. They define both architectural and mechanistic
design patterns. Another specification approach related to
our design patterns can be found in the HOOD method and
in the definition of HRT-HOOD whose goal is to comply with
the Ada Ravenscar model [16]. These approaches describe
communication protocols but do not consider the binding
with analysis. Vardanega depicts the Ravenscar profile us-
ing applicability constraints [17] in order to reduce the gap
between industrial practice and theory. Filali et al. [18]
define the Time-Triggered architecture as an AADL subset.
Each of those methods studies the validation of a set of real-
time architectures with a static number of design patterns
and does not cope with the composition issue. Design pat-
terns detection has also been subject to numerous studies.
For instance, in [19] and [20], authors describe methods to
verify and detect classic mechanistic design patterns. These
works are useful to detect which communication protocols
are used. In our case, we consider them as known and we
focus on additional constraints required for analysis.

7. CONCLUSION
Schedulability analysis is an intrinsic step to the design of
critical real-time systems. Such analysis depends on the
system architecture characteristic and its use is difficult.
This article propose architectural design patterns modeling
communication and synchronization tools met in classical
RTOSes. These design patterns are bound to scheduling
analysis methods called feasibility tests. We have shown
how those design patterns can be composed, in order to an-
alyze real-time applications mixing different RTOS commu-
nication or synchronization tools. Finally, we have proposed
an evaluation of this approach upon a large set of generated
architectures. The following of this work is to study and
classify feasibility tests. This approach aims at enabling a
multi-criteria comparison of feasibility tests. The objectives
are to (1) propose an analysis method for feasibility tests
selection for unknown compositions and (2) refine the se-
lection process for known situations. This will (1) widen
the scope of analysable systems and (2) classify selected fea-
sibility tests according to a given objective such as their
complexity or their pessimism for instance.

Acknowledgment
We would like to thank Ellidiss Technologies and Conseil
Regional de Bretagne for their support to this project.

8. REFERENCES
[1] A. Plantec, F. Singhoff, P. Dissaux, and J. Legrand,

“Enforcing applicability of real-time scheduling theory
feasibility tests with the use of design-patterns,” in
Proceedings of the 4th international conference on
Leveraging applications of formal methods,
verification, and validation-Volume Part I.
Springer-Verlag, 2010, pp. 4–17.

[2] C. Liu and J. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,”
Journal of the ACM (JACM), vol. 20, no. 1, pp.
46–61, 1973.

[3] F. Singhoff, A. Plantec, P. Dissaux, and J. Legrand,
“Investigating the usability of real-time scheduling
theory with the Cheddar project,” Real-Time Systems,
vol. 43, no. 3, pp. 259–295, 2009.

[4] I. T. N. WD, EXPRESS Language Reference Manual,
1997.

[5] J. Warmer and A. Kleppe, The Object Constraint
Language: Getting Your Models Ready for MDA,
2nd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[6] A. Burns, B. Dobbing, and G. Romanski, “The
Ravenscar tasking profile for high integrity real-time
programs,” in Reliable Software
Technologies-Ada-Europe. Springer, 1998, pp.
263–275.

[7] Arinc, Avionics Application Software Standard
Interface. The Arinc Committee, Jan. 1997.

[8] H. Kopetz and G. Bauer, “The time-triggered
architecture,” Proceedings of the IEEE, vol. 91, no. 1,
pp. 112–126, 2003.

[9] V. Gaudel, F. Singhoff, A. Plantec, S. Rubini,
P. Dissaux, and J. Legrand, “An ada design pattern
recognition tool for aadl performance analysis,” in
Proceedings of the 2011 ACM annual international
conference on Special interest group on the ada
programming language, ser. SIGAda ’11. New York,
NY, USA: ACM, 2011, pp. 61–68.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
“Design patterns: Elements of reusable object-oriented
design,” 1995.

[11] C. Alexander, The timeless way of building. Oxford
University Press, USA, 1979, vol. 1.

[12] B. P. Douglass, Real-Time Design Patterns: Robust
Scalable Architecture for Real-Time Systems. Boston,
MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[13] R. Monroe, A. Kompanek, R. Melton, and D. Garlan,
“Architectural styles, design patterns, and objects,”
Software, IEEE, vol. 14, no. 1, pp. 43 –52, jan/feb
1997.

[14] D. Riehle and H. Züllighoven, “Understanding and
using patterns in software development,” Theory and
Practice of Object Systems, vol. 2, no. 1, pp. 3–13,
1996.

[15] F. Singhoff, J. Legrand, L. Nana, and L. Marcé,
“Scheduling and memory requirements analysis with
aadl,” in ACM SIGAda Ada Letters, vol. 25, no. 4.
ACM, 2005, pp. 1–10.

[16] A. Burns and A. J. Wellings, “Hrt-hood: A structured
design method for hard real-time systems,” Real-Time
Systems, vol. 6, pp. 73–114.

[17] T. Vardanega, “When theory meets technology,” in
Proceedings of a conference organized in celebration of
Pro-fessor Alan Burns’ sixtieth birthday, p. 178.

[18] M. Filali-Amine and J. Lawall, “Development of a
synchronous subset of aadl,” in Abstract State
Machines, Alloy, B and Z. Springer, 2010, pp.
245–258.

[19] W. Wang and V. Tzerpos, “Design pattern detection
in eiffel systems,” in Reverse Engineering, 12th
Working Conference on, nov. 2005, p. 10 pp.

[20] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe,
“Automatic design pattern detection,” in Program
Comprehension, 2003. 11th IEEE International
Workshop on. IEEE, 2003, pp. 94–103.


