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O SMART project (completed in 2014):

O Define typical multiprocessor architectures AADLInspector should
support (pattern)

L How to model multiprocessor architectures with AADL

L Choose or design new scheduling analysis methods for those
patterns

O Prototyping in Cheddar, to be available in AADLInspector

4 Main outcomes:
1. Implementation of partitioned and global scheduling methods
2. Support of shared resources between processing units
3. Design of partitioning algorithms
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Typical multiprocessor scheduling
analysis: partitioned vs global
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O Partitioned scheduling : first assign off-line each task on a
processing unit ; each processing unit schedules its own task set.
0 No migration. Both on-line and off-line.

O Global scheduling: choose the next task to run on any available
processing unit (or preempt if all busy).
O With migration. Fully on-line.
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Typical multiprocessor
scheduling analysis:

Cheddar: a free real time scheduling simulator
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O Ravenscar data, data port

d Scheduling simulation &
Response time analysis

a Partitioning policies: Best fit,
First Fit, Next Fit, GT, SF

d Cheddar 3.1 only (not in Al yet):

Core Unit / Processor name=Pl/cpu Protocol = EARLIEST_DEADLINE_ZERO_LAXITY_PROTOCOL : PREEMPTIVE

Core Unit / Processor name=P2/cpu Protocol = EARLIEST_DEADLINE_ZERO_LAXITY_PROTOCOL : PREEMPTIVE

Core Unit / Processor name=P3/cpu Protocol = ERRLIEST_DEADLINE_ZERO_LAXITY_PROTOCOL : PREEMPTIVE

T [ E—

Scheduling simulation, Processor cpu:
- Number of context switches : 1560
- Number of preemptions: 1234

- Task response time computed from simulation:
T1=>71/worst, missed its deadline (absolute deadline = 10; completiontime = 11), missed its ¢

| T2 =>9/worst

T3 =>4/worst
T4 => 3/worst
l-Some task deadlines will be missed : the task set is not schedulable.

| |

O Global scheduling : any uniprocessor policies + specific policies such as

EDZL, LLREF, Pfair,

O Partitioning policies based on PAES (Pareto Archived Evolution Strategy)

O Hardware shared resources support
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Shared resources between processing units

L Shared resources: Cache units, bus, NoC, ...

QInterferences due to processing units shared
resources, make thread WCET (Worst Case
Execution Time) difficult to compute

 Specific scheduling methods
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Cache and CRPD

O In fixed priority preemptive scheduling context, tasks can preempt and
evict data of other tasks in the cache.

O Cache related preemption delay (CRPD): additional time to refill the
cache with the cache blocks evicted by the preemption.

J Some issues:

O CRPD is high, non-negligible preemption cost. It can present up to
44% of the WCET of a task (Pellizzoni et al., 2007)

0 CRPD is difficult to accurately compute off-line (worst case bound,
number of preemption)
O Classical scheduling analysis results cannot be applied with CRPD

QApplying Rate Monotonic priority assignment algorithm may
lead to unschedulable task set

Need new priority assignments taking CRPD into account
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Cache/CRPD-Aware Priority Assignment
Algorithms

O Extend Audsley’s priority assignment algorithm (Audsley, 1995) to
take into account CRPD.

0 CRPD-aware priority assignment algorithms (CPA) that assign
priority to tasks and verify theirs schedulability.

4 4 algorithms with different levels of schedulability efficiency and
complexity.
d Implemented into Cheddar 3.1, not available with AADLInspector 1.6
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Cache-Aware Scheduling Simulation
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O Problem Statement:
O Theoretical issues with CRPD : feasibility interval, sustainability

O Various parameters need to be taken into account in scheduling
analysis of systems with cache: cache profile, memory layout, CFG

O Outcomes:

O We have designed a new CRPD computation model, sustainable for L1
instruction cache. Feasibility interval proved.

O Extending Cheddar to model cache/cache access profile
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1. Multiprocessor scheduling analysis
features

2.Software design space exploration :
partitioning with competing objective
functions
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Cheddar & partitionning with competing
objective functions

J Problem statement :
d Performances (scheduling), is not the unique concern

O Trade-offs with several competing criteria/objective functions such
as performances vs safety vs security

O How to do partitionning in this context ?
O PAES helps ? PAES with Cheddar ?

O Small example to illustrate, assume:
O A system running several sub-programs (i.e. functionnal units)
O Subprograms may shared resources (compliant with Ravenscar)
0 How to assign subprograms to threads
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From the functional specification to a software
architecture

Functional
Specification

- Subprograms
- Deadlines

- Resources
requirements

Architecture model

System

'l
(NN I
I
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Competing objective functions in software
design space exploration

f Subprograms to

threads/tasks
assignment

Many subprograms =
one task/thead

One subprogram = ‘ ’
one thread/task

- Timing overhead (i.e.
preemption cost)
+ Increase task/function laxities

- Decrease tasks/functions
laxities
+ Low timing overhead

=> maximize(laxities) => minimize(#preemptions)

Explore several assignment solutions

Select assignment solutions that meet at best the trade-
offs between number of preemptions and laxities
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PAES : a multi-objectives metaheuristic

(1 Basic steps of PAES algorithms:

| Mutate a solution to generate a new candidate: small change to move from a solution to a nearby
. neighbour

f Evaluate the mutated solution (conflicting objective functions)

[
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Update non-dominated solutions set (i.e. archive)

Select new solution for next iteration : mutated or current solution

f1

.

Pareto Front: final set of non-

dominated solutions f1(A) > f1(B)

= Solutions A dominates solution C because it is
better than C for all objectives

f2(A) < f2(B) f2



PAES-based partitioning

Functional specification ]

Generate the initial design solution

Initial design

Assigning each activity to a task

v’ Yes

schedulable?

Current design
alternative

Select next current
design

T “\

N
“ archive of

non-dominated
deS|gn solutions

Compare-rank design
solutions and update
the archive

Is #iterations

reached?

lxNo

utate the current design

Changing the assignment of

Final archive of

non-dominated
design alternatives

functions to tasks to generate a
new alternative design

Evaluate objective functions
of the candidate design

alternative

Schedulability of the
candidate design ?

(Cheddar) me—tr
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Competing Performance Criteria in the
Software Design Space exploration

1 Examples of investigated trade-offs with
competing objectives functions such as:
QMin (#premptions)
dMax (laxities)

dMin (Ravenscar data blocking time)
...
—=Performance competing objectives functions only

dHow to be sure that objective functions are
competing?
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Conclusion

O Multiprocessor scheduling analysis of
AADLInspector & Cheddar:

dBunch of classical partitioned vs global scheduling
algorithms

dShared hardware resources: cache, NoC

1 Multi-objective partitioning
QPAES based, for Ravenscar compliant architecture
Safety & performance & security objective functions
dFollow Security annex
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