
 Page 1/10

Combined Real-Time, Safety and Security Model Analysis

P. Dissaux1, F. Singhoff2, L. Lemarchand2, H.N. Tran2, I. Atchadam2

1: Ellidiss Technologies, 24, quai de la douane, 29200 Brest, France

2: Lab-STICC, CNRS UMR 6285, Univ. of Brest, 20, av Le Gorgeu, 29200 Brest, France

Introduction

Model Driven Engineering (MDE) practices have
been subject to many improvements since the last
tens of years as much for modelling languages as
model analysis and verification solutions.

In the context of critical systems, the role of early
verification [14] appears to become one of the most
challenging approaches to cope with the increase of
size and complexity of embedded software.

One of the subsequent issues concerns the need to
perform model verifications referring to several
analysis domains that may lead to contradictory
conclusions about the correctness of the model.

This paper describes a tool supporting practical
experiment based on the use of an architecture
description language and combining analysis
techniques covering Real-Time, Safety and Security
criteria to be used for identifying architectural trade-
offs.

1. Multi-criteria model analysis

Even when it is not subject to validation by a
certification authority, a characteristic of critical
software is that it must comply with a set of
additional requirements specifying its correct
behaviour in terms of performance, safety and, more
and more frequently, security. Other criteria such as
power consumption or cost may also have to be
considered.

However, it often occurs that improving safety or
security objectives of a system may decrease its
performances (and conversely), for instance by
introducing additional software functions to support
redundancy or data confidentiality.

Similarly, safety and security goals may sometimes
lead to contradictory design choices. A trivial
example is the door locking dilemma: keeping the
door locked satisfies security requirements by
preventing intrusions, whereas it also prevents
firemen to access the building in case of a fire, which
is a safety discrepancy.

Finally, compliance with other non-functional
requirements in terms of power consumption weight
or cost may also impact the design decisions.

It thus appears highly profitable to provide
capabilities to achieve multi-criteria analysis at
design time to define and justify the best trade-offs
for the system architecture. Analysis methods that
can drive design space exploration by computing
trade-off have been proposed by the past. PAES
multi-objective meta-heuristic is one of such method
and [12][20] have shown how to apply it for design
space exploration of critical software.

Nevertheless, the temptation is high to create a
dedicated model of the same system that fits with
each analysis domain. Such an approach may
facilitate the use of each specialized analysis tool but
complicates the elaboration of a multi-criteria trade-
off.

2. Selected modelling and analysis technologies

In order to avoid the issue mentioned above, we
decided to use a common architecture model with
relevant annotations or sub-languages for each
analysis domain.

Several solutions could be considered to achieve
this goal. For the purpose of this work, we selected
the Architecture Analysis and Design Language
(AADL) for the modelling phase and a set of existing
AADL compliant solutions for the model verification
phase.

2.1. AADL

The AADL has been defined to describe software
intensive real-time systems and to embed a
sufficient level of semantics to enable the use of
early analysis or production tools.

AADL is an international standard of the SAE,
Aerospace Division, under reference AS-5506C,
January 2017 [1].

An AADL model can be fully described by its textual
representation, which makes it scalable and
appropriate for version and configuration
management.

 Page 2/10

The language standard is composed of a core and
several optional annexes. The core language
addresses the description of multi-threaded,
distributed software architectures. Currently
standardized annexes cover in particular Time and
Space Partitioned architectures, Real-Time
behaviour and Error modelling. Additionally, a
Security annex is in preparation. In a more general
way, specific model analysis annotations can be
specified under the form of Property Sets.

Finally, more specific annexes can be defined. This
has especially been done to introduce inline
verification sub-languages such as REAL or
RESOLUTE. Our experiment makes use of the
LAMP annex, offering the processing power of Logic
Model Processing (LMP) [8][10], while having the
ability to be directly embedded inside the AADL
specification.

2.2. Real-Time performance

To enable Real-Time performance analysis, the
input model must embed enough information about
concurrent software tasks and their interactions
(software architecture) as well as some knowledge
about the computing and communication resources
provided by the hardware execution platform
(hardware architecture).

All that can be expressed with AADL core language
with an optional use of Behavior Annex descriptions
that can act as pseudo-code to get a more accurate
representation of the functional behaviour of the
software, e.g. the best and worst case execution
time (WCET) values that are usually considered for
scheduling analysis.

During our experiment, we have considered three
cases of timing analysis:
- Scheduling analysis provided by the Cheddar tool
[3]. This computation is based on theoretical
feasibility tests and static simulation. This analysis
case fits well for a set of periodic tasks.
- Model execution provided by the Marzhin simulator
[9]. This solution provides less deterministic results
but can be applied to any kind of tasks set, including
asynchronous interactions with the user.
- Scheduling Aware end to end Flow Latency
Analysis (SAFLA) uses the concept of AADL End to
End Flow and the threads Response Time computed
by one of the two preceding methods (i.e. with
Cheddar or Marzhin) as well as a LAMP verification
program.

2.3. Safety

Whereas the Real-Time subset of the input model
describes the nominal behaviour of the software,

additional details about its erroneous behaviour must
be provided to perform Safety analysis.

For that purpose, the AADL standard includes the
Error Model annex (EMV2) that provides a Property
Set, a library of predefined error models and an
annex sub-language. This sub-language expresses
how errors can be generated, propagated and trigger
state changes in an error automaton.

The safety assessment process that we put in place
consists in an evaluation of the Reliability of the
system using Fault Tree Analysis (FTA) based on
the information provided by the AADL model and its
error annex. It operates as follows:
- Add error model annex to the existing AADL
components of the architecture.
- Convert the AADL architecture into an OpenPSA
model and launch the Arbre Analyste [4] specialized
tool to perform Fault Tree Analysis and compute
Safety indicator such as Mean Time Between
Failures (MTBF) of the system.
- Optionally add redundancy components in the
architecture to increase the safety indicator.

2.4. Cyber Security

According to the Common Criteria [7], a security
analysis process should address in particular threats
such as unauthorized disclosure, modification or loss
of use of the software. We will thus attempt to
maximize the level of Confidentiality, Integrity and
Availability of our system to reduce these threats.

Interestingly, one possible method to evaluate
Availability is to perform flow latency analysis for
each critical service provided by the software and to
check that they comply with the corresponding
requirements. Practically, the solution presented in
section 2.2 (SAFLA) can be used for this purpose.

Addressing Confidentiality and Integrity can be
performed at least at two different levels. First level
consists in making architectural design choices that
intrinsically reduce the risk of unauthorized access to
critical data. Amazingly, this mostly implies enforcing
software engineering good practices, such as
modularity, data hiding and low coupling principles
that have been promoted during several tens of
years, not always successfully. An example of
solution that strongly enforces these principles is the
Hierarchical Object-Oriented Design (HOOD)
method [2] that has been used for the development
of critical embedded software in many programs like
the Rosetta probe, the Airbus aircrafts or the
Eurofighter Typhoon. Moreover, it is possible to
apply the HOOD method for AADL projects using the
Stood for AADL tool [5].

 Page 3/10

However, it may be recommended to complement
these architectural good practices with specific
security rules analysis. The Security Annex for AADL
is still being discussed by the standardization
committee, so we applied the following verification
approach:

- Use a dedicated AADL Property Set with relevant
security wise information, such as trust level and
data access rights [11], or the more abstract notion
of confidentiality and integrity levels.
- Develop LAMP verification rules to check data
access rights or implement Bell-La Padula and Biba
rules checker algorithms [12] to evaluate
Confidentiality and Integrity indicators in terms of
number of security breaches for the overall software.
- Introduce additional components such as
encryption devices or data filters to increase the
global Security indicator.

2.5. Other non-functional requirements

As discussed above, possible solutions to improve
Performance, Safety and Security levels consist in
adding new hardware or software components to the
original design. Such enhancements have a
negative impact on general characteristics of the
system like power consumption, weight and cost.
These characteristics may contribute to the estimate
of a global Feasibility indicator.

In the context of our experiment, these criteria can
be managed in a simple way as follows:
- Introduce a dedicated AADL Property for each
criterion and provide an estimate value to each
unitary component.
- Perform a summation according to each
architectural variant to get a global value for the
global system. Such calculation can be easily
implemented by a LAMP rule and provides what may
be seen as a kind of Feasibility indicator.

A more sophisticated solution would be to estimate
power consumption from processor load that can be
computed as an outcome of scheduling analysis.
This approach has not been applied during our
experiment.

2.6. All in One: the AADL Inspector framework

The assurance case defined for our experiment is
restricted to the four quality assurance factors and
the corresponding assessment solutions that have
been discussed in the preceding sections:

- Availability assessed by simulation (Marzhin,
LAMP)
- Safety assessed by Fault Tree Analysis (Arbre
Analyste)
- Security assessed by static analysis (LAMP)

- Feasibility assessed by static analysis (LAMP)

All these tools are available inside the standard
AADL Inspector framework. AADL Inspector [6] can
either parse native AADL models or translate foreign
models into AADL and then connect them to a
variety of verification and generation tools, such as
Cheddar for scheduling analysis, Marzhin for event-
based simulation, Arbre Analyste for Fault Tree
Analysis and Ocarina [21] for source code
generation.

All the processing features (model navigation,
queries, constraints or transformations) are
implemented with the LMP toolbox. LMP applies the
benefits of Logic Programming to Model Driven
Engineering. The main idea consists in defining any
meta-model under the form of a set of Prolog facts
and to process corresponding models with Prolog
rules. LMP is especially appropriate to increase the
tool capabilities at configuration level, such as
implementing model transformations from AADL to
remote analysis tools.

LAMP brings the benefits of LMP to the AADL user.
The LAMP annex enables the end user to add his
own AADL processing features inline at design time.
It becomes thus possible to adjust the assurance
case assessment for each project.

3. Case study design

This section introduces a simple case study
developed in AADL for which the various analysis
techniques presented above can be applied to
evaluate quality assurance indicators in terms of
Availability, Safety and Security. Feasibility aspects
are not covered by the example, however
corresponding design and analysis approaches
would be quite similar to the ones used to deal with
Security analysis.

The goal of this example is not to provide a generic
solution to find the best architectural trade-off that
optimizes all the quality assurance indicators, but
much more modestly to show modelling and analysis
solutions that may help to improve the engineering
process of such systems.

3.1. Top level architecture

Proposed example consists of a classical control
system composed of four subsystems deployed over
a network (cf. Figure 1). This example does not
represent any specific real case application. It has
been invented for the sole purpose of illustration and
demonstration.

This generic design includes sensors, a control unit
and actuators as well as a monitoring dashboard. It

 Page 4/10

can for instance represent a room access control
system, where sensors would be a pin code input
keyboard, actuators would be the electrical door
locking mechanism and the control unit would be the
authentication module that is configured and
monitored by an administration console represented
by the dashboard.

The graphical AADL design has been done with the
Stood for AADL tool and the textual notations have
been automatically generated from this design
model.

Figure 1: control system (top level)

In the corresponding textual notation (fragment), the
main architectural description is shown in black
colour. It includes the four subsystems and the
network declared in the subcomponents section, the
various point to point logical connections between
the subcomponents and network access links in the
connections sections and a dedicated property
indicating that the logical connections are carried by
the network.

SYSTEM IMPLEMENTATION ControlSystem.others

SUBCOMPONENTS

 Sensors: SYSTEM Sensors.others;

 Controlunit: SYSTEM Controlunit.others;

 Actuators: SYSTEM Actuators.others;

 Dashboard: SYSTEM Dashboard.others;

 Network: BUS Network;

CONNECTIONS

 cnx1: PORT Dashboard.settings -> …

 cnx2: PORT Controlunit.monitoring -> …

 cnx3: PORT Controlunit.sensors_settings -> …

 cnx4: PORT Sensors.status -> …

 cnx5: PORT Sensors.measures -> …

 cnx6: PORT Controlunit.actuators_settings -> …

 cnx7: PORT Actuators.status -> …

 cnx8: BUS ACCESS Network -> Dashboard.Nwk;

 cnx9: BUS ACCESS Network -> Sensors.Nwk;

 cnx10: BUS ACCESS Network -> Actuators.Nwk;

 cnx11: BUS ACCESS Network -> Controlunit.Nwk;

FLOWS

 f1: END TO END FLOW

 Sensors.f1 ->

 cnx5 -> Controlunit.f1 -> cnx6

 -> Actuators.f1;

PROPERTIES

 Actual_Connection_Binding =>

 (reference(Network))

 applies to cnx1,cnx2,cnx3,cnx4,cnx5,cnx6,cnx7;

 Timing => Immediate

 applies to cnx5,cnx6;

ANNEX EMV2 {**

 use behavior errorlibrary::failstop;

 composite error behavior

 states

 [Dashboard.FailStop or

 Sensors.FailStop or

 ControlUnit.FailStop or

 Actuators.FailStop or

 Network.FailStop]-> FailStop;

 end composite;

**};

END ControlSystem.others;

Additional information has been added to the top
level architectural information to support richer
model analysis as introduced in section 1.

Firstly, an end-to-end Flow declaration as well as
timing Properties for Connections are shown in blue
colour and can be used to support timing analysis
and compute the latency between a sensor measure
to the corresponding actuator reaction.

Secondly, an Error annex section defines how the
main system may fail. In our case, it consists of a
disjunction of subsystems or network failures. This
will take part to the elaboration of the fault tree for
safety analysis (FTA). The AADL Error Modeling
annex (EMV2) can also be used for other aspects of
safety engineering such as Functional Hazard
Assessments (FHA), Failure Mode and Effect
Analysis (FMEA), and Common Cause Analysis
(CCA). However, only Fault Tree Analysis is
considered in this experiment.

Lastly, a very simplified security model has been
used here by adding dedicated Properties to
associate exchanged data types with a given
Security level. In this example, we consider that the
measurement data may contain sensitive information
and must thus be protected, whereas monitoring
data may remain unprotected. More acurate security
models could include other Properties such as data
access rights that may differ for the various software
functions of the system (access groups) [11].

Data types are specified here in a separate Package
and can be referenced by Data ports and Data
components of the main design. Security level
properties have been added for the purpose of
model analysis. The higher the value of this property
is, the higher the confidentiality and integrity of
corresponding Data ports or Data components is.

PACKAGE ControlSystemTypes

PUBLIC

 DATA T_settings

 -- Medium security level

 LAMP::Security_Level => 3;

 END T_settings;

 Page 5/10

 DATA T_status

 -- Low security level

 LAMP::Security_Level => 2;

 END T_status;

 DATA T_measures

 PROPERTIES

 -- High security level

 LAMP::Security_Level => 5;

 END T_measures;

 DATA T_monitoring

 PROPERTIES

 -- Low security level

 LAMP::Security_Level => 2;

 END T_monitoring;

END ControlSystemTypes;

Each of the subsystems can now be described in a
similar way. We will only provide design details for
one of them.

3.2. Sensors subsystem

The Sensors subsystem (cf. Figure 2) represents a
separate node of the network. It is composed of
hardware electronics such as a Processor, local
Memory, Bus, a Device component representing the
sensors themselves, and an acquisition software
application depicted by an AADL Process that is
running on the Processor.

Figure 2: sensors subsystem

In a similar way as for the encompassing system, the
architecture description of the Sensors subsystem
can be represented textually by the following AADL
fragment and additional Flows and Error annex
sections can be added for the purpose of analysis.

SYSTEM IMPLEMENTATION Sensors.others

SUBCOMPONENTS

 Acq_CPU: PROCESSOR Acq_CPU;

 Acq_MEM: MEMORY Acq_MEM;

 Acq_SW: PROCESS Acq_SW.others;

 Acq_DEV: DEVICE Acq_DEV;

 Acq_BUS: BUS Acq_BUS;

CONNECTIONS

 cnx1: PORT settings -> Acq_SW.settings;

 cnx2: PORT Acq_SW.status -> status;

 cnx3: PORT Acq_SW.measures -> measures;

 cnx4: PORT Acq_SW.acq_cmd -> Acq_DEV.command;

 cnx5: PORT Acq_DEV.rawdata -> …

 cnx6: BUS ACCESS Network -> Acq_CPU.Nwk;

 cnx7: BUS ACCESS Acq_BUS -> Acq_CPU.Acq_BUS;

 cnx8: BUS ACCESS Acq_BUS -> Acq_DEV.Acq_BUS;

 cnx9: BUS ACCESS Acq_BUS -> Acq_MEM.Acq_BUS;

FLOWS

 f1: FLOW SOURCE

 Acq_DEV.f1 ->

 cnx5 -> Acq_SW.f1 -> cnx3

 -> measures;

PROPERTIES

 Actual_Processor_Binding =>

 (reference(Acq_CPU))

 applies to Acq_SW;

ANNEX EMV2 {**

 use behavior errorlibrary::failstop;

 composite error behavior

 states

 [Acq_CPU.FailStop or

 Acq_DEV.FailStop or

 Acq_BUS.FailStop]-> FailStop;

 end composite;

**};

END Sensors.others;

This description process must be performed
hierarchically until we reach the lowest level
components. In order not to complexify our example
too much, we stopped at AADL Thread level.

Textual notation fragments of the Sensors
subsystem subcomponents is shown below with their
corresponding Flows and Error annex details.

The detailed description of the other subsystems has
been volontarily omitted in this paper due to the lack
of space. However, they would be quite similar.

3.3. Sensors subsystem hardware

The hardware parts that are considered for the
Sensors subsystem are a computing resource
represented by an AADL Processor and a raw data
acquisition set represented by an AADL Device.

PROCESSOR Acq_CPU

FEATURES

 …

PROPERTIES

 Scheduling_Protocol =>

 (RATE_MONOTONIC_PROTOCOL);

ANNEX EMV2 {**

 use behavior errorlibrary::failstop;

 properties

 EMV2::OccurrenceDistribution =>

 [ProbabilityValue => 1.0e-5;

 Distribution => Poisson;]

 applies to Failure;

**};

END Acq_CPU;

The Processor component is characterized by a
Property specifying the scheduling policy of its
Operating System and an Error Model annex giving
its probability of failure. Note that this Error Model
makes use of a predefined error automaton defined
in a library.

 Page 6/10

DEVICE Acq_DEV

FEATURES

 …

FLOWS

 f1: FLOW SOURCE rawdata;

ANNEX EMV2 {**

 use types errorlibrary;

 use behavior errorlibrary::failstop;

 error propagations

 rawdata : out propagation {NoValue};

 end propagations;

 component error behavior

 propagations

 p1 : FailStop -[]-> rawdata{NoValue};

 end component;

 properties

 EMV2::OccurrenceDistribution =>

 [ProbabilityValue => 1.0e-3;

 Distribution => Poisson;]

 applies to Failure;

**};

END Acq_DEV;

The Device component declaration indicates that it
contributes as the source of the end to end Flow
through its Port rawdata and contains an Error Model
annex specifying its probability of failure and the
consequence such failures have to the data flow.

3.4. Sensors subsystem software

The Sensors software that is running on the
Processor is represented by an AADL Process
containing a single AADL Thread.

PROCESS IMPLEMENTATION Acq_SW.others

SUBCOMPONENTS

 Acq_Driver : THREAD Acq_Driver;

CONNECTIONS

 cnx1: PORT settings -> Acq_Driver.settings;

 cnx2: PORT Acq_Driver.status -> status;

 cnx3: PORT Acq_Driver.measures -> measures;

 cnx4: PORT Acq_Driver.acq_cmd -> acq_cmd;

 cnx5: PORT acq_data -> Acq_Driver.acq_data;

FLOWS

 f1: FLOW PATH

 acq_data ->

 cnx5 -> Acq_Driver.f1 -> cnx3

 -> measures;

ANNEX EMV2 {**

 use types errorlibrary;

 use behavior errorlibrary::failstop;

 error propagations

 acq_data : in propagation {NoValue};

 measures : out propagation {NoValue};

 end propagations;

 component error behavior

 transitions

 t1: Operational

 -[acq_data{NoValue}]-> FailStop;

 propagations

 p1: FailStop -[]-> measures{NoValue};

 end component;

**};

END Acq_SW.others;

The Process component behaves as a gateway for
the end to end flow (AADL Flow Path) and for the
Error Model (AADL Error Propagation).

THREAD Acq_Driver

FEATURES

 …

FLOWS

 f1: FLOW PATH acq_data -> measures;

PROPERTIES

 Dispatch_Protocol => Periodic;

 Compute_Execution_Time => 5ms..5ms;

 Deadline => 100ms;

 Period => 100ms;

END Acq_Driver;

The Thread component is characterized by its real-
time attributes. Note that it would have been possible
to specify a more precise execution behaviour by
adding Subprogram subcomponents and Behavior
annexes [18].

4. Case study analysis

In this section, we describe how the architectural
design of the example, associated with the various
specialized properties and annexes add-ons can be
used to perform combined performance, safety and
security analysis thanks to the advanced features
provided by the AADL Inspector tool. However, as
this architectural design has been fully exported as a
standard AADL model, any other AADL compliant
analysis tool could be used instead.

4.1. Performance

In the scope of this case study, we have put the
focus on the Scheduling Aware end to end Flow
Latency Analysis (SAFLA) technique. This technique
consists in computing an estimate of the maximum
end to end reaction time between the ultimate
source and the ultimate sink of a data flow across
the overall system. In our case, the ultimate flow
source is the rawdata output port of the Sensors
Device and the ultimate sink is the command input
port of the Actuators Device.

Between these two ends, the dataflow traverses
several threads and connections, each of them
contributing to the global end to end latency.

Figure 3: Threads real-time attributes

Although each Thread is given a set of real-time
attributes such as its period and Worst-Case
Execution Time (WCET), its actual contribution to an
end to end Flow latency is its response time that

 Page 7/10

takes into accounts scheduling policies, Threads
dependencies and interferences.

Regarding Connections, we make the assumption
that only those that are spread over the network will
add a significant delay to the end to end Flow. We
can then estimate each Bus message response time
in a similar way we do it for Threads.

Several tools can be used to compute the actual
maximum response time for Threads and Bus
messages. For our experiment, we used the Marzhin
AADL simulator [9] for that purpose (cf. Figure 4).

Figure 4: AADL real-time simulation

Finally, a LAMP rule is used to collect all the
required timing information from the simulator and
compute the global end to end Flow latency. The
result of this performance analysis process is shown
in the AADL Inspector console (cf. Figure 5).

Figure 5: Flow latency analysis with LAMP

The end to end Flow latency can then be compared
with the software requirements in terms of time of
reaction between the Sensors and the Actuators.

4.2. Safety

The performance analysis presented above
concerns the nominal behavior of the software. In
our experiment, we use safety analysis technique to
evaluate the Mean Time Between Failures of our
system.

The AADL Error Model statements that are
disseminated within the various component
descriptions can be compiled together to generate a
fault tree. Such a fault tree is composed of Or and
And gates as well of Basic Events with a probability
of occurrence.

AADL Inspector uses a LMP model transformation
[8][10] to convert the AADL architecture and its Error
Models into a Open PSA standard format file [19].
This file is then automatically loaded into the Arbre
Analyste tool [4] to show the corresponding fault tree
graphically and compute the MTBF value (cf. Figures
6 and 7).

Figure 6: Fault tree in Arbre Analyste

Figure 7: MTBF computation in Arbre Analyste

 Page 8/10

In case the obtained MTBF values do not fit the
requirements, the software architecture may be
revised by introducing redundancies for instance.

4.3. Security

The goal of our security analysis is focused on
detection of possible unauthorized access to
sensitive data. Our design example has been
produced using the Stood for AADL tool which
enforces data hiding principles as part of its HOOD
modeling rules compliancy. With that way to use this
tool, it is not possible to generate direct external
access to data components (i.e. AADL provides Data
Access features). This restriction reduces
significantly security breaches by construction.

However, it remains possible to access internal data
in a controlled way through AADL Ports or
Subprograms. It is thus necessary to verify that
these indirect data access points are secure enough.
For our simple case study, we have considered a
very basic security model where a dedicated
Property Set is used to associate a security level
(integer value) to AADL Data (cf. section 3.1), as
defined above:

PROPERTY SET LAMP IS

-- …

Security_Level : AADLINTEGER APPLIES TO

 (Data, Data Access, Port, Parameter);

-- …

END LAMP;

Note that this Property Set will be replaced by the
one defined by the future AADL Security Annex
standard when ready.

For our experiment, we expect to use these security
level Properties to detect potential data
confidentiality breaches. The first rule that can easily
be checked is that all the ports contributing to a
same end to end Flow are at the same security level.
The second rule refers to the Bell-La Padula
algorithm [16]. This algorithm is based on the
verification of two rules denoted No-Read-Up and
No-Write-Down.

No-Read-Up refers to the fact that a component at a
given security level cannot read data that is tagged
with a higher security level whereas No-Write-Down
means that a component tagged with a given
security level cannot write information to a lower
security level.

Note that similar analysis can be performed for data
integrity check, using the Biba algorithm [17] and its
No-Read-Down and No-Write-Up rules.

Security rules policy may vary from one project to
another. It is thus interesting to provide a flexible

way to customize them in the scope of a given
design. With the tools we are using for this
experiment, these rules can be easily implemented
in Prolog language within a LAMP annex attached to
the AADL model.

An attempt to define a security rules policy for our
example could be:

• Sec_R1: All components involved in a same end
to end Flow must be at the same security level.

• Sec_R2: The security level of a component is
the higher security level value associated with its
Data ports.

• Sec_R3: When two components are connected
via a shared Bus, they must comply with the No-
Read-Up and No-Write-Down rules.

A fragment of the implementation of these rules in
prolog using an AADL LAMP annex is given below:

PACKAGE ControlSystemAnalysis

PUBLIC

ANNEX LAMP {**

/* rule Sec_R1 */

checkFlowSecurity :-

 getRoot(R), getClassifier(R,P,T,I),

 getAncestorRec(P,T,I,Q,U,J),

 isFlowImplementation('END TO END',Q,U,J,E),

 concat('root.',E,F),

 getEndToEndFlow('root',E,M),

 getFlowSecurityLevels(M,[],L,0,N), N > 1,

 printMessageSec_R1(F,L).

checkFlowSecurity :- nl.

/* rule Sec_R2 */

checkMaxSecurityLevel :-

 getMaxSecurityLevel(X,L),

 printMessageSec_R2(X,L).

checkMaxSecurityLevel :- nl.

/* rule Sec_R3 */

checkNoWriteDown :-

 isAADLBusBinding(_,C,_),

 isAADLConnection(_,P,T,I,_,_,_,C,_,_,_,_),

 getConnectionEnds(P,T,I,C,Xs,Xd),

 getMaxSecurityLevel(Xs,Ls),

 getMaxSecurityLevel(Xd,Ld),

 Ls > Ld,

 printMessageSec_R3(C,Ls,Ld).

checkNoWriteDown :- nl.

-- …

END ControlSystemAnalysis;

After running the LAMP checker, the output of the
verification process is displayed in the AADL
Inspector console as shown in Figure 8.

 Page 9/10

Figure 8: Security analysis with LAMP

Detected issues can be solved by modifying
Property values or doing deeper changes in the
architecture, e.g. adding new components to comply
with specified security policy.

Conclusion

This paper has shown how it is possible to perform
combined multi-criteria analysis to estimate real-time
Performance, Safety and Security indicators for a
same input model expressed in AADL and using the
AADL Inspector framework. The goal is to help
design teams to find the best architectural trade-offs
for their critical embedded software.

As these criteria not only impact non-functional
attributes related to each analysis domain but also
the global design choices, using a common
architecture description language brings significant
benefit. Similar conclusions have been obtained by
other initiatives, such as with the Architecture Centric
Virtual Integration Process (ACVIP) [13].

The experiment presented in this paper has been
applied to a small case study for demonstration
purpose only. The choice of the quality assurance
indicators and the way they are estimated must be
studied deeply in the context of a real-life industrial
project. Furthermore, we currently investigate the
use of the PAES meta-heuristic to help designer to
automatically run similar design space exploration on
security and real-time performances with similar
architecture models [12][20].

The AADL example that is used in this paper and the
various verification results that are presented have
been developed with the Stood and AADL Inspector
tools. This example is available as part of the
distribution package of these tools.

References

[1] AADL: Architecture Analysis and Design

Language

http://www.aadl.info/
[2] HOOD: Hierarchical Object-Oriented Design:
http://www.esa.int/TEC/Software_engineering_and_s
tandardisation/TECKLAUXBQE_0.html
[3]Cheddar: a flexible real-time scheduling
framework. F. Singhoff, J. Legrand, L. Nana, L.
Marcé, ACM SIGAda Ada Letters. Vol. 24. No. 4.
ACM, 2004.
[4] Arbre Analyste:
https://www.arbre-analyste.fr/en.html
[5] Stood for AADL:
http://www.ellidiss.fr/public/wiki/wiki/stood
[6] AADL Inspector:
http://www.ellidiss.fr/public/wiki/wiki/inspector
[7] Common Criteria for Information Technology
Security Evaluation:
https://www.commoncriteriaportal.org/cc/
[8] Model Verification: Return of Experience, P.
Dissaux and P. Farail, 7th European Congress on
Embedded Real Time Software and Systems (ERTS
2014), Toulouse.
[9] The SMART Project: Multi-Agent Scheduling
Simulation of Real-time Architectures, P. Dissaux, O.
Marc and all, 7th European Congress on Embedded
Real Time Software and Systems (ERTS 2014),
Toulouse.
[10] Merging and Processing Heterogeneous
Models, P. Dissaux and B. Hall, 8th European
Congress on Embedded Real Time Software and
Systems (ERTS 2016), Toulouse.
[11] Extending AADL for Security Design Assurance
of Cyber-Physical Systems, R. Ellison, A.
Householder and all, Technical Report CMU/SEI-
2015-TR-014

[12] Combined security and schedulability analysis
for MILS real-time critical architectures, I. Atchadam,
F. Singhoff, H. N. Tran, N. Bouzid and L. Lemar-
chand, in 4th international workshop on Security and
Dependability of Critical Embedded Real-Time
Systems/CERTS, Stuttgart, Germany, 2019.
[13] Joint Common Architecture (JCA) Demon-
stration Architecture Centric Virtual Integration
Process (ACVIP) Shadow Effort, A. Boydston, P.
Feiler and all. In AHS 71st Annual Forum. 2015.
https://www.army.mil/e2/c/downloads/414601.pdf
[14] National Institute of Standards and Technology.
The Economic Impacts of Inadequate Infrastructure
for Software Testing, NIST Planning report 02-3,
May 2002.
http://www.nist.gov/director/prog-ofc/report02-3.pdf
[15] Model-Based Verification of Security and Non-
Functional Behavior using AADL, J. Hansson, B.
Lewis, J. Hugues, L. Wrage, P. Feiler and J. Morley,
in IEEE Security & Privacy, 2009.

http://www.esa.int/TEC/Software_engineering_and_standardisation/TECKLAUXBQE_0.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECKLAUXBQE_0.html
http://www.ellidiss.fr/public/wiki/wiki/stood
http://www.ellidiss.fr/public/wiki/wiki/inspector
https://www.commoncriteriaportal.org/cc/
https://www.army.mil/e2/c/downloads/414601.pdf

 Page 10/10

[16] Secure computer system: Unified exposition and
multics interpretation, D. E. Bell and L. J. La Padula.
Technical report, MITRE CORP BEDFORD MA,
1976.
[17] Integrity considerations for secure computer
systems, K. J. Biba, Technical report No. MTR-
3153-REV-1). MITRE CORP BEDFORD MA, 1977.
[18] Virtual Execution of Real Time Software
Architecture Models, P. Dissaux, SAE Technical
Paper 2015-01-2530, 2015
[19] The Open PSA initiative:
http://www.open-psa.org/
[20] Multi-Objective Design Exploration Approach for
Ravenscar Real-time Systems. R. Bouaziz, L.
Lemarchand, F. Singhoff, B. Zalila, M. Jmaiel. Real-
Time Systems, Springer Verlag, 2018, 54 (2), pp
424-483.
[21] From the prototype to the final embedded
system using the Ocarina AADL tool suite. J.
Hugues, B. Zalila, L. Pautet and F. Kordon, (2008).
ACM Transactions on Embedded Computing Sys-
tems (TECS), 7(4), 42.

http://www.open-psa.org/

