
Update on
Cheddar : reviewing Multi-Core and

ARINC653 scheduling features, software
design exploration

P. Dissaux*, J. Legrand*, A. Schach*, S. Rubini+, J. Boukhobza+,
L. Lemarchand+, J.P. Diguet+, N. Tran+, M. Dridi+,

R. Bouaziz$, F. Singhoff (speaker)+

* Ellidiss Technologies
+ Lab-STICC UMR CNRS 6285/UBO

$ ReDCAD Laboratory, University of Sfax

Multiprocessor sheduling analysis with
AADLInspector/Cheddar

 SMART project (completed in 2014):

Define typical multiprocessor architectures AADLInspector should
support (pattern)

How to model multiprocessor architectures with AADL

Choose or design new scheduling analysis methods for those
patterns

Prototyping in Cheddar, to be available in AADLInspector

 Main outcomes:

1. Implementation of partitioned and global scheduling methods

2. Support of shared resources between processing units

3. Design of partitioning algorithms

2/16

Typical multiprocessor scheduling
analysis: partitioned vs global

 Partitioned scheduling : first assign off-line each task on a
processing unit ; each processing unit schedules its own task set.
 No migration. Both on-line and off-line.

 Global scheduling: choose the next task to run on any available
processing unit (or preempt if all busy).
 With migration. Fully on-line.

3/16

(From C. Pagetti)

Typical multiprocessor
scheduling analysis:
partitioned vs global

 Cheddar 3.1 only (not in AI yet):

 Global scheduling : any uniprocessor policies + specific policies such as

EDZL, LLREF, Pfair,

 Partitioning policies based on PAES (Pareto Archived Evolution Strategy)

 Hardware shared resources support

 AADLInspector 1.6 :
 Partitioned scheduling only
 Classical policies (fixed

priority, EDF, including ARINC
653, …)

 Ravenscar data, data port
 Scheduling simulation &

Response time analysis
 Partitioning policies: Best fit,

First Fit, Next Fit, GT, SF

4/16

Shared resources between processing units

Shared resources: Cache units, bus, NoC, …

Interferences due to processing units shared

resources, make thread WCET (Worst Case

Execution Time) difficult to compute

Specific scheduling methods
5/16

 In fixed priority preemptive scheduling context, tasks can preempt and
evict data of other tasks in the cache.

 Cache related preemption delay (CRPD): additional time to refill the
cache with the cache blocks evicted by the preemption.

 Some issues:

 CRPD is high, non-negligible preemption cost. It can present up to
44% of the WCET of a task (Pellizzoni et al., 2007)

 CRPD is difficult to accurately compute off-line (worst case bound,
number of preemption)

 Classical scheduling analysis results cannot be applied with CRPD

Applying Rate Monotonic priority assignment algorithm may
lead to unschedulable task set

Need new priority assignments taking CRPD into account

Cache and CRPD

6/16

 Extend Audsley’s priority assignment algorithm (Audsley, 1995) to
take into account CRPD.

 CRPD-aware priority assignment algorithms (CPA) that assign
priority to tasks and verify theirs schedulability.

 4 algorithms with different levels of schedulability efficiency and
complexity.

 Implemented into Cheddar 3.1, not available with AADLInspector 1.6

Cache/CRPD-Aware Priority Assignment
Algorithms

7/16

 Problem Statement:

 Theoretical issues with CRPD : feasibility interval, sustainability

 Various parameters need to be taken into account in scheduling

analysis of systems with cache: cache profile, memory layout, CFG

 Outcomes:

 We have designed a new CRPD computation model, sustainable for L1

instruction cache. Feasibility interval proved.

 Extending Cheddar to model cache/cache access profile

Cache-Aware Scheduling Simulation

Scheduling analysis for systems with cache

Cache Access

Profile

Memory

Layout

Worst-Case

Execution Time

Scheduling Policy

Control Flow

Graph

Cache

Configuration

8/16

Summary

1.Multiprocessor scheduling analysis
features

2.Software design space exploration :
partitioning with competing objective
functions

9/16

Cheddar & partitionning with competing
objective functions

 Problem statement :

 Performances (scheduling), is not the unique concern

 Trade-offs with several competing criteria/objective functions such
as performances vs safety vs security

 How to do partitionning in this context ?

 PAES helps ? PAES with Cheddar ?

 Small example to illustrate, assume:

 A system running several sub-programs (i.e. functionnal units)

 Subprograms may shared resources (compliant with Ravenscar)

 How to assign subprograms to threads

10/16

11/16

From the functional specification to a software
architecture

Functional
Specification
- Subprograms
- Deadlines
- Resources
requirements
- …

f1

f2
f11

f3f15

f115

f12

f200

f65

f147

f33
f285

f300

f63

f84
f55

f321

f15

f315f121 f180f65 f147

f111

f25

f380

f12

f651

f28f321

f335

f387
f251

f380

f605

f445

f251f18

f415

f521
f380

Thread 1

Thread 2
Thread 3

Software
Architecture model

System

CPU

Thread n

…

f27

f200
f52

f25 f55

f321

f380
f300

f84 f380

f65
f12

f15

f84
f55

f180

Competing objective functions in software
design space exploration

12/16

Subprograms to
threads/tasks

assignment

Many subprograms =
one task/thead

One subprogram =
one thread/task

• Explore several assignment solutions

• Select assignment solutions that meet at best the trade-
offs between number of preemptions and laxities

– Timing overhead (i.e.
preemption cost)

+ Increase task/function laxities

=> maximize(laxities)

– Decrease tasks/functions
laxities

+ Low timing overhead

=> minimize(#preemptions)

PAES : a multi-objectives metaheuristic

Basic steps of PAES algorithms:

1
Mutate a solution to generate a new candidate: small change to move from a solution to a nearby

neighbour

2
Evaluate the mutated solution (conflicting objective functions)

3
Update non-dominated solutions set (i.e. archive)

4
Select new solution for next iteration : mutated or current solution

 Pareto Front: final set of non-

dominated solutions

 Solutions A dominates solution C because it is

better than C for all objectives

1

2

3

4

13/16

PAES-based partitioning

14/16

Competing Performance Criteria in the
Software Design Space exploration

Examples of investigated trade-offs with
competing objectives functions such as:

Min (#premptions)

Max (laxities)

Min (Ravenscar data blocking time)

…

Performance competing objectives functions only

How to be sure that objective functions are
competing?

15/16

Conclusion

 Multiprocessor scheduling analysis of
AADLInspector & Cheddar:

Bunch of classical partitioned vs global scheduling
algorithms

Shared hardware resources: cache, NoC

 Multi-objective partitioning

PAES based, for Ravenscar compliant architecture

Safety & performance & security objective functions

Follow Security annex

16/16

