
 Page 1/10 

Combined Real-Time, Safety and Security Model Analysis 

P. Dissaux1, F. Singhoff2, L. Lemarchand2, H.N. Tran2, I. Atchadam2 

1: Ellidiss Technologies, 24, quai de la douane, 29200 Brest, France 

2: Lab-STICC, CNRS UMR 6285, Univ. of Brest, 20, av Le Gorgeu, 29200 Brest, France 

 
 

 
Introduction 

 
Model Driven Engineering (MDE) practices have 
been subject to many improvements since the last 
tens of years as much for modelling languages as 
model analysis and verification solutions. 
 
In the context of critical systems, the role of early 
verification [14] appears to become one of the most 
challenging approaches to cope with the increase of 
size and complexity of embedded software.  
 
One of the subsequent issues concerns the need to 
perform model verifications referring to several 
analysis domains that may lead to contradictory 
conclusions about the correctness of the model. 
 
This paper describes a tool supporting practical 
experiment based on the use of an architecture 
description language and combining analysis 
techniques covering Real-Time, Safety and Security 
criteria to be used for identifying architectural trade-
offs. 
 
1. Multi-criteria model analysis 

 
Even when it is not subject to validation by a 
certification authority, a characteristic of critical 
software is that it must comply with a set of 
additional requirements specifying its correct 
behaviour in terms of performance, safety and, more 
and more frequently, security. Other criteria such as 
power consumption or cost may also have to be 
considered. 
 
However, it often occurs that improving safety or 
security objectives of a system may decrease its 
performances (and conversely), for instance by 
introducing additional software functions to support 
redundancy or data confidentiality. 
 
Similarly, safety and security goals may sometimes 
lead to contradictory design choices. A trivial 
example is the door locking dilemma: keeping the 
door locked satisfies security requirements by 
preventing intrusions, whereas it also prevents 
firemen to access the building in case of a fire, which 
is a safety discrepancy. 
 

Finally, compliance with other non-functional 
requirements in terms of power consumption weight 
or cost may also impact the design decisions. 
 
It thus appears highly profitable to provide 
capabilities to achieve multi-criteria analysis at 
design time to define and justify the best trade-offs 
for the system architecture. Analysis methods that 
can drive design space exploration by computing 
trade-off have been proposed by the past. PAES 
multi-objective meta-heuristic is one of such method 
and [12][20] have shown how to apply it for design 
space exploration of critical software. 
 
Nevertheless, the temptation is high to create a 
dedicated model of the same system that fits with 
each analysis domain. Such an approach may 
facilitate the use of each specialized analysis tool but 
complicates the elaboration of a multi-criteria trade-
off. 
 
2. Selected modelling and analysis technologies 

 
In order to avoid the issue mentioned above, we 
decided to use a common architecture model with 
relevant annotations or sub-languages for each 
analysis domain. 
 
Several solutions could be considered to achieve 
this goal. For the purpose of this work, we selected 
the Architecture Analysis and Design Language 
(AADL) for the modelling phase and a set of existing 
AADL compliant solutions for the model verification 
phase. 
 
2.1. AADL 

 
The AADL has been defined to describe software 
intensive real-time systems and to embed a 
sufficient level of semantics to enable the use of 
early analysis or production tools.  
 
AADL is an international standard of the SAE, 
Aerospace Division, under reference AS-5506C, 
January 2017 [1]. 
 
An AADL model can be fully described by its textual 
representation, which makes it scalable and 
appropriate for version and configuration 
management. 
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The language standard is composed of a core and 
several optional annexes. The core language 
addresses the description of multi-threaded, 
distributed software architectures. Currently 
standardized annexes cover in particular Time and 
Space Partitioned architectures, Real-Time 
behaviour and Error modelling. Additionally, a 
Security annex is in preparation. In a more general 
way, specific model analysis annotations can be 
specified under the form of Property Sets. 
 
Finally, more specific annexes can be defined. This 
has especially been done to introduce inline 
verification sub-languages such as REAL or 
RESOLUTE. Our experiment makes use of the 
LAMP annex, offering the processing power of Logic 
Model Processing (LMP) [8][10], while having the 
ability to be directly embedded inside the AADL 
specification. 
 
2.2. Real-Time performance 

 
To enable Real-Time performance analysis, the 
input model must embed enough information about 
concurrent software tasks and their interactions 
(software architecture) as well as some knowledge 
about the computing and communication resources 
provided by the hardware execution platform 
(hardware architecture). 
 
All that can be expressed with AADL core language 
with an optional use of Behavior Annex descriptions 
that can act as pseudo-code to get a more accurate 
representation of the functional behaviour of the 
software, e.g. the best and worst case execution 
time (WCET) values that are usually considered for 
scheduling analysis. 
 
During our experiment, we have considered three 
cases of timing analysis: 
- Scheduling analysis provided by the Cheddar tool 
[3]. This computation is based on theoretical 
feasibility tests and static simulation. This analysis 
case fits well for a set of periodic tasks. 
- Model execution provided by the Marzhin simulator 
[9]. This solution provides less deterministic results 
but can be applied to any kind of tasks set, including 
asynchronous interactions with the user. 
- Scheduling Aware end to end Flow Latency 
Analysis (SAFLA) uses the concept of AADL End to 
End Flow and the threads Response Time computed 
by one of the two preceding methods (i.e. with 
Cheddar or Marzhin) as well as a LAMP verification 
program. 
 
2.3. Safety 

 
Whereas the Real-Time subset of the input model 
describes the nominal behaviour of the software, 

additional details about its erroneous behaviour must 
be provided to perform Safety analysis. 
 
For that purpose, the AADL standard includes the 
Error Model annex (EMV2) that provides a Property 
Set, a library of predefined error models and an 
annex sub-language. This sub-language expresses 
how errors can be generated, propagated and trigger 
state changes in an error automaton.  
 
The safety assessment process that we put in place 
consists in an evaluation of the Reliability of the 
system using Fault Tree Analysis (FTA) based on 
the information provided by the AADL model and its 
error annex. It operates as follows: 
- Add error model annex to the existing AADL 
components of the architecture. 
- Convert the AADL architecture into an OpenPSA 
model and launch the Arbre Analyste [4] specialized 
tool to perform Fault Tree Analysis and compute 
Safety indicator such as Mean Time Between 
Failures (MTBF) of the system. 
- Optionally add redundancy components in the 
architecture to increase the safety indicator. 
 
2.4. Cyber Security 

 
According to the Common Criteria [7], a security 
analysis process should address in particular threats 
such as unauthorized disclosure, modification or loss 
of use of the software. We will thus attempt to 
maximize the level of Confidentiality, Integrity and 
Availability of our system to reduce these threats. 
 
Interestingly, one possible method to evaluate 
Availability is to perform flow latency analysis for 
each critical service provided by the software and to 
check that they comply with the corresponding 
requirements. Practically, the solution presented in 
section 2.2 (SAFLA) can be used for this purpose. 
 
Addressing Confidentiality and Integrity can be 
performed at least at two different levels. First level 
consists in making architectural design choices that 
intrinsically reduce the risk of unauthorized access to 
critical data. Amazingly, this mostly implies enforcing 
software engineering good practices, such as 
modularity, data hiding and low coupling principles 
that have been promoted during several tens of 
years, not always successfully. An example of 
solution that strongly enforces these principles is the 
Hierarchical Object-Oriented Design (HOOD) 
method [2] that has been used for the development 
of critical embedded software in many programs like 
the Rosetta probe, the Airbus aircrafts or the 
Eurofighter Typhoon. Moreover, it is possible to 
apply the HOOD method for AADL projects using the 
Stood for AADL tool [5]. 
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However, it may be recommended to complement 
these architectural good practices with specific 
security rules analysis. The Security Annex for AADL 
is still being discussed by the standardization 
committee, so we applied the following verification 
approach: 
 

- Use a dedicated AADL Property Set with relevant 
security wise information, such as trust level and 
data access rights [11], or the more abstract notion 
of confidentiality and integrity levels. 
- Develop LAMP verification rules to check data 
access rights or implement Bell-La Padula and Biba 
rules checker algorithms [12] to evaluate 
Confidentiality and Integrity indicators in terms of 
number of security breaches for the overall software. 
- Introduce additional components such as 
encryption devices or data filters to increase the 
global Security indicator. 
 
2.5. Other non-functional requirements 

 
As discussed above, possible solutions to improve 
Performance, Safety and Security levels consist in 
adding new hardware or software components to the 
original design. Such enhancements have a 
negative impact on general characteristics of the 
system like power consumption, weight and cost. 
These characteristics may contribute to the estimate 
of a global Feasibility indicator. 
 
In the context of our experiment, these criteria can 
be managed in a simple way as follows: 
- Introduce a dedicated AADL Property for each 
criterion and provide an estimate value to each 
unitary component. 
- Perform a summation according to each 
architectural variant to get a global value for the 
global system. Such calculation can be easily 
implemented by a LAMP rule and provides what may 
be seen as a kind of Feasibility indicator. 
 
A more sophisticated solution would be to estimate 
power consumption from processor load that can be 
computed as an outcome of scheduling analysis. 
This approach has not been applied during our 
experiment. 
 
2.6. All in One: the AADL Inspector framework 

 
The assurance case defined for our experiment is 
restricted to the four quality assurance factors and 
the corresponding assessment solutions that have 
been discussed in the preceding sections: 
 

- Availability assessed by simulation (Marzhin, 
LAMP) 
- Safety assessed by Fault Tree Analysis (Arbre 
Analyste) 
- Security assessed by static analysis (LAMP) 

- Feasibility assessed by static analysis (LAMP) 
 
All these tools are available inside the standard 
AADL Inspector framework. AADL Inspector [6] can 
either parse native AADL models or translate foreign 
models into AADL and then connect them to a 
variety of verification and generation tools, such as 
Cheddar for scheduling analysis, Marzhin for event-
based simulation, Arbre Analyste for Fault Tree 
Analysis and Ocarina [21] for source code 
generation.  
 
All the processing features (model navigation, 
queries, constraints or transformations) are 
implemented with the LMP toolbox. LMP applies the 
benefits of Logic Programming to Model Driven 
Engineering. The main idea consists in defining any 
meta-model under the form of a set of Prolog facts 
and to process corresponding models with Prolog 
rules. LMP is especially appropriate to increase the 
tool capabilities at configuration level, such as 
implementing model transformations from AADL to 
remote analysis tools.  
 
LAMP brings the benefits of LMP to the AADL user. 
The LAMP annex enables the end user to add his 
own AADL processing features inline at design time. 
It becomes thus possible to adjust the assurance 
case assessment for each project. 
 
3. Case study design 

 
This section introduces a simple case study 
developed in AADL for which the various analysis 
techniques presented above can be applied to 
evaluate quality assurance indicators in terms of 
Availability, Safety and Security. Feasibility aspects 
are not covered by the example, however 
corresponding design and analysis approaches 
would be quite similar to the ones used to deal with 
Security analysis. 
 
The goal of this example is not to provide a generic 
solution to find the best architectural trade-off that 
optimizes all the quality assurance indicators, but 
much more modestly to show modelling and analysis 
solutions that may help to improve the engineering 
process of such systems. 
 
3.1. Top level architecture 
 
Proposed example consists of a classical control 
system composed of four subsystems deployed over 
a network (cf. Figure 1). This example does not 
represent any specific real case application. It has 
been invented for the sole purpose of illustration and 
demonstration.  
 
This generic design includes sensors, a control unit 
and actuators as well as a monitoring dashboard. It 



 Page 4/10 

can for instance represent a room access control 
system, where sensors would be a pin code input 
keyboard, actuators would be the electrical door 
locking mechanism and the control unit would be the 
authentication module that is configured and 
monitored by an administration console represented 
by the dashboard. 
 
The graphical AADL design has been done with the 
Stood for AADL tool and the textual notations have 
been automatically generated from this design 
model. 
 

 

Figure 1: control system (top level) 

In the corresponding textual notation (fragment), the 
main architectural description is shown in black 
colour. It includes the four subsystems and the 
network declared in the subcomponents section, the 
various point to point logical connections between 
the subcomponents and network access links in the 
connections sections and a dedicated property 
indicating that the logical connections are carried by 
the network. 
 
SYSTEM IMPLEMENTATION ControlSystem.others 

SUBCOMPONENTS 

 Sensors:     SYSTEM Sensors.others; 

 Controlunit: SYSTEM Controlunit.others; 

 Actuators:   SYSTEM Actuators.others; 

 Dashboard:   SYSTEM Dashboard.others; 

 Network:     BUS Network; 

CONNECTIONS 

 cnx1:  PORT Dashboard.settings -> … 

 cnx2:  PORT Controlunit.monitoring -> … 

 cnx3:  PORT Controlunit.sensors_settings -> … 

 cnx4:  PORT Sensors.status -> … 

 cnx5:  PORT Sensors.measures -> … 

 cnx6:  PORT Controlunit.actuators_settings -> … 

 cnx7:  PORT Actuators.status -> … 

 cnx8:  BUS ACCESS Network -> Dashboard.Nwk; 

 cnx9:  BUS ACCESS Network -> Sensors.Nwk; 

 cnx10: BUS ACCESS Network -> Actuators.Nwk; 

 cnx11: BUS ACCESS Network -> Controlunit.Nwk; 

FLOWS 

 f1: END TO END FLOW  

  Sensors.f1 ->  

  cnx5 -> Controlunit.f1 -> cnx6  

  -> Actuators.f1; 

PROPERTIES 

 Actual_Connection_Binding =>  

  (reference(Network))  

  applies to cnx1,cnx2,cnx3,cnx4,cnx5,cnx6,cnx7; 

 Timing => Immediate  

  applies to cnx5,cnx6; 

ANNEX EMV2 {** 

 use behavior errorlibrary::failstop; 

 composite error behavior 

 states 

  [ Dashboard.FailStop or  

    Sensors.FailStop or  

    ControlUnit.FailStop or  

    Actuators.FailStop or  

    Network.FailStop ]-> FailStop; 

 end composite; 

**}; 

END ControlSystem.others; 

 
Additional information has been added to the top 
level architectural information to support richer 
model analysis as introduced in section 1.  
 
Firstly, an end-to-end Flow declaration as well as 
timing Properties for Connections are shown in blue 
colour and can be used to support timing analysis 
and compute the latency between a sensor measure 
to the corresponding actuator reaction.  
 
Secondly, an Error annex section defines how the 
main system may fail. In our case, it consists of a 
disjunction of subsystems or network failures. This 
will take part to the elaboration of the fault tree for 
safety analysis (FTA). The AADL Error Modeling 
annex (EMV2) can also be used for other aspects of 
safety engineering such as Functional Hazard 
Assessments (FHA), Failure Mode and Effect 
Analysis (FMEA), and Common Cause Analysis 
(CCA). However, only Fault Tree Analysis is 
considered in this experiment. 
 
Lastly, a very simplified security model has been 
used here by adding dedicated Properties to 
associate exchanged data types with a given 
Security level. In this example, we consider that the 
measurement data may contain sensitive information 
and must thus be protected, whereas monitoring 
data may remain unprotected. More acurate security 
models could include other Properties such as data 
access rights that may differ for the various software 
functions of the system (access groups) [11]. 
 
Data types are specified here in a separate Package 
and can be referenced by Data ports and Data 
components of the main design. Security level 
properties have been added for the purpose of 
model analysis. The higher the value of this property 
is, the higher the confidentiality and integrity of 
corresponding Data ports or Data components is. 
 
PACKAGE ControlSystemTypes 

PUBLIC 

 

  DATA T_settings 

    -- Medium security level 

    LAMP::Security_Level => 3; 

  END T_settings; 
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  DATA T_status 

    -- Low security level 

    LAMP::Security_Level => 2; 

  END T_status; 

 

  DATA T_measures 

  PROPERTIES 

    -- High security level 

    LAMP::Security_Level => 5; 

  END T_measures; 

 

  DATA T_monitoring 

  PROPERTIES 

    -- Low security level 

    LAMP::Security_Level => 2; 

  END T_monitoring; 

 

END ControlSystemTypes; 

 
Each of the subsystems can now be described in a 
similar way. We will only provide design details for 
one of them. 
 
3.2. Sensors subsystem 
 
The Sensors subsystem (cf. Figure 2) represents a 
separate node of the network. It is composed of 
hardware electronics such as a Processor, local 
Memory, Bus, a Device component representing the 
sensors themselves, and an acquisition software 
application depicted by an AADL Process that is 
running on the Processor. 
 

 

Figure 2: sensors subsystem 

In a similar way as for the encompassing system, the 
architecture description of the Sensors subsystem 
can be represented textually by the following AADL 
fragment and additional Flows and Error annex 
sections can be added for the purpose of analysis. 

SYSTEM IMPLEMENTATION Sensors.others 

SUBCOMPONENTS 

 Acq_CPU: PROCESSOR Acq_CPU; 

 Acq_MEM: MEMORY Acq_MEM; 

 Acq_SW:  PROCESS Acq_SW.others; 

 Acq_DEV: DEVICE Acq_DEV; 

 Acq_BUS: BUS Acq_BUS; 

CONNECTIONS 

 cnx1: PORT settings -> Acq_SW.settings; 

 cnx2: PORT Acq_SW.status -> status; 

 cnx3: PORT Acq_SW.measures -> measures; 

 cnx4: PORT Acq_SW.acq_cmd -> Acq_DEV.command; 

 cnx5: PORT Acq_DEV.rawdata -> … 

 cnx6: BUS ACCESS Network -> Acq_CPU.Nwk; 

 cnx7: BUS ACCESS Acq_BUS -> Acq_CPU.Acq_BUS; 

 cnx8: BUS ACCESS Acq_BUS -> Acq_DEV.Acq_BUS; 

 cnx9: BUS ACCESS Acq_BUS -> Acq_MEM.Acq_BUS; 

FLOWS 

 f1: FLOW SOURCE  

  Acq_DEV.f1 ->  

  cnx5 -> Acq_SW.f1 -> cnx3  

  -> measures; 

PROPERTIES 

 Actual_Processor_Binding =>    

  (reference(Acq_CPU))  

  applies to Acq_SW; 

ANNEX EMV2 {** 

 use behavior errorlibrary::failstop; 

 composite error behavior 

 states 

  [ Acq_CPU.FailStop or  

    Acq_DEV.FailStop or  

    Acq_BUS.FailStop ]-> FailStop; 

 end composite; 

**}; 

END Sensors.others; 

 
This description process must be performed 
hierarchically until we reach the lowest level 
components. In order not to complexify our example 
too much, we stopped at AADL Thread level.  
 
Textual notation fragments of the Sensors 
subsystem subcomponents is shown below with their 
corresponding Flows and Error annex details. 
 
The detailed description of the other subsystems has 
been volontarily omitted in this paper due to the lack 
of space. However, they would be quite similar. 
 
3.3. Sensors subsystem hardware 
 
The hardware parts that are considered for the 
Sensors subsystem are a computing resource 
represented by an AADL Processor and a raw data 
acquisition set represented by an AADL Device. 
 
PROCESSOR Acq_CPU 

FEATURES 

 … 

PROPERTIES 

 Scheduling_Protocol =>  

  (RATE_MONOTONIC_PROTOCOL); 

ANNEX EMV2 {** 

 use behavior errorlibrary::failstop; 

 properties 

  EMV2::OccurrenceDistribution =>  

   [ ProbabilityValue => 1.0e-5;  

     Distribution => Poisson; ]  

   applies to Failure; 

**}; 

END Acq_CPU; 

 
The Processor component is characterized by a 
Property specifying the scheduling policy of its 
Operating System and an Error Model annex giving 
its probability of failure. Note that this Error Model 
makes use of a predefined error automaton defined 
in a library. 
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DEVICE Acq_DEV 

FEATURES 

 … 

FLOWS 

 f1: FLOW SOURCE rawdata; 

ANNEX EMV2 {** 

 use types errorlibrary; 

 use behavior errorlibrary::failstop; 

 error propagations 

  rawdata : out propagation {NoValue}; 

 end propagations; 

 component error behavior 

 propagations 

  p1 : FailStop -[]-> rawdata{NoValue}; 

 end component; 

 properties 

  EMV2::OccurrenceDistribution =>  

   [ ProbabilityValue => 1.0e-3;  

     Distribution => Poisson; ]  

  applies to Failure; 

**}; 

END Acq_DEV; 

 
The Device component declaration indicates that it 
contributes as the source of the end to end Flow 
through its Port rawdata and contains an Error Model 
annex specifying its probability of failure and the 
consequence such failures have to the data flow. 
 
3.4. Sensors subsystem software 
 
The Sensors software that is running on the 
Processor is represented by an AADL Process 
containing a single AADL Thread. 
 

PROCESS IMPLEMENTATION Acq_SW.others 

SUBCOMPONENTS 

 Acq_Driver : THREAD Acq_Driver; 

CONNECTIONS 

 cnx1: PORT settings -> Acq_Driver.settings; 

 cnx2: PORT Acq_Driver.status -> status; 

 cnx3: PORT Acq_Driver.measures -> measures; 

 cnx4: PORT Acq_Driver.acq_cmd -> acq_cmd; 

 cnx5: PORT acq_data -> Acq_Driver.acq_data; 

FLOWS 

 f1: FLOW PATH 

  acq_data ->  

  cnx5 -> Acq_Driver.f1 -> cnx3  

  -> measures; 

ANNEX EMV2 {** 

 use types errorlibrary; 

 use behavior errorlibrary::failstop; 

 error propagations 

  acq_data : in propagation {NoValue}; 

  measures : out propagation {NoValue}; 

 end propagations;  

 component error behavior 

 transitions 

  t1: Operational  

   -[ acq_data{NoValue} ]-> FailStop; 

 propagations 

  p1: FailStop -[]-> measures{NoValue}; 

 end component; 

**}; 

END Acq_SW.others; 

 
The Process component behaves as a gateway for 
the end to end flow (AADL Flow Path) and for the 
Error Model (AADL Error Propagation). 
 

THREAD Acq_Driver 

FEATURES 

 … 

FLOWS 

 f1: FLOW PATH acq_data -> measures; 

PROPERTIES 

 Dispatch_Protocol => Periodic; 

 Compute_Execution_Time => 5ms..5ms; 

 Deadline => 100ms; 

 Period => 100ms; 

END Acq_Driver; 

 

The Thread component is characterized by its real-
time attributes. Note that it would have been possible 
to specify a more precise execution behaviour by 
adding Subprogram subcomponents and Behavior 
annexes [18]. 
 
4. Case study analysis 
 
In this section, we describe how the architectural 
design of the example, associated with the various 
specialized properties and annexes add-ons can be 
used to perform combined performance, safety and 
security analysis thanks to the advanced features 
provided by the AADL Inspector tool. However, as 
this architectural design has been fully exported as a 
standard AADL model, any other AADL compliant 
analysis tool could be used instead. 
 
4.1. Performance 
 
In the scope of this case study, we have put the 
focus on the Scheduling Aware end to end Flow 
Latency Analysis (SAFLA) technique. This technique 
consists in computing an estimate of the maximum 
end to end reaction time between the ultimate 
source and the ultimate sink of a data flow across 
the overall system. In our case, the ultimate flow 
source is the rawdata output port of the Sensors 
Device and the ultimate sink is the command input 
port of the Actuators Device. 
 
Between these two ends, the dataflow traverses 
several threads and connections, each of them 
contributing to the global end to end latency. 
 

 

Figure 3: Threads real-time attributes 

 
Although each Thread is given a set of real-time 
attributes such as its period and Worst-Case 
Execution Time (WCET), its actual contribution to an 
end to end Flow latency is its response time that 
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takes into accounts scheduling policies, Threads 
dependencies and interferences. 
 
Regarding Connections, we make the assumption 
that only those that are spread over the network will 
add a significant delay to the end to end Flow. We 
can then estimate each Bus message response time 
in a similar way we do it for Threads.  
 
Several tools can be used to compute the actual 
maximum response time for Threads and Bus 
messages. For our experiment, we used the Marzhin 
AADL simulator [9] for that purpose (cf. Figure 4). 
 

 

Figure 4: AADL real-time simulation 

 
Finally, a LAMP rule is used to collect all the 
required timing information from the simulator and 
compute the global end to end Flow latency. The 
result of this performance analysis process is shown 
in the AADL Inspector console (cf. Figure 5). 
 

 

Figure 5: Flow latency analysis with LAMP 

 
The end to end Flow latency can then be compared 
with the software requirements in terms of time of 
reaction between the Sensors and the Actuators. 
 
 
 

4.2. Safety 
 
The performance analysis presented above 
concerns the nominal behavior of the software. In 
our experiment, we use safety analysis technique to 
evaluate the Mean Time Between Failures of our 
system.  
 
The AADL Error Model statements that are 
disseminated within the various component 
descriptions can be compiled together to generate a 
fault tree. Such a fault tree is composed of Or and 
And gates as well of Basic Events with a probability 
of occurrence. 
 
AADL Inspector uses a LMP model transformation 
[8][10] to convert the AADL architecture and its Error 
Models into a Open PSA standard format file [19]. 
This file is then automatically loaded into the Arbre 
Analyste tool [4] to show the corresponding fault tree 
graphically and compute the MTBF value (cf. Figures 
6 and 7). 
 
 

 

Figure 6: Fault tree in Arbre Analyste 

 

 

Figure 7: MTBF computation in Arbre Analyste 
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In case the obtained MTBF values do not fit the 
requirements, the software architecture may be 
revised by introducing redundancies for instance. 
 
4.3. Security 
 
The goal of our security analysis is focused on 
detection of possible unauthorized access to 
sensitive data. Our design example has been 
produced using the Stood for AADL tool which 
enforces data hiding principles as part of its HOOD 
modeling rules compliancy. With that way to use this 
tool, it is not possible to generate direct external 
access to data components (i.e. AADL provides Data 
Access features). This restriction reduces 
significantly security breaches by construction. 
 
However, it remains possible to access internal data 
in a controlled way through AADL Ports or 
Subprograms. It is thus necessary to verify that 
these indirect data access points are secure enough. 
For our simple case study, we have considered a 
very basic security model where a dedicated 
Property Set is used to associate a security level 
(integer value) to AADL Data (cf. section 3.1), as 
defined above: 
 
PROPERTY SET LAMP IS 

-- … 

Security_Level : AADLINTEGER APPLIES TO  

  (Data, Data Access, Port, Parameter); 

-- … 

END LAMP; 

 
Note that this Property Set will be replaced by the 
one defined by the future AADL Security Annex 
standard when ready. 
 
For our experiment, we expect to use these security 
level Properties to detect potential data 
confidentiality breaches. The first rule that can easily 
be checked is that all the ports contributing to a 
same end to end Flow are at the same security level. 
The second rule refers to the Bell-La Padula 
algorithm [16]. This algorithm is based on the 
verification of two rules denoted No-Read-Up and 
No-Write-Down. 
 
No-Read-Up refers to the fact that a component at a 
given security level cannot read data that is tagged 
with a higher security level whereas No-Write-Down 
means that a component tagged with a given 
security level cannot write information to a lower 
security level. 
 
Note that similar analysis can be performed for data 
integrity check, using the Biba algorithm [17] and its 
No-Read-Down and No-Write-Up rules. 
 
Security rules policy may vary from one project to 
another. It is thus interesting to provide a flexible 

way to customize them in the scope of a given 
design. With the tools we are using for this 
experiment, these rules can be easily implemented 
in Prolog language within a LAMP annex attached to 
the AADL model.  
 
An attempt to define a security rules policy for our 
example could be: 

• Sec_R1: All components involved in a same end 
to end Flow must be at the same security level. 

• Sec_R2: The security level of a component is 
the higher security level value associated with its 
Data ports. 

• Sec_R3: When two components are connected 
via a shared Bus, they must comply with the No-
Read-Up and No-Write-Down rules. 

 
A fragment of the implementation of these rules in 
prolog using an AADL LAMP annex is given below: 
 
PACKAGE ControlSystemAnalysis 

PUBLIC 

 

ANNEX LAMP {** 

/* rule Sec_R1 */ 

checkFlowSecurity :-  

 getRoot(R), getClassifier(R,P,T,I),  

 getAncestorRec(P,T,I,Q,U,J),  

 isFlowImplementation('END TO END',Q,U,J,E),  

 concat('root.',E,F),  

 getEndToEndFlow('root',E,M),  

 getFlowSecurityLevels(M,[],L,0,N), N > 1,  

 printMessageSec_R1(F,L). 

checkFlowSecurity :- nl. 

       

/* rule Sec_R2 */ 

checkMaxSecurityLevel :-  

 getMaxSecurityLevel(X,L),  

 printMessageSec_R2(X,L). 

checkMaxSecurityLevel :- nl. 

            

/* rule Sec_R3 */ 

checkNoWriteDown :-  

 isAADLBusBinding(_,C,_),  

 isAADLConnection(_,P,T,I,_,_,_,C,_,_,_,_),  

 getConnectionEnds(P,T,I,C,Xs,Xd),  

 getMaxSecurityLevel(Xs,Ls),  

 getMaxSecurityLevel(Xd,Ld),  

 Ls > Ld,  

 printMessageSec_R3(C,Ls,Ld). 

checkNoWriteDown :- nl. 

 

-- … 

END ControlSystemAnalysis; 

 
After running the LAMP checker, the output of the 
verification process is displayed in the AADL 
Inspector console as shown in Figure 8. 
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Figure 8: Security analysis with LAMP 

 

Detected issues can be solved by modifying 
Property values or doing deeper changes in the 
architecture, e.g. adding new components to comply 
with specified security policy. 
 
 
Conclusion 

 
This paper has shown how it is possible to perform 
combined multi-criteria analysis to estimate real-time 
Performance, Safety and Security indicators for a 
same input model expressed in AADL and using the 
AADL Inspector framework. The goal is to help 
design teams to find the best architectural trade-offs 
for their critical embedded software. 
 
As these criteria not only impact non-functional 
attributes related to each analysis domain but also 
the global design choices, using a common 
architecture description language brings significant 
benefit. Similar conclusions have been obtained by 
other initiatives, such as with the Architecture Centric 
Virtual Integration Process (ACVIP) [13]. 
 
The experiment presented in this paper has been 
applied to a small case study for demonstration 
purpose only. The choice of the quality assurance 
indicators and the way they are estimated must be 
studied deeply in the context of a real-life industrial 
project. Furthermore, we currently investigate the 
use of the PAES meta-heuristic to help designer to 
automatically run similar design space exploration on 
security and real-time performances with similar 
architecture models [12][20]. 
 
The AADL example that is used in this paper and the 
various verification results that are presented have 
been developed with the Stood and AADL Inspector 
tools. This example is available as part of the 
distribution package of these tools. 
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