
Par

Ill-ham ATCHADAM

THESE DE DOCTORAT DE

L'UNIVERSITE

DE BRETAGNE OCCIDENTALE

ECOLE DOCTORALE N° 644

Mathématiques et Sciences et Technologies

de l'Information et de la Communication en Bretagne Océane

Spécialité : Informatique et architectures numériques

Exploration d’architectures logicielles pour les systèmes critiques
partitionnés sécurisés

Thèse présentée et soutenue à Brest, le 12/01/2023
Unité de recherche : Lab-STICC UMR CNRS 6285

Rapporteurs avant soutenance :

Liliana CUCU-GROSJEAN Directrice de recherche, INRIA
Jérôme HUGUES Senior Researcher, Carnegie Mellon University

Composition du Jury :

Président : Emmanuel GROLLEAU Professeur des Universités, ENSMA
Examinateurs : Liliana CUCU-GROSJEAN Directrice de recherche, INRIA

Jérôme HUGUES Senior Researcher, Carnegie Mellon University
Antonio CASIMIRO Associate Professor, Université de Lisbonne
Yvon KERMARREC Professeur, IMT Atlantique

Dir. de thèse : Frank SINGHOFF Professeur des Universités, Université de Bretagne Occidentale
Encadrant : Laurent LEMARCHAND Maître de conférences, Université de Bretagne Occidentale
Encadrant : Hai Nam TRAN Maître de conférences, Université de Bretagne Occidentale

Remerciements

Je souhaite exprimer ma gratitude envers tous ceux qui ont contribué à la réalisation
de ma thèse.

Tout d’abord, je remercie les membres du jury pour leur temps, leur expertise
et leur évaluation minutieuse de mon travail. Je remercie particulièrement Pr.
Emmanuel Grolleau pour avoir accepté d’être le président du jury. Je tiens à
remercier Dr Liliana Cucu-Grosjean et Senior Researcher Jérôme Hugues pour le
temps qu’ils ont consacré à la relecture de ma thèse et leur contribution en tant
que rapporteurs. J’exprime également ma gratitude envers Dr. Antonio Casimiro
et Pr. Yvon Kermarrec pour avoir accepté d’examiner ma thèse.

Je tiens à exprimer toute ma gratitude et ma reconnaissance envers mon directeur
de thèse, Pr. Frank Singhoff, et mes encadrants de thèse, Dr. Laurent Lemarc-
hand et Dr. Hai Nam Tran, pour leur implication, leur patience, leur expertise et
leur encouragement constant. Votre investissement personnel, votre expertise et
votre soutien ont été inestimables tout au long de ce processus et ont constitué
une source de motivation. Je suis reconnaissante de la chance que j’ai eue de
travailler avec vous et j’ai énormément appris à vos côtés.

Je remercie tous mes collègues du Lab-STICC et de l’Université de Bretagne Occi-
dentale, en particulier Bismark, Camélia, Grace, Julien, Libey, Morgan, Aymeric,
Mayssa et Mourad. Je suis également reconnaissante envers les personnes avec
lesquelles j’ai eu l’occasion de travailler : K. Bigou, D. Massé, J. Rivière, V. Marc,
S. Rubini, P. Le Parc, et P. Ballet.

Je tiens à remercier tous mes amis qui ont été à mes côtés tout au long de
ce parcours, pour leurs conseils et leur soutien moral. En particulier, Camara
Sekou Oumar, Bouchra Ettahiri et Bachiratou Sahm pour leur aide lors de la
préparation de ma soutenance.

Enfin, je tiens à exprimer ma gratitude envers ma famille pour leur amour
indéfectible et leur soutien inconditionnel. En particulier, mes parents, mes frères
Manaf et Alim qui n’ont jamais cessé de croire en moi. Vos encouragements et
votre soutien moral ont été une source d’inspiration pour moi et m’ont aidé à
atteindre ce jalon malgré les défis auxquels j’ai été confrontée.

Contents

1 Introduction 15

1.1 Introduction . 15

1.2 Problem statement . 16

1.3 Contribution . 17

1.3.1 A PAES based DSE approach for unicore execution plate-
forms . 18

1.3.2 Extension of the DSE approach to Multicore execution
platforms . 19

1.3.3 Implementation and evaluations 19

1.4 Thesis organization . 19

I State of art 21

2 Real-time systems 23

2.1 Definitions and classification . 23

2.1.1 Definitions . 23

2.1.2 Classification . 24

2.2 Real-Time architecture . 25

2.2.1 Hardware platform . 26

2.2.2 Real-time software application layer 27

2.2.3 Real-time Operating System 34

2.3 Real-time scheduling analysis . 37

2.3.1 Feasibility and schedulability 37

2.3.2 Scheduling analysis methods 38

2.4 Conclusion . 41

–5–

Contents

3 Hierarchical real-time systems 43

3.1 Definitions and characteristics . 43

3.2 Resource model . 46

3.2.1 Periodic resource model 47

3.2.2 Bounded delay resource 47

3.3 Time and space partitioning (TSP) and integrated modular avion-
ics (IMA) . 48

3.4 ARINC 653 . 49

3.4.1 Hardware . 49

3.4.2 Software . 50

3.5 Examples of hypervisors/operating systems for TSP systems . . . 54

3.5.1 PikeOS . 54

3.5.2 Xtratum [1] . 56

3.5.3 POK . 57

3.5.4 LynxSecure . 58

3.6 Conclusion . 58

4 Security 61

4.1 Security properties . 61

4.2 Security models . 64

4.3 Security architecture . 66

4.3.1 MILS classification . 67

4.3.2 MILS architecture . 67

4.4 Conclusion . 70

5 Multi-objective optimization 71

5.1 Definitions and characteritics . 71

5.2 Scalarization based multi-objective optimization 74

5.2.1 Weighted sum method . 74

5.2.2 ε− constraints method 74

5.2.3 Goal programming . 75

5.3 Direct approaches for multi-objective optimization 76

5.3.1 Multi-objective evolutionnary algorithms 77

5.4 Conclusion . 86

–6–

Contents

II Work orientations and positioning 87

6 Work orientations and positioning 89

6.1 System model, security and schedulability assumptions 89

6.2 Assumptions on security implementation 90

6.2.1 Securing communications through function calls 92

6.2.2 Securing communications through dedicated tasks 93

6.3 Security and scheduling: trade-off in TSP systems 95

6.4 Related work . 98

6.5 Summary of expected contributions 100

6.6 Conclusion . 101

III Contributions 103

7 Design space exploration to secure unicore TSP systems 105

7.1 PAES general framework for schedulability and security trade-off . 105

7.2 PAES adaptation to the MOOP of schedulability and security . . 107

7.2.1 Objective functions and constraints 107

7.2.2 Feasibility tests . 109

7.2.3 Solutions encoding . 110

7.2.4 Mutation operator . 114

7.2.5 Mutation algorithm improvement 120

7.2.6 Initial solutions and archiving process adaptation 121

7.3 Conclusion . 121

8 Experiments and evaluations 123

8.1 Experiment 1: illustration with a flight controller application . . . 123

8.1.1 Conditions of experiment 124

8.1.2 Results . 125

8.2 Experiment 2: illustration with a flight controller and JPEG ap-
plications . 125

8.2.1 Conditions of experiment 125

8.2.2 Results . 126

–7–

Contents

8.3 Experiments 3-6: illustration with a flight controller, multimedia
based application, CFAR and autopilot applications 130

8.3.1 Experiment 3: result of PAES when varying processor uti-
lization . 131

8.3.2 Experiment 4: results of PAES when considering intra-
partition communications non-vulnerable 133

8.3.3 Experiment 5: results of PAES with variation of the max-
imum number of partitions from 2 to 4 135

8.3.4 Experiment 6: results of PAES while considering APEX
calls execution times given in SFPBench [2] 138

8.4 Experiment 7: comparison of our PAES tool results vs. exact
solutions . 140

8.4.1 Conditions of experiment 140

8.4.2 Results . 141

8.5 Conclusion . 142

9 Design space exploration for safe and secure Multi-core TSP
systems 145

9.1 Background and system model . 146

9.1.1 Multicore TSP systems . 146

9.1.2 Safety . 147

9.1.3 System model and assumptions 148

9.2 PAES adaptation for safe and secure multicore TSP systems . . . 149

9.2.1 Initial solution . 149

9.2.2 Objective functions and constraints 150

9.2.3 Encoding of solutions . 151

9.2.4 Mutation operator . 153

9.3 Test cases and Evaluation . 154

9.3.1 Case study . 155

9.3.2 Results of the experiment 156

9.4 Related work . 158

9.5 Conclusion . 159

–8–

Contents

10 Tool design and implementation 161

10.1 Cheddar framework . 161

10.1.1 Cheddar Architecture Description Language (ADL) 161

10.2 Cheddar scheduling analyzer . 168

10.2.1 Design of a model . 168

10.2.2 Scheduling simulation . 168

10.2.3 Feasibility tests . 169

10.3 Implementation . 170

10.3.1 MILS library . 172

10.3.2 PAES library . 173

10.3.3 Architecture exploration tools library 174

10.4 Conclusion . 178

IV Conclusion 179

11 Conclusion 181

11.1 Contribution summary . 182

11.1.1 PAES adaptation to the MOOP between schedulability and
security . 182

11.1.2 Mutation algorithms . 182

11.1.3 Mutation algorithm improvement 183

11.1.4 Identification of the key parameters during DSE 183

11.1.5 Extensibility of the DSE approach: safe and secure TSP
systems on multicore execution platforms 184

11.1.6 Security architecture modeling and security analysis imple-
mentation . 184

11.2 Future work . 185

11.2.1 Memory protection mechanism 185

11.2.2 Security: investigation of different security models 185

11.2.3 Schedulability: investigation of different possibilities of ma-
jor time frame (MAF) . 185

11.2.4 Conflict between schedulability and security: consideration
of the possible overheads 186

–9–

Contents

11.2.5 Extension to distributed network platforms 186

11.2.6 Finer granularity: functions 186

–10–

List of Figures

2.1 Task life cycle [3] . 28

2.2 Illustration of some tasks properties 31

2.3 Tasks properties and types illustration with CFAR application [4] 33

2.4 Illustration of a scheduling simulation 41

3.1 Bare-metal hypervisor Vs hosted hypervisor 44

3.2 Hierarchical real-time systems . 45

3.3 Hierarchical scheduling framework 46

3.4 Periodic resource illustration . 47

3.5 Bounded delay resource illustration 48

3.6 ARINC 653 architecture [5, 6] . 50

4.1 Encryption illustration . 62

4.2 HMAC illustration . 64

4.3 Bell-La Padula model illustration [7] 65

4.4 Biba model illustration [7] . 66

4.5 MILS overview [8] . 68

5.1 Illustration of a Pareto front [9] 73

5.2 Illustration of mutation . 77

5.3 Illustration of crossover . 78

5.4 Multi-objective evolutionnay algorithm 79

5.5 NSGA ranking Illustration [10] 80

5.6 PAES process . 82

5.7 Convergence and diversity metrics 84

5.8 Hypervolume illustration . 85

6.1 Illustration of security implementations 92

–11–

List of Figures

6.2 Partitioning and communications without/with security functions 96

6.3 Partitioned scheduling without/with security functions 97

7.1 PAES process . 106

7.2 Example of chromosome . 112

7.3 Model of the illustrated chromosome 112

7.4 Normalization illustration . 114

7.5 Task-grain mutation illustration 115

7.6 App-grain mutation illustration 117

7.7 Communication mutation illustration 120

8.1 ROSACE flight controller application 124

8.3 Schedulability vs. security with ROSACE&JPEG 129

8.5 Schedulability vs. security with processor utilization variation . . 133

8.6 Schedulability vs. security with variation from 2 to 4 partitions . 137

8.7 Exhaustive vs PAES . 141

9.1 Example of a multicore TSP system scheduling 147

9.2 Illustration of multicore solutions encoding 152

9.3 Schedulability vs. confidentiality 157

10.1 Software entities in Cheddar ADL [11] 163

10.2 Hardware entities in Cheddar ADL [11] 166

10.3 Cheddar scheduling simulation illustration 169

10.4 Cheddar feasibility test illustration 170

10.5 Prototype overview . 171

–12–

List of Tables

3.1 Summary of hypervisors and RTOS for TSP systems 55

6.1 Security implementations considered in this thesis 95

6.2 Task and partition configuration 96

6.3 Related work . 98

7.1 Communications concerned by security constraints 109

7.2 Communications concerned by security objective functions 109

8.1 Case studies task parameters . 127

8.2 DSE with intra-partition communications considered as secured
with mix-grain and a maximum of 2 partitions 134

8.3 APEX calls execution times . 139

8.4 Schedulability vs. security with SFPBench APEX calls measure-
ments . 139

9.1 Case study task parameters . 154

10.1 PAES tool implementation . 175

10.2 Exhaustive tool implementation 176

10.3 Scheduing and security analysis 177

–13–

1
Introduction

1.1 Introduction

Real-time systems (RTS) are widely present around us in our daily life. They are
widely integrated into devices of different domains from commonly used devices
such as cellphones, car navigation, multimedia applications to critical industrial
devices such as control command systems in aircraft, automotive systems, and
robots. RTS are computing systems whose correctness depends not only on the
logical results of the computation but also on the time at which the results are
produced [12]. The results processed by RTS must not only be correct but also
meet their timing constraints.

An RTS is an application or a set of applications made of tasks that correspond
to execution units. Tasks are then subject to timing constraints. In RTS, tasks
can be classified based on the criticality of the consequences that may occur if
their timing constraints are not respected. Therefore, there are hard deadline
tasks and soft deadlines tasks [13, 14]. Hard deadline tasks have stringent timing
constraints that must be respected in all situations. Soft deadline tasks are more
flexible and tolerate some delay.

With the evolution of technologies, RTS need to integrate more functionalities to
satisfy as much as possible the users [15]. Historically in avionic domains, sys-
tems have been made based on federated architectures [16] where each function
has its own dedicated computing system. In these systems, functions were iso-
lated from each other with limited data exchange. With this architecture, a fault
occurring in a function has fewer chances to affect another function on a different
computing system. Modern avionics require more services (e.g. entertainment
services), safety (e.g. at least a duplication of systems), and smartness (e.g. pre-
cise flight management systems, health management systems, smart sensors, and

–15–

Chapter 1. Introduction

actuators) [15]. This evolution leads to the integration of more functions. Then
assigning each function to a dedicated computing system is no longer efficient
since it implies an increase in the height, volume, installation, maintenance cost
and power consumption of the systems. In [17], the authors shown that avionic
software size is multipled by 2 very 4 years. Thus the proposal of integrated
modular avionics (IMA) architecture [18] was a solution to the incompatibility
of federated systems to the requirements of modern avionic systems. IMA archi-
tecture proposes computing resource sharing among different functions instead of
dedicating a computing resource to each function as in the federated architecture.

Resource sharing solves the above-mentioned problems raised by the federated
architecture, but it comes with some challenges. A fault occurring in a function
can easily affect other functions sharing the same computing resource without a
proper isolation. Thus, IMA architecture proposed time and space partitioning.

Time and space partitioned (TSP) systems allow the integration of applications
with different criticality levels and potentially from different providers on the
same shared banalized execution platform. In TSP systems, applications are as-
signed to partitions [15]. A partition is a logical software unit defining a boundary
of isolation. TSP systems guarantee space and timing isolation between parti-
tions. Space isolation may be brought by memory protection between partitions
while timing isolation may be enforced by partition scheduling. These features
contribute to master the growing complexity both in size and legacy of avionic
software.

Although TSP concepts were first adopted by avionic stakeholders with the IMA
architecture, they are gaining various domains such as aerospace [19] and rail-
way [20]. For example, due to the similarity between the avionic and spacecraft
domain, researchers such as authors of [19] address the integration of TSP in
spacecraft. It comes as a solution to the complexity of the spacecraft onboard
software due to the increasing number of mission functions implemented in soft-
ware. In the railway domain, [20] investigates the optimization of partition-based
distributed RTS on a real railway signaling application.

1.2 Problem statement

In TSP systems, tasks have to be assigned to partitions, their design implies
deciding on how to do such assignment. This leads to multiple possibilities of
tasks to partitions assignments. The number of options increases exponentially
with the number of tasks, and partitions. It is a typical case of combinatorial
explosion. Changing the tasks to partitions assignment has an impact on the
schedulability of the system. It can make some tasks to miss their deadline.
If a hard deadlines task misses its deadline, then the associated tasks to parti-

–16–

1.3. Contribution

tions assignment is considered not feasible. Therefore, when designing a TSP
system, tasks to partitions assignment and the respect of timing constraints of
hard deadline tasks are important challenges to investigate.

As TSP systems may host an increasing number of applications provided by
different stakeholders with a significant level of legacy, it then increases the prob-
ability of corrupted or malicious software deployment. There exists a multitude
of attack and threat models for cyber-physical systems [17, 21]. For example,
Man-in-the-Middle attacks [22] can threaten communications in and between
partitions. Data can be intercepted during application communications which
results in either confidentiality violations by disclosure of sensitive information
or integrity violations by data alteration.

A standard approach to protect against attacks on confidentiality is the use of
encryption with a symmetric private key [23]. It guarantees that the content
of a message is intelligible only to the actual sender and receiver. To secure the
integrity of communications, one can use message by a third party authentication
codes (MACs) to make certain that a message has not been tampered and has
been sent by the actual sender [22].

However, ensuring data confidentiality and integrity with the use of encryption
and MACs incurs a significant computation overhead on banalized hardware.
This overhead may impact the system schedulability. We propose that if TSP
systems are made of hard deadline and soft deadline tasks, security can be opti-
mized as much as possible by tolerating some missed deadlines of soft deadline
tasks. It results in a problem of assigning tasks to partitions while optimizing
schedulability and security, which is an NP-hard combinatorial problem with 2
conflicting objective functions: schedulability and security.

1.3 Contribution

In this thesis, we investigate the conflict aspect between schedulability and se-
curity TSP systems when assigning applications to partitions. Schedulability
requires that there is no violation of timing constraints. Enforcing confidential-
ity and/or integrity of communications between applications introduces overhead
and affects schedulability.

We propose a design space exploration process to address the combinatorial prob-
lem raised between schedulability and security of TSP systems. Our approach
is based on Multi-Objective Evolutionary Algorithms (MOEAs), especially the
Pareto Archived Evolution Strategy (PAES) [24] which is a metaheuristic that we
have adapted for DSE problems with multiple and conflicting objectives functions.
It helps to explore the search space to find an approximate set of optimal solutions
in a suitable time for large-scale problems that would be time-consuming with an

–17–

Chapter 1. Introduction

exact method (i.e. exhaustive method). Our DSE approach proposes to explore
the search space of TSP while investigating tasks and partitions assignment and
communications security.

1.3.1 A PAES based DSE approach for unicore execution plateforms

The PAES is characterized by different operators that have to be defined accord-
ing to the specific addressed problem. Our approach proposes an adaptation of
PAES to jointly investigate schedulability and security.

First, it is important to ensure the feasibility of the proposed solutions. Then
feasibility tests are performed to check the validity of the solutions.

Second, in order to find the best solutions, each solution explored has to be eval-
uated to be compared to others. Evaluations have to be performed to determine
the solution’s fitness toward the objectives. Feasibility tests and solutions fitness
evaluations are performed through analysis. Our analyses are based on schedu-
lability and security analysis. Our schedulability analysis proposes to identify
hard and/or soft deadline tasks that missed their deadlines through scheduling
simulations proposed in Cheddar [25] an open-source scheduling analyzer. For
security analysis, we propose to implement the Bell-La Padulla (BLP) and Biba
security rules to identify respectively confidentiality and integrity vulnerabilities.
For this purpose, we integrated into the Cheddar tool, the security architecture
Multiple Independent Levels of Security (MILS) that helps us to model our TSP
systems with the Cheddar tool not only according to scheduling parameters (e.g.
worst-case execution time, deadlines of tasks) but also to security parameters
(e.g. confidentiality, integrity levels of tasks).

Third, the search space is explored through the generation of candidate solutions.
Then is important to define how to proceed with the generation. We propose to
explore the design space of TSP systems with different levels of granularity by
three mutation algorithms coupled with a multi-objective meta-heuristic.

We assume that applications are composed of tasks. We start by the assignments
of tasks to partitions. As this mutation algorithm leads to investigate a large
design space, we propose a second mutation algorithm that consists of investi-
gating groups of tasks constituting an application to partitions assignment. This
second approach presents a less degree of freedom. We then propose a third mu-
tation algorithm that consists of refining the results obtained at the application
level (i.e. second algorithm) by applying on them a mutation algorithm at task
granularity (i.e. first algorithm).

With each mutation algorithm, we evaluate four different means to implement
security features in TSP systems.

–18–

1.4. Thesis organization

1.3.2 Extension of the DSE approach to Multicore execution platforms

We show the extensibility of our DSE by applying it in another context. Then
first, we investigate the impact of Multicore execution platforms on safe and
secure TSP systems while considering not only tasks to partitions assignment
but also tasks to cores assignment.

Indeed, TSP systems are safe from fault propagation from one partition to an-
other through partitioning. However, They are still exposed to failure concerning
the availability of tasks and partitions. Safety is a challenge to consider when
designing a TSP. It can be addressed through active redundancy which means
replication of tasks and partitions. Then as security, safety implies overheads
that impact schedulability. Thus we proposed an extension of our DSE approach
to Multicore execution platforms well-known to increase computation capability.

Second, we proposed a method to improve the diversity of the proposed solu-
tions by the DSE with each of the three above-mentioned mutation algorithms.
We implemented a prototype and performed experiments to show the extensibil-
ity of our DSE approach and evaluate the impact of shared hardware resources
overheads on our addressed MOOP.

1.3.3 Implementation and evaluations

To summarize, we propose a DSE to compute trade-offs between security and
schedulability considering four different security implementations in TSP systems.
The DSE is computed with three different exploration algorithms (i.e. mutation
algorithms) based on a formulation of a multi-objective problem, solved by an
adaptation of PAES. The prototype of our DSE is implemented and integrated
in the Cheddar tool. This prototype is reusable and extendable to any MOOP.

The security analysis part of this implementation has been integrated into AADL
Inspector [26], a commercial scheduling analyzer from Ellidis Technologies.

We run multiple experiments with benchmarks or applications proposed by the
community [27, 4, 28, 2, 29, 30, 31, 32] to identify the TSP architecture pa-
rameters which impact the trade-off between security and schedulability. They
contribute to highlight guidelines that must be considered when designing secure
TSP systems. Moreover, the experiments also contribute to evaluate our DSE
approach.

1.4 Thesis organization

This thesis is organized in 11 chapters.

–19–

Chapter 1. Introduction

The chapters 2, 3, 4, and 5 cover the state of the art of this thesis. Chap-
ter 2 presents key knowledge of real-time systems. Chapter 3 discusses the back-
ground about hierarchical systems while introducing integrated modular avionics
(IMA) [18] concepts such as time and space partitioning. Chapter 4 gives a
presentation of security concepts such as security properties, models, and archi-
tecture. Chapter 5 presents multi-objective optimization concepts by discussing
multi-objective evolutionary algorithms (MOEA).

Chapter 6 depicts the motivations of this thesis. It presents the system model and
taken assumptions. It also positions the contributions of the thesis by comparing
it with related work.

The contributions are presented in chapters 7, 8, 9, and 10. Chapter 7 presents
our DSE approach to investigate the schedulability and security trade-off in TSP
systems when considering unicore platforms. Chapter 8 discusses the experiments
we performed to evaluate our DSE approach and to identify key parameters that
impact the trade-off between security and schedulability. Chapter 9 presents our
DSE approach to investigate the impact of multicore platforms on TSP systems
while addressing the conflicts between safety, security, and schedulability. It
shows the adaptability of our DSE approach to a different context. Chapter 10
presents the implemented prototypes of this thesis. Since they are integrated into
the Cheddar scheduling analyzer, the chapter also proposes a presentation of the
Cheddar framework.

Finally, a conclusion of the thesis and some directions for future work are given
in Chapter 11.

–20–

Part I

State of art

–21–

2
Real-time systems

This chapter is dedicated to the background on real-time systems (RTS). First,
section 2.1 defines RTS by presenting their characteristics and classifications.
Second, section 2.2 presents the architecture of RTS by depicting their hardware
platform and their software structure, including the operating system. Third, sec-
tion 2.3 discusses scheduling analysis and simulation to verify timing constraints.
Finally, a conclusion of the chapter is given in section 2.4.

2.1 Definitions and classification

In this section, we define RTS, outline the classification and the characteristics
of each category.

2.1.1 Definitions

Real-time systems are used in several domains such as avionic, space, automotive,
and medicine. Applications in these domains may have different functionalities
but are all characterized by timing constraints.

Definition 1. (Real-time systems) A real-time system is defined as a com-
puting system which the correctness depends not only on the logical results of the
computation but also on the time at which the results are produced [12].

A peacemaker [33] is an example of a real-time system placed down the heart.
It measures the heartbeat and then provides pulsations to slow or accelerate the
heart rate in case of an abnormal heartbeat. When the peacemaker receives the

–23–

Chapter 2. Real-time systems

information that the heartbeat is lower than normal, it sends electric pulsations
to provide acceleration. The peacemakers correctness relies not only on the cor-
rectness of the heartbeat measurements but also on the time when the pulsations
are sent. It is necessary that the sending of pulsations respects deadlines (i.e. at
the right time, neither too early nor too late).

To summarize, a real-time system interacts with its environment by receiving
information from the environment, processing them and returning the results that
impact the environment while respecting timing constraints called deadlines [34].
Even if the computation results are correct, if the deadlines are not respected, the
results can be considered incorrect. The deadlines misses do not lead always to
disastrous consequences (e.g. loss of life). The consequences of deadlines misses
are various depending on the addressed real-time system. Then real-time systems
can be classified depending on the consequences of the deadlines misses.

2.1.2 Classification

RTS are classified into different categories. The classification can be made based
on the criticality level i.e. the consequences of the missed deadline of the sys-
tems [13].

2.1.2.1 Hard real-time system

Hard real-time systems are systems that must imperatively respect their timing
constraints [13, 14]. In hard real-time systems, the violations of deadlines have
impacts on the system behavior with disastrous consequences. For these sys-
tems, the missed deadlines cannot be tolerated. Then a result provided after the
expected deadline is considered not correct even if the computation is correct.
Heart peacemaker, flight control systems are examples of hard real-time systems.

2.1.2.2 Soft real-time system

Soft real-time systems are systems that can tolerate timing constraints violations
without leading to any disaster [13, 14]. Their timing constraints violations do
not compromise the global functioning of the system. These systems are more
flexible concerning timing constraints. Their deadline violations can lead to the
deterioration of the results and system performances (e.g. quality of service [35])
but will not cause catastrophic consequences. Video streaming on internet is an
example of soft real-time system.

–24–

2.2. Real-Time architecture

2.1.2.3 Criticality of RTS

There are systems with programs/applications of multiple criticalities. Critical-
ity is a designation of the level of assurance against failure needed for a system
component [36]. It can refer to the classification (e.g. hard or soft) of program-
s/applications according to the consequences of their failures.

Aircraft is an example of a system with multiple criticalities. It contains flight
management systems and passenger entertainment systems separated from each
other. Flight management systems are hard real-time systems while passenger
entertainment systems are soft real-time systems.

We distinguish mixed critical real-time systems and partitioned systems.

• Mixed critical real-time systems: are systems that have two or more distinct
levels (for example safety-critical, mission-critical, and low-critical) [36].

A mixed critical real-time system consists of integrating programs/appli-
cations of different criticality levels sharing resources together while mak-
ing adaptations depending on the objectives (e.g. schedulability, security,
safety). For example, in the case of schedulability objective, if a high-level
task is susceptible to miss its deadline, the access to the resources of a low
task can be modified to allow the high task to be executed at the time and
to respect its deadline. As an advantage, the mixed critical approach al-
lows better exploitation of the resources, but it is still at the research stage
because it is difficult to apply in the industry.

• Partitioned systems are characterized by a necessary separation and inde-
pendence of programs or applications to ensure that only intended coupling
occurs [37].

Each partition hosts programs or applications at the same criticality level.
The objective is to limit the propagation of faults (missed deadlines, security
attacks, safety failures) from one partition to another. As an inconvenience,
it has a high resource requirement since resources have to be dedicated to
each partition.

2.2 Real-Time architecture

RTS can be seen as layered systems. Most of them are composed of a software
application layer deployed on an real-time operating system running on top of a
hardware platform. RTS layers are described in the following sections.

–25–

Chapter 2. Real-time systems

2.2.1 Hardware platform

The hardware platform is characterized by components such as computing units,
cores, networks, memory units.

2.2.1.1 Computing units

Many RTS are embedded and then require small computing units with mini-
mum power consumption. There are different categories of hardware platforms
depending on the contained components and their interactions.

• Uniprocessor systems: systems based on a single central processing unit
(CPU) where the software applications execute. The programs of the ap-
plications request and compute concurrently to this computing resources.

• Multi-processor systems: systems that provide two or more central pro-
cessing units for the execution of the software applications. These CPUs
execute programs at the same time while sharing the main memory and
the peripherals. There are different types of multi-processing systems de-
pending on how the CPUs are used. Symmetric multiprocessing (SMP)
systems are systems where the CPUs used are identicals. There are also
Asymmetric multiprocessing (AMP) systems where the used processors are
not used equally and may have different roles assigned each.

• Multi-core systems: systems based on single central processing with two or
more executing units called cores.

2.2.1.2 Memory units

The memory units have many characteristics that should be well study to feet the
systems requirements. Among those characteristics, there are power consump-
tion, capacity/size, accessibility to perform for reading and writing operations,
cost, etc. Memory is responsible for data and instructions storage. The capacity
of storage should fit the needs of the systems. Memory speed is an important
characteristic. If this speed is too low as compared to the processor’s speed,
requests to access data will be too long and lead to more power consumption.
Among different existing kinds of memory systems, there are systems with mem-
ory partitioned where memory is split into different sections, each assigned to a
different program.

–26–

2.2. Real-Time architecture

2.2.2 Real-time software application layer

The software application layer of RTS runs on top of a real-time operating system
(RTOS) and is composed of applications. Each application is a set of tasks that
interact with each other.

Definition 2. (Task)

A task is an execution unit of a program and corresponds to a logical unit of
computation in a processor [13].

A task is composed of a set of sequentially executed instructions that starts at
the release of the task called job.

The software application layer may be composed of tasks that interact with each
other. Hardware resources are allocated to tasks based on a multitasking process.

Definition 3. (Multi-tasking [38])

Multi-tasking is the process of scheduling and switching tasks, making use of the
hardware computing, or emulating concurrent processing using the mechanism of
the task context switching (defined below).

Definition 4. (Context switch)

Context switch refers to the switching on the processor from one task to an-
other [39].

The context switch is the process of interrupting a running task and then allo-
cating the processing unit to another task. The state of the interrupted task is
saved and the previously saved state of the other task is loaded.

2.2.2.1 Task life cycle

The life cycle of a task is composed of the four states detailed below in figure 2.1:
inactive, ready, running and waiting. The switch between the states is handled
by the RTOS.

–27–

Chapter 2. Real-time systems

Ready Elected

Preempted
Released

Running
Blocked

Unblocked
Waiting

Completed
Inactive

Figure 2.1: Task life cycle [3]

• Inactive: the inactive state of a task corresponds to its first state when it
is created and its execution has not started yet. Thus the task is waiting
for its release that can be activated by an event or message. A task that
has completed its execution is also considered in the inactive state.

• Ready: after its release, the task enters its ready state and waits for com-
puting resource assignment. The task waits for its election among the other
tasks to be executed on the processor.

• Running: once the task is elected to access the processor for its execution,
then it enters the running state and starts its execution. The task has access
to all the shared resources. During the execution of a task, preemption may
occur meaning another task has been elected to be executed. The current
task which is at the running state stops its execution and switches to the
ready state.

• Waiting: when a task execution is blocked by the unavailability of a resource
(e.g. shared resources) except the processor, it enters the waiting state. As
soon as the resource becomes available, the task switches to the running
state.

2.2.2.2 Task properties

Each task is characterized by a set of properties that help to define its order of
priority in the task set, its computational requirements and its timing constraints.
This section presents the properties of a task.

Definition 5. (Offset)

The offset of a task represents the time at which its first request occurs [40].

–28–

2.2. Real-Time architecture

The offset represents the time at which the first job of a task is released. It is
defined to model systems where tasks are not released at the same time. Thus,
in those systems, tasks may have different offsets and then the first job of a task
can be released later than another task’s first job.

Definition 6. (Execution time)

The execution time of a task is defined as the time spent by the system executing
a job of that task using processor resources.

The execution time of a task may vary from a job to another depending on
the input data or different behavior of the environment [41]. For example, the
changes of the input data may change the execution paths and the number of
loop iterations and then lead to different execution times. Some works consider
the upper-bound and the lower-bound execution time values respectively called
worst-case execution time (WCET) and best-case execution time (BCET).

Definition 7. (Worst case execution time)

The WCET of a task is the longest execution time of all its jobs [41].

Definition 8. (Best case execution time)

The BCET of a task is the shortest execution time of all its jobs [41].

Hard real-time systems parameters are always fixed based on a pessimist approach
that consists of considering the worst-case situations. They consider the WCET
and assume the same execution time for all the jobs of a task. WCET of a
task is sometimes refered as the task capacity. This pessimist approach helps to
guarantee that the system meets its deadlines [14]. On the contrary, soft real-
time systems are not necessarily built under pessimistic assumptions [14] because
of their tolerance for deadline misses.

Besides the execution time, each job of task is characterized by its response time.

Definition 9. (Response time)

The response time of a job of a task is the time between the release of the job and
its completion [42].

As for the execution times, the response time of a task varies from a job to
another. They are computed based on scheduling analysis methods detailed later
in section 2.3.

Upper-bound and lower-bound response time values can be computed and re-
spectively called worst-case response time (WCRT) and best case response time
(BCRT).

–29–

Chapter 2. Real-time systems

Definition 10. (Worst case response time)

The WCRT of a task is the longest response time of all its jobs [42].

Definition 11. (Best case response time)

The BCRT of a task is the shortest response time of all its jobs [42].

We highlight that a task execution time may be smaller than its response time
since tasks are not executed immediately after their release. After their release,
tasks may also be waiting for the availability of a shared resource or the processor
used currently by higher priority tasks.

Definition 12. (Priority)

The priority of a task indicates its order of importance for the scheduling among
other tasks of the system [13].

Tasks of a system can be ordered based on their priorities that define their order
to access the processor. Tasks priorities can be fixed or dynamic depending on
the assumed scheduling policy. The task in the ready queue with the highest
priority level is usually the elected task to be executed by the processor. In case
of preemptive scheduling (detailed in section 2.2.3), when a task is running, it
can be suspended by a new ready task with a higher priority level.

Definition 13. (Deadline)

The deadline of a task is the maximal allowed response time to the jobs of its
task [13].

We distinguish relative and absolute deadlines. The relative deadline is relative
to the release time of a job in contrary to the absolute deadline. Figure 2.2 shows
the difference between relative and absolute deadline of a task and some tasks
properties such as release time, response time, deadline.

–30–

2.2. Real-Time architecture

0

Release time

Response time

Absolute deadline

Relative deadline

Deadline

Time

Job

offset

Figure 2.2: Illustration of some tasks properties

Task deadlines can be classified into two categories according to their necessity
to be met. There are hard deadlines and soft deadlines.

Definition 14. (Hard deadline) A hard deadline is a deadline that must im-
peratively be met, otherwise it can lead to severe damages [13, 14].

Definition 15. (Soft deadline) A soft deadline is a deadline that can be missed
without compromising the integrity of the system [13]

2.2.2.3 Task types

Tasks can be classified based on their release frequency and their activation cir-
cumstances (e.g. occurrence of an event). Tasks can be periodic tasks, aperiodic
or sporadic.

Definition 16. (Periodic task [43]) A periodic task is a task that is released
at fixed and regular time interval.

A periodic task is released repetitively at a fixed interval time called period. A
task that acquires data periodically (e.g. every 1 second) from a sensor is an
example of a periodic task.

Definition 17. (Aperiodic task [44])

An aperiodic task is a task that is not released at a regular time interval, with no
minimum interval time between two releases.

–31–

Chapter 2. Real-time systems

Aperiodic tasks are activated by events and the events do not occur at regular
intervals. They are usually soft real-time tasks with soft deadlines or no deadlines.
It is complex to bound the resource utilization of aperiodic tasks. Thus the
feasibility of a system with aperiodic tasks cannot be guaranteed.

Users interactive commands are examples of aperiodic tasks.

Definition 18. (Sporadic task [44])

A sporadic task is a task that is released with a minimum interval time between
two releases.

A sporadic task has a minimum interarrival time (MIT) between two consecutives
releases. The MIT of a sporadic task provides a safe upper bound to determine
its resource utilization.

A security alert program is an example of a sporadic task. It is a high critical
and its releases arrive arbritrary because arrival cannot be predicted.

2.2.2.4 Synchronous and asynchronous tasks

Tasks can also be classified based on their first release. Tasks can be synchronous
or asynchronous.

Definition 19. (Synchronous tasks [45])

Tasks of a system are synchronous if the first jobs of all the tasks are released at
the same time.

Synchronous tasks have the same offset. Thus tasks are simultaneously ready to
be executed at a given time called critical instant [43].

Definition 20. (Asynchronous tasks [45])

Tasks of a system are asynchronous if the first jobs of at least two tasks are not
released at the same time.

In asynchronous systems, there are at least two tasks with different offsets.

2.2.2.5 Tasks dependencies

Tasks can also be classified according to the relationships they have with each
other.

Definition 21. (Independent tasks [13]) An independent task is a task whose
progress is not dependent upon the progress of other tasks of the task set.

–32–

2.2. Real-Time architecture

In a task set with only independent tasks, no task can be blocked by another
task.

Definition 22. (Dependent tasks [13]) A dependent task is a task whose
progress is dependent upon the progress of other tasks of the task set.

Dependent tasks are used to force the order in which communicating tasks exe-
cute [46]. They can interact in many ways including shared resources and prece-
dence dependencies [13]. It is important to highlight that the competition be-
tween tasks to access a processor is not considered as a dependency.

Definition 23. (Precedence dependency [13]) Task τi precedes task τj in the
task set, if the task τi has be executed before task τj.

By considering two tasks τi and τj, τi precedes τj means that the jobs of task τi
have to be executed before the jobs of task τj start their execution. Precedence
dependency can be illustrated by a task τj waiting for a message or synchroniza-
tion signal from another task τi.

Definition 24. (Shared resource [13]) A shared resource is a resource ac-
cessed by several tasks, in an exclusive manner to enforce data consistency.

Figure 2.3 shows an example of a real-time system composed of four periodic,
synchronous and dependent tasks. This example is inspired from the Constant
False Alarm Rate detection (CFAR) application proposed in the benchmark [4].
The boxes represent tasks and the arrows show the precedency dependencies
between tasks. For example, the task CFAR complex must be executed before
task CFAR square scale. The table in figure 2.3 depicts the properties of each
task such as the offset, WCET, priority, deadline, and period.

CFAR_complex

CFAR_square_scale

CFAR_gather

CFAR_printer

Offset WCET Priority Deadline Period

CFAR_complex 0 90 1 1000 1000

CFAR_square_scale 0 50 2 1000 1000

CFAR_gather 0 340 3 1000 1000

CFAR_printer 0 30 4 1000 1000

Legend :

Task

Dependency

Tasks
Properties

Figure 2.3: Tasks properties and types illustration with CFAR application [4]

–33–

Chapter 2. Real-time systems

2.2.3 Real-time Operating System

An operating system (OS) is a software program that serves as an interface be-
tween the software application and the hardware platform by providing services
such as memory management, process management, drivers management, com-
munication management, etc.

A real-time operating system (RTOS) is an OS intended for RTS. The guarantee
of timing constraints is one of the most significant differences between an RTOS
and a general-purpose OS (GPOS) such as Windows, Linux, macOS. FreeR-
TOS [47] and RTEMS [48], RTLinux [49], PikeOS [50] are examples of RTOS.

Unlike GPOS, RTOS proposes additional services in order to guarantee systems
predictability and timing constraints requirements.

Usually, RTOS support systems with tasks of different priority levels. They
guarantee resources access based on tasks priorities. Low priority tasks can then
be preempted to allow the execution of high priority tasks. RTOS ensures that
whenever a task τi is running and a higher priority task τj arrives, the task τi is
automatically interrupted in favor of the execution of τj.

RTOS proposes specific schedulers responsible of the order of the tasks executions.

Definition 25. (Scheduler [13])

A scheduler implements an algorithm or a policy for ordering the execution of the
tasks on the processor according to some pre-defined criteria.

RTS scheduling is based on the scheduling policies provided by the scheduler.

Definition 26. (Scheduling [13]) Scheduling is a method by which tasks are
given access to computing resources (e.g. processors) based on a predefined schedul-
ing policy.

Definition 27. (Scheduling policy or scheduling algorithm [13]) Schedul-
ing policy is the algorithm that defines how tasks have access to computing re-
sources (e.g. processors).

A RTOS may support multiple scheduling policies that can be preemptive and
non-preemptive, online and offline, fixed priority and dynamic priority.

Definition 28. (Preemptive scheduling [13]) A task execution can be arbi-
trarily suspended and restarted later without affecting the behavior of that task.

For example, a preemption occur if during the execution of a task, comes a higher
priority task ready to be executed. In that case, the executing task is preempted
in order to allow the execution of the higher priority task. The scheduler suspends
an executing task through an interruption mechanism in order to allow another
task to be executed.

–34–

2.2. Real-Time architecture

Definition 29. (Non-preemptive scheduling [13]) A task cannot be suspend
during its execution.

In the case of non-preemptive scheduling, once a task gets access to a comput-
ing resource (i.e. processor), it cannot be interrupted. Its execution must be
completed before the resource access can be given to another task.

Definition 30. (Offline scheduling [13]) A scheduler is static and offline if
all scheduling decisions are made prior to the running of the system.

Offline scheduling is characterized by the definition of all scheduling decisions at
compile-time, before the execution of tasks. The scheduling, already confirmed
to allow all tasks to meet their deadlines, is specified via a scheduling table.
Thus the system will be scheduled based on the scheduling table. It is fully
deterministic because all the tasks information such as the list of the tasks and
their activation times are predefined in the scheduling table. This method suits
well for high critical RTS with high determinism requirements. It also leads to a
low runtime overhead since the same scheduling (i.e. specified in the scheduling
table) is repeated till the end of the system’s running time. The inconvenience of
offline scheduling is that it requires complete knowledge of the system’s behavior,
requirements and environmental situations.

Definition 31. (Online scheduling [13]) An online scheduler makes schedul-
ing decisions during the runtime of the system.

In contrary to offline scheduling, the online scheduling is more flexible since the
decisions are taken during the runtime. The decisions are based on both tasks
characteristics and the current state of the system. Thus, it is less predictable
than offline scheduling and may increase significantly the runtime overhead. How-
ever, it provides more flexibility such as the possibility to add new entities (e.g.
tasks) to the system design.

Definition 32. (Fixed priority scheduling) In fixed priority scheduling, the
priority assignment is done only once and hence the priority of a task will not
change with time [51]. Tasks priorities are fixed offline at design [13].

Tasks priorities decide the order in which tasks are executed. They are fixed based
on tasks attributes such as periods or deadlines. There are multiple algorithms
such as Rate-monotonic and Deadline-monotonic that implemented fixed priority
scheduling.

Definition 33. (Rate-Monotonic) In the Rate Monotonic algorithm (RM), all
tasks are allocated a priority according to their periods. The shorter the period
the higher their priority [52].

–35–

Chapter 2. Real-time systems

Tasks priorities are inversely proportional to their periods. Tasks with the same
period can be resolved in an arbitrary manner [51]. Thus, Rate-Monotonic is
devoted to periodic tasks only.

Definition 34. (Deadline-Monotonic)

In the Deadline-Monotonic (DM), all tasks are allocated a priority according to
their relative deadlines. The task with the shortest deadline is assigned the highest
priority. The lowest priority is assigned to the longest deadline task [13].

Tasks priorities are inversely proportional to their deadlines. For a system where
each task period value is equal to its deadline value, the DM and RM are similar.

Definition 35. (Dynamic priority scheduling) In dynamic priority schedul-
ing, tasks priorities may change when the system is running [13].

Compared to fixed-priority scheduling, dynamic priority scheduling is more com-
plex since tasks priorities are not static and fixed offline, but can vary during the
runtime. This approach leads to an increase of the implementation complexity
and the runtime overhead. However, it can allow systems with high processor
utilization to become schedulable. The Earliest Deadline First (EDF) and Least
Laxity First (LLF) are examples of dynamic priority scheduling.

Definition 36. (Earliest deadline first) In Earliest Deadline First, the task
with the (current) closest deadline is assigned the highest priority in the system
and therefore executes [13].

According to EDF, priorities are assigned dynamically and are inversely propor-
tional to the absolute deadlines of the active jobs [53].

Definition 37. (Least Laxity First (LLF)) The task which has the least laxity
first is assigned the highest priority in the system and is therefore executed [52].
The laxity of a task is defined as the deadline minus remaining computation
time [13].

In LLF, the executing task has a constant laxity and will be preempted by a task
whose laxity has decreased.

In the case of two tasks τ1 and τ2 with similar laxities, τ1 will run for a short
time and then will be preempted by τ2 which will also run for a short time and
will be preempted by τ1. Thus, when a system has tasks with similar laxities,
LLF may lead to thrashing which means the processor spends more time doing
context switches than useful work [13].

–36–

2.3. Real-time scheduling analysis

2.3 Real-time scheduling analysis

The scheduling analysis aimed to check the timing constraints of RTS. It mainly
consists of feasibility and schedulability tests. This section presents the concepts
of feasibility and schedulability in the context of RTS.

2.3.1 Feasibility and schedulability

Definition 38. (Feasibility [13]) Feasibility is the assessment of a task set to
meet all its timing constraints.

A task set is feasible if there is a scheduling policy guaranteeing that all the
timing constraints are met. Thus, for a given system, if all the tasks have all
their jobs scheduled without any missed deadline, the system can be qualified as
feasible.

Definition 39. (Schedulability [13]) Schedulability is the assessment of the
feasibility of a tasks set under a given scheduling policy.

A task set is schedulable with a particular scheduling policy if none of its tasks
will ever miss its deadlines during execution [13]. Feasibility is a broader concept
that includes schedulability. It means first, that a schedulable task set is feasible.
Second, a feasible task set that is schedulable under a given scheduling policy A,
is not necessarily schedulable under another given scheduling policy B.

To assess feasibility or schedulability, we may apply tests.

Definition 40. (Feasibility test [54]) A feasibility test assesses whether a task
set is feasible or not.

Definition 41. (Schedulability test [54]) A schedulability test assesses whether
a task set is schedulable with a given scheduling policy or not.

Tests that define the feasibility or the schedulability of a task set can be classified
into three categories: sufficient, necessary and exact test.

• Feasible/schedulable sufficient test: a task set can be considered feasi-
ble/schedulable if the given conditions are fulfilled. Otherwise, nothing can
be concluded. Therefore, the task set cannot be considered feasible/schedu-
lable, if these tests are not fulfilled.

• Feasible/schedulable necessary test: a task set that does not fulfill the given
conditions is automatically considered not feasible/schedulable. Otherwise,
nothing can be concluded. Therefore, there is no guarantee for feasibili-
ty/schedulability of the task set, if these tests are fulfilled.

–37–

Chapter 2. Real-time systems

• Feasible/schedulable exact test: a task set that fulfills the given condi-
tions are automatically considered feasible/schedulable. These tests are
also called necessary and sufficient conditions.

Feasibility and schedulability tests depend on the parameters (i.e. attributes of
tasks properties) of the system. It is difficult to have an exact estimation of these
parameters. Usually, there are estimated in the worst-case scenarios. Therefore,
in practice, there are always unpredictable deviations that can be covered by
sustainability towards better scenarios.

Definition 42. (Sustainability [55]) A given scheduling policy and/or a schedu-
lability test is sustainable if any system that is schedulable under its worst-case
specification remains so when its behavior is better than worst-case.

The better scenario can be the decrease of the execution time or the jitter, or
the increase of the period, the relative deadline of a task of the system. Thus
sustainability can be categorized based on the parameters that changed for better
scenario:

• C-sustainability: when change is only related to a decrease of tasks execu-
tion times.

• T-sustainability: when change is only related to an increase of tasks periods.

• D-sustainability: when change is only related to an increase in tasks dead-
lines.

2.3.2 Scheduling analysis methods

Analysis can be performed to study the behavior of RTS in order to evaluate
their schedulability. There are several methods to perform scheduling analysis
of RTS. Analytical analysis and simulation are approaches used to perform such
analysis. They required a modeling of the system with a level of abstraction that
still presents a complete knowledge of the system architecture (e.g. hardware and
software components, scheduling policy...) in order to maintain a certain level of
accuracy [56]. This section presents these approaches.

2.3.2.1 Analytical methods

In scheduling analysis, analytical methods are mathematical equations that rep-
resent sufficient or exact schedulability tests. The analytical methods are based
on the system model performance attributes such as processor utilization, or
tasks response time. We assume that Ci, Ti, Di and Ri represent respectively the
capacity, the period, the deadline and the WCRT of task τi.

–38–

2.3. Real-time scheduling analysis

• Processor utilization based test: consists of the evaluation of the total pro-
cessor utilization of the system model which consists of the sum of the
processor utilization of the tasks.

The utilization of the processor by a task τi is computed as follows:

Ui =
Ci

Ti

(2.1)

The total processor utilization of a task set that consists of n tasks is
computed as follows:

U =
n∑

i=1

Ci

Ti

(2.2)

[43] has proposed the following theorems.

Theorem 1 ([43]). A task set of n synchronous independent periodic tasks,
executing on a uniprocessor, and with Di ≤ Ti, is schedulable by EDF
scheduling if and only if:

U =
n∑

i=1

Ci

Ti

≤ 1 (2.3)

Theorem 2 ([43]). In a fixed priority preemptive scheduling context, a task
set of n synchronous independent periodic tasks with Di = Ti, executing on
a uniprocessor, is schedulable by RM if:

U ≤ n(21/n − 1) (2.4)

Theorem 3 ([43]). In a fixed priority preemptive scheduling context, a task
set of n synchronous independent periodic tasks with Di ≤ Ti executing on
a uniprocessor, is schedulable by DM if:

n∑
i=1

Ci

Di

≤ n(21/n − 1) (2.5)

• Response time analysis [57] is based on the WCRT of each task in the system
model. It consists of computing the WRCT of each task and comparing it
to the task relative deadline. The task set is considered schedulable if the
following equation is respected:

∀τi, Ri ≤ Di (2.6)

Analytic methods are rapid to perform since there are based on equations, but
there are systems for which those equations cannot be applied. Analytic methods
do not usually imply scheduling computation.

–39–

Chapter 2. Real-time systems

2.3.2.2 Scheduling simulation method

In scheduling simulation, the system model is executed by a scheduling simulator
based on the specified scheduling policy during a finite interval which can be
feasibility or simulation interval. Finally, the output of the execution is analyzed.

Definition 43. (Feasibility interval [58, 59])

A feasibility interval is a finite interval such that if all the deadlines of jobs
released in the interval are met, then the system is schedulable [59].

For a given system model if no deadline is missed during its feasibility interval, no
deadline will be missed latter and then the system schedulability is guaranteed.

The feasibility interval of a system model is related to the simulation interval.

Definition 44. (Simulation interval [59]) A simulation interval is a safe
interval such that the schedule repeats in a cycle [59].

Knowing the length of the simulation interval is also required for capturing the
whole behavior of a system when building a pre-run-time schedule known as
offline schedule [59].

It is useful to capture the whole behavior of the system to characterize various
metrics and evaluate during the simulation if the system can be considered as
schedulable.

The litterature proposes several scheduling simulators such as Cheddar 1 [25] (de-
tailed in section 10.2), Simulation Tool for Real-time Multiprocessor (STORM) 2 [60],
Real-Time system SIMulator (RTSIM) 3.

The simulation method have advantages and inconveniences compared to the an-
alytic methods. Simulation is more flexible and can be applied to a larger number
of systems because the analytic methods always required that the analyzed sys-
tem complies with assumptions of mathematical model. There are systems for
which a mathematical model does not exist. As an advantage, for verification
purpose, computing the simulation produces tasks scheduling.

As inconveniences, we cannot always rely on simulation as proof since it is con-
ditioned by the accuracy of some parameters such as feasibility interval. It re-
quires complete knowledge of the analyzed system and the parameters are often
fixed based on the pessimist approach. Then, the scheduling simulation may
lead to conclude that the analyzed system requires significantly more computing

1http://beru.univ-brest.fr/cheddar/
2http://storm.rts-software.org/
3RTSim, http://rtsim.sssup.it/

–40–

2.4. Conclusion

resources to be schedulable than it is in practice [61]. Furthermore, a combinato-
rial explosion is faced when performing exhaustive simulations for every possible
system state.

As an example, figure 2.4 shows a fixed priority-based scheduling simulation of
the CFAR application described above in figure 2.3 on its feasibility interval.

Cf

CFAR_complex

CFAR_gather

CFAR_printer

CFAR_square_scale

: Task execution : Task release : Task completion

time (us x 10−1)0 20 40 60 80 100

Figure 2.4: Illustration of a scheduling simulation

It shows the release and the completion time of each task represented by re-
spectively an up arrow and a down arrow. The interval between these times
represented by a box corresponds to the response time. We notice that no task
missed its deadline. Then the task set is schedulable since it is computed on its
feasibility interval.

2.4 Conclusion

This chapter is dedicated to the presentation of RTS. It presents the different
categories of RTS, their components (hardware and software) and their proper-
ties. It also describes different approaches proposed in the literature to perform
scheduling analysis. It presents background about analytics analysis methods,
scheduling simulation, and schedulability and feasibility tests of RTS.

In domains such as avionics, automotive, there are RTS that require separation
between tasks sharing the same computing resource. Then the next chapter
presents hierarchical systems in the context of RTS.

–41–

3
Hierarchical real-time systems

This chapter discusses partitioned systems, which is the main target of this thesis.
We start with hierarchical RTS in general and end with time and space partitioned
systems in avionic. Section 3.1 gives definitions about hierarchical RTS and their
characteristics. Section 3.2 presents examples of resources allocation modeling for
hierarchical RTS. Section 3.3 introduces a well-known application of hierarchical
RTS in the avionic domain called integrated modular avionics (IMA). Section 3.4
introduces the ARINC 653 standard. Finally, section 3.5 presents examples of
scheduling, memory management, and communications mechanisms of several
operating systems dedicated to TSP systems

3.1 Definitions and characteristics

With the evolution of technologies, RTS are integrating more and more func-
tionalities that increase their complexity [15]. They need to integrate more and
more applications with different requirements on each computing resource and
sometimes with a high level of legacy. This coexistance of multiple application
of different levels of criticality requires mechanisms to reduce fault propagation
while not jeopardizing the performances.

An hierarchical approach provides a separation of a system into multiple sub-
components and then facilitates their design, their analysis, their verification,
and their validation.

Virtualization [62, 63] is known to support separation between different subcom-
ponents (e.g. operating systems, applications tasks) running concurrently on the
same computing resource. It provides a software layer called hypervisor (vir-

–43–

Chapter 3. Hierarchical real-time systems

Hardware Hardware

Bare-metal hypervisor Host OS

Guest OS

Application Application Application Application

Hosted hypervisor Application

Application

Guest OS

Application

Guest OS
Guest OS

Figure 3.1: Bare-metal hypervisor Vs hosted hypervisor

tual machine monitor) with virtual machines that host operating systems and
applications.

We notice two types of hypervisors: bare-metal hypervisors, and hosted hyper-
visors [63]. A bare-metal hypervisor (native or type 1 hypervisor) runs directly
on the hardware, whereas a hosted hypervisor (embedded or type 2 hypervisor)
runs on top of a parent OS as illustrated in figure 3.1.

In general, bare-metal hypervisors are faster because they have direct access
to hardware resources. This direct access provides more security than hosted
hypervisors by avoiding vulnerabilities such as malicious intrusions.

Further, there are two approaches to virtualization: full virtualization and par-
avirtualization [63]. In full virtualization, the guest OS can be hosted without
any modifications while paravirtualization implies the modifications of the guest
OS. Both virtualization approaches have their advantages. The modifications
required in paravirtualization help to optimize the virtualization overhead. The
advantage of full virtualization is that it does not require the modification of
systems already verified and trusted.

Virtualization is commonly used to implement Hierarchical RTS. Hierarchical
RTS [64] consists of hierarchical resource sharing between different subcompo-
nents. It can be represented as in figure 3.2 where the resources of a subcompo-
nent are shared between the subcomponents of the high level. Then resources of
subcomponent 1 are shared between subcomponents 2 and 3. The resources of
subcomponent 2 are shared between subcomponents 4 and 5.

Considering CPU resources, a hierarchical RTS can be considered as a scheduling
hierarchy where each subcomponent consists of a real-time workload (i.e. tasks
set model) and a scheduling policy. In figure 3.2, we notice two types of sub-
components. First, there are subcomponents (subcomponents 3, 4, and 5) that
correspond to a set of tasks with a given scheduling policy. Then the tasks of each
subcomponent are scheduled according to their scheduling policy. Second, there
are subcomponents (subcomponents 1, and 2) that are composed of a set of the
above-mentioned subcomponents. Each of them also includes a scheduling policy

–44–

3.1. Definitions and characteristics

Subcomponent 1

supports subcomponents 2 and 3

Subcomponent 2

supports components 4 and 5

Subcomponent 3

(Tasks set model)

Subcomponent 5

(Tasks set model)

Subcomponent 4

(Tasks set model)

Figure 3.2: Hierarchical real-time systems

that defines how its subcomponents of the next level up should be scheduled.

Hierarchical scheduling is a confirmed mechanism to guarantee temporal isolation
among partitions [64]. This can be established through a hierarchical scheduling
framework (HSF) [65].

Definition 45. (Hierarchical scheduling framework (HSF))

A hierarchical scheduling framework (HSF) is introduced to support CPU time-
sharing among subcomponents under different scheduling services [65].

HSF is characterized by providing functional separation of subcomponents in
order to guarantee not only their isolation during runtime but also to reduce
the complexity of the whole system verification and validation through modular-
ity [66]. With HSF, each subcomponent is executed independently and a failure
in a subcomponent cannot affect another one. An HSF can be generally described
as a two-level tree where each subcomponent is scheduled based on a local sched-
uler and all the subcomponents are scheduled according to the scheduling policy
of a global scheduler. The scheduling policy of the global scheduler and all the
local schedulers can be different.

Figure 3.3 illustrates two-level hierarchical scheduling.

• Global scheduler: provides the required CPU resources for the subcompo-
nents of the HSF. To schedule all its tasks, each subcomponent requires an
amount of CPU [66]. The global scheduler determines the order of execu-
tion of the subcomponents by deciding which subcomponent should have
access to the CPU resources at a given time. It assigns each subcomponent

–45–

Chapter 3. Hierarchical real-time systems

Global Scheduler

𝑆𝑢𝑏𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1

Local Scheduler1

𝑇𝑎𝑠𝑘1.1 𝑇𝑎𝑠𝑘1.𝑚1
…

𝑆𝑢𝑏𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑛

Local Scheduler𝑛

𝑇𝑎𝑠𝑘𝑛.1 𝑇𝑎𝑠𝑘𝑛.𝑚𝑛
…

CPU

…

Figure 3.3: Hierarchical scheduling framework

a fraction of the total processor time distributed over the time line based
on the assumed scheduling policy. The global scheduling can be decided
off-line or online.

• Local scheduler: selects the next task in a subcomponent to be executed
when the concerned subcomponent is selected by the global scheduler. It
can be scheduled based on any scheduling algorithm presented in chapter 2.

To summarize, the global scheduler selects the subcomponent to be executed at
a given time and then the local scheduler decides which task will be executed
among the tasks of the selected subcomponent.

3.2 Resource model

This section presents resource models for resources allocation in hierarchical RTS.
In an HSF, each parent node assigns resource allocations to its child nodes [66].
This can be referred to as a resource model also called virtual processor model [67].

Definition 46. (Resource model) A resource model is a model for specifying
the timing properties of resource supply [68].

Definition 47. (Resource supply) The resource supply of a resource is the
amount of resource allocations that the resource provides [69].

The literature proposes different resource models such as the periodic resource
model and bounded delay resource model.

–46–

3.2. Resource model

0

Time

Figure 3.4: Periodic resource illustration

3.2.1 Periodic resource model

Definition 48. (Periodic resource model) A periodic resource model Γ(Π,Θ)
with (0 < Θ < Π) can characterize a resource allocation of Θ time units every Π
time units with Π a positive integer and Θ a real number between (0,Π] [69].

The periodic resource model is proposed to model resource allocation with a
periodic approach. Figure 3.4 illustrates a periodic resource model Γ(Π,Θ).

For example, Γ(6, 2) modelizes a resource model with a resource allocation of 2
times units every 6 times units.

In the cases where Θ = Π, then the resource is available all the time.

3.2.2 Bounded delay resource

Definition 49. (Bounded delay resource partition model)

In a bounded delay resource partition model [67], a resource partition Π is a tuple
(Γ, P) where Γ is an array of N time pairs (S1, E1), (S2, E2), ..., (SN , EN) that
satisfies (0 ≤ S1 < E1 < S2 < E2 < ... < SN < EN) for some N ≥ 1, and P is
the partition period.

This model defines the interval times in which a partitioned resource is available.
It describes the behavior of a partitioned resource that is available at its full capac-
ity at some times. The interval times of unavailability are referred to as blocking
times. Figure 3.5 illustrates bounded delay resource Π((S1, E1), (S2, E2), ..., (SN , EN), P).

For example, a bounded delay resource partition Π = (1,2), (4,6), 8) starts from
time 1 to time 2 and from time 4 to time 6 with a period of 8 time units.

Especially, in traditional systems that we can consider as systems with only one
partition, there is no blocking time and the model can be simplified by being
represented by Π = ((0, P), P) meaning that the partition starts at time 0 to
time P every P period.

IMA architecture can be considered as an implementation of HSF in RTS.

–47–

Chapter 3. Hierarchical real-time systems

0 Time

P

S_1 E_1

…
S_N E_N

…

Figure 3.5: Bounded delay resource illustration

3.3 Time and space partitioning (TSP) and integrated mod-

ular avionics (IMA)

By the past, systems in avionics were implemented based on federated architec-
tures [16]. The federated approach is based on a ”one function = one computer”
principle that consists of allocating to each function in the system its own dedi-
cated computer system [15]. Each avionic function has its dedicated processing
unit, sensors and actuators. Then an avionic system was considered as a set of
standalone subsystems dedicated to each function of the system.

Since each function is physically isolated from others and data exchange is limited
between functions, a fault that occurs in a function or/and any of its dedicated
resources can difficultly affect other functions. Dedicating each function to a
dedicated computing system improves fault tolerance but requires more hardware
in the system. As avionics systems need to integrate more functions, the federated
architecture was no more appropriate because it increases the height, the volume,
the installation, maintenance cost and the power consumption of the aircraft [18].
To overcome those drawbacks, an alternative to meet the requirements of the
modern avionics was proposed with the integrated modular avionics (IMA) [18].

Definition 50. (Integrated Avionic Modular systems)

An integrated Avionic Modular (IMA) [37, 18] system is a critical real-time sys-
tem that uses multiple software modules called partitions to isolate applications
with different levels of criticality through hardware sharing.

To reduce fault propagation, IMA is associated to a strict and robust partitioning.

Each function is considered as running on a dedicated virtual resource called
partition.

Definition 51. (Partitioning) Partitioning [37, 15] is an architectural tech-
nique to provide the necessary separation and independence of functions or ap-
plications to ensure that only intended coupling occurs.

Definition 52. (Robust partitioning) Robust partitioning [37, 15] is the re-
quirement that ensures that any hosted application or function has no unintended
effect on other hosted applications or functions.

–48–

3.4. ARINC 653

The robust partitioning aims to provide an isolation between applications sharing
the same resources as much as close to the isolation provided if they were hosted
on different computing units as in federated systems [70].

Spatial partitioning intervenes to guarantee that no function of one partition is
able to access or change the memory (programs and data) private to another
partition. Then a memory management unit (MMU) provided by the hardware
is usually used to ensure the memory protection between partitions.

With multiple functions in different partitions integrated into a same hardware
module, the system can face problems such as the monopolization of the CPU by
one partition denying services to other functions in other partitions. Then inter-
venes the temporal partitioning to ensure that each partition access to hardware
resources for defined period and duration through a deterministic scheduling.

IMA guarantees application portability by ensuring software abstracting. Airbus
A380 and Boeing 787 are examples of IMA systems. By using its approach of
IMA, Airbus has reduced half of the number of processors used for the new A380
suite [71]. For IMA systems, there are multiple standards that give specifications
for their design and that also ease their certification. As examples we have ARINC
429 [72] and ARINC 664 [73] for communications between hardware modules,
ARINC 653 that concerns time and space partitioning services.

3.4 ARINC 653

Definition 53. (ARINC 653) ARINC 653 [74] is a standard that specifies time
and space partitioning services to design safe and critical real-time systems.

Figure 3.6 illustrates an IMA architecture based on ARINC 653 standard that
we will describe in the sequel.

3.4.1 Hardware

In ARINC 653, multiple applications share a hardware module. Applications are
clustered into partitions needed to be isolated. Then ARINC 653 standard re-
quires the ability of the hardware to support services essential for the application
isolation.

The hardware module contains resources such as processor, memory, I/O devices.
Even if partitions share the same hardware module, each partition has restricted
access to those resources [5]. This restriction is operated through an adequate
OS and ensures that without changing the API, the hardware (resp. applica-
tion software) can be changed with no effect on the application software (resp.
hardware).

–49–

Chapter 3. Hierarchical real-time systems

Figure 3.6: ARINC 653 architecture [5, 6]

3.4.2 Software

The applications run on top of a real-time operating system with the intermediate
of an interface called Application/Executive (APEX) [75] provided by ARINC 653
standard.

Definition 54. (Application/Executive(APEX) interface) Application/Ex-
ecutive(APEX) [75] interface is an application programming interface (API) de-
fined by ARINC 653 standard for IMA systems to provide services for mechanisms
such as partition and process management, time and memory management, inter
and intra-partitions communications, error handling.

APEX interface ensures the portability and modularity of the software appli-
cations and then favors the independence between software and hardware. It
guarantees the reusability of the application code since it helps to reduce the cus-
tomization effort of a reused component. It also allows flexibility in the choice of
development tools and compilers by being independent of any high-level language.
APEX interface enables independence between the development of applications
and the operating system. APEX interface has the ability to host multi-criticality
levels applications.

–50–

3.4. ARINC 653

3.4.2.1 Partition and process management

With the APEX services, the operating system intervenes in the management of
partitions and processes. In ARINC 653, software applications are defined as a
set of processes that have to be hosted by partitions.

Each partition has a dedicated memory space protected by a memory manage-
ment unit even if the partition is not active. Thus the space isolation is ensured
because no active partition will be able to write in a nonactive partition. In AR-
INC 653 specification, each partition is characterized by the attributes defined
below.

• A name and a unique identifier that help to constitute the identity of a
partition in the system.

• A partition period that indicates the duration between two successive acti-
vations of the partition.

• A partition duration that represents the execution time of the partition.
The time isolation is ensured by the allocation of disjoint time slot to each
partition. No partition is allowed to exceed its allocated time slot.

• A memory space that delimits memory allocation of the partition. This
helps in guaranteeing space isolation of partitions.

A process is a unit of programs allocated to a partition and that has to exe-
cute concurrently with the other processes within the partition. Both periodic
and aperiodic processes are possible in ARINC 653 systems. The processes are
characterized by some important attributes defined below.

• A name that identifies the process among others.

• A period that represents the duration between two successive activations
of a periodic process.

• A time capacity that represents the execution time budget of the processes.

• A process priority that determines the order of execution of processes within
a partition.

Processes inside a partition are scheduled with preemptive scheduling. In ARINC
653, a process can be dormant i.e. ineligible for scheduling, waiting, ready to be
executed, or running. The access of a process to the processor resource depends
on its priority level and its current state. Within a partition, the process in the
ready state with the highest priority has first the access processor resource. In
the case of equality in terms of priority, the resource is allocated to the process
that has remained in the ready state the longest. Only higher priority processes
have the ability to preempt a less priority process.

–51–

Chapter 3. Hierarchical real-time systems

3.4.2.2 Scheduling of ARINC 653 systems

In ARINC653, the scheduling is a two-level scheduling: partitions scheduling and
processes scheduling.

The scheduling of the partitions is fixed, off-line, and cyclic while the processes
inside a partition are schedule with an online scheduling policy. The off-line par-
tition scheduling is a configuration table system. In this table, time is organized
as a regular time frame called major time frame (MAF).

Definition 55. (Major time frame) MAF is a fixed duration periodically re-
peated throughout the runtime operation [5].

MAF is repeated till the end of the runtime and corresponds to the multiple of
the least common multiple of all partition periods in the system. The MAF is
also divided into smaller regular time frames called minor time frames (MIF) that
corresponds to the PGCD of the partitions periods.

Definition 56. (Minor time frame) MIF [76] is defined by the PGCD of the
partitions periods.

Each partition execution, during its period, is divided into time slot called parti-
tion windows. A MIF is composed of partition windows of several partitions.

Definition 57. (Partition window) A Partition window represents an integral
time duration during which the Operating System exclusively schedules processes
belonging to a given partition [77].

Figure 3.7a shows an example of ARINC 653 system. We have six processes
(τ1,τ2,τ3,τ4,τ5, and τ6) assigned to four partitions (P1, P2, P3, and P4). Fig-
ure 3.7b presents an example of scheduling of this partitioned system. This
example shows scheduling of the system during a MAF divided into three MIF.
Tasks are executed only during the partition window of their assigned partitions
based on their priority level. Then even if tasks τ1 and τ2 are both assigned to
the same partition P1, task τ1 being executed before task τ2 implies that task
τ1 has higher priority level than task τ2. Each partition has its own period that
indicates its activations. We remark that the MAF contains three partition win-
dows of partitions P1 and P2 while it only has one partition window of partition
P3 and partition P4.

3.4.2.3 Communications

In ARINC 653 specifications, communications are operated based on inter and
intra-partition communications concepts.

–52–

3.4. ARINC 653

1

P1

2

Processes
scheduling

Partitions
scheduling

CPU

3

P2

4

Processes
scheduling

P3

5

Processes
scheduling

P4

6

Processes
scheduling

(a) Example of an ARINC 653 architecture

P2

 Period (P2)

Period (P1)

Period (P3) = Period (P4)

MAF1

MIF1 MIF2 MIF3

Partition

window (P1)

P1P4 P2P1 P2 P3 P1

1 2 3 5 1 2 4 6 1 2 3 4

(b) Illustration of an ARINC 653 scheduling

–53–

Chapter 3. Hierarchical real-time systems

Definition 58. (Intra-partition communication) The intra-partition com-
munications represent communications between processes within a same parti-
tion [74, 63].

Intra-partition communications are completed via buffers or/and blackboards.
Buffers prevent data overwriting by maintaining a message queuing that stores
messages that will be transmitted by FIFO. Blackboard maintains a message
until its transmission or overwriting with a new message. Semaphores and events
are also used to synchronize processes inside a partition.

Definition 59. (Inter-partition communication) Inter-partition communi-
cations are communications between partitions [74, 63].

Inter-partition communications include communications between a partition on a
core module and any other component non-compliant to ARINC 653 and external
to this core module.

They are performed via messages through ports and channels. Each partition
has its own port to send and receive messages from other partitions. A channel
is considered as a link between ports of the communicating partitions. In a
partition, a port can be used by many processes of this partition. Each port
has to be configured in sampling or queuing ports mode. At the sampling mode,
the message is kept at the source port until it is transferred or overwritten by a
new message. In the queuing mode, messages are maintained in a FIFO message
queue. It is important to mention that in ARINC 653 systems, inter-partition
communication sinks are partitions, not processes.

3.5 Examples of hypervisors/operating systems for TSP sys-

tems

In TSP systems, space and time isolation are most of time enforced by an hyper-
visor. This section introduces some hypervisors/operating systems dedicated to
TSP systems summarized in Table 3.1. The table provides for each hypervisor,
its authors, supported platforms, and guest OS. Further, the section presents for
each hypervisor, its characteristics such as their scheduling, memory management
and communications mechanisms.

3.5.1 PikeOS

PikeOS [78, 50] is a real-time operating system and a hypervisor for safety and
security-critical systems that supports several processor architectures such as

–54–

3.5. Examples of hypervisors/operating systems for TSP systems

Hypervisor/
RTOS

Authors License Supported
platform

Supported Guest
OS

PikeOS Sysgo AG Proprietary ARM,
NXP,
X86,
PowerPC,
LEON,
SPARC

PikeOS native,
Linux,
POSIX,
AUTOSAR,
Android,
RTEMS,
OSEK,
ARINC 653 APEX,
ITRON

Xtratum fentISS Open-source PowerPC,
LEON2/3/4,
SPARC v8,
ARM v7

Linux,
LithOS, RTEMS

POK Julien
Delange
and al.

Open-source x86,
PowerPC,
LEON 3

ARINC 653 APEX

Lynxsecure LynuxWorks Proprietary x86 LynxOS,
Linux,
Windows

Table 3.1: Summary of hypervisors and RTOS for TSP systems

ARM, NXP, X86, and Leon/Sparc. It ensures system application protection
through partitioning and supports mixed-criticality systems with different levels
of security and safety. Each partition can hold a different operating system,
API, or runtime environment such as PikeOS native, ARIN653, Linux, Android,
Posix, RTEMS, AUTOSAR. PikeOS has its development environment named
CODEO [78] based on Eclipse.

3.5.1.1 Scheduling

PikeOS considers that applications are composed of tasks made of threads. Threads
are divided into sets named time partitions. Each time partition contains only
threads with the same priority level. Inside a time partition, PikeOS considers
priority-based scheduling where round-robin is applied for the thread of the same
priority list.

The execution of a thread assigned to a time partition can be performed only in
the activation time of the time partition.

PikeOS authorizes the simultaneous activation of two time partitions. The first
one called background partition is always actived. The remaining partitions called

–55–

Chapter 3. Hierarchical real-time systems

foreground partitions are activated one at a time. A foreground partition is
activated based on a cyclic and predefined scheduling configuration.

PikeOS proposes a more general scheduling process than the scheduling in the
ARINC 653 standard. The scheduling of the ARINC 653 standard is a particular
case of PikeOS scheduling that is obtained by always activating at a time only
one-time partition for its duration [50].

3.5.1.2 Memory management

PikeOS divides the global memory into subsets called kernel resource partitions.
The resource partitions are configured through a specific system call. At creation
time, each task is assigned to a kernel resource partition. Then each partition
is defined by a set of kernel resource partitions assigned to its tasks. After ini-
tialization, the memory assignment to partitions in PikeOS is static (i.e no extra
resource is can be allocated to a partition). Inside a partition, every guest system
can establish its memory management.

3.5.1.3 Communications

In PikeOS, basically, tasks can only communicate with their parents. However,
each task has a communication right that defines the tasks they are allowed
to communicate with. The right to communicate with another task different
from the parent can be granted by the parent. Two threads of different tasks
can communicate only if their tasks have the right to communicate with each
other [50].

3.5.2 Xtratum [1]

Xtratum [1] is a bare-metal hypervisor based on paravirtualization. It is designed
to meet the time and space requirements of safety-critical systems. Xtratum can
guest simultaneously several operating systems and supports Leon2/3/4 (Sparc
v8) and ARM architectures. Natively, Xtratum is not compliant with the ARINC
653 standard. For example, a partition in Xtratum architecture is a virtual
machine, not a set of processes as defined in the ARINC 653 standard. However,
Xtratum partitions can be adapted to the standard for providing services like the
ARINC 653 scheduling policy for example.

3.5.2.1 Scheduling

Since partitions cannot run directly on top of Xtratum. Each partition is com-
posed of an operating system on top of which applications are run. Partitions

–56–

3.5. Examples of hypervisors/operating systems for TSP systems

are scheduled based on a fixed and cyclic scheduling policy similar to ARINC
653 scheduling that consists of a periodic repetition of the MAF. As in ARINC
653, each partition is characterized by a slot time defined by a start time and the
duration for its execution. The scheduling of processes inside a partition is not
handled by Xtratum. Internally, each partition defines its own scheduling policy.

3.5.2.2 Memory management

In Xtratum, memory protection is implemented by the use of MMU or Write
Protection Register (WPR) provided by the hardware. To ensure spatial isolation
of partitions, each partition is characterized by a starting address and a size.

For the systems deployed on a processor with a MMU, the MMU only acts as a
Memory Protection Unit (MPU) where there is no difference between virtual and
physical address spaces and each partition executes in its designated addresses.
In this case, memory is divided into several segments allocated to partitions. A
partition may host several segments.

For the systems without MMU, theWPR is required to define some characteristics
of the address spaces. Thus, each address space allocated to each partition has
to be contiguous, should not exceed a size of 32KB and the start address has
to be a multiple of the size. Unfortunately, WPR cannot completely guarantee
memory isolation since it does not control read memory operations.

3.5.2.3 Communications

Communications between partitions are performed by messages through ports
and channels as in the ARINC 653 standard. Xtratum implements inter-partition
communication using sampling and queuing ports and manages the encapsula-
tion of the messages. The communications inside partitions are managed by the
partition developers.

3.5.3 POK

POK [79] is a partitioned operating system for safety-critical real-time systems,
compliant with ARINC 653 standard, and designed for x86, PowerPC, and Leon
3 platforms. It is composed of a microkernel and a partition runtime. The
microkernel intervenes in time and space partitioning of applications of different
domains such as avionic, automotive.

–57–

Chapter 3. Hierarchical real-time systems

3.5.3.1 Scheduling

The scheduling is similar to ARINC 653 scheduling. A fixed time slot is assigned
to each partition. POK defines the major time frame as the sum of the time slots
of the partitions.

3.5.3.2 Memory management

A unique memory segment is assigned to each partition. In the microkernel, each
partition stores information about its processes. This information is used by the
microkernel to enforce memory isolation.

3.5.3.3 Communications

In POK, inter-partition communications use sampling and/or queuing port. Intra-
partitions communications are performed with buffers and blackboards as in the
ARINC 653 standard.

3.5.4 LynxSecure

LynxSecure [80] provided by Lynx Software Technologies is an hypervisor mostly
used for military applications. It is based on the MILS architecture (detailed
in section 4.3 of the chapter 4) to guarantee high assurance requirements by
partitioning data and resources and ensuring information control. LynxSecure
can host several applications and operating systems in different secured partitions
that prevent from risky interactions.

It supports full virtualized operating systems and para-virtualized operating sys-
tems. For example, it supports para-virtualized Linux and LynxOS real-time
operating systems, full virtualized Windows operating system.

3.5.4.1 Scheduling

By default, in LynxSecure, partitions are scheduled as in ARINC 653 standard
using fixed and cyclic off-line scheduling; but for more flexibility, it allows dynamic
scheduling policies for tasks.

3.6 Conclusion

This chapter consists of a presentation of hierarchical RTS. It starts by describ-
ing hierarchical RTS through definitions and characteristics. It introduces the

–58–

3.6. Conclusion

resources allocation modeling in hierarchical RTS while presenting the periodic
resource model and the bounded delay resource model. It also presents some op-
erating systems on which hierarchical RTS can be deployed to enforce protection
between partitions. We describe the IMA and the ARINC 653 standard applied
in avionic and space domains to decrease weight and power consumption through
isolation of applications sharing hardware resources on different partitions. Fi-
nally, the scheduling, memory management and communications mechanisms are
described for each operating system.

Considering that intra-partition and inter-partition communications between tasks
may present some security vulnerabilities, the next chapter is dedicated to discuss
confidentiality and integrity vulnerabilities and mechanisms to ensure communi-
cations security.

–59–

4
Security

This chapter presents security concepts that we address in this thesis. Section 4.1
presents the most addressed security properties in this thesis: confidentiality and
integrity. Section 4.2 discusses security models based on data access control with
these security properties. Section 4.3 gives a description of the Multi Independent
Levels of Security (MILS) architecture. It is an architecture model designed for
security properties based data access control with separation mechanisms that
support both untrusted and trustworthy components. It provides time and space
partitioning that corresponds to partitioned systems. MILS is an architecture
model based on the partition concept. Finally, a conclusion of the chapter is
given in section 4.4.

4.1 Security properties

In this section, we introduce two security properties: confidentiality and in-
tegrity [81, 82].

Definition 60. (Confidentiality) Confidentiality is the guarantee that infor-
mation is not made available or disclosed to unauthorized individuals, entities,
or processes [83].

The confidentiality requires that the information remains intelligible only to au-
thorized entities. There are many threats to confidentiality, such as the intercep-
tion of data by an intruder after sensitive data leakage or disclosure.

Confidentiality can be achieved through two principal ways. The first one con-
sists of enforcing access control to sensitive data. This is achieved by definition
of access control policies. The policies depend on definitions of subjects, objects,

–61–

Chapter 4. Security

Shared key Shared key

Plain text Cipher text Plain textEncryption Decryption

(a) Symmetric encryption illustration
Public key Private key

Plain text Cipher text Plain textEncryption Decryption

(b) Asymmetric encryption illustration

Figure 4.1: Encryption illustration

and the privileges/permissions that the subjects have on the objects. Objects
represent data while subjects are components that manipulate objects by per-
forming on them operations such as read, write, or execute. The permissions are
defined with denied and allowed objects access (e.g. data access) to subjects.

The other way is to control data access through encryption. Encryption [23] is a
means of securing data by encoding it mathematically such that it can only be
read, or decrypted, by authorized entities. Data are encrypted with a key and
only entities who possess the appropriate key can decrypt and understand the
information. Depending on how the data can be encrypted or decrypted, there
are two types of encryption:

1. Symmetric key cryptography [23]: uses the same key for data encryption
and decryption, which must be secretly shared between the sender and the
receiver.

Figure 4.1a illustrates symmetric encryption where a same key shared be-
tween the sender and the receiver, is used to encrypt (resp. decrypt) a plain
text (resp. cipher text) to a cipher text (resp. plain text). The strength of
this cryptography depends on the length of the key. The longer the number
of bits that represent the key, the more difficult it becomes for the external
actor to guess the key and then access the information. Sometimes the
key needs to be renewed to enforce the security. Blowfish [31], AES [84],
DES [84] are examples of symmetric cryptography.

–62–

4.1. Security properties

2. Public key or asymmetric key cryptography [85]: depends on a public key
accessible by anyone and a private key possessed only by the owner. Fig-
ure 4.1b illustrates asymmetric encryption where a public (resp. private)
key is used to encrypt (resp. decrypt) a plain text (resp. cipher text) to
a cipher text (resp. plain text). The data is encrypted by the public key
while only the private key can be used for decryption. Diffie Hellman [86],
RSA [84] are examples of well-known asymmetric key methods.

Data divulgation addressed by confidentiality is not the only challenge in data
protection. Unauthorized entities can corrupt or change data intentionally or
accidentally if their actions are not properly controlled. Then it is also important
to guarantee data integrity when needed.

Definition 61. (Integrity) Integrity is the ability to prevent data from unau-
thorized modifications (i.e. tampering) [87, 88].

Data integrity can be achieved through data access control policies. It can also be
achieved through data hashing cryptography. Hashing [89] is a mean that ensures
data integrity through mathematical algorithms that transform data into a hash
value. The sender transmits the data with its hash value. Then on receipt, the
receiver will hash the data and compare its hash value with the one computed
by the sender. If both hash values are equal, data integrity can be confirmed.
Otherwise, the received data has been modified by an attacker. There are many
cryptographic hash algorithms: MD5 [90], SHA-1 [91, 92], SHA-2 [92, 93].

These hash algorithms can be associated with a secret shared cryptographic key to
enforce integrity with authentication [94] by not only ensuring that data has not
been modified but also ensuring to the receiver that the received data originates
from the claimed source. This association is referred to as hash-based message
authentication code (HMAC) [95]. HMAC is based on a message authentication
code which is a value computed by the sender (resp. receiver) at the emission
(resp. reception) with the data to send (received data), the hashing algorithm,
and the secret key shared between the sender and the receiver.

As illustrated in figure 4.2, at the emission, the sender sends the data and the
produced HMAC to the receiver. At the reception, the receiver computes its
HMAC with the received data and the secret key. Then it compares its HMAC
and the received HMAC. If both hash values are equal, data has not been modified
and the sender is confirmed to be part of entities sharing the same key with
the receiver [95]. Then the data integrity and authentication can be confirmed.
Otherwise, the received data has been modified by an attacker or not sent by the
claimed sender.

–63–

Chapter 4. Security

Hash algorithmSecret key

HMAC

Data to sent

Hash algorithm

HMAC

Received data

Secret key
Send data and HMAC

=?
No

Yes

Failed integrity and/or
authentication

Sucessful integrity
and authentication

Figure 4.2: HMAC illustration

4.2 Security models

Security properties are enforced by security models.

Definition 62. (Security model) A security model [96] describes the security
strategy for a system to ensure security properties (e.g. confidentiality, integrity).

It is an implementation of mathematical and analytical assumptions mapped to
a system specification to resolve security issues. As introduced in the previous
section, confidentiality and integrity can be achieved through data access policies
where subjects have granted permissions that permit or deny them data access.
Then security labels are assigned to the subjects and data to define these per-
missions. For this purpose, systems are composed of subjects of different levels
of security that access data of different levels of security. The levels of security
of subjects and data are defined based on the data access policies.

These systems may use classifications, such as the United States government
classification system [97], which is based on the degree of secrecy and level of
sensitivity. Classification levels can be confidential, top-secret, and secret. They
are applied to subjects or objects. Objects can be data classified at different
levels and subjects make operations such as read, write or execute on objects.

The literature proposes several security models such as Information Flow Control
(IFC) models [96], Graham-Denning model [98], State-Machine model [99], non-
Interference model [100].

Bell-La Padula [87] and Biba [101] are concrete examples of IFC models.

–64–

4.2. Security models

Subject/User

Object/Data
at higher

confidentiality level

Object/Data at a
Lower

confidentiality level

X

X

Read from higher
confidentiality
level blocked

Write from lower
confidentiality
level blocked

Write from higher
confidentiality
level permitted

Read from Lower
confidentiality
level permitted

Figure 4.3: Bell-La Padula model illustration [7]

Bell-La Padula (BLP) model [87] was introduced to formalize the U.S. Depart-
ment of Defense (DoD) multilevel security [97].

Definition 63. (Bell-La Padula model) Bell-La Padula (BLP) model is a
security model intended for confidentiality and based on the No read up-No write
down principle [87].

It specifies that a subject at a given confidentiality level is forbidden to read data
tagged with a higher confidentiality level. It cannot also write information to a
lower confidentiality level.

Figure 4.3 illustrates the BLP model by showing allowed and forbidden infor-
mation flow between a subject and two objects at different confidentiality levels.
The first object at the top has a higher confidentiality level than the subject while
the second object at the bottom has a lower confidential level than the subject.
The arrows with red crosses represent the forbidden data access defined by the
No read up-No write down principle. The remaining data accesses represented
by arrows without crosses are allowed.

Definition 64. (Biba model) Biba model is a security model developed towards
data integrity and based on the No read down-No write-up concept [101].

The Biba model describes a set of access control rules designed to ensure data
integrity. It defines an integrity policy that a subject may not read data of lower

–65–

Chapter 4. Security

Subject/User

Object/Data
at higher integrity

level

Object/Data at a
Lower integrity

level

Read from higher
integrity level
permitted

Write from lower
integrity level
permitted

Write from higher
integrity level
blocked

Read from Lower
integrity level
blocked

X

X

Figure 4.4: Biba model illustration [7]

integrity level than its own, and a policy that a subject may only write data
whose integrity levels are equal or lower than its own [7].

With the Biba model, a subject at a given integrity level is forbidden to read
data from a lower integrity level and to write data to a higher integrity level.

Figure 4.4 illustrates the Biba model by showing allowed and forbidden informa-
tion flow between a subject and two objects at different integrity levels. The first
object at the top has a higher integrity level than the subject while the second
object at the bottom has a lower integrity level than the subject. The arrows with
red crosses represent the forbidden data access defined by the No read down-No
write-up principle. The remaining data accesses represented by arrows without
crosses are allowed.

4.3 Security architecture

Security architecture uses an architectural view of the system to comply with
security properties. Then in this section, we present an example of security
architecture called the Multi Independent levels of security (MILS) architecture.

Definition 65. (Multi Independent levels of security (MILS) architec-
ture) MILS is a high-assurance security architecture characterized by untrusted
and trusted components, based on security models such as information control by

–66–

4.3. Security architecture

ensuring that systems are non-bypassable, evaluable, always invoked and tamper-
proof [102].

MILS is based on divide and conquer to make easier systems manipulation and
evaluation [81, 82]. Therefore, MILS adopted a classification of its components
based on the degree of criticality by assigning to them security levels. According
to that classification, MILS applications are tagged as Single Level of Security
(SLS), Multiple Levels of Security (MLS), or Multiple Single Level of Security
(MSLS) applications [103, 81, 82].

4.3.1 MILS classification

For security purposes, in MILS architecture, each object/data is characterized by
a security level. Subjects are also classified based on the security levels of the
objects/data they manipulate:

Definition 66. (Single Level of Security (SLS)) A Single Level Secure Com-
ponent is a component that every time processes data of one security level [103].

Definition 67. (Multiple Level of Security (MLS))

A Multi-Level Secure Component is a component that handles information with
different security levels concurrently during one runtime instance [103].

MLS components process data at different levels of security without a separation
between security levels. A device that downgrades an object at a given level of
security to a lower level of security, is an example of an MLS component.

Definition 68. (Multi Single Level of Security (MSLS)) A Multiple Single-
Level Secure Component is a special kind of SLS component that processes data of
multiple security levels, but always maintains separations between classes of data
by exclusively processing only one security level during its runtime instance [103].

MSLS components process data at different levels of security with a separation
between security levels. Therefore, data will not be downgraded or upgraded.

4.3.2 MILS architecture

MILS architecture based systems are layered systems. Most of them are com-
posed of an application layer, a middleware service layer, and a separation kernel.
Figure 4.5 gives an overview of the MILS architecture. It shows the application
layer deployed on a middleware service layer running on top of a separation ker-
nel. The separation kernel divides the system into separate partitions where the

–67–

Chapter 4. Security

middleware and applications are located. The middleware provides an interface
to applications or a virtual machine enabling operating systems to be executed
within partitions. MILS prevents information leakage from one partition to an-
other. It also provides controlled information flow between partitions represented
with arrows.

Processor

Separation Kernel

Application

Middleware

Application

Middleware

Application

Middleware

User mode

Partition1 Partition2 Partition3

Supervisor mode

Information flow

Figure 4.5: MILS overview [8]

4.3.2.1 Separation Kernel

Definition 69. (Separation Kernel)

The separation kernel (partitioner layer) is the base layer of the system, and is
responsible for enforcing data separation and information flow controls within a
single microprocessor; providing both time and space partitioning [102, 104].

The separation kernel ensures data separation by partitioning the memory base
on the hardware memory management unit [105]. Information in a partition is
only accessible for subjects of this partition, but by controlling information, the
separation kernel allows information flow between partitions by ensuring that
it has been explicitly authorized and configured. Any other communication is
considered as violating security rules.

The separation kernel guarantees fault isolation by ensuring that faults detected
in one partition do not spread to other partitions. It ensures that all shared
resources are cleaned before being used by subjects of another partition.

A separation kernel has to be as small and simple as possible to easies its veri-
fication. PikeOS [106], Xtratum [1], POK [79], Lynxsecure [80] are examples of
separation kernel.

–68–

4.3. Security architecture

4.3.2.2 Middleware service

In a MILS architecture, it is expected to have a small separate kernel. Therefore
many of the services traditionally provided by conventional operating systems
such as file systems, device drivers, I/O services are located in the middleware
layer running in non-privileged mode [107, 108].

The middleware layer contains end-to-end data processing services as well. It can
provide services that help to enforce the information flow security through label-
ing, filtering, and the maintenance of only authorized communications specified
by the system designer.

Middleware services are responsible for verifying and filtering data that are not
correctly labeled in the communication between two partitions. A guard is an
example of a middleware service destined to enforce information flow security.

Definition 70. (Guard) A guard in the MILS architecture is a process that
intervenes between communications to verify if they respect application-level se-
curity rules [109].

4.3.2.3 Application layer

In a MILS architecture, the application layer intervenes to enforce security policies
by hosting some applications that implement specific security rules [110].

Information control in MILS architecture is based on communications between
components in the same security domain, or communications through security
monitors such as MILS Message Router (MMR), encryption devices, downgraders,
upgraders, collators that are part of the application layer.

Definition 71. (MILS Message Router)

MILS Message Router (MMR) [111] is a MILS component that enforces commu-
nication classification between partitions by receiving data at different levels of
security from multiple partitions and routing them to the correct recipient parti-
tion.

During the message transmission, when the MMR concludes that the communi-
cation between the involved partitions is allowed, the message is routed to the
appropriate guard which verified if the concerned processes are allowed to com-
municate. Each protocol required a specific guard responsible for analyzing the
received message and checking the verification of the communication protocol.
When the guard notice that the communication is not allowed or the message
does not respect the communication protocol, a message is sent to the MMR to
discard the message. Then an error message is eventually notified to the sender.

–69–

Chapter 4. Security

Each communication between partitions shall pass through the MMR that verifies
if this communication is allowed. MMR contains a static multi-dimensional array
that specifies the allowed communications between partitions. It also contains
an internal memory package with a set of pointers that helps each process to
own a part of the memory. The MMR does not need to know the content of
the message. It only analyzes the message header to identify the sender and the
destination. The action of the MMR may require additional security components
for the message to arrive at the final destination.

Definition 72. (Downgrader) Downgrader is a component that transmits data
from a process at a given security level to another process at a lower security level
[102] [112].

Information flow from a higher subject to a lower subject can be considered
as information disclosure and is not allowed. Sometimes that operation can be
needed and then explicitly authorized in the security policies. This information
flow is sensitive and then has to pass through a trusted component. Therefore,
the communication needs to operate through a downgrader. A downgrader can be
a filter that restricts the information that can be transferred [112]. An encrypter
that transforms information into an unintelligible form before transferring it to
the lower security subject, can also be considered as a downgrader.

There are also components called upgraders.

Definition 73. (Upgrader) Upgrader is a component that that transform data
from a process at a given security level to another process at a higher security
level.

Decrypters are examples of upgraders.

4.4 Conclusion

This chapter introduces security concepts that may be considered when design-
ing partitioned systems. It describes confidentiality and integrity properties and
the means to achieve them such as encryption and hashing cryptography. It also
presents security models based on MLS that define rules to enforce data access
control. Finally, it presents an example of high-assurance security architecture
called MILS that characterizes untrusted and trusted components based on se-
curity models in partitioned systems.

–70–

5
Multi-objective optimization

This chapter presents a background of multi-objective optimization, which is the
main technique used to solve the scheduling and security problem in our thesis.
Section 5.1 describes multi-objective optimization problems (MOOP) mathemat-
ical formulation. It also presents the key concepts in multi-objective optimization
such as dominance concept, Pareto set, solutions feasibility. Section 5.2 presents
the scalarization methods used traditionally to solve MOOP. They only propose a
single solution rather than a set of solutions as proposed by the direct approaches
such as multi-objective evolutionary algorithms (MOEA). Section 5.3 describes
MOEA. It also presents some metrics to evaluate the solution sets proposed by
the MOEA for a given MOOP. Finally, a conclusion of the chapter is given in
Section 5.4.

5.1 Definitions and characteritics

MOOP addresses problems with multiple mutually conflicting objectives to be
optimized simultaneously. The complexity of these problems lies in the fact
that the optimization of one objective can lead to the degradation of another
one. On contrary, single-objective optimization addresses problems with only
one objective that can be optimized to provide optimal solution. It is often
difficult or impossible to find an optimal solution that optimizes all the objectives
simultaneously. Then it is necessary to propose solutions with trade-offs between
objectives. The decision maker has to choose a solution among the good generate
tradeoffs, maybe according to external and/or subjective criteria not taken into
account in the optimization model.

MOOP are faced in multiple domains such as economics, logistics, chemistry,

–71–

Chapter 5. Multi-objective optimization

engineering, industry. We also faced them in our daily life. For example, buying
a car with maximum comfort at a minimum cost is a MOOP. On contrary, buying
a car with the minimum cost is a single objective optimization problem. An
MOOP can be formulated mathematically as follows [113, 114]:

Optimize F (X) = (f1(X), f2(X), ..., fk(X)), where X = (x1, x2, ..., xn)

and k ≥ 1

gj(X) ≥ 0, where j ∈ 1, ...m

(5.1)

X = (x1, x2, ..., xn) represents the vector of decision variables. fi(X) corresponds
to the ith objective function to optimize (i.e. to minimize or maximize) with
i ∈ 1, ..., k. k is the number of objective functions to optimize. We highlight that
the maximization of an objective function is equivalent to the minimization of
its negative. gj(X) is a function that formulates the inequality constraints that
must be applied to each solution. These constraints conditioned the feasibility of
the vector of decisions.

In the resolution of MOOP, we are interested in the best solutions among the
feasible solutions in regard of the objective functions. The search for the best
solutions implies comparing solutions with each other. Then the comparison be-
tween solutions is often performed based on the Pareto dominance principle [115].

Definition 74. (Pareto dominance principle) Considering a minimization
problem, a solution X1 dominates a solution X2 (i.e. X1 ≺ X2) , if and only if
∀i ∈ 1, ..., k, fi(X1) ≤ fi(X2), and ∃j ∈ 1, ..., k such that fj(X1) < fj(X2) [115,
116].

It states that a solution X1 dominates a solution X2 if and only if the following
conditions are both respected:

1. For all the objectives functions, X1 is at least as good as X2.

2. At least for one objective function, X1 is strictly better than X2.

If X1 ⊀ X2 and X2 ⊀ X1 then X1 (resp. X2) is not dominated by X2 (resp. X1).
The solution X1 is better than solution X2 at least for one objective function and
X2 is better than X1 for at least another objective function. Then X1 and X2

are considered as non-dominated to each other.

Definition 75. (Non dominated solution) A solution X is a non-dominated
solution [113, 114], if and only if ∄X ′ ∈ D,X ′ ≺ X.

–72–

5.1. Definitions and characteritics

Where D represents a set of feasible solutions (i.e. solutions that respects the de-
fined contraints). It means that a solution is non-dominated in a set of solutions,
if there is no solution in this set that dominates this solution.

For a given MOOP, in the set of feasible solutions, there is a smaller set of
solutions that are not dominated by any of the feasible solutions. This smaller
set is called the Pareto set and contains the non-dominated solutions of the set
of feasible solutions.

Definition 76. (Pareto set) A Pareto set PS is defined as follows
PS = X ∈ D, ∄X ′ ∈ D such that X ′ ≺ X [116].

Definition 77. (Pareto front) The representation of a Pareto set’s solutions
through their objective functions is called a Pareto front. It corresponds to the
image of the Pareto set. A Pareto front (PF) is defined as follows
PF = F (X) such that X ∈ PS [116, 114].

Figure 5.1 shows an illustration of a Pareto front of a MOOP with two conflicting
objectives f1 and f2 to minimize. Each point pi corresponds to a solution Xi

of the design space. The black (resp. red) dot represents the non-dominated
(resp. dominated) solution associated points. For example solution Xi dominates
solution Xj since Xi has a lower value of f1 compared to Xj and both have the
same value of f2. Since both objectives are conflicting, the transition from one
solution to another on the Pareto front is characterized by some sacrifices on one
objective in order to optimize the other [117].

𝑓1

𝑓2

𝑝𝑗𝑝𝑖

𝑓1(𝑝𝑖)

𝑓2(𝑝𝑖) = 𝑓2(𝑝𝑗)

𝑓1(𝑝𝑗)

Figure 5.1: Illustration of a Pareto front [9]

The space of feasible solutions in large practicle instances of MOOP is usually
so large that it becomes unmanageable to explore all the solutions and compare
them to each other. Then it can become practically impossible to provide the
Pareto set. There are different methods (detailed in Section 5.3.1) proposed to
explore the space of solutions in order to find a set of non-dominated solutions

–73–

Chapter 5. Multi-objective optimization

that represents as much as possible the Pareto set. This set is called an approxi-
mative Pareto set. We associated to this set, the approximative Pareto front that
corresponds to its image.

As MOOP is often faced in several domains, different methods have been proposed
to provide solutions. In general, there are two mains approaches proposed in the
literature: scalarization and direct approaches.

5.2 Scalarization based multi-objective optimization

The scalarization methods [118] were traditionally used to solve MOOP. The
scalarization consists of formulating a single objective function that combines the
objective functions of a MOOP. There are multiple scalarization methods such
as the weighted sum method [119, 117], the ε − constraints method [120, 121],
the goal programming method [122, 123, 124].

5.2.1 Weighted sum method

The weight sum method is the most popular approach. It is based on defining a
weight wi for each objective function fi. The weight of an objective function rep-
resents its importance for the decision maker. It combines the objective functions
into the following linear function:{

Optimize F (X) =
∑k

i=1wi · fi(X), where k ≥ 0, and wi ≥ 0

gj(X) ≥ 0, where j ∈ 1, ...m
(5.2)

The weighted sum method seeks Pareto optimal solutions one by one by sys-
tematically changing the weights among the objective functions. This method
is efficient in generating non-dominated solutions in convex regions of Pareto
front [125] and simple to use. Indeed, the weighted sum method only consid-
ers positive weights and their sum must be constant. Moreover, it is based on
a convex combination of objective functions. Therefore, it cannot provide non-
dominated solutions in the non-convex regions of the Pareto front [119]. The
another challenge resides in the determination of the weights because they im-
pact the solution set.

5.2.2 ε− constraints method

Another well-known method is the ε−constraintsmethod. It consists of choosing
one of the multiple objective functions, says ith as the main objective function

–74–

5.2. Scalarization based multi-objective optimization

and formulating the remaining objective functions as constraints [121]. It can be
formulated as follows:

Optimize fi(X), where k ≥ 0, and i ∈ 1, ...k

subject to ft(X) ≥ εt, where t = 1, ...k, and t ̸= i

gj(X) ≥ 0, where j ∈ 1, ...m

(5.3)

As an advantage, it is applicable to either convex or non-convex problems. Mul-
tiple rounds of searching for solutions using a different set of constraints can
identify trade-off points among multiple objectives [117]. As inconvenient, it can
be difficult to formulate objectives in constrained forms.

5.2.3 Goal programming

The goal programming approach [122, 123, 124] is a multi-objective optimization
that proposes solutions that tend towards targets fixed for the objective functions
up to a satisfaction level. It can be formulated as follows{

Optimize F (X) =
∑k

i=1 |fi(X)− Ti|, where k ≥ 0

gj(X) ≥ 0, where j ∈ 1, ...m
(5.4)

Ti corresponds to the target value fixed for each objective function fi. The goal
programming objective is then to minimize the deviation to the targets. The
deviation represents the difference between the achievement fi and the targets
values Ti.

There are also the preemptive or lexicographical goal programming [123, 126]
where goals are ranked. Priorities are then assigned to each goal. Goals are then
classified from the highest priority to the least priority. The goals are met succes-
sively according to their priorities. In the first step, the principle is to attempt
as much as possible the higher priority goal. In the second step, the second-
highest priority goal is attempted while not degrading the solution obtained in
the previous step. This process is repeated until the meeting of the least priority
goal [127].

Goal programming focuses on providing a solution that satisfies as much as possi-
ble the goals instead of providing an optimal solution. It also allows the decision-
maker to incorporate environmental, organizational, and managerial considera-
tion into the model through the ranking of goals (e.i. goal priorities). As a
drawback, it requires a priori very detailed information on the preferences of the
decision-maker.

In general, scalarization based multi-objective optimization methods are simple
to use, but they propose a single solution rather than a set of solutions. They

–75–

Chapter 5. Multi-objective optimization

have to be run many times to provide a set of non-dominated solutions. Then
direct approaches can be preferred in some cases since they are alternatives that
provides a set of solutions and do not require a priori bias of objectives.

5.3 Direct approaches for multi-objective optimization

These approaches provide a set of solutions that represents trade-offs between
the objective functions. Then depending on the situation, the decision-makers
can choose the solutions that fit more their requirements.

The Pareto set of a MOOP can be fully provided by an exact method such as
the exhaustive method. This one enumerates all the solutions of the MOOP and
check their non-dominance to provide the non-dominated solutions set. As a
drawback, it can be time and resource-consuming for large-scale problems since
MOOP are often NP-hard [128]. In this case, the exhaustive method becomes
difficult and impractical for large size instances.

Then as alternatives to this approach, there are the approximation methods.
They propose a non-dominated solutions set as close as possible to the Pareto set
for limited computational time and resources. This set is qualified as near-optimal
or sub-optimal set. These methods are often based on metaheuristics.

Definition 78. (Metaheuristic [129])

A metaheuristic is a high-level algorithmic strategy for exploring the search space
of a problem and identifying optimal and near-optimal solutions.

For a given MOOP and a multi-objective method, the challenge for heuristic
resides in the fact that the computed front (i.e. approximative Pareto front) has
to respect the following properties [117]:

• The approximative Pareto front must be as much as possible close to the
Pareto front (i.e. the objective functions values have to converge to optimal
ones).

• The approximative Pareto front should contain numerous solutions that are
uniformly distributed in order to be as much as possible representative of
the Pareto front. Then it must also consider the extreme solutions (i.e.
bounds of the objective functions).

There are multiple multi-objective metaheuritics methods such as evolutionary
algorithms [130], ant colony opimization method [131], particle swarm optimiza-
tion method [132], simulated annealing [133] and tabu search [134].

In the next section, we focus on the description of the multi-objective evolutionary
algorithms (MOEA).

–76–

5.3. Direct approaches for multi-objective optimization

1 0 0 1 0 1 1 1 0 1

1 0 0 1 0 0 1 1 0 1

Parent chromosome

Child/offspring chromosome

Figure 5.2: Illustration of mutation

5.3.1 Multi-objective evolutionnary algorithms

MOEA are widely used and known as random-based search strategies since they
are among the first proposed metaheuristics. MOEA are inspired by the biolog-
ical evolutionary process characterized by steps such as reproduction, random
variation, selection of Darwin’s theory of evolution. The reproduction consists
of producing new individuals (children or offspring) from an existing population.
The reproduction implies some random variation such as mutation or crossover.

Individuals correspond to solutions of the addressed MOOP. They are encoded to
ease their manipulation. Often they are defined by a vector called chromosome
or genotype and each position in the vector is called a gene. The encoding of
solutions depends on the addressed MOOP and then can differ from a MOOP to
another.

The mutation consists of producing a chromosome from a parent chromosome
by changing an arbitrary gene value or exchanging gene values of the parent.
Figure 5.2 shows an example of mutation of a chromosome represented by bit
strings. The parent chromosome made of ten genes has a mutation operation
on its sixth gene to generate the child chromosome. This operation has been
performed by changing the sixth gene value from 1 to 0.

The crossover consists of combining two parent chromosomes to generate new
chromosomes (offspring, children). Figure 5.3 shows an illustration of a crossover
between two parents that generates two children by swapping their genes to the
right of a random point (crossover). This point divides the parent chromosomes
into two sections (sections A and B for the parent 1 chromosome and sections C
and D for the parent 2 chromosome in figure 5.3). Then child 1 (resp. child 2)
chromosome is generated with section C (resp. A) of parent 1 chromosome and
section B (resp. D) of parent 2 chromosome. This example of crossover is called
one-point crossover. Mutation is an operation on one individual while crossover
is an operation involving several individuals.

It is important to highlight that not all the generated solutions are feasible.
Some of them could not respect the constraints of the MOOP. As in the Dar-
winian principle, the fittest individuals are selected as survivors and the weakest

–77–

Chapter 5. Multi-objective optimization

1 0 0 1 0 1 1 1 0 1

1 0 0 1 0 1 0 0 0 1

Parent1 chromosome

Child1/Offspring1 chromosome

Parent2 chromosome 0 1 1 1 0 1 0 0 0 1

0 1 1 1 0 1 1 1 0 1

Child2/Offspring2 chromosome

Crossover point

A B

C D

C B

DA

Figure 5.3: Illustration of crossover

individuals do not survive. Fitness functions corresponds to objective functions
of the MOOP.

Figure 5.4 presents the general process of MOEA. A basic MOEA algorithm is
an iterative process that starts with a given population composed of random so-
lutions (step 1 in Figure 5.4). From this population, some solutions are selected
for reproduction (step 2 in Figure 5.4). These solutions are called parents. Then
the reproduction is performed through mutation and/or crossover to generate
children as new candidates solutions (step 3 in Figure 5.4). The candidate solu-
tions are evaluated according to the fitness functions that represent the objective
functions of the MOOP addressed (step 4 in Figure 5.4). Non-feasible solutions
among the new solutions are automatically rejected (step 5 in Figure 5.4). A
subset is selected for next generation with a randomized process that flavors the
ones with good fitness values. Then the population is updated with the selected
solutions. New parents are selected to perform the next generation (step 2 in
Figure 5.4). The process is repeated till the prefixed termination criteria are sat-
isfied. The reaching of a number of iterations or a convergence to a stable Pareto
set are examples of termination criteria.

The literature proposes multiple MOEA such as nondominated sorting genetic
algorithm (NSGA) [135],and Pareto archived evolution strategy (PAES) that we
propose to describe in the next section.

5.3.1.1 Nondominated sorting genetic algorithm

NSGA differs from other MOEA through its selection process characterized by a
nondominated sorting and crowding distance calculation [136] (defined below).

–78–

5.3. Direct approaches for multi-objective optimization

STOP

Initial population with
random feasible solutions

Termination
criteria satisfied?

Parent selection

Reproduction
(crossover and/or mutation)

Fitness evaluation
of new candidate

solutions

Rejection of non-feasible
solutions and dominated

solutions

No

Yes

2

1

3

4

5

Figure 5.4: Multi-objective evolutionnay algorithm

–79–

Chapter 5. Multi-objective optimization

𝑓1

𝑓2

𝑝8

𝑝1

𝑝2
𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

Legend :

Solution of rank 1

Solution of rank 2

Solution of rank 3

Figure 5.5: NSGA ranking Illustration [10]

Then it starts with a population of size N where each solution has a non-
domination rank level (i.e. a solution at level 1 is dominated by no solution,
but a solution at level 2 is dominated by one or more solutions at level 1, and so
on).

Figure 5.5 proposes an illustration of a NSGA ranking with two objectives func-
tions f1 and f2 to minimize. It shows three levels of rank (rank 1, rank 2, and
rank 3). Each rank is composed of points that correspond to solutions. There is
no solution that dominates the solutions of rank 1 (p1, p2, p3, p4), but solutions
of the others ranks are dominated by solutions of lower ranks. For example, the
solution p5 of the rank 2 is dominated by the solution p1 of rank 1. However,
solutions at the same rank are non-dominated among each other.

From this population, it is generated a children population of size N through
mutation operation for example. Both populations are merged and the resulting
population is divided into several mutually exclusive equivalent classes. These
classes are ordered based on the degree of Pareto dominance. The solutions
of each class form a front characterized by a non-domination rank. From the
new population of size 2 ·N , the next generation parent population is created by
selecting solutions from the rank 1 to the ith rank such as the number of solutions
do not exceed the size N .

In the case where all the solutions of the ith rank cannot be kept, the crowding dis-
tance calculation mechanism is applied to select some solutions while preserving
the diversity among the population.

Definition 79. (Crowding distance calculation) Crowding distance calcula-
tion of a point pi corresponds to evaluating the size of the largest cuboid enclosing
pi without including any other point in order to estimate the density of solutions
surrounding this point in the population [137, 136].

–80–

5.3. Direct approaches for multi-objective optimization

For each front, a crowding calculation is conducted to compute the distance
between neighboring solutions. Two rules are defined for solutions selection.
First, between two solutions of the same front (i.e. same non-domination rank),
the solution with the high crowded distance should be preferred. This means
that the solution with the less crowded region is preferred. Second, between two
solutions on different fronts (i.e. different non-dominant ranks), the solution with
the lower non-domination ranks should be preferred.

NSGA ensures diversity of the solutions in the provided Pareto set. However,
the crowded distance calculation mechanism can restrict the convergence. It
also has a high computational complexity of O(M · N3) where M and N are
respectively the number of objectives functions and the size of the population.
Then an improvement of NSGA called NSGA-II [138] has been proposed with a
fast non-dominated sorting procedure with O(M ·N2) computational complexity.

5.3.1.2 Pareto Archived Evolution Strategy (PAES) overview

PAES is an iterative evolution strategy. It is a (1 + 1) local search evolution
strategy because it is based on a current solution c that is mutated to a candidate
solution m at each iteration. If during an iteration, m is better than c, then m
becomes the current solution of the next iteration. Otherwise c remains the
current solution until a mutation provides a better solution. An archive of a
limited size stores non-dominated solutions found at each iteration.

Figure 5.6 depicts the PAES process. The exploration starts with an empty
archive and the generation of an initial solution that is evaluated according to
the objective functions of the addressed MOOP (steps 1 in Figure 5.6). The
initial solution is added to the archive (step 2). The archive is characterized by
a predefined maximal number of solutions that it can contain. At the beginning,
the initial solution is considered as the current solution c that is mutated to a
candidate solution m (step 3). Then m is evaluated and compared to c based
on the Pareto dominance principle. We highlight that at the first iteration, the
archive only contains solution c.

If m is not dominated by c or any other solution in the archive, then m is added
to the archive and all the solutions in the archive dominated by m are removed
from the archive (step 4). If m dominates c, then m becomes the current solution.
Else if c dominates m, c remains the current solution. Otherwise (i.e. m is not
dominated by c and c is not dominated by m), a solution in the archive is chosen
to become the current solution (step 5).

Thus the mutation, comparison, and archive update are repeated until the con-
dition of the end of the exploration is met. This condition can be a number of
iterations or a targeted value of objective functions.

–81–

Chapter 5. Multi-objective optimization

Initial empty archive
Search

terminated?
Stop

Create solution M by
mutating C

C dominates
M?

Compare M to the
archive,

update the archive

Generate an initial solution C,
Evaluate C,

and add C to the archive

Select the new current
solution C from the

updated archive

Yes

No

No

Yes

1

2

3

4

5

Figure 5.6: PAES process

In order to ensure diversity of solutions, PAES calls a crowding technique [139]
based on a recursive subdivision that splits the objective space into a grid. The
grid is used to verify if a solution is located in a crowded region. It helps to
provide diversity among proposed solutions. It consists first by computing a grid
location for each solution by bisecting recursively the space of each objective
function and finding the side on which the solution resides. Each time that the
number of solutions in the archive changes, the grid location of the solution should
be updated.

PAES is simple to use and reduces the computational effort. PAES does not need
crossover, which is an advantage for MOOPs where crossover is difficult to design
when crossing of solutions often generate non-feasible solutions.

5.3.1.3 MOEA metrics

Since MOEA proposes non-dominated solutions set supposed to approximate the
Pareto set, it is important to be able to evaluate the quality of the proposed
approximative Pareto set.

Considering an approximate Pareto front F and a true Pareto front F∗, there
are multiple indicators such as generational distance (GD) [140], inverted gener-
ational Distance (IGD) [141], hypervolume (HV) [142, 143], that help to measure
quality criteria as convergence, diversity and/or number of solutions. In the

–82–

5.3. Direct approaches for multi-objective optimization

sequel, we assume that the true Pareto front is known.

GD [140] measures the distance between an approximate Pareto front and the
true Pareto front. It determines the gap between these fronts. It consists of
computing the distance between each pi ∈ F and its closest pi ∈ F∗, averaged
over the size of F as follows:

GD =

√∑|F |
i=1 d

p
i

1/p

|F |
(5.5)

Where di represents the euclidian distance between the image pi of the solution
Xi ∈ F (i.e. F (Xi) = pi) and the image of the nearest solution in F∗. |F |
represents the cardinality of the set F . GD formula in its original form assumes
p = 2, but later for more simplicity of interpretation and computation it was
updated with p = 1. [141].

The lower this distance, the better the approximate Pareto front. In the best
case, the solutions in this set are a subset of the Pareto set (i.e. F ∈ F∗); then
GD = 0.

GD evaluates the convergence of the approximate Pareto front since the conver-
gence [144, 145] represents the distance between F and F∗ [143]. As a drawback,
GD is sensitive to the size of the approximate Pareto front. Thus, large approx-
imated fronts of poor quality may be ranked highly by GD [141].

Then IGD metric is proposed as an improvement of the GD metric. IGD is similar
to GD but it computes the distance between each pi ∈ F∗ and its closest pi ∈ F ,
averaged over the size of F∗. It considers every points pi ∈ F∗ on contrary to GD
which considers only the points pi ∈ F∗ that are closer to the points of pi ∈ F .
Thus the IGD evaluates not only the convergence but also the diversity of F and
is computed as follows:

IGD =

√∑|F∗|
i=1 dpi

1/p

|F ∗ |
(5.6)

The diversity of a Pareto set estimates the extent of spread among the solutions
in the set [136]. The literature proposes also a diversity metric that helps to
evaluate the diversity of a front. The diversity ∆ can be computed as follows:

∆ =
df + dl +

∑|F |−1
i=1 |d′i − d̄|

df + dl + (|F | − 1)d̄
(5.7)

–83–

Chapter 5. Multi-objective optimization

d_i
d’_i

dl

df

𝑓1

𝑓2

Pareto optimal
front F*

Approximate
Pareto front F

Figure 5.7: Convergence and diversity metrics

Where d′i (∀i ∈ [1, |F |]) represents the euclidian distance between the image pi
of the solution Xi ∈ F and the nearest neighbor. d̄ is the average of the di. |F |
represents the cardinality of the set F . df and dl are the euclidean distances
between the extreme solutions of F and |F ∗ | (illustrated in figure 5.7).

A low diversity metric value implies a better distribution of the solutions. In
the best case, where ∆ = 0, the extreme points in F corresponds to the extreme
points in F∗ and then all the distances di equal d̄. Thus solutions in F are
considered widely and uniformly spread.

Figure 5.7 illustrates the parameters in the convergence and diversity equations.
It shows a Pareto front and the optimal front of a given MOOP with two objective
functions f1 and f2. It illustrates the distances df , dl, di and d′i described above.

Among the metrics, there is also the hypervolume metric.

Definition 80. (Hypervolume metric) The hypervolume metric [143, 142]
calculates the hypervolume enclosed by the approximated front and a reference
point.

The reference point is fixed to correspond to a solution dominated by all the
front. It can be the anti-ideal point of the Pareto front also called the nadir
point as proposed in figure 5.8. It corresponds to the solution that worse all the

–84–

5.3. Direct approaches for multi-objective optimization

𝑓1

𝑓2

𝑓1𝑚𝑎𝑥
𝑓1𝑚𝑖𝑛

𝑓2𝑚𝑎𝑥

Reference point

𝑓2𝑚𝑖𝑛

Hypervolume

Figure 5.8: Hypervolume illustration

objective functions. For a MOOP with objective functions to minimize, between
two fronts the front with the larger hypervolume should be preferred [143]. Two
fronts can be compared by computing their hypervolume value with respect to
the same reference point.

Figure 5.8 shows an illustration of a hypervolume computation of an approxi-
mate Pareto front. We can observe that the hypervolume value is influenced by
indicators such as convergence, diversity, and number of solutions. They charac-
terize the spread of solutions, then the extent of the hypervolume. This example
considers a commonly used linear normalization that helps to have a small hy-
pervolume value between 0 and 1 since objective functions values can of different
orders of magnitude. Thus to each objective function fi of each solution including
the reference point solution, the following normalization is applied:

fi =
fi − fimin

fimax− fimin
(5.8)

–85–

Chapter 5. Multi-objective optimization

5.4 Conclusion

MOOP are faced in multiple and diverse domains, even in our daily life. In
this chapter, multi-objective optimization definitions and characteristics are pre-
sented. The chapter describes different methods proposed by the literature to
solve MOOP. More details are given for MOEA especially PAES widely used in
MOOP context. PAES proposes a set of solutions that approximate the optimal
solutions for a limited time and resources. These solutions are trade-offs be-
tween the objective functions of the addressed MOOP. Then the decision-maker
can choose the solutions according to his requirements. Finally, the chapter de-
scribes some metrics that can help the decision-maker to evaluate the quality of
the solutions proposed by an MOO approach or to compare results of different
algorithms.

–86–

Part II

Work orientations and
positioning

–87–

6
Work orientations and positioning

This chapter is devoted to the presentation of the orientations and the positioning
of our work. Sections 6.1 and 6.2 present the system model and assumptions taken
in our work. Section 6.3 motivates the interest of proposing a DSE for secure
TSP systems by illustrating the conflict between schedulability and security in
TSP systems. Section 6.4 positions our work by comparing different approaches
on security and schedulability optimization for real-time systems including our
proposal. Finally, a presentation of our expected contributions and a conclusion
of the chapter are given respectively in sections 6.5, and 6.6.

6.1 System model, security and schedulability assumptions

In this section, we present the assumed system model and hypothesis. We define
a TSP system as a set of m applications (A1, ..., Am). An application consists
of a set of n periodic tasks noted τ1, ..., τn. Each task τi is characterized by 8
parameters: Ai, Ci, Ti, Di, CIi, CLi, ILi and Pi.

• Ai specifies that task τi is part of application Ai.

• Ci, Ti, Di are scheduling parameters. Ci is the capacity, or worst-case
execution time (WCET) of task τi. Ti is the period of the task, i.e. the
fixed duration between two consecutive releases of the task. Each task has
a deadline Di which is less then or equal to Ti. We also assume that all
tasks are synchronous, i.e. they have all their first release at time 0.

• CIi represents the tolerance of τi to meet its timing constraints. The possi-
ble values of CIi are hard and soft. Tasks with hard timing constraints must

–89–

Chapter 6. Work orientations and positioning

meet their deadlines while tasks with soft timing constraints may tolerate
missed deadlines.

• ILi and CLi represent the level of integrity and confidentiality of a task,
respectively. Possible values of ILi are Low, Medium, or High, and possible
values of CLi are Unclassified, Secret, or Top Secret.

• Pi represents the partition to which the task is assigned to. We assume r
partitions (noted P1, ..., Pr). Each partition is characterized by an execution
time duration and a period.

The DSE we propose and the computed trade-off are an early verification of the
system we design. We assumed an offline partition scheduling executed during a
cyclic interval similar to major time frame (MAF) described in section 3.4.2. The
MAF is supposed to be known. The MAF here can be seen as a legacy element
or a budget that may be revisited after trade-off analysis. Inside each partition,
tasks are scheduled based on a fixed priority and preemptive scheduling.

Tasks are assumed to communicate with each other through intra or inter-partition
communications. Intra-partition communications are implemented by mecha-
nisms similar to ARINC 653 blackboards while inter-partition communications
are implemented by ARINC 653 sampling ports. We assume that applications
are deployed on uniprocessor platforms.

6.2 Assumptions on security implementation

In this section, we present the security hypothesis taken in this thesis. A commu-
nication is said to be vulnerable if it violates defined security rules. We consider
the security rules defined by BLP and Biba models as described in section 4.2.

In our work, a communication from task τi to τj is seen according to BLP and
Biba as if τi writes to τj and τj reads from τi. We then define confidentiality and
integrity violations as follow:

Definition 81. (Confidentiality violation) A communication from task τi to
τj is considered as a confidentiality violation if CLi > CLj. In this communica-
tion, τi performs a write down and τj performs a read up, which violate BLP’s
rules.

Definition 82. (Integrity violation) A communication from τi to τj is consid-
ered as an integrity violation if ILi < ILj. In this communication, τj performs
a read down and τi performs a write up, which violate Biba’s rules.

–90–

6.2. Assumptions on security implementation

We consider attacks on data integrity or confidentiality that can be operated on
TSP intra-partition and or inter-partition communications.

For intra-partition communications, we assume that an attacker can access any
data stored in the memory of attacked partition. With ARINC 653, there is
no memory protection between tasks within the same partition, which makes all
data of the partition vulnerable from any of its tasks. The attacker cannot only
access data but also modify them depending on his purpose. This can be a result
of a code injection attack [146] where a malicious employee injects malicious code
inside a partition.

For inter-partition communications, where data are sent via ports connected by
channels, we assume that an attack can be operated on ports and/or channels. An
attacker can eavesdrop and get access or even modify data stored in ports. These
can be achieved through attacks such as eavesdropping attack [147], spoofing
attack [148] and a man in the middle attack [22].

Securing a TSP system may be made by a 2 steps process. First, BLP and Biba
are used to evaluate the communications in the TSP system, and to identify those
that are vulnerable. Communications that are vulnerable are those that do not
respect confidentiality or integrity rules. Second, communication vulnerabilities
are mitigated by adding security features.

Different implementations of security features can be investigated based on the
combination of intra-partition and inter-partition communications. A security
feature can be implemented through (1) function calls of a security library, or (2)
dedicated tasks implementing security features.

Implementation with function calls is used in [149] where each task needing secu-
rity features calls functions of a library providing confidentiality and/or integrity.
These libraries implement encryption, decryption or hash functions.

Implementation of security features by dedicated tasks was proposed by [150]
and the MILS architecture [102] by extending the system architecture with extra
tasks implementing security algorithms.

In figure 6.1, we illustrate these implementations with tasks τi and τj. τi sends
data to τj. Due to the confidentiality levels of the tasks, the communications
from τi to τj are considered vulnerable. So the data must be encrypted to avoid
potential disclosure between its emission and its reception.

For function calls, a function that represents the key set up is added to both
sending and receiving tasks. We assume the worst-case situation where the en-
cryption key is set up at each task release. For the dedicated security tasks, a
task that represents the key setup is added. We add communications between
sending task and key task and between receiving task and key task.

–91–

Chapter 6. Work orientations and positioning

′𝑖
Top_secret

′𝑗
Secret

𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑑𝑒𝑐𝑟𝑦𝑝𝑡

′𝑘
Top_secret

′𝑙
Secret

Legend :

Task

Communication

′𝑖
Top_secret

′𝑗
Secret

′𝑖
Top_secret

′𝑗
Secret

𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑑𝑒𝑐𝑟𝑦𝑝𝑡

𝑘𝑒𝑦 𝑘𝑒𝑦Partition 1 Partition 2

Partition 1

Partition 1 Partition 2

(a) Security by
function calls

(b) Security by
dedicated task

(c) Security by
dedicated task with
multiplexing

Figure 6.1: Illustration of security implementations

6.2.1 Securing communications through function calls

In this implementation, a task makes function calls to secure its data before
sending/receiving. For communications with confidentiality vulnerabilities, we
add to the sending (resp. receiving) task a call to an encryption (resp. decryption)
function. A call to the key setup is also added to both tasks. For communications
with integrity vulnerabilities, we add a call to a hash function in the sending and
the receiving tasks.

Figure 6.1(a) presents, in the top, the task set when such security implementation
is applied.

τ ′i (resp. τ
′
j) is task τi (resp. τj) with a capacity changed as follows:

C ′
i ← Ci + Cencryption function + Cencryption key function + Chash function

C ′
j ← Cj + Cdecryption function + Cencryption key function + Chash function

(a)

C ′
i and C ′

j are the original task τi and τj execution time plus the execution
time of the called security functions (integrity or confidentiality). Chash function,
Cdecryption function and Cencryption function are respectively the worst-case execution
time of the hash, decryption and encryption functions called by τi and τj. We
highlight that in case of only confidentiality (resp. integrity) vulnerabilities,
hashing is not needed. Then Chash function = 0 (resp. Cdecryption function = 0 ,
Cencryption function = 0 and Cencryption key function=0). In the sequel, when applying
this security implementation during DSE, we will run scheduling analysis with
the new/updated parameters of tasks τ ′i and τ ′j.

–92–

6.2. Assumptions on security implementation

For intra-partition communications, function calls can only be used if it exists
a memory protection between tasks within a partition. Otherwise, the security
vulnerability remains unresolved: for instance, a malicious task operating inside
the partition has the possibility to access data of other tasks at a time when they
are not encrypted. For inter-partition communications, function calls guarantee
that data sent over communication channels are encrypted and not vulnerable
from external attacks.

6.2.2 Securing communications through dedicated tasks

To secure communications between tasks, extra tasks dedicated to security func-
tions can be added. Data are sent through these tasks before being read by the
receiving task. This leads to new communications as illustrated in figure 6.1(b)
for a confidentiality vulnerability.

For a communication that have confidentiality vulnerabilities, we add one task
dedicated to encryption (called τencrypt) and another task for decryption (called
τdecrypt). Then direct communication between the sending and the receiving tasks
is replaced by three communications: sending task to encrypting task, encrypting
task to decrypting task, and decrypting task to receiving task.

For a communication that have integrity vulnerabilities, we add two hash tasks
called τhash and τhash′ . In this solution, τhash intervenes to hash the data of the
sender while τhash′ is used to hash the data at the receiver side. Then we add new
communications from the sender to τhash, from τhash to τhash′ , and from τhash′ to
the receiver.

During DSE, scheduling analysis will be done by considering the extra tasks
τencrypt, τdecrypt, and τkey which have a capacity equal to the worst-case execution
time of the security functions, as shown by the following equations:

Cencrypt ← Cencryption function

Cdecrypt ← Cdecryption function

Ckey ← Cencryption key function

(b)

In the case of integrity violation, two extra tasks τhash and τhash′ are added, as
defined by the following equations:

Chash ← Chash function

Chash′ ← Chash function

(c)

We also assumed that for each communication that has vulnerabilities, all the
introduced security tasks inherit the periods of the sender tasks.

–93–

Chapter 6. Work orientations and positioning

This implementation can only be applied to inter-partition communications. Adding
extra tasks to secure an intra-partition communication is inefficient because the
attacker can intercept data between the task sender and the encryption task
since they are located in the same partition. In that case, we assume that all
intra-partition communications are not vunerable. Otherwise, we should assume
memory protection between tasks within the same partition. This is out of the
scope of this thesis.

Furthermore, in the sequel, we call communication multiplexing when security
features are shared by several sending/receiving tasks. In the security dedicated
task implementation, multiplexing consists of assuming for each partition, with
confidentiality and/or integrity vulnerabilities, the use of only one encrypter task
for all the tasks sending data and one decrypter task for all the tasks receiving
data through confidentiality vulnerable communications; and/or one hash task
for all the integrity vunerable communications.

In each partition for the communications that have confidentiality vulnerabilities,
there will be only one task used for encryption and another one for decryption.
For communications with integrity vulnerabilities, we have only one hash task.
Figure 6.1(c) presents an illustration of this process assuming that data1 (data2)
is sent from task τi (resp. τk) to τj (resp. τl). Then the equations b and c become:

Cencrypt ← Cencryption function(data1) + Cencryption function(data2)

+Cencryption key function

Cdecrypt ← Cdecryption function(data1) + Cdecryption function(data2)

+Cencryption key function

(d)

Chash ← Chash function(data1) + Chash function(data2)

Chash′ ← Chash function

(e)

For inter-partition communications, the encrypting (resp. decrypting) and hash
task are added in the partition of the sending (resp. receiving) task.

To summarize, from the security implementations presented above, we propose to
investigate during DSE the 4 combinations that are outlined in Table 6.1. Each
security implementation is characterized by its identification label (ID) and the
publications (Ref) that motivated its definition.

For intra-partition communications, securing through dedicated tasks implies ex-
tra communications. Then it first requires communications from the sending
(resp. decrypting) tasks to the encrypting (resp. receiving) tasks and commu-
nications from encrypting tasks to decrypting tasks. The communications from
encrypting tasks to decrypting tasks are secured, but data are vulnerable before
being encrypted and after being decrypted. Then communications from the send-
ing tasks to the encrypting tasks and from decrypting tasks to receiving tasks

–94–

6.3. Security and scheduling: trade-off in TSP systems

Intra-partition
communication
security
implementation

Inter-partition
communication
security
implementation

ID Ref.

Intra-partition
communication
are vulnerable

Function calls Function calls F-F [149]
[151]

Intra-partition
communication
are secured

Not investigated
Function calls X-F [149]

[151]
Dedicated tasks
without multiplexing

X-T [150]
[151]

Dedicated tasks
with multiplexing

X-TM [150]
[151]

Table 6.1: Security implementations considered in this thesis

which are also intra-partition communications will present the same vulnerabili-
ties that we are trying to resolve.

Then, assuming memory protection boundary is partition, in the case of intra-
partition communications, adding security dedicated tasks do not resolve the
security vulnerabilities. Only security through functions calls can ensure the
security without implying extra communications with extra vulnerabilities.

For inter-partition communications, when adding security dedicated tasks, the
extra intra-partition communications (sending tasks to encrypting tasks, and de-
crypting tasks to receiving tasks) are still vulnerable. Then when considering
intra-partition vulnerable, security dedicated tasks are not suitable for inter-
partition communications. Applying function calls on these extra communica-
tions after adding the security dedicated tasks can also be an alternative but it
will considerably increase the security overheads. This explained our decision
to investigate only security through function calls for intra and inter-partition
communications when considering intra-partition communications as vulnerable.

When intra-partition communications are considered non-vulnerable, the inter-
partition communications can be safely secured through security dedicated tasks
since the extra intra-partition communications will be implicitly secured.

6.3 Security and scheduling: trade-off in TSP systems

When designing a TSP system, tasks to partitions assignment and the respect of
timing constraints of hard deadline tasks are important challenges to investigate.
TSP systems present communications between tasks that may present confiden-
tiality and/or integrity vulnerabilities. However, ensuring data confidentiality

–95–

Chapter 6. Work orientations and positioning

Task Ai Ci Ti Di CLi CIi Pi

τ1 1 2 24 24 Top Secret Hard 1
τ2 1 6 24 24 Top Secret Soft 1
τ3 1 3 24 24 Secret Hard 1
τ4 2 4 24 24 Unclassified Soft 2

Encrypt Function - 1 - - - - -
Decrypt Function - 1 - - - - -

Partition Length Period
1 12 24
2 12 24

Table 6.2: Task and partition configuration

Partition 1 Partition 2

τTS
1 τTS

2

τS3

τU4

(a)

Partition 1 Partition 2

τTS
1 τTS

2

τS3

τU4EF

DF

EF

DF

(b)

Figure 6.2: Partitioning and communications without/with security functions

and integrity with the use of encryption and hashing incurs a significant compu-
tation overhead [152]. This overhead impacts the system schedulability and may
lead some tasks to miss their deadlines.

In this section, we illustrate the conflict between schedulability and security in
TSP systems. Table 6.2 and figure 6.2a present an example of a task set and its
partitioning.

The system consists of four tasks and two partitions. Communications between
tasks are illustrated in figure 6.2a. An arrow from τi to τj models a communication
from τi to τj. We only illustrate vulnerabilities, which violates to BLP rules in
figure 6.2a.

Without considering any security constraint, the task set is scheduled as illus-
trated in figure 6.3a. All tasks can meet their deadlines at time t = 24, which is
the end of the first MAF. This schedule is then repeated indefinitely for the next
MAFs.

Considering security constraints, the vulnerable communications, which violate
the BLP rules, are marked in red in figure 6.2b. There are two confidentiality
violations: one from τ1 (Top Secret) to τ3 (Secret) and the second from τ3 (Top
Secret) to τ4 (Unclassified). To secure these communications, one solution may
use encryption and decryption functions to ensure that the data exchange cannot
be exposed. This is illustrated in figure 6.2b: for each vulnerable communication,
an encryption function (EF) is called to the sender and an decryption function
(DF) is called to the receiver. Secured communications are shown in black in
figure 6.2b.

–96–

6.3. Security and scheduling: trade-off in TSP systems

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (t)

Major Time Frame 1 (repeat indefinitely)

Partition 1 Partition 2

τ1

τ2

τ3

τ4

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (t)

: Task execution : Security overhead : Task release : Task completion

: Task missed deadline because of partitioned scheduling or dependency constraint

τ1

τ2

τ3

τ4

Partition 1 Partition 2

(b)

Figure 6.3: Partitioned scheduling without/with security functions

The task scheduling with secured communications is illustrated in figure 6.3b.

We assume an execution time of one unit of time for encryption or decryption
function. Then we consider a security overhead of one unit of time for tasks τ1,
τ4, and two units of time for task τ3. First, with the overhead due to security
functions, τ3 cannot complete its execution in the time slot reserved for partition
1. As partition 1 stops at time t = 12, τ3 misses its deadline at time t = 24.
Second, as τ4 depends on τ3, it cannot start executing at time t = 12. Eventually,
τ4 also misses its deadline at time t = 24.

To remove the missed deadlines, the first solution is to assign τ2 or τ3 to partition
2. Another solution is to only secure the communication between τ3 and τ4 to
reduce the security overhead. Finally, as τ2 has a soft deadline, we can also choose
to not meet its deadline by prioritizing τ3 over τ2.

With this example, we illustrated the possible trade-offs when enforcing schedula-
bility and security. We have to simultaneously consider the scheduling constraints
of tasks and partitions, the costs of securing vulnerable communications, and task

–97–

Chapter 6. Work orientations and positioning

[153] [154] [155] [150] [22] [156] [149] [152] [157] [158] Ours
RTS security X X X X X X X X X
Schedulability
optimization

X X X X X X

Security optimization X X X
Trade-offs between
security and
schedulability

X X

MOEA/DSE X X X X
TSP X X
Exploration with
different levels of
granularity

X

Multiple security
implementations

X

Table 6.3: Related work

assignments on partitions. In some cases, a fully schedulable and secured solution
cannot be achieved and trade-offs have to be proposed, which motivates the need
of a DSE.

6.4 Related work

In this section, we compare different approaches on security and schedulability
optimization for real-time systems including our proposal.

As shown in Table 6.3, security of real-time systems has been addressed by many
works [153, 155, 150, 22, 156, 149, 82, 152]. Considered security criteria can
be related to confidentiality [153, 155, 156, 149, 152], integrity [155, 150, 22,
156, 149, 152], and authentication [22, 149, 152]. Many of these works only
focus on improving the security of the systems. For example, [22] proposes to
guarantee integrity and authentication of information transmitted from sensors
to controllers in real-time systems. [149] provides a model for clustered real-time
systems to evaluate the overhead required to ensure confidentiality and integrity
requirements.

As timing constraints are one of the characteristics of real-time systems, numer-
ous works propose approaches of schedulability optimization without considering
security in the constraints or objective functions [153, 154, 155, 157, 159]. Pro-
posals in [154, 157] focus on objective functions related to the deadlines the tasks
must meet. [154] addresses the functions to tasks assignment in real-time systems
while optimizing tasks preemption number and task laxities. The work in [157]
designs a heuristic to minimize the worst-case response time of tasks in TSP

–98–

6.4. Related work

architecture.

Fewer works have investigated both timing and security constraints. [153] and
[155] propose to fully guarantee the security of the systems while allowing few
tasks to miss their deadlines. They optimize the schedulability in terms of missed
deadlines for real-time database systems. When previous papers optimize schedu-
lability while sometimes guaranteeing security requirements, [152] optimizes secu-
rity while guaranteeing schedulability. They propose a security-aware scheduling
for embedded systems called SASES to improve the security of real-time sys-
tems without allowing any task to miss its deadline. The security requirements
addressed in this approach are about confidentiality, integrity and authentication.

Computing trade-off between security and schedulabilty has raised less interest.
Instead of guaranteeing schedulability of all functions of the system (resp. secu-
rity) at a cost of assuming only a decrease of security (resp. schedulability), [156],
describe a proposal to find trade-offs between security and schedulability based
on a concurrency protocol named 2PL-HP. A minimal percent of missed dead-
lines is assumed. Security and schedulability are both optimized while tolerating
a mutual decrease. Then, partial security requirements violations are allowed to
respect at least a minimal rate of missed deadlines.

Most of the papers cited above produce a single design decision. DSE is performed
in [154, 150, 158]. The authors propose approaches to find trade-offs for real-
time systems based on a multi-objective evolutionary algorithm (MOEA) for
different multi-objective optimization problems. [150] proposes a DSE named
Hydra based on a heuristic that investigates security tasks to cores assignments
and architecture parameters (e.g. task period) to improve the schedulability of
the system. [158] proposes a DSE based on Tabu meta-heuristic applied on a
directed acyclic graph (DAG) model. The DAG expresses task communications
and the DSE explores solutions with a given level of communication security,
processor voltage and task frequency, in order to ensure schedulability and to
minimize energy consumption. Jiang does not propose a set of solutions as DSE
trade-off and does not explore TSP systems.

As far as we know and specifically for TSP real-time systems, existing works ad-
dress schedulability but not security requirements. For example, the work in [157]
proposes a scheduling approach to optimize the schedulability of integrated mod-
ular avionics (IMA) systems characterized by a set of tasks to execute on multiple
partitions, but does not investigate security.

To sum up, multi-objective optimization of real-time systems and security have
been studied by several researchers. Fewer have worked on both optimizing secu-
rity and schedulability. Even if there are many existing DSE approaches, as far
as we know, none has worked on trade-off and at different levels of granularity
while in this thesis, we propose a DSE with three mutation algorithms and four
security implementations based on different combinations leading to trade-off.

–99–

Chapter 6. Work orientations and positioning

Finally, as far as we know, none has considered exploring TSP systems with such
different options jointly investigated.

6.5 Summary of expected contributions

This thesis addresses the conflict between schedulability and security considering
TSP systems and the combinatorial problem raised by tasks to partitions assign-
ment. To address the gap in the state of the art, we explore TSP systems while
considering different granularity of tasks to partitions assignment, different se-
curity implementations to propose tradeoffs between schedulability and security
based on a multi-objective evolutionary algorithm.

We propose a DSE approach to address the combinatorial problem raised between
schedulability and security of TSP systems. We formulate our multi-objective
problem and adapt the PAES to it in order to explore the search space and
propose trade-offs for safe and secure TSP systems. Our approach proposed
to explore the search space of TSP while investigating tasks and partitions as-
signment and communications security. We proposed feasibility tests based on
schedulability and security analysis to check the validity of the solutions dur-
ing the DSE. We performed evaluations to find the best solutions by comparing
candidate solutions to each other during the DSE.

Considering the generation of candidate solutions, we propose to explore the de-
sign space of TSP systems with different levels of granularity by three mutation
algorithms. The first algorithm considers moving only one task to another par-
tition at each mutation. This implies an investigation of a large design space.
Then the second algorithm proposes to move at each mutation, an application
composed of a set of tasks to another partition. It reduces the design space size
but presents a less degree of freedom. We proposed the third mutation algorithm
that mixed the two above algorithms. It consists of refining the results obtained
at the application level (i.e. second algorithm) by applying them a mutation
algorithm at task granularity (i.e. first algorithm). For mutation algorithms, we
assume that the considered applications have similar criticalities allowing us to
move tasks to other partitions with tasks of different applications. Finally, we
proposed a fourth algorithm to improve the diversity of the proposed solutions
based on a better choice of the current solution during the DSE.

With each mutation algorithm, we evaluate four different means to implement
security features in TSP systems (detailed in Table 6.1) when computing the
trade-offs between schedulability and security.

Furthermore, we experiment the extensibility of our DSE by investigating the
impact of multicore execution platforms on safe and secure TSP systems while

–100–

6.6. Conclusion

considering not only tasks to partitions assignment but also tasks to cores assign-
ment.

We integrate the prototypes of our DSE approaches into the Cheddar scheduling
analyzer. We conducted multiple experiments to evaluate these approaches and
identified guidelines that must be considered when designing safe and secure TSP
systems towards unicore or multicore execution platforms.

6.6 Conclusion

In this chapter, we propose to depict the orientation and positioning of our work.
Then we first present the system model and the assumptions on which our pro-
posal is based. Second, we discuss the conflict between security and schedulabil-
ity through a synthetic example. It shows the motivation behind our proposal.
Third, we position our work by presenting some related works. Finally, we present
the expected thesis contributions which are detailed in the next four chapters.

A presentation of our DSE approach to investigate the schedulability and secu-
rity trade-off in TSP systems for unicore platforms is proposed in Chapter 7.
Chapter 8 presents the experiments performed to evaluate this approach. An ex-
tension of this approach to multicore platforms on TSP systems while addressing
the conflicts between safety, security, and schedulability is presented in chap-
ter 9. Finally, the implemented prototypes of the approaches integrated into the
Cheddar scheduling analyzer are presented in the chapter 10.

–101–

Part III

Contributions

–103–

7
Design space exploration to secure unicore

TSP systems

As this thesis addresses the conflict between schedulability and security in TSP
systems and the combinatorial problem raised by tasks to partitions assignment,
we propose to explore the solutions space of secure TSP systems to identify
trade-offs. This chapter is therefore dedicated to the presentation of our DSE
approach.

We have adopted PAES multi-objective metaheuristic to address our MOOP.
Section 7.1 presents an overview of how we have adapted the general framework
provided by PAES to our MOOP. The adaptation of PAES implies the specifica-
tions of each PAES operator based on the addressed problem. Then, Section 7.2
presents the objectives functions, and constraints defined to evaluate the solu-
tions. This helps to define the feasibility tests that validate or invalidate can-
didate solutions. This section also proposes a chromosomal representation that
defines the solutions and makes them manipulable by evolutionary algorithms.
It also presents the mutation operator for new solutions generations, the initial
solutions, and the archiving process. Finally, Section 7.3 concludes the chapter.

7.1 PAES general framework for schedulability and security

trade-off

This section gives a general view of our framework resulting of our adaptation of
the PAES to the MOOP raised by the conflict between schedulability and security.
We adopt PAES which is adapted to DSE problems with multiple and conflicting

–105–

Chapter 7. Design space exploration to secure unicore TSP systems

objectives. Figure 7.1 presents an adaptation of the PAES to schedulability and
security optimization problem.

Stop
Initial empty archive

Generate the principal initial
solution C

fully secured

Schedulable?

add C to the
archive

Generate other initial
solution, evaluate them
and add to the archive

Stop
(No conflict)

Yes

Number of
iterations
reached?

Create solution M by mutating C
(move a task or an application to another partition)

C dominates
M?

Compare M to the archive,
update the archive

Select the new current solution C
from the updated archive

Yes

No

No

Yes

M respects
schedulability and

security constraints?

Yes

No

No

1

2

4

5

7

8

3

6

Figure 7.1: PAES process

The PAES starts with an initial solution (step 2 in figure 7.1) that considers only
one partition to which all the tasks are assigned with all security vulnerabilities
resolved. This solution is built to determine the existence of conflicts between
security and schedulability and then the necessity of proceeding with the DSE.
Its schedulability analysis determines the necessity of operating a DSE. If the
initial solution is schedulable, this solution is already an optimal solution that
optimizes both schedulability and security. Thus there is no need to proceed with
a DSE (step 3 in figure 7.1). Otherwise, if this initial solution is not schedulable
(i.e. some tasks missed their deadlines), a DSE is useful to provide a set of trade-
offs between schedulability and security. So the solution is added to the archive
initially empty (steps 1 and 4 in figure 7.1).

During the DSE, at each iteration, a mutation operator that consists of moving
a task or an application (a set of tasks) to another partition is applied to the
current solution to generate a candidate solution (step 6 in figure 7.1). At the
first iteration, the current solution is the initial solution which consists of the
entry point of the DSE process. After the generation of the candidate solution, it
goes through feasibility tests in order to determine if it respects the schedulability
and security constraints detailed later in Section 7.2.1. Each generated solution
(including the initial solution), has to pass through an evaluation of objective
functions detailed later in Section 7.2.1.

–106–

7.2. PAES adaptation to the MOOP of schedulability and security

The candidate solution is compared to the current solution and the other solutions
in the archive (step 7 in figure 7.1). The archive is updated in order to keep
only non-dominated solutions as described in section 5.3.1.2. Then a solution is
selected to become the current solution of the next iteration (step 8 in figure 7.1)
as described in the section 5.3.1.2.

The mutation, the solutions comparison, the current solution selection, and the
archive update are repeated till the end of the DSE which we defined with a
prefixed number of iteration. When this number is reached, then DSE stops and
the non-dominants solutions in the archive are proposed as the trade-offs between
schedulability and security. Then the designer has a set of solutions from which
he can choose the model best suited to his requirements.

We highlight that after the generation of the initial solution that represents the
first current solution, we filled the archive with other initial solutions (step 5 in
figure 7.1) that may correspond to extreme solutions that each maximize one of
the objective. This procedure is adopted to make the PAES faster and to boost
the diversity of solutions in the archive at the end of DSE.

7.2 PAES adaptation to the MOOP of schedulability and

security

In this section, we specify how the operations such as the encoding of the so-
lutions, the mutation operator, the security and schedulability constraints, the
objectives functions, and the archiving process are conducted in the context of
this thesis.

7.2.1 Objective functions and constraints

The multi-objective optimization of a problem requires the definition of functions
that fit the objectives to optimize. Since our objective is to optimize schedula-
bility and security, we define fitness functions that model these goals.

We also define constraints considered for schedulability and security issues. It is
important to highlight the difference between objective functions and constraints
in order to avoid confusion. The objective functions are functions that have to be
optimized during the DSE. They constitute the criteria of solutions evaluation.
However, constraints are conditions that determine the validation or invalidation
of a solution. They can be conditions made on some objective functions (e.g. a
condition on their values) or any other criteria or event necessary to confirm the
validation of a system based on the designer requirements. As example, we can
refer to hard deadline tasks that must imperatively meet their deadlines.

–107–

Chapter 7. Design space exploration to secure unicore TSP systems

7.2.1.1 Objective functions and constraints concerning schedulability

We remind that the necessity for the DSE came from the impossibility to propose
for some systems a model which is fully schedulable and fully secure. Then
concessions has to be made on both sides in order to find trade-offs.

Therefore, we distinguish tasks with hard and soft deadlines. We define the first
constraint by requiring that no task with hard deadline should be allowed to miss
its deadline. Then any model should be automatically considered invalid and then
rejected if one of its tasks with hard deadline does not respect its deadline.

In the search of trade-offs, the requirement of schedulability can be relaxed for
tasks with soft deadlines in order to introduce security while maintaining schedu-
lability of hard deadline tasks. The number of missed deadlines of soft deadline
tasks can be used to evaluate the schedulability of a solution. We deduce an
objective function reflecting the quality of the schedule function note as :

F1 = #missed deadlines

The number of missed deadlines represents the number of soft deadline tasks
that have worst-case response times higher than their deadlines. To assess such
a metric, we simulate the scheduling of the task set on the feasibility interval [59]
with Cheddar scheduling simulator. Computing the schedulability simulation
over the feasibility interval provides a proof of schedulability. The entry point of
Cheddar is a model composed of partitions, tasks and communications between
tasks. Notice that this model is generated from the solution representation in
figure 7.2 and can include extra tasks dedicated to security, depending on the
security implementation chosen in the solution.

7.2.1.2 Objective functions and constraints concerning security

Our models contain communications between tasks. These communications can
present security vulnerabilities described in Section 6.2.

We divide communications into two categories: weakly sensitive communications
and strongly sensitive communications. Any strongly sensitive communications
that have vulnerabilities must be secured. By considering BLP (resp. Biba)
rules, we assumed as constraints that a task with Unclassified confidentiality
(resp. Low integrity) level is not allowed to communicate with a task at higher
confidentiality (resp. integrity) level.

Table 7.1 resume the security constraints. A model with communication that
violates a security constraint is invalid and should be automatically rejected.

Since weakly sensitive communications are not concerned by these constraints,
their security vulnerabilities can be tolerated.

–108–

7.2. PAES adaptation to the MOOP of schedulability and security

Tasks Write access violation Read access violation

Confidentiality
Top secret → Unclassified Unclassified → Top secret
Secret → Unclassified Unclassified → Secret

Integrity
Low → Medium Medium → Low
Low → High High → Low

Table 7.1: Communications concerned by security constraints

Tasks Write access violation Read access violation
Confidentiality Top secret → Secret Secret → Top secret
Integrity Medium → High High → Medium

Table 7.2: Communications concerned by security objective functions

These tolerated vulnerabilities are resumed in Table 7.2. Thus, we can tolerate
that a task with a Top − secret confidentiality (resp. Medium integrity) level
can send information to a task at secret confidentiality (resp. High integrity)
level.

We identify two objectives functions to characterize security optimization. First,
the number of confidentiality vulnerabilities that represents the number of weakly
sensitive communications that violate BLP’s rule in a TSP system:

F2 = #Bell violations

Second, the number of integrity vulnerabilities which is the number of weakly
sensitive communications that violate Biba’s rules in a TSP system:

F3 = #Biba violations

Both metrics can help to perform a security evaluation of a given solution. They
are computed through BLP and Biba rules implemented in Cheddar.

The objective of our work being to optimize both schedulability and security of
models, the DSE should be operated by minimizing the number of soft deadline
tasks missing their deadlines and the numbers of weakly sensitive communications
that have confidentiality or integrity vulnerabilities.

7.2.2 Feasibility tests

As we defined constraints (section 7.2.1) to evaluate the feasibility of generated
solutions, we implemented these constraints through feasibility tests as sketched
in the algorithm 1.

–109–

Chapter 7. Design space exploration to secure unicore TSP systems

The algorithm takes as input a solution and returns a boolean to confirm or not
the feasibility of this solution. The algorithm starts by checking if the schedulabil-
ity constraints are respected. For this purpose, it requires a scheduling simulation
to compute the WCRT of each task (line 3). From line 4 to line 10, it proceeds by
checking if no hard deadline task has missed its deadlines. If a hard deadline task
misses its deadline, the solution is considered non-feasible and the feasibility test
stops. Otherwise, the feasibility test can continue by checking if the security con-
straints are respected by the strongly sensitive communications of the solution.
Then from line 11 to line 20, the algorithm verifies if there is a strongly sensitive
communication that violates BLP or Biba rules. If it is the case, then the solution
is considered non-feasible. Otherwise, we can confirm that the solution is feasible
(line 21).

During the DSE, as soon as a solution is generated, feasibility tests are applied.
If it results that the solution is feasible then it is validated as a candidate solution
and the PAES process continues with the comparison of this solution with the
current solution as defined in figure 7.1. Otherwise, if the solution is confirmed
non-feasible, then it is rejected and another solution has to be generated. The
feasibility tests help to proposed an archive with only feasible solutions for the
designer.

7.2.3 Solutions encoding

An evolutionary algorithm implies the definition of solutions encoding that helps
to represent solutions and eases their manipulation during the exploration pro-
cess. Solutions are represented in chromosomal formal with an encoding method.
There are multiple encoding methods such as binary encoding [160] [161], real
encoding [162], integer encoding [162]. All the methods present advantages and
drawbacks described in [162]. Since integer encoding is widely used in combina-
torial optimization problems, we have chosen an adhoc encoding based on integer
encoding.

The chromosome in integer encoding is represented by a vector of n genes where
n represents the number of objects. Each gene indexes a position in the vector
and has a value.

In this work, as we address secured TSP systems with tasks communicating with
each other and assigned to partitions, we assume a vector of (n + 1 +m) genes.
n corresponds to the number of tasks and m to the number of communications.
The chromosome is divided into three parts. The first part of the chromosome
models the assignment of tasks to partition where a gene indexes a task and the
attributed value is the partition to which this task is assigned. Then chrom[i] = j
(1 ≤ i ≤ n and 1 ≤ j ≤ r) with r the number of partitions in the model, reveals
that the ith task is assigned to the jth partition.

–110–

7.2. PAES adaptation to the MOOP of schedulability and security

Algorithm 1: Feasibility tests algorithm

1 Input: A solution with n tasks and m communications
2 Output: A boolean that confirm with True or infirm with False the

feasibility of an input
// schedulability constraint on hard task

3 Perform scheduling simulation on the solution
4 i=0
5 while i < n do
6 i=i+1
7 if (tolerance(τi)=hard) and (WCRT (τi) > deadline(τi)) then
8 return False
9 end if

10 end while
11 k = 0
12 while k < m do
13 k = k + 1

// confidentiality constraint on strongly sensitive

communication

14 if (confidential level(Task source(kth communication))=
unclassified) Or (confidential level(Task sink(kth

communication))= unclassified) then
15 return False
16 end if

// integrity constraint on strongly sensitive communication

17 if (integrity level(Task source(kth communication))= low) Or
(integrity level(Task sink(kth communication))= low) then

18 return False
19 end if

20 end while
21 return True

–111–

Chapter 7. Design space exploration to secure unicore TSP systems

Figure 7.2: Example of chromosome

Legend :

Task

Communication with
security vulnerability

Partition

Partition port

Communication with no
security vulnerability risk

Communication with
mitigated security
vulnerability

P1 P2

1

2

3

54

Figure 7.3: Model of the illustrated chromosome

Figure 7.2 shows an illustration of our chromosomal representation of the model
presented in the figure 7.3 composed of five tasks assigned to two partitions and
four communications.

The first part of the chromosome illustrates the tasks to partitions assignment
encoding. The 1st, 2nd, and 4th (resp. 3th, 5th) positions in the chromosome
indicate that tasks τ1, τ2, τ4 (resp. τ3, τ5) are assigned to partition P1 (resp. P2).

Since we assume different methods to secure vulnerable communications, there
is a gene that specifies the security implementation of each solution. Then the
second part of the chromosome is a single value that defines the security imple-
mentation chosen to secure the vulnerable communications of the chromosome. It
can have value as F-F, X-F, X-T, or X-TM that we defined previously in table 6.1.

The model presented in figure 7.3 presents intra and inter-partition communica-
tions. Each partition has its own port (represented with yellow box) for inter-
partition communications. Some of these communications represented with red
arrows present security vulnerabilities. For this model, we assume to resolve secu-
rity vulnerabilities with the security implementation F-F which refers to function
calls. Then the 6th position of the chromosome (figure 7.2) shows that the security
implementation F-F is chosen for communications to be secured.

–112–

7.2. PAES adaptation to the MOOP of schedulability and security

The third and last part of the chromosome representation concerns communi-
cations in the TSP system. As described in the section 7.2.1.2 communications
are decomposed into two categories. A model of m communications has mu
weakly sensitive communications and mc strongly sensitive communications with
m = mc +mu.

Then the chrom[k] with (n + 2) ≤ k ≤ (n + m + 1)) that corresponds to the
kth communication is associated with two values. The first value indicates the
task source that initiates the communication and the task sink of the commu-
nication (e.g. value 1 2 specifies that a communication is initiated by the task
τ1 towards the task τ2). The second value indicates the status of the communi-
cation. It shows if the communication presents non-resolved vulnerabilities. Its
possible values are ”vulnerable”, ”secured” and ”no risk”. ”Vulnerable” is for
communications with security vulnerabilities. ”Secured” is for communications
that have vulnerabilities mitigated through security features such as encryption
and/or hashing functions. ”No risk” is for communications that present no secu-
rity vulnerability. Notice that mc communications are fixed to secured.

This encoding is illustrated by the final slice of the chromosome in figure 7.2.
As example, the position 7th represents a communication initiated by task τ1 to
task τ2 that presents security vulnerabilities. The 8th position shows a secured
communication from task τ4 to task τ2.

By observing only the task to partitions assignment part of our chromosomal
representation and assuming identical partitions, we faced a redundancy problem
well known in integer encoding. A solution can be encoded by multiple chromo-
somes different from each other. For example, the tasks to partition assignment
in figure 7.2 represented with the vector [1 1 2 1 2] can also be represented by
the vector [2 2 1 2 1] as illustrated in figure 7.4.

Figure 7.4 shows two representations of the same chromosome. Figure 7.4a
shows normalized representation of the chrosome and figure 7.4b shows a non-
normalized representation of the chrosome.

Both representations correspond to the same solution. They represent a solution
where tasks τ1, τ2, and τ4 are assigned to one partition, and tasks τ3 and τ5 are
assigned to a second partition. By referring to [162], in our context, for a model
with k partitions, there are k! chromosomes that encode the same solution. It
is not efficient to consider the redundant chromosomes during the DSE. Then
we adopted a normalization of solutions in order to eliminate the redundancy,
which reduces the search space size and increases the quality and the diversity
of solutions proposed at the end by the DSE. For this purpose, we assumed that
task τ1 should always be assigned to partition P1, and task τ2 is assigned to P2

if and only if task τ1 and τ2 are assigned to different partitions. Task τ3 is then
assigned to P3 if it is not embedded with τ1 nor τ2, etc.

–113–

Chapter 7. Design space exploration to secure unicore TSP systems

(a) Normalized representation of a chromosome

(b) Non-normalized representation of a chromosome

Figure 7.4: Normalization illustration

7.2.4 Mutation operator

PAES is (1+1) evolution strategy: the DSE exploration is operated by generating
a new solution from a current solution at each generation. We proposed a random
mutation search operator while considering the MOOP that we addressed and
the solutions encoding that we defined. Our mutation process is divided into two
steps: the mutation of tasks to partitions assignment and of the communications.

7.2.4.1 Mutation process: Tasks to partitions assignment

The first step of our mutation process is dedicated to the tasks to partitions
assignment which corresponds to the first slice of the chromosome. We proposed
three possible mutation algorithms that defined how a mutation can be made.
One of the proposed algorithms has to be chosen by the designer as a parameter
of the DSE.

Algorithm task-grain

Algorithm task-grain is the most intuitive. It consists of choosing a random
task τi among the task set (1 ≤ i ≤ n) and a random partition Pj (1 ≤ j ≤ r)
among the set of partitions. If the randomly chosen task is not already assigned
to the randomly chosen partition (i.e. chrom[i] ̸= j), the mutation is operated
(i.e. chrom[i] = Pj).

Figure 7.5a illustrates a task-grain mutation operation. It shows two models. The
first model, at the left, corresponds to the one previously presented in figure 7.3
(Section 7.2.3). The second model, at the right, corresponds to a mutated model

–114–

7.2. PAES adaptation to the MOOP of schedulability and security

Task-grain mutation

P1 P2

1

2

3

54

P1 P2

1

3

5

4

2

(a) Task-grain mutation model illustration

(b) Task-grain mutation chromosome illustration (Before normalization)

(c) Task-grain mutation chromosome illustration (After normalization)

Figure 7.5: Task-grain mutation illustration

obtained after applying a task-grain mutation to the first model. This mutation
only consider moving the task τ1 from partition P1 to partition P2. We remark
that the intra-partition communication from task τ1 to task τ2 becomes an inter-
partition communication after the mutation since both tasks are no more in
the same partition. This implies an impact on communications overhead of the
model.

We remind that we operate normalization on each mutated chromosome. Then
the chromosomal representation of the mutated model is presented in figure 7.5b.
After each mutation, the chromosome has to be normalized as defined in sec-
tion 7.2.3. Then figure 7.5c presents the chromosome of the mutated model after
its normalization. We can remark that tasks assigned to partition P2 are moved
to partition P1 because task τ1 and that tasks embedded with it in the same par-
tition, must always be assigned to the partition P1 based on our normalization
principle.

–115–

Chapter 7. Design space exploration to secure unicore TSP systems

Algorithm app-grain

Instead of moving only one task to another partition as for the task-grain al-
gorithm, we can also move an application constituted of a set of tasks. Then it
consists of choosing a random application Ai (1 ≤ i ≤ m) among the applica-
tions of the model and a random partition Pj (chrom[i] ̸= j) among the set of
partitions. If all the tasks of Ai are not already assigned to the randomly chosen
partition, the mutation is operated by assigning all the tasks of Ai to the chosen
partition Pj. This algorithm is intended to be compliant with the ARINC653
standard. It also guides the exploration based on the fact that the tasks of an
application communicate more with each other, and the communications will
therefore be more intra-partition communications. It helps to minimize the over-
head of communications because inter-partition communications are more costly
than intra-partition communications.

Figure 7.6a illustrates an app-grain grain mutation operation. It shows two
models. the first model, at the left, corresponds to the one previously presented
in figure 7.3 (Section 7.2.3). The second model, at the right, corresponds to a
mutated model obtained after applying an app-grain mutation to the first model.
This mutation only consider moving the application composed of tasks τ1, and
τ2 from partition P1 to partition P2.

The chromosomal representation of the mutated model is presented in figure 7.6b.
Its normalization leads to the chromosome presented in figure 7.6c. We remark
different changes in the communications after the mutation operation. Since tasks
τ1, and τ2 are moved to the same partition, the communication between them
remains an intra-partition communication. The communication from task τ4 to
task τ2 becomes an inter-partition communication since both tasks are no longer
in the same partition after the mutation operation. This has an impact on the
communications overheads.

Algorithm mix-grain

Algorithm mix-grain consists of mixing the task-grain and app-grain algorithms
in the expectation of having a better quality of solutions at the end of the DSE. It
consists of starting the DSE with the app-grain algorithm for a prefixed number
of iterations and then proceeds with a refinement by applying the task-grain al-
gorithm till the end of the exploration.

It is then composed of two phases: a first phase with app-grain algorithm followed
by a second phase with task-grain algorithm. The second phase takes advantage
of app-grain’s guidance. Indeed, instead of exploring directly the whole space,
with the risk of an inefficient exploration, it refines the solutions provided in the
first phase algorithm which offers more degrees of freedom.

–116–

7.2. PAES adaptation to the MOOP of schedulability and security

App-grain mutation

P1 P2

1

3

5

4

2

P1 P2

1

2

3

54

(a) App-grain mutation model illustration

(b) App-grain mutation chromosome illustration (Before normalization)

(c) App-grain mutation chromosome illustration (After normalization)

Figure 7.6: App-grain mutation illustration

–117–

Chapter 7. Design space exploration to secure unicore TSP systems

7.2.4.2 Mutation process: communications

The second step of the mutation operator is dedicated to communications and
concerns the second and third slices of the chromosome. For this part, we ran-
domly choose a communication k among the mu ones that are allowed to be
vulnerable. We change its status, marking it unsecured when it was secured, and
conversely marking it secure if it was not secured.

The choice of the security implementation depends on the assumptions we took
for intra-partition communications decided before starting the DSE. In case an
intra-partition communication has to be secured (section 6.2), a security imple-
mentation is randomly chosen among the four alternatives (X-F, X-T, X-TM). We
highlight that these choices are equiprobable (i.e. each security implementation
has the same probability to be chosen).

Otherwise, in the case of the use of proper mechanisms to ensure memory pro-
tection for attacks from inside a partition, only the functions calls will be used
for all the communications during all the DSE. Then the value F-F is assigned
to the chromosome.

The security implementation is set at location n + 1 in the chromosome. It will
be used for all secured communications. The chosen security implementation will
be applied to ensure the security of all the communications marked as secured in
the chromosome.

Figure 7.7a illustrates a mutation operation on a communication. It shows two
models. the first model, at the left, corresponds to the one previously presented
in figure 7.3 (Section 7.2.3). The second model, at the right, corresponds to a
mutated model obtained after applying a communication mutation to the first
model. The chromosomal representation of the mutated model is presented in
figure 7.7b.

This mutation considers the changing of the security status of the communica-
tion from task τ3 to task τ4 chosen randomly. This communication, previously
marked as vulnerable (represented with a red arrow on the left side of figure 7.7a),
becomes secured (represented with a green arrow on the right side of figure 7.7a).

With its new status, this communication needs security features applied according
to the chosen security implemented. In this example, we select the F-F value.

We highlight that in case of security through dedicated tasks (X-F, X-T, X-TM),
new tasks (encryption, decryption, key set up, or hash tasks) and communications
are added as described in section 6.2.2. These tasks and communications are not
represented in the chromosome but added in the actual model when evaluating
the corresponding solution by Cheddar.

Our mutation operator is sketched in Algorithm 2.

–118–

7.2. PAES adaptation to the MOOP of schedulability and security

Algorithm 2: Mutation algorithm

1 Input:
2 A chromosome that represents a solution
3 A mutationOption specifying which flavor of mutation to apply
4 A number of iterations nb iter of the exploration
5 The number of the actual iteration actual iter
6 Output: A mutated solution
7 while solution is not mutated do
8 Choose a random partition Pp

9 if (mutationOption = ”task grain”) or ((mutationOption =
”mix grain”)and (actual iter <= nb iter/2) then

10 Choose a random Application Aj

11 if All the tasks of Aj are not assigned to Pp then
12 Assign all the tasks of Aj to Pp

13 end if

14 else
15 if (mutationOption = ”app grain”) or ((mutationOption =

”mix grain”)and (actual iter > nb iter/2)) then
16 Choose a random task τi
17 if Task τi is not assigned to Pp then
18 Assign task τi to Pp

19 end if

20 end if

21 end if
22 Choose a random communication k that is vulnerable, among mu

ones
23 if k has no encryption or hashing function then
24 Choose a random security implementation and update

chrom[n+ 1] with it.
25 mark communication n+ 1 + k as secured

26 else
27 mark communication n+ 1 + k as vulnerable
28 end if
29 Evaluate the new solution
30 if It does not respect the scheduling and security constraints then
31 Reject the mutated solution
32 Proceed with another mutation

33 else
34 Return the mutated solution
35 end if

36 end while

–119–

Chapter 7. Design space exploration to secure unicore TSP systems

Mutation on a communication

P1 P2

1

2

3

54

P1 P2

1

2

3

54

(a) Communication mutation model illustration

(b) Communication mutation chromosome illustration

Figure 7.7: Communication mutation illustration

During the exploration, it may happen that after multiple consecutive mutations,
we fail to provide a feasible solution. Therefore, instead of running an infinite
number of consecutive mutations without success, we propose a predefined num-
ber of unsuccessful mutations after which the DSE should be terminated and
we then inform the designer that the DSE fails to explore more solutions. The
solutions already stored in the archive till that event are then proposed to him.

7.2.5 Mutation algorithm improvement

Whatever the considered mutation algorithm (task-grain, app-grain, mix-grain),
at the end of the exploration, it may happen that the archive contains only a
few solutions. At a given iteration, multiple iterations may fail to find another
nondominated solution (i.e. all the feasible solutions find after mutations are
dominated by at least one solution already in the archive). At the given it-
eration, a current solution may be unable to mutate enough to provide more
non-dominated solutions. As a solution to those problems, we proposed that af-
ter a predefined number of successive mutations on a current solution that fail to
provide a nondominated solution, we choose randomly a solution in the archive
to become the current solution that should be mutated at the next iteration. It
helps to increase the chance to provide a nondominated solution and then in-
crease the diversity and the number of solutions in the archive at the end of the
DSE.

–120–

7.3. Conclusion

7.2.6 Initial solutions and archiving process adaptation

The initial current solution we choose (step 2 of Fig. 7.1) is a solution which
resolves all the security vulnerabilities while using one partition for all the tasks.
If the scheduling analysis of that solution reveals that there is no missed deadline,
then the optimal solution is found (perfect for both schedulability and security
aspects) and DSE (step 3 in Fig. 7.1) is not useful.

To make our PAES method faster and to favor diversity of solutions, we also
add extra solutions in the archive (step 5 in Fig. 7.1), by combing various strate-
gies based on tasks to partitions assignment and security vulnerabilities while
considering the Pareto dominance concept. Indeed, we consider solutions with
single partition (i.e. all the tasks assigned to a single partition) or balanced
partitions (i.e. tasks are equally distributed to a fixed number of partitions).
We also consider Multi Single Level Secure (MSLS) [102] partitioning based on
confidentiality (resp. integrity). It implies that each partition can only host
tasks of the same confidentiality (resp. integrity) level. We add in the archive
two MSLS solutions: an MSLS solution based only on confidentiality level and
another one based only on integrity level. For each above-mentioned option of
tasks to partitions assignment, we generate two solutions by solving none or all
vulnerabilities.

7.3 Conclusion

This chapter presents a DSE approach to provide trade-offs between schedula-
bility and security. The problem raised being a MOOP, we opted for MOEA by
applying PAES multi-objective metaheuristic. We adapted the PAES technique
by specifying the objectives functions, constraints, encoding of solutions, muta-
tion operators, initial solutions and archiving process according to the addressed
problem. Since we consider TSP systems, our customized PAES includes the
tasks to partitions assignment and the security of intra and inter-partition com-
munications. Different experiments are conducted in the next chapter to evaluate
the proposed approach.

–121–

8
Experiments and evaluations

In this chapter, we evaluate the proposed mutation algorithms presented on the
previous chapter. We also identify key architecture parameters to build trade-offs
between security and schedulability. Schedulability is evaluated by the number
of soft deadline misses. Confidentiality and integrity are evaluated through the
number of security vulnerabilities.

We perfomed seven experiments based on six benchmarks. Section 8.1 shows
an experiment presenting a case where there is no conflict between security and
schedulability. Section 8.2 describes an experiment that shows the effectiveness
of our approach in providing non-dominated solutions and the impact of data
size in the conflict between schedulability and security. Section 8.3 presents a
set of experiments that show the impact of the processor utilization, the number
of partitions, and the data size. Section 8.4 proposes a comparison with an
exhaustive DSE, which allows us to evaluate the quality of the solutions provided
by the heuristic. Finally a summary of the experiments and a conclusion of the
chapter are given in Section 8.5.

8.1 Experiment 1: illustration with a flight controller appli-

cation

DSE has to be done when there is a conflict between security and schedulabil-
ity. This experiment is performed to verify if a conflict between security and
schedulability exists. We evaluate the ability of our DSE approach to detect TSP
systems for which there is no need to proceed with DSE.

–123–

Chapter 8. Experiments and evaluations

8.1.1 Conditions of experiment

We conduct this experiment with the Research Open-Source Avionics and Con-
trol Engineering (ROSACE) [27] benchmark that describes a longitudinal and
multi-periodic flight controller. It is composed of 15 periodic tasks, a processor
utilization of 29% and on average a small size data of 8 bytes. Figure 8.1 presents
in detail the communications between the tasks of ROSACE. Communications
vulnerabilities are induced from confidentiality and integrity levels of the tasks.

Figure 8.1: ROSACE flight controller application

Task parameters, which are summarized in Table 8.1, are taken from [27]. We
fixed the security parameter (confidentiality and integrity levels) values to fit
with the worst-case: they are set to maximize the number of vulnerabilities in
the application.

If we can show that for the ROSACE application with a very high number of
security vulnerabilities, resolving all the security vulnerabilities does not impact
the schedulability, then we expect that for the same application with few security
vulnerabilities, there would be no conflict between schedulability and security.

By assuming that the CPU frequency is 1.2 GHz, values provided by the crypto++
benchmark [163], and the data size of the case study is 8 bytes, encryption execu-
tion, refreshment encryption key and hash execution times are respectively 0.166
us, 88.83 us and 0.1 us. Those execution times are added to the Ci parameter of
the ROSACE tasks as for this experiment security features are implemented by
function calls only (security implementation F-F in table 6.1). For this experi-
ment, we fixed a maximum of 2 partitions.

–124–

8.2. Experiment 2: illustration with a flight controller and JPEG applications

8.1.2 Results

Our DSE approach starts with an initial solution solving all security vulnera-
bilities (see Section 7.2.6). The scheduling analysis of the resulting architecture
shows that all tasks meet their deadlines. This is due to the fact that initially,
ROSACE is characterized by a low processor utilization of 29%. The method we
propose therefore returns that it is not necessary to carry out a DSE for such an
application. We note that the addition of the security features only increases the
processor utilization to 37%. We explained this result by the low overhead intro-
duced by encryption and hash tasks because they are proportional to the data
size of the considered application and ROSACE has small data size (8 bytes).

From this experiment, we conclude that the data size and the initial processor
utilization of the application are part of the most important criteria that deter-
mine the necessity of the DSE. By starting with an initial solution in which the
system is fully secured, our method detect such cases.

8.2 Experiment 2: illustration with a flight controller and

JPEG applications

We conduct this experiment with two applications: ROSACE and a JPEG appli-
cation [28] which has a higher processor utilization. The fully security-oriented
initial solution is not schedulable. The objective of this experiment is to show the
effectiveness of the DSE approach in providing trade-offs between security and
schedulability with objective values close to the Pareto front. Further, it consists
of comparing our three proposed mutation algorithms task-grain, app-grain and
mix-grain in order to determine the most efficient.

8.2.1 Conditions of experiment

The JPEG application is composed of five computation steps: color space conver-
sion, DCT (Discrete Cosine Transformation), quantization, encoding, and mem-
ory Read/Write. It is characterized by a processor utilization of 12%. We assume
that the image is in 4CIF format (704x576 pixels) for the JPEG. With 2 bytes
per pixel, the data size is equal to 792 Kilobytes. Considering a processor fre-
quency of 1.2 GHz and the data size of each application, the execution times of
the encryption task, the refreshment encryption key task and the hash task are
respectively of 0.166 us, 88.83 us and 0.1 us for ROSACE and 16834 us, 88.83 us
and 10173 us for the JPEG application. We computed these values by consid-
ering values provided by the crypto++ benchmark. We supposed that the key

–125–

Chapter 8. Experiments and evaluations

for encryption is cyclically refreshed. Then we fixed a period of 1000 s which
guarantees that it is set only once during application execution time.

Parameters of the two benchmarks are summarized in Table 8.1. Task parameters
(period, capacity) are taken from the benchmark in [27] and [28] respectively for
ROSACE and JPEG applications.

For this experiment, we fixed a maximum of two partitions. We assumed that
intra-partition communications are vulnerable which implies an exploration based
only on function calls security implementation (F-F) defined in table 6.1.

For all experiments except experiment 8.3.4, we assumed an overhead of 10 us
(resp. 280 us) for an intra-partition (resp. inter-partition) communication. We
have chosen overhead values that impact the scheduling results for our test cases,
i.e. impacts the search space.

8.2.2 Results

We conduct this experiment for the three mutation algorithms task-grain, app-
grain and mix-grain. For each mutation algorithm, the exploration is conducted
for a number of iterations fixed to 4000. In this experiment, the first phase
(application level phase) of mix-grain ends at 3000 iterations. The number of
iterations is an input that can be fixed depending on the time available to perform
the DSE approach to explore a significant number of candidate solutions. The
approach provides archives of 5, 4, and 4 solutions respectively for app-grain,
task-grain and mix-grain.

Figure 8.3 shows the set of non-dominated solutions found by couples of objectives
for each algorithm.

To keep this case study schedulable, for both task-grain and app-grain, the DSE
proposes a solution that tolerates 6 violations of BLP rules and 3 violations of
Biba rules while mix-grain proposes a solution with 3 violations of BLP rules
and 1 violation of Biba rules. These solutions are based on a single partition and
the ones proposed by task-grain and app-grain are identical and correspond to
one of our initial solutions characterized by all tasks assigned to one partition
and no security vulnerabilities fixed. We notice that the archive computed by the
mix-grain contains a schedulable solution different from the initial solution. This
solution shows the relevance of proceeding with a DSE to find better solutions
than initial solutions which are more intuitive and/or extremes. We underline
that this solution is part of the design space of the three mutation algorithms
and then could have been found by the task-grain and app-grain algorithms.

We observe that mix-grain proposed better solutions than app-grain. As an ex-
ample, for a fully secured system, app-grain proposed a solution with 8 missed
deadlines while mix-grain proposed a solution with 7 missed deadlines. Both

–126–

8.2. Experiment 2: illustration with a flight controller and JPEG applications

Table 8.1: Case studies task parameters

Tasks Ci [us] Ti [us] CLi ILi

Experiment 1: ROSACE
Aircraft
Dynamics

200 5000 Secret Medium

Va c, H c 500 20000 Top secret Medium
H Filter, Az Filter,
Vz Filter, Q Filter,
Va Filter

100 10000 Top secret High

Altitude hold,
Vz control,
Va control

100 20000 Secret Medium

Delta ec, Delta thc 500 20000 Secret High
Engine, Elevator 100 5000 Top secret Medium

Experiment 2: JPEG
Matrix
transpose

41 20000 Top secret High

Color space
conversion

41 20000 Secret Medium

Wrapper 1,
Wrapper 2

625 20000 Secret Medium

Quantization 270 20000 Top secret Medium
Encoder 760 20000 Secret High
Memory
Read/Write

41 20000 Secret Medium

Experiment 3: CFAR
CFAR complex 10000 90 Top secret High
CFAR square scale 10000 50 Top secret High
CFAR gather 10000 340 Top secret High
CFAR printer 10000 30 Top secret High

Experiment 3: Autopilot
Data collection UUnifast UUnifast Secret High
Control law
computing

UUnifast UUnifast Top secret High

Actuator UUnifast UUnifast Secret Medium
Fault auditor UUnifast UUnifast Secret Medium
IFBIT UUnifast UUnifast Top secret High

–127–

Chapter 8. Experiments and evaluations

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6

M
is

se
d

 d
e

a
d

li
n

e
s

Confidentiality - BLP rules violations (task-grain)

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6

M
is

se
d

 d
e

a
d

li
n

e
s

Integrity - Biba rules violations (task-grain)

(a) Task-grain

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6

M
is

se
d

 d
e

a
d

li
n

e
s

Confidentiality - BLP rules violations (app-grain)

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6

M
is

se
d

 d
e

a
d

li
n

e
s

Integrity - Biba rules violations (app-grain)

(b) App-grain

–128–

8.2. Experiment 2: illustration with a flight controller and JPEG applications

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6

M
is

se
d

 d
e

a
d

li
n

e
s

Confidentiality - BLP rules violations (mix-grain)

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6

M
is

se
d

 d
e

a
d

li
n

e
s

Integrity - Biba rules violations (mix-grain)

(c) Mix-grain

Figure 8.3: Schedulability vs. security with ROSACE&JPEG

solutions used the same security implementation (F-F) and 2 partitions but the
tasks to partitions assignments are different. With app-grain, each application is
assigned to one different partition, but with mix-grain, a task of JPEG applica-
tion was moved to the partition with the tasks of ROSACE. This solution can
never be provided by app-grain since this algorithm only explores applications to
partitions mapping. This shows the relevance of the algorithm mix-grain. These
better results could be explained by the fact that the refinement phase of mix-
grain allows to improve the solutions found at app-grain level, while avoiding the
difficulty observed with task-grain which is not able to converge directly toward
those solutions because of a larger search space.

Fully secured solutions are found at the cost of a few missed deadlines for soft
deadline tasks. At the opposite, missed deadlines can be reduced if security
aspects are partially sacrificed, up to the designer choice.

The difference between this test-case and the previous one in Section 8.1 is the
addition of the JPEG application which is characterized by a large data size. We
remark that high data size impacts the schedulability. A high data size implies
a high extra processor utilization dedicated to securization of data. This exper-
iment shows the relevance of our approach which is able to provide significantly
different trade-offs between security and schedulability while considering different
tasks/applications to partitions assignments and security implementations. The
usage of our DSE approach allows system designers to explore solutions with

–129–

Chapter 8. Experiments and evaluations

trade-offs between schedulability and security.

8.3 Experiments 3-6: illustration with a flight controller, mul-

timedia based application, CFAR and autopilot applica-

tions

The objective of experiments 3 to 6 (Sections 8.3.1 to 8.3.4) is to investigate
the impact that the variation of some parameters may have on the conflict be-
tween security and schedulability. The investigated parameters are: the processor
utilization, the number of partitions, security implementation and the data size
considering communications overheads.

We perform these experiments with the same conditions except the maximal
number of partitions and the security implementations. We constitute a case
study based on six applications. We use ROSACE and JPEG aforementioned,
CFAR [4], and three instances of an autopilot [164] application.

• CFAR (Constant False Alarm Rate detection) is a digital signal process-
ing application that detects targets based on the variation of background
noise [4]. The parameters of the CFAR application are described in Ta-
ble 8.1. We assume a data size of 8 bytes. The execution times of the
encryption task, the refreshment encryption key task and the hash task are
respectively 0.166 us, 88.83 us and 0.1 us.

• The autopilot application is an application composed of 5 tasks that collects
data from sensors and sends commands via actuators to an aircraft pilot.
For the experiments in this section, the tasks parameters of the autopilot
are synthetically generated based on the UUnifast algorithm [29]. We adapt
the UUnifast algorithm to generate randomly task capacities according to
a uniform distribution with a fixed number of tasks and a given processor
utilization. Then we generate different models with different values of total
processor utilization U from 50% to 100%. We guarantee that the tasks
generated are periodically harmonic.

The security parameters are given in Table 8.1. We assume that the data
size is 16 Kilobytes. Therefore the execution time of the encryption, the
refreshment of the encryption key, and the hash tasks are respectively 340
us, 88.83 us, and 205.52 us.

• For the ROSACE and JPEG applications, we keep the same parameters
fixed in the previous experiment.

–130–

8.3. Experiments 3-6: illustration with a flight controller, multimedia based
application, CFAR and autopilot applications

8.3.1 Experiment 3: result of PAES when varying processor utilization

8.3.1.1 Conditions of experiment

We initiate this experiment to validate the effectiveness of the DSE in differ-
ent cases generated by the variation of real-time parameters such as processor
utilization. We evaluate the impact of these parameters on the DSE approach.

We evaluate the impact of the processor utilization by performing the DSE ap-
proach on different architectures, with a maximum of two partitions, by varying
the processor utilization.

We conduct this experiment for the three mutation algorithms on each case study
generated by varying the processor utilization U from 50% to 100%. Each test
was conducted for a number of iterations fixed to 2000.

For each mutation algorithm, according to security, our PAES approach includes
an exploration based on the function calls security implementation (F-F).

8.3.1.2 Results

Figure 8.5 shows the set of non-dominated solutions by couples of objectives for
mutation algorithms task-grain, app-grain and mix-grain.

We remark that the more the processor utilization increases, the more difficult
it becomes to ensure security while maintaining the system schedulable. In fig-
ure 8.5, by tolerating 12 confidentiality and 9 integrity violations, only the DSE
with a processor utilization U=50% proposes a schedulable solution. As the
processor utilization increases, the more tasks miss their deadline (e. g. with
mix-grain, 2 missed deadlines for U= 60% and 5 missed deadlines for U= 90%).

For these experiments, in most of the cases, mix-grain and app-grain propose
better solutions than task-grain. For example, for all processor utilization values
except for 50%, fully secured solutions (for integrity or confidentiality) are ob-
tained with a lower number of missed deadlines with app-grain or mix-grain as
compared to task-grain. This result can be explained by the smaller size of solu-
tion space (for app-grain or for the first phase of mix-grain).

We also remark that mix-grain never proposes worse solutions compared to app-
grain. We only have one solution where mix-grain proposes a solution out of the
scope of app-grain by allowing the assignment of tasks of the same application
to different partitions. The rarity of this kind of solution can be explained by
the larger size of the search space of the first phase of mix-grain (larger than in
the previous experiment that only comprises 22 tasks instead of 41 in the present
experiment). This rarity can also be explained by the fixed duration of the 2
phases of mix-grain which are non-negligible parameters in the exploration. By

–131–

Chapter 8. Experiments and evaluations

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12

M
is

se
d

 d
e

a
d

li
n

e
s

Confidentiality - BLP rules violations (task-grain)

41 tasks, U = 50%
41 tasks, U = 60%
41 tasks, U = 70%
41 tasks, U = 80%
41 tasks, U = 90%

41 tasks, U = 100%

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9

M
is

se
d

 d
e

a
d

li
n

e
s

Integrity - Biba rules violations (task-grain)

(a) task-grain

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12

M
is

se
d

 d
e

a
d

li
n

e
s

Confidentiality - BLP rules violations (app-grain)

41 tasks, U = 50%
41 tasks, U = 60%
41 tasks, U = 70%
41 tasks, U = 80%
41 tasks, U = 90%

41 tasks, U = 100%

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9

M
is

se
d

 d
e

a
d

li
n

e
s

Integrity - Biba rules violations (app-grain)

(b) app-grain

–132–

8.3. Experiments 3-6: illustration with a flight controller, multimedia based
application, CFAR and autopilot applications

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12

M
is

se
d

 d
e

a
d

li
n

e
s

Confidentiality - BLP rules violations (mix-grain)

41 tasks, U = 50%
41 tasks, U = 60%
41 tasks, U = 70%
41 tasks, U = 80%
41 tasks, U = 90%

41 tasks, U = 100%

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9

M
is

se
d

 d
e

a
d

li
n

e
s

Integrity - Biba rules violations (mix-grain)

(c) mix-grain

Figure 8.5: Schedulability vs. security with processor utilization variation

increasing the duration of phase 2 and reducing slightly the duration of phase
1, more and interesting solutions out of the scope of app-grain could have been
found. From figure 8.5, we conclude that the more the processor utilization
increases, the more the security impacts the schedulability for this experiment.

Second, we affirm that mix-grain can be interesting in providing some particular
solutions that app-grain cannot propose if the durations of phase 1 and 2 of
mix-grain are well defined. That leads us to point out that task-grain could be
less efficient in many cases because its design space is too large and it becomes
difficult for this algorithm to converge.

8.3.2 Experiment 4: results of PAES when considering intra-partition
communications non-vulnerable

8.3.2.1 Conditions of experiment

We conduct this experiment on case studies generated in the experiment 8.3.1
for processor utilization from 50% to 100% and a maximum of 2 partitions. We
assume that intra-partition communications are not vulnerable. Then we only
consider the security of inter-partition communications through the security im-
plementations X-F, X-T, and X-TM.

–133–

Chapter 8. Experiments and evaluations

Case study processor utilization 50% 60% 70% 80% 90% 100%
#Missed deadlines 0 0 1 5 5 11
#BLP rules violations 0 0 0 0 0 0
#Biba rules violations 0 0 0 0 0 0

Table 8.2: DSE with intra-partition communications considered as secured with
mix-grain and a maximum of 2 partitions

We conduct this experiment with only mix-grain mutation algorithm on the case
studies. We choose mix-grain as we remarked during the previous experiments
that its solutions are non-dominated by those proposed by app-grain and task-
grain.

8.3.2.2 Results

Table 8.2 presents the fitness values of solutions proposed for each case study.
We only have one solution for each case study that we analyze in the remainder
of this section. For these case studies, we remark that the DSE proposed better
solutions when we suppose that intra-partition communications are secured and
non-attackable. It may be explained as it implies fewer communications to secure
comparing when all communications including intra-partition communications
are vulnerable. The overhead introduced by the security is less significant. When
only one partition is used, there is no communication to secure, and the model
is considered as fully secured. Then if the model is initially schedulable, our tool
declares that there is no need to proceed with DSE since the optimal solution
corresponds to one of our initial solutions (all tasks assigned to one partition
and no secured communication). For example, the case study with processor
utilization of 50% is schedulable with all the tasks assigned to the same partition.

With a processor utilization of 60%, by assigning all the tasks to one partition and
considering the communication overhead, the model is considered as fully secured
since there is no inter-partition communication but the model is not schedulable
(2 missed deadlines). Then at the 39th iteration, the DSE proposes a schedulable
solution with 2 partitions where ROSACE is assigned to a first partition and the
others applications (CFAR, JPEG, 3 autopilots) are assigned to a second parti-
tion (solution in Table 8.2). Since there is no communication between ROSACE
and the other applications, there is no inter-partition communication. Then the
solution has no security overhead and is considered as fully secured. The explo-
ration stops at the 39th iteration instead of continuing till the end of the fixed
number of iterations (2000) since the optimal solution is found.

Another option is revealed when processor utilization is 70%. For this case study,
by assigning all the tasks to one partition and considering the communication
overhead, the model is considered as fully secured since there is no inter-partition

–134–

8.3. Experiments 3-6: illustration with a flight controller, multimedia based
application, CFAR and autopilot applications

communication but the system is not schedulable (4 missed deadlines). The DSE
proposes a better solution, fully secured, by assigning ROSACE application and
4 among 5 tasks of the second autopilot application to a partition and other
tasks (from CFAR, JPEG, first autopilot, third autopilot applications, and the
remaining task of the second autopilot) to another partition. This model implies 2
inter-partition communications to secure, and they were secured with the security
implementation X-T.

This case study confirms also the good choice and the relevance of mix-grain be-
cause the proposed solution has tasks of the same application split onto different
partitions (solution out of the scope of app-grain) and the larger space of solution
impacts significantly the convergence of task-grain.

For the remaining case studies (80%, 90%, 100%), the DSE does not propose a
better solution than the initial solution fully secured with all tasks assigned to
only one partition.

8.3.3 Experiment 5: results of PAES with variation of the maximum
number of partitions from 2 to 4

8.3.3.1 Conditions of experiment

Here, we conduct the experiment 3 but with a maximum of four partitions, to
evaluate how increasing the number of partitions impact the search. Then, dur-
ing the exploration, we investigate the solutions with one, two, three, and four
partitions in order to find those which allow the best trade-off solutions. Increas-
ing the number of partitions enlarges the solution space, offering opportunities to
find better solutions but it also induces the difficulty of exploring efficiently this
larger solution space. Our different mutation algorithms may or not handle this
increasing complexity. Furthermore, because of the impact of inter-partition com-
munications on both security and scheduling, increasing the number of partitions
may degrade ours metrics and could be in fact a drawback.

We conduct this experiment for mix-grain algorithm on the case studies gener-
ated in experiment 3, with processor utilizations of 60% and 90%, with a number
of iterations fixed to 2000. We run the PAES tool with a maximum number of 2
partitions and of 4 partitions and by assuming that intra-partition communica-
tions are attackable; then only security implementation (F-F) is applied.

8.3.3.2 Results

As shown next, the size of the search space is much larger for 4 partitions than
for 2 partitions. Let m applications with a total number of n tasks, assigned

–135–

Chapter 8. Experiments and evaluations

to r partitions. The size of the search space DS corresponds to the number of
solutions of the addressed problem.

It is computed with the number of tasks/applications to partitions assignment
DT and the number of communication parameter implementations DC. The
former corresponds to the Stirling number of the second kind S(n, r) [165], that
is the number of possibilities to divide n tasks into r partitions at most.

According to our approach, to represent communications, each of mu vulnerable
communications (see objective functions rows of Table 7.2) has a possibility of
2 values (secured or vulnerable), and the secured option has one possibility to
implement security feature, thus DC = 2mu . In the case when intra-partition
communications are non-attackable and only inter-partition communications are
attackable, the DC becomes DC = 3 · 2mu since there are 3 possibilities to
implement security feature. For the rest of this section, we consider that intra-
partition communications are attackable. task-grain and mix-grain have the same
size of search space since they can investigate all the tasks to partitions assignment
possibilities.

For these methods, with m applications composed of n tasks, and mu vulnerable
communications to be mapped into r partitions,DS = DT ·DC = (

∑r
q=1 S(n, q))·

2mu . For the same case study, app-grain is defined by a size space of DS =
DT ·DC = (

∑r
q=1 S(m, q)) · 2mu since it considers only applications to partitions

assignments.

As example, for this experiment with 6 applications, 41 tasks, 10 weakly sensitive
communications and a maximum number of 2 partitions (resp. 4 partitions), task-
grain and mix-grain have a search space of 1.12×1015 (resp. 2.06×1026) solutions
while app-grain has a search space of 31,744 (resp. 65,560) solutions.

Figure 8.6 shows the set of non-dominated solutions by couples of objectives for
mix-grain. In this experiment, we run the first phase during 1/2 of the total
number of iterations.

For the case study with processor utilization of 90%, the solutions with the max-
imum number of 2 partitions are better or equal to the solutions with the maxi-
mum number of 4 partitions (figure 8.6b). By analyzing the architectures of the
solutions, we remark that for the exploration with the maximum number of 4
partitions, no solution in the archive used more than 2 partitions.

For the case study with processor utilization of 60%, the solutions with the max-
imum number of 2 partitions are better or equal to the solutions with the max-
imum number of 4 partitions (figure 8.6a). However, the DSE with a maximum
of 4 partitions proposed an archive with some solutions with more than 2 parti-
tions. We remark that these solutions are worse than the solutions provided by
the exploration with a maximum of 2 partitions. For example, there is a fully
secured model with 17 missed deadlines obtained when the tasks are split into

–136–

8.3. Experiments 3-6: illustration with a flight controller, multimedia based
application, CFAR and autopilot applications

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12

M
is

se
d
 d

e
a
d
lin

e
s

Confidentiality - BLP rules violations (mix-grain)

41 tasks, U = 60%, 2 partitions
41 tasks, U = 60%, 4 partitions

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9

M
is

se
d
 d

e
a
d
lin

e
s

Integrity - Biba rules violations (mix-grain)

(a) Processor utilization: 60%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12

M
is

se
d
 d

e
a
d
lin

e
s

Confidentiality - BLP rules violations (mix-grain)

41 tasks, U = 90%, 2 partitions
41 tasks, U = 90%, 4 partitions

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9

M
is

se
d
 d

e
a
d
lin

e
s

Integrity - Biba rules violations (mix-grain)

(b) Processor utilization: 90%

Figure 8.6: Schedulability vs. security with variation from 2 to 4 partitions

–137–

Chapter 8. Experiments and evaluations

4 partitions instead of 14 missed deadlines obtained where tasks are split into 2
partitions during the DSE with a maximum of 2 partitions. This can be explained
because the design space with 4 partitions is larger and the algorithms have dif-
ficulties to converge to non-dominated solutions in this case. The inter-partition
communications overheads can also explain the reject of 4 partitions solutions.

In conclusion, for these specific case studies, the maximum number of partitions
used by non-dominated solutions for our PAES exploration is 2 even when 4
partitions are allowed. With 4 partitions, interpartition communication costs
reduce the possibilities for such solutions, making them difficult to find in an
enlarged search space.

For these case studies and the same number of iterations, we remark that the DSE
with 4 partitions has a higher execution time than the DSE with 2 partitions.
For example, considering the case study with processor utilization of 60%, the
DSE with 2 partitions takes 51 minutes instead of 74 minutes for the DSE with
4 partitions.

8.3.4 Experiment 6: results of PAES while considering APEX calls
execution times given in SFPBench [2]

8.3.4.1 Conditions of experiment

This experiment is conducted to evaluate how different overheads of intra-partition
and inter-partition communications can impact the results of the DSE. We per-
form this experiment with the three mutation algorithms on the case study gen-
erated in experiment 3 with a processor utilization of 60%.

We assume that intra-partition communications are attackable; then only secu-
rity implementation (F-F) is applied. The particularity of this experiment is that
we consider the overheads of intra-partition and inter-partition communications
based on the execution time of the APEX calls given from a benchmark in [2].
Table 8.3 presents the values (in microseconds) taken from this benchmark and
the corresponding values used for each application in our case study. We use
blackboards (resp. sampling ports) for intra (resp. inter) partitions communica-
tions.

8.3.4.2 Results

We compare the results to the ones obtained in figure 8.5 of the section 8.3.1 for
the same case study with the processor utilization at 60%, using mix-grain and
a lower communication overhead of 10 us (resp. 280 us) for intra-partition (resp.
inter-partition) communications. As shown in Table 8.4, the archive contains
only one solution per mutation algorithm.

–138–

8.3. Experiments 3-6: illustration with a flight controller, multimedia based
application, CFAR and autopilot applications

Display black board [us] Write black board [us]
SFPBench (16 bytes) 1.52 1.96
ROSACE/CFAR

(8 bytes) 0.76 0.38
JPEG (792 Kbytes) 77143.04 99473.04
Autopilot (16 Kbytes) 1556.48 2007.04

Read sampling port [us] Write sampling port [us]
SFPBench (16 bytes) 8.48 10.09
ROSACE/CFAR

(8 bytes) 4.24 5.04
JPEG (792 Kbytes) 430376.96 512087.68
Autopilot (16 Kbytes) 8683.52 10332.16

Table 8.3: APEX calls execution times

#missed #BLP rules #Biba rules
deadlines violations violations

Solutions with task-grain
37 12 9
38 0 0

Solutions with app-grain 23 0 0
Solutions with mix-grain 23 0 0

Table 8.4: Schedulability vs. security with SFPBench APEX calls measurements

First, we observe that the DSE proposed worse solutions, as compared to the
previous experiment, with much higher missed deadlines. This can be explained
by the considerable overheads of the sampling port and the large data size of
some applications in our case study such as JPEG. Second, we observe that all
the proposed solutions used 2 partitions (except one from task-grain) and that
all the solutions generated with only one partition were dominated and thus
rejected (the one from task-grain is in fact dominated by those of app-grain and
mix-grain archives), despite the overheads induced for inter-communications.
The communications between partitions are sufficently reduced in the solutions
found to avoid too much extra missed deadlines due to overcosts, as compared to
the ones induced when packing tasks into a single partition.

We observe that the 3 mutation algorithms proposed fully secured solutions with
different numbers of missed deadlines. mix-grain and app-grain were most
efficient with a better number of missed deadlines (23 missed deadlines for mix-
grain and app-grain vs. 38 for task-grain). This can be explained by the larger
space of solutions for task-grain which implies difficulties to converge.

In conclusion, the data size of the application impacts again the conflict be-
tween security and schedulability not only through security features (encrypter,
decrypter, hashing functions) but also through the inter-partition and intra-

–139–

Chapter 8. Experiments and evaluations

partition communication overheads.

8.4 Experiment 7: comparison of our PAES tool results vs.

exact solutions

This experiment consists of validating the accuracy of our DSE approach by com-
paring an approximate Pareto front obtained with our 3 PAES based approaches
to the exact Pareto front for testcase of Section 8.2. The exhaustive method
allows to compute the exact Pareto front: all feasible solutions are generated
and evaluated and non-dominated ones among them constitute the exact Pareto
front. For this purpose, we implemented an exhaustive search tool that works as
follows:

• It initializes an empty archive

• It enumerates all the possible solutions. So for each implementation of tasks
to partitions assignment, we enumerate all possible values of vulnerable
communications.

• It performs feasibility test on each generated solution. It consists of verify-
ing that the generated solution respects the constraints defined in table 7.1.
If the constraints are met then the solution is considered as feasible.

• It evaluates each feasible solution and compares it to the solutions in the
archive according to the Pareto dominance principle and update the archive
if needed. At the end, the archive corresponds to the Pareto set and thus
associated Pareto front.

The sections below present the conditions of this experiment and its results.

8.4.1 Conditions of experiment

For this experiment, we use the case study based on the ROSACE and the JPEG
application used in the experiment 2 (section 8.2). This case study is composed
of 22 tasks and we limited the number of vulnerable communications to 7 over
26 communications. We assume a maximum of two partitions.

This leads to a design space of 268,435,328 solutions computed based on the
defined formula in the experiment 5 (section 8.3.3). We start the enumeration of
this large search space and after 3 days of computation, found that it will take
approximately 152 years to explore all the design space, based on the progression

–140–

8.4. Experiment 7: comparison of our PAES tool results vs. exact solutions

 0

 1

 2

 3

 4

 0 1 2 3

M
is

se
d

 d
e

a
d

li
n

e
s

Confidentiality - BLP rules violations

Exhaustive
Task_grain
App_grain
Mix_grain

 0

 1

 2

 3

 4

 0 1 2 3

M
is

se
d

 d
e

a
d

li
n

e
s

Integrity - Biba rules violations

Figure 8.7: Exhaustive vs PAES

rate over these 3 computation days. Thus, we choose a smaller test-case in
such a way that it can be explored in approximately one computation day. This
manageable case study is made of 10 tasks and 3 weakly sensitive communications
over 8 communications. It is composed of 2 instances of the autopilot application.
Then the design space contains 4088 solutions.

We also assume that the autopilot data size is 16 Kilobytes. Therefore the execu-
tion time of the encryption, the refreshment of the encryption key and the hash
tasks are respectively 340 us, 88.83 us, and 205.52 us. We assume that intra-
partition and inter-partition communications are attackable; then only security
implementation (F-F) is applied.

We conducted this experiment, first the exhaustive search and second the PAES
approach considering the three mutation algorithms; each mutation for 2000 it-
erations. The first phase of mix-grain ends at 1000 iterations.

8.4.2 Results

Figure 8.7 shows the set of non-dominated solutions by couples of objectives for
the app-grain, task-grain, mix-grain and the exhaustive approach which provides
the optimal Pareto set.

The exhaustive search proposes the optimal solutions which dominate or are
equal to the solutions proposed by the 3 mutation algorithms. These solutions

–141–

Chapter 8. Experiments and evaluations

approximate the optimal solutions with a lower computation effort (an execution
time of 37 minutes as compared to the 1 hour and 43 minutes required for the
exact set computation).

As shown by the search space size computation and the preliminary aborted
experiment described in Section 8.4, this experiment shows the relevance of
the PAES approach when the exhaustive method becomes unmanageable. We
observe that the PAES approach for the 3 mutation algorithms did not find all the
optimal solutions but they find several. Then as expected from a metaheuristic,
the proposed frontis close to the optimal front. For example, for the left part of
the figure 8.7, over the three exact solutions proposed by the exhaustive method,
the app-grain, task-grain, and mix-grain found two exact solutions.

As presented in chapter 5, the hypervolume is a metric that helps to evaluate the
quality of a front (i.e. convergence) and then compare two fronts. When consider-
ing a MOOP with objective functions to minimize, between two fronts, the front
with the larger hypervolume should be preferred. Then we computed the hyper-
volume of the fronts presented at the left part of figure 8.7 with linear optimization
as presented in section 5.3.1.3 (i.e. hypervolume ∈ [0, 1]). The hypervolume of
the exhaustive, mix-grain, app-grain, and task-grain fronts are respectively 0.33,
0.16, 0.16, and 0. The hypervolume of mix-grain, app-grain fronts are equal.
Their hypervolume is higher than the hypervolume of the task-grain front. It
shows that mix-grain, and app-grain algorithms have proposed better fronts than
the task-grain. Even if we remark that the three algorithms have found the same
two exact solutions over the three proposed by exhaustive algorithms. The dif-
ference between their hypervolume resides in the number of solutions. mix-grain,
and app-grain proposed three solutions compared to task-grain which proposed
only two solutions. This can be explained by the fact that the number of solutions
on a front is a criterion that impacts its hypervolume.

This experiment confirms that the algorithm task-grain in the above experiments
has problems to converge (to propose better solutions) because its design explo-
ration space is too large even with this small test case of experiment 8.4.

By analyzing the tasks to partitions assignment of the solutions, we remark that
there are two optimal solutions out of the scope of the app-grain algorithm. These
solutions have tasks of the same applications assigned to different partitions.
Thus, whatever the number of iterations fixed, the app-grain will never be able
to reach these solutions; which confirms the relevance of the mix-grain algorithm.

8.5 Conclusion

In this chapter, we carry out 7 experiments to evaluate the approach and to iden-
tify key parameters that impact the trade-off between security and schedulability.

–142–

8.5. Conclusion

We show through the experiment 8.1 that securing applications with a low pro-
cessor utilization and exchanging small messages will not affect schedulability.
Therefore, our DSE approach returns that there is no need for DSE in such a
situation. This is the case of control-command applications that have a low pro-
cessor utilization and exchange small data, e.g. 108 bits, 32 bits, and 20 bits with
CAN, ARINC 429 or ARINC 629 buses respectively [166, 167].

The experiment 8.2 illustrates an application that requires DSE. This application
is characterized by a multimedia part with a large data size, which confirms that
the data size has an impact on the conflict between security and schedulability.

The experiment 8.3.1 consists of applying the PAES algorithm to different gener-
ated versions on the same initial application with different processor utilization
values. It confirms that processor utilization is a key parameter that should be
considered to decide if design space exploration has or has not to be performed.
With these experiments (experiment 8.2 and experiment 8.3.1), We have com-
pared the mutation algorithms task-grain, app-grain and mix-grain. Results show
that mix-grain can propose interesting solutions impossible to be generated with
app-grain because they are out of its design space.

In experiment 8.4, we compare the optimal Pareto front provided by an exhaustive
research and the Pareto fronts computed by the 3 mutation algorithms. First,
we see that the design space of task-grain is too large to converge towards the
best solutions. So it often gives solutions dominated by app-grain and mix-
grain ones. Second, even if sometimes app-grain and mix-grain provide similar
results, mix-grain can be seen as a solution to the problem of convergence of
task-grain since both have the same search space and granularity level but mix-
grain can provide interesting solutions not reachable by app-grain. This result
has been confirmed by the exhaustive research who proposed solutions with tasks
of the same application assigned to different partitions. Whatever the number of
iterations, app-grain is never able to reach these solutions. Third, task-grain and
mix-grain provided solutions with tasks of the same application split into different
partitions. Such solutions were also found by the exhaustive method as part of
the Pareto set (optimal solutions). This motivates the need for a mechanism to
enforce memory protection between a subset of tasks within the same partition in
TSP systems, which does not exist in ARINC 653 for example. Such protection
mechanism is considered in [168] where each thread may be protected from
others threads. Implementing such a mechanism in TSP systems should reduce
the impact of the security on the schedulability.

With the experiment 8.3.2, we compared the 4 security implementations (F-F,
X-F, X-T, X-TM). We have noticed that DSE finds solutions that optimize the
assignment of tasks to partitions so that there is no inter-partition communica-
tion. These solutions do not require any security features. The DSE also proposes
a solution with inter-partition communications secured by the task dedicated se-

–143–

Chapter 8. Experiments and evaluations

curity implementation (X-T). This shows that varying security implementation
may be relevant depending on the case study.

The experiment 8.3.3 also shows that the number of partitions has a high impact
on the size of the search space. For example, for our case studies, there is no need
to proceed an exploration with more than 2 partitions because all the solutions
proposed by the exploration with a maximum number of 4 partitions are included
in the design space of the exploration with a maximum of 2 partitions or domi-
nated by the solutions proposed by this later. Moreover, due to the larger size of
the search space with a maximum of 4 partitions, the exploration has difficulties
to converge to solutions non-dominated by solutions proposed with the maximum
number of 2 partitions.

Finally, we also show in experiment 8.3.4 that values of overheads introduced
by intra and inter-partition communication mechanisms such as blackboards and
sampling ports have a significant impact on system schedulability. Thus, the
number of inter-partition communications and communication overheads are also
important parameters that should be considered when addressing both schedu-
lability and security.

In the next chapter, we show that our approach can be extended to deal with other
constraints and objective functions. We presents the extension of our approach
to multi-core systems and safety through active redundancy on secured real-time
TSP systems.

–144–

9
Design space exploration for safe and

secure Multi-core TSP systems

In chapter 7, we propose a DSE approach based on PAES that provides trade-
offs between schedulability and security for TSP systems. This approach only
considers unicore platforms and does not consider safety constraints. In this
chapter, we show how such DSE can be extended to other similar MOOPs.

We extend our approach to take into account multicore execution platforms and
safety constraints. Then, we propose to investigate the impact of multicore plat-
forms on TSP systems while addressing the conflicts between security, and schedu-
lability, and safety constraints. Safety is enforced by both the isolation through
partitioning to prevent fault propagation and by active redundancy, i.e. repli-
cations of tasks and partitions. We explore the tasks to partitions assignment
in TSP systems when communications are secured and tasks are replicated for
safety. To validate the approach, we conduct two experiments. We modify the
search space by varying the number of cores, and analyze the impact varying the
number of cores on the adressed MOOP. A first experiment shows the effective-
ness of our approach in providing trade-offs in the context of multicore execution
plateforms and safety constraints. It also provides consistent results showing
schedulability improvements when the number of cores is increased, which as-
sesses the relevance of our DSE. Further, a second experiment is performed to
take into account multicore hardware shared resources overheads, and investigate
their impact on schedulability of the systems.

Section 9.1 presents the background of TSP systems on multicore execution plat-
forms, and safety. It also depicts the system model, and the assumptions con-
sidered in this chapter. Section 9.2 describes our DSE approach for multicore
safe and secure TSP systems. Section 9.3 shows the experiments conducted to

–145–

Chapter 9. Design space exploration for safe and secure Multi-core TSP systems

evaluate the approach. Finally, Section 9.4 discusses related work and Section 9.5
concludes the chapter.

9.1 Background and system model

This section presents first the background of multicore TSP systems and safety.
Second, we discuss the extensions of our system model and assumptions to take
into account the multicore aspect.

9.1.1 Multicore TSP systems

In the multicore section of the ARINC653 avionic standard [169], each task can be
assigned to a partition and to one or multiple cores. The tasks to cores assignment
is addressed by the core affinity concept that indicates the cores on which each
task is allowed to run. Tasks within a partition can be executed concurrently on
different cores. A task that has a core affinity with only one core can only be
executed on the corresponding core. A task with a core affinity to multiple cores
is allowed to migrate from or to one of these cores.

In the sequel, we assume that a task is not allowed to migrate from one core to
another and the core affinity defines that each task τi is assigned to only one core
COi.

In ARINC653 multicore TSP systems, offline cyclic scheduling is fixed for the
partitions. Partitions are executed cyclically on the major time frame (MAF).
Tasks inside partitions are executed concurrently based on a given scheduling
policy (i.e. fixed-priority scheduling).

Fig 9.1 shows an example of scheduling of a multicore system with four tasks,
assigned to two partitions and two cores. We note that {τ1, τ3, and τ4} and
{τ2} are respectively assigned to core CO1 and CO2. For tasks to partitions
assignment, {τ1, τ2, τ3}, {τ4} are respectively assigned to partitions P1, and P2.
The same MAF is assumed for all cores. Then when a partition is activated, only
its tasks are executed concurrently on the cores depending on the tasks to cores
assignment. Cores that have no task in the activated partition are in idle mode.
They are not used till the activation of a partition with tasks assigned to them.
In this example, we assumed that there is a communication from τ1 to τ2 and
another from τ1 to τ3. Then τ2 has to wait for τ1 completion time before being
starting its execution. This explains why even if τ1 and τ2 are on different cores,
and τ2 is the only task on CO2, τ2 could not start at time 0.

Multicore systems are more and more adopted in real-time systems since they
imply high computational capabilities [170]. These systems have cache memory

–146–

9.1. Background and system model

idle

idle idle

idleidleidle

Major time frame

Duration (partition1)

2

1

3

4

2

1 3 4

: Task execution : Task release: Core in idle mode : Task completion

time

𝑃1 𝑃2

𝐶𝑂1

𝐶𝑂2

0 2412

Figure 9.1: Example of a multicore TSP system scheduling

that help to reduce the main memory access latencies. In general, they are
composed of sets of cores grouped on chips. Each core may have its private
Level-1 cache, while cores on the same chip shared the same Level-2 cache [171].
Then tasks on different cores may share the same Level-2 cache resources. When
tasks are preempted, the cache is evicted and it has to be reloaded [172]. This
leads to overhead on the tasks execution time. Furthermore, tasks on different
cores have access to the main memory through the front side bus (FSB) [172].
This implies a contention on the shared bus and then leads to another overhead
on the tasks execution time. This overhead is called interconnection overhead in
the sequel.

Therefore multiple cores executing simultaneously several tasks, lead to overheads
introduced by the hardware shared resources (Level-2 cache, bus, memory) [173].
In [174], it has been proven that they are non-negligible. These overheads may
lead some tasks to miss their deadlines and then impact the schedulability of the
considered system. They have to be considered when performing the schedula-
bility analysis of a multicore real-time system.

9.1.2 Safety

In this chapter, we address safety constraints during the DSE. Safety is related
to failures, the availability and reliability of systems. Two major types of failures
exists: halting failures (such as crash failure [175], fail-silent [176] or fail-stop [177,
178]) and arbitrary failures [179].

Halting failures are concerned when a unit remains silent and stops sending or
receiving messages, or stops functioning. It assumes that incorrect data cannot
be sent by the unit. It considers that while messages are sent, they are correct
and the only failure that may occur is their loss. In this case, an extra instance

–147–

Chapter 9. Design space exploration for safe and secure Multi-core TSP systems

of the unit can help to guarantee safety. Thus, if one instance of a unit stops
sending messages, we rely on a second instance to send them. To resist k failures,
it takes k+1 unit instances to guarantee safety [178]. If the k units stop sending
messages, then we rely on the (k + 1)th unit to send them.

Halting failures assume no malicious failure which is the case of arbitrary fail-
ures. Arbitrary failures include the detection that some messages are not sent or
received, the detection of incorrect messages sent with errors, and the detection
of extra sent messages. For this case, at least 2 · k + 1 units are necessary to
ensure safety over k failures [180]. Then if an instance fails, other instances still
work to recover the messages. An error is detected by comparing the outputs of
all the instances, and voting is made for the majority.

Differents strategies to address different types of crash and arbitrary byzantine
failures are proposed in [181]. The authors propose to investigate different dis-
tribution of replicas instead of the intuitive balanced replica placement.

9.1.3 System model and assumptions

In this chapter, we consider a multicore TSP system ofm applications (A1, ..., Am)
where each application is a set of tasks. Systems considered are composed of a
set n periodic tasks (τ1, ..., τn). We assume a multi-core architecture of d identical
cores (CO1, ..., COd).

Each task τi is defined by a set of parameters (Ci, Ti, Di, CIi, CLi, Ai, Pi, COi).
As defined in Section 6.1, Ci, Ti, Di, CIi, CLi, Ai, Pi corresponds respectively
to the WCET, the period, the deadline, tolerance level, confidentiality level, the
application and the partition of the task τi. We assume that all the partitions
have the same properties and are executed based on a major time frame (MAF).
A task is assigned to one core COi and core migration is not allowed at runtime
(affinity of 1). We assume that tasks communicate with each other through
intra-partitions or inter-partition communications depending on their assigned
partitions.

Considering security, we only address confidentiality issues in this chapter. We
only consider the security implementation F-F (see Section 6.2). It assumes that
when a communication (intra or inter-partition) from task τi to τj is vulnerable,
functions of a library implementing encryption and decryption are called.

In this chapter, we consider safety problems induced by arbitrary failures. We
assume the worst-case situation where the replication is applied to all the software
components (tasks and partitions). Then with such safety constraints, each task
and partition is triplicated (i.e. implemented by three instances). We impose
that two instances of the same task are not allowed to be placed on the same
partition.

–148–

9.2. PAES adaptation for safe and secure multicore TSP systems

This work is not an answer to multicore platforms with hardware single point
failure; e.g. when cores are interconnected by a bus, the bus is a single point of
failure, while it is not the case if cores are interconnected with a crossbar. In
this work, we consider safety as a constraint instead of an objective functions to
optimize.

Finally, we also consider overheads introduced by the hardware shared resources
(level-2 cache, bus, memory, etc) when multiple cores execute simultaneously
several tasks [173]. This issue is part of the key point addressed by the CAST-
32A for Avionics Multi-Core Processing [182].

9.2 PAES adaptation for safe and secure multicore TSP sys-

tems

In this section, we present a DSE approach that computes trade-offs between secu-
rity and schedulability while considering safety constraints, resources constraints
such as the number of cores and partitions, and hardware shared resources over-
heads. This work is an extension of our PAES-based DSE approach presented
in Chapter 7. The general process of our DSE approach presented in figure 7.1
remains the same, but we need to review (1) initial solutions, (2) constraints to
perform the feasibility tests, (3) objective functions to optimize, (4) encoding of
solutions, (5) mutation operators to generate new solutions based on the new
considered context (redundancy, multicore execution platform).

9.2.1 Initial solution

We design the initial solution by resolving all security vulnerabilities in the sys-
tem, placing all the system tasks in the same partition running on a single core.
Then we triplicate the tasks, the communications between tasks, and the par-
titions to ensure safety. For a communication from task τi to τj, when both
tasks are triplicated (i.e. each task has three instances), each instance of τi has
a communication to the three instances of task τj.

We proceed with a schedulability analysis of this solution. If it is schedulable,
there is no need to continue with the exploration: we consider this solution as an
optimal solution since it is fully secured, schedulable and safe with the minimal
number of cores. Otherwise, we add this initial solution to the archive.

Instead of starting the exploration with an archive containing one solution as spec-
ified in the original PAES algorithm, we fill the archive with nine non-dominated
solutions. We made this choice to improve solution diversity and exploration of
the design space. We fill the archive with solutions modeling various tasks to

–149–

Chapter 9. Design space exploration for safe and secure Multi-core TSP systems

cores assignment and communications security. As in chapter 7, we added solu-
tions by combining various strategies. In addition to the solutions proposed in
section 7.2.6 (e.g. solutions with single partition, balanced partitions, partition-
ing based on confidentiality or integrity) which are single core solutions (i.e. all
the tasks assigned to a single core), we consider solutions with each task assigned
to a different core and, tasks of each application assigned to a different core. For
all these solutions, we decided to resolve all or no security vulnerabilities and
apply redundancy.

9.2.2 Objective functions and constraints

We defined the constraints and the objective functions based on schedulability,
security, safety issues, and number of cores. To the constraints and the objective
functions proposed in chapter 7, we added a constraint according to safety (see
constraint C4 detailed below), and an objective function concerning the number
of cores (see objective function F2 detailed below).

In our model, tasks can be either hard deadline tasks or soft deadline tasks. As a
constraint, a solution is considered invalid and is rejected if a hard deadline task
misses its deadline. Missed deadlines are tolerated for soft deadline tasks.

• C1: No missed deadlines for hard deadline tasks

Our first objective function is defined by the number of soft deadline tasks that
missed their deadlines. This number is computed through a scheduling simulation
of the solution. This function is noted below:

F1 = #missed deadlines

Since we decide to investigate tasks to core assignment to evaluate their impact
on the considered systems, our second objective function represents the number
of cores used in a given solution:

F2 = #cores

The problem depicted in this chapter addresses only the confidentiality of com-
munications between tasks on contrary to the previous work that considers both
confidentiality and integrity. We defined the constraints below for security vul-
nerabilities based on BLP rules for strongly sensitive communications:

• C2: No data received by Unclassified task from Secret or Top-secret task

–150–

9.2. PAES adaptation for safe and secure multicore TSP systems

Each model that compromises one of these constraints is rejected. Otherwise,
any communication violating the other BLP rules is tolerated. This allows the
definition of the security objective function:

F3 = #Bell violations

The equation F3 represents the number of weakly sensitive communications that
violate BLP rules.

Since we address safety issues by applying active redundancy, each task of our
model is triplicated. By definition, this redundancy imposes that two instances
of the same task should never be placed on the same partition. Then we assumed
as safety constraints that every solution with two instances of a task placed on
the same partition should be automatically rejected.

• C4: Two instances of the same task cannot be placed in the same partition

In order to find trade-offs for our MOOP, all the defined objective functions have
to be minimized. Constraints and objective functions are computed with the
Cheddar tool in which our DSE heuristic has been implemented [25].

9.2.3 Encoding of solutions

As in chapter 7, we represent our solutions in a chromosomal form. Each solution
of n tasks andm communications is represented by a vector of (2·n+m) positions.
The vector representing the chromosome is composed of 3 parts.

The first part describes the tasks to partitions assignment: for a TSP system of
n tasks and p partitions, chrom[i] = j (1 ≤ i ≤ n and 1 ≤ j ≤ p) indicates that
the ith task is assigned to the jth partition.

The second part, similar to the first one, is tasks to cores assignment: considering
that the system contains d cores, chrom[i] = k (n+ 1 ≤ i ≤ 2 · n and 1 ≤ k ≤ d)
indicates that the ith task is assigned to the kth core.

The last part of the chromosome is dedicated to describing the communications
between the tasks of the system. We divided the communications into two cat-
egories based on the predefined constraints and objective functions. Then for a
TSP system, we distinguish strongly sensitive communications and weakly sen-
sitive communications. Strongly sensitive communications are communications
that should be imperatively secured otherwise the solution is invalid. Weakly
sensitive communications are allowed to violate some security rules based on the
objective functions above mentioned. Thus, we consider that a TSP system of m
communications (m = mc + mu), is composed of mc strongly sensitive commu-
nications and mu weakly sentive communications. For each lth communication

–151–

Chapter 9. Design space exploration for safe and secure Multi-core TSP systems

(a) Example of a normalized multicore chromosome

Legend :

Task

Communication with
security vulnerability

Partition

Partition port

Communication with no
security vulnerability risk

Communication with
mitigated security
vulnerability

P1

P3

1

3

4

Core1

P2

2

Core2

(b) Model of the illustrated chromosome

Figure 9.2: Illustration of multicore solutions encoding

(2 · n+ 1 ≤ l ≤ 2 · n+m) in the system, the chrom[l] is defined by a set of two
values. The first value identifies the communicating tasks and the second value
indicates the status of the communications (vulnerable, secured or no risk). It
is important to highlight that all the mc strongly sensitive communications must
be secured while vulnerable weakly sentive communications may be tolerated.

Fig. 9.2a shows an illustration of a solution in a chromosomal form. This solution
is composed of four tasks assigned to three partitions and two cores.

The first part that represents the tasks to partitions assignment reveals that tasks
τ1 and τ4 are assigned to the partition P1 and task τ2 and τ3 are respectively
assigned to partitions P2 and P3. The second part shows the tasks to cores
assignment. Tasks τ1 and τ4 are assigned to core1 and tasks τ2 and τ3 are assigned
to core2. The remaining part is reserved to communications. It shows that
this solution is composed of 1 vulnerable communication (e.g. communications
from τ1 to τ2), 1 secured communication (communication from τ4 to τ2), and 1
communication with no risk of security vulnerability (communication from τ3 to
τ4). For normalization purposes as in chapter 7, we assume partitions and cores
of solutions are identical. Then we decided that τ1 should always be assigned to
partition P1 (resp. core core1), and τ2 should be assigned to P1 (resp. core1) if

–152–

9.2. PAES adaptation for safe and secure multicore TSP systems

and only if τ1 and τ2 are assigned to the same partition. Otherwise, τ2 should
be automatically assigned to P2 (resp. core1). This normalization is adopted to
guarantee the unicity of representation of solutions and reduce the size of the
design space.

Figure 9.2b shows an architectural view of the model encoded in the figure 9.2a.
It easies the understanding of the presented chromosome by showing the tasks to
partitions and cores assignments, and the communications between tasks.

9.2.4 Mutation operator

Since PAES works with a neighborhood-based search, the design space is explored
by mutating a solution to another nearby. We are interested in tasks to parti-
tions assignment, tasks to cores assignment, and the security of communications
between tasks.

The first operator is based on to the mix-grain algorithm proposed in chapter 7.
It changes the tasks to partitions assignment of a solution. It is defined with two
different steps. The first step consists of moving all tasks of a randomly chosen
application to a randomly chosen partition. The second step consists of moving
a randomly chosen task to a randomly chosen partition.

The second operator is similar to the first one but changes tasks to cores assign-
ment. Thus, the first step consists of moving all the tasks of a randomly chosen
application to be executed on a randomly chosen core. The second step is op-
erated by moving a randomly chosen task to be executed on a randomly chosen
core.

Notice that the change of tasks to partitions or tasks to cores assignment has an
impact on the schedulability of the solution.

The third operator concerns weakly sensitive communications of the solution on
which security vulnerabilities are tolerated. It is realized by a random choice of
a communication. If the communication presents security vulnerabilities, then
we secure it by adding security functions. Otherwise, we remove the security
functions and the communication becomes vulnerable. We highlight that contrary
to chapter 7, communications vulnerabilities are mitigated based on only one
possibility of security implementation : function calls (F-F in table 6.1, chapter 6).

After each mutation operation, we conduct feasibility tests to check the respect of
schedulability and security constraints. If the new solution generated by the mu-
tation does not respect one of the constraints, it is rejected and another mutation
operation is performed. Otherwise, if the solution respects all the constraints,
then schedulability and security analysis are performed to evaluate the objective
functions of the solution.

–153–

Chapter 9. Design space exploration for safe and secure Multi-core TSP systems

Table 9.1: Case study task parameters

Tasks Ci [us] Ti [us] CLi

ROSACE
Aircraft Dynamics 200 5000 Secret
Va c 500 20000 Secret
H c 500 20000 Top secret
H Filter,
Az Filter,
Vz Filter,
Q Filter,
Va Filter

100 10000 Secret

Altitude hold 100 20000 Top secret
Vz control 100 20000 Top secret
Va control 100 20000 Secret
Delta ec,
Delta thc

500 20000 Secret

Engine,
Elevator

100 5000 Top secret

CFAR
CFAR complex 90 10000 Top secret
CFAR square scale 50 10000 Secret
CFAR gather 340 10000 Top secret
CFAR printer 30 10000 Top secret

In the next section, we propose to validate and illustrate this new DSE approach
through experiments.

9.3 Test cases and Evaluation

The purpose of these experiments is to evaluate our DSE approach with a case
study. We conducted these experiments to evaluate the impact of the number of
cores, the tasks to cores assignment, and the shared hardware resource overheads
on TSP systems schedulability.

We highlight that our choices of tasks model, considered faults, and encryption
algorithms are classic and from known benchmarks, but can be changed since
they are considered as parameters.

–154–

9.3. Test cases and Evaluation

9.3.1 Case study

We use a case study composed of a set of two applications already used in previous
experiments in chapter 8: the flight controller application ROSACE (Research
Open-Source Avionics and Control Engineering) [27] and the digital signal pro-
cessing application CFAR (Constant False Alarm Rate detection) [4]. ROSACE
is composed of fifteen dependent and periodic tasks. We take the worst-case
execution time of tasks and their period from [27]. CFAR is composed of four
dependent tasks with the WCETs taken from the StreamIT benchmark profiled
in [4]. We also assume for ROSACE and CFAR, an average data size of 8 bytes.

We assumed that cores are identical and have the same predefined MAF. For
simplicity, we choose a MAF where each partition has only one partition window
and all the partitions have the same partition window duration. The partitions
are identical with a duration of 1250 us.

We randomly choose a confidentiality level for each task of the applications since
they are considered as inputs from the system designer. The parameters of the
applications are resumed in Table 9.1. For simplicity, we assumed that all the
tasks of our model are soft deadline tasks.

For securing confidentiality vulnerabilities, we used the blowfish encryption al-
gorithm [31]. With a frequency of 1.2 GHz, we computed the time execution of
security functions based on values provided by the crypto++ benchmark [163]
and the data size of our applications. Then for both applications, the execution
times of encryption, and encryption key refreshment are respectively 0.166 us,
and 88.83 us.We consider the decryption execution time equal to the encryption
execution time.

We assumed that intra-partition (resp. inter-partition) communications are per-
formed through blackboards (resp. sampling ports). For their cost, we consider
the execution times of the APEX calls SFPBench Benchmark proposed in [2].
Considering the data size of our case study, for blackboards (resp. sampling
ports), it gives a cost of 0.76 us/0.32 us (resp. 4.24 us/5.04us) for read/write.

About the shared hardware resource overheads, we only consider the intercon-
nection overhead. We conduct the DSE first by considering the best case with
negligible interconnection overhead. Second, we conduct another DSE by assum-
ing the overhead percentage provided in [174]. It depends on the number of cores
of the considered system. Then for a system with only one core, there is no inter-
connection overhead. For a system between 2 and 4 cores (resp. between 5 and
8), the interconnection overhead on each task corresponds to 10% (resp. 13%) of
its capacity. For systems with more than 8 cores, we assume a 26% overhead.

Each DSE was performed for 20000 iterations which takes 12 hours.

–155–

Chapter 9. Design space exploration for safe and secure Multi-core TSP systems

9.3.2 Results of the experiment

Considering the two applications, the initial system model is made of 19 tasks.
With our safety assumptions, we triplicated partitions, tasks, and communica-
tions. This implies 57 tasks with at least 3 partitions for the DSE. By considering
one of the additional initial solutions defined in 9.2.1 that runs each application
per partition, we assume a DSE with a maximal number of 6 partitions. Then, we
explore multiple solutions with 3, 4, 5, and 6 partitions since the safety imposes
a minimum of 3 partitions.

The solution with minimum cores corresponds to the solution with all tasks as-
signed to a single core. It has a high number of missed deadlines (45 over 57
tasks). By increasing the number of cores to 57 cores (i.e. number of tasks),
more tasks are able to meet their deadlines (e.g. from 45 to 0 missed deadlines
when interconnection communication is considered negligible). This confirms the
impact of multicore platforms. This is explained by the obvious fact that using
more cores increases the computation capacity of the system.

Since these solutions are extreme, we propose to investigate the design search
space, in order to find interesting trade-offs. The DSE proposes a set of 52 (resp.
40) different trade-offs with no interconnection overhead (resp. with interconnec-
tion overhead). Fig. 9.3 shows the set of non-dominated solutions.

For the system model with negligible interconnection overhead, our DSE tool was
able to decrease from 45 to 11 the number of cores required for a fully secured,
safe, and no missed deadlines solution (figure 9.3a). Our DSE is then able to
detect a minimal number of cores that corresponds to a fully secured, safe, and
no missed deadlines solution. This solution considers a better grouping of tasks
on the cores in order to propose a reduced number of cores while not allowing
any task to miss its deadline. The tasks to cores assignment of this solution is so
irregular that it could be difficult and time-consuming to get manually such an
assignment considering 57 tasks to assign to 11 cores. This shows the interest of
a DSE.

The DSE with interconnection overhead also proposes a solution that reduces
to 11 the number of cores for a fully secured, safe, and no missed deadlines
solution (figure 9.3b). Contrary to the above-mentioned solution, it has a different
tasks to cores assignment and used 4 partitions instead of 3 partitions. This
can be explained by the fact that the above-mentioned solution updated with
interconnection overhead was not able to keep no missed deadline. Then the DSE
was able to explore different tasks to partitions and tasks to cores assignments
to avoid missed deadlines without using more cores. Those solutions are not
intuitive and motivate again the use of a DSE approach.

As expected, we observe in the figures that the more the number of cores increases,
the easier it becomes to ensure the security of our TSP system while considering

–156–

9.3. Test cases and Evaluation

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35

M
is

se
d

 d
e

a
d

li
n

e
s

Confidentiality rules violations

nb_cores = 1
nb_cores = 2
nb_cores = 3
nb_cores = 4
nb_cores = 5
nb_cores = 6
nb_cores = 7
nb_cores = 8
nb_cores = 9

nb_cores = 11

(a) No overhead

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35

M
is

se
d

 d
e

a
d

li
n

e
s

Confidentiality rules violations

nb_cores = 1
nb_cores = 2
nb_cores = 3
nb_cores = 4
nb_cores = 5
nb_cores = 6

nb_cores = 11

(b) Variable overhead

Figure 9.3: Schedulability vs. confidentiality

–157–

Chapter 9. Design space exploration for safe and secure Multi-core TSP systems

safety constraints and minimizing the number of missed deadlines. This confirms
the relevance of the proposed DSE.

The increase of the computing capacity related to the increase of the number
of cores can be compromised by a high shared hardware resource overhead. As
shown on the graphs, trade-offs with no security vulnerabilities proposed by the
DSE with interconnection overhead have a number of missed deadlines greater
than or equal to the equivalent in the DSE with negligible interconnection over-
head. Let us consider the fully secure solutions with 5 cores. With no intercon-
nection overhead, there are 7 missed deadlines (figure 9.3a) while there are 13
missed deadlines when considering interconnection overhead (figure 9.3b). This
can also explain that with interconnection overhead, solutions with 6, 7, 8, and
9 cores are dominated by the other solutions and then rejected by the PAES
algorithm. This illustrates that overhead related to shared hardware resources is
a key parameter in the design of safe and secure multicore TSP systems.

9.4 Related work

In this section, we position the work of this chapter by presenting different ap-
proaches that addressed the design of multicore platforms for TSP systems with
schedulability, safety, and/or security constraints/objectives.

Many researchers have investigated TSP systems on multicore platforms. In [183],
the authors depicted how multicore platforms can intervene in ensuring high-
performance requirements. For this purpose, they identified some conditions
such as privileging the intra-partition parallelism, which assumes the possibility
of running parallel tasks of the same partition on different cores. In [184], the
authors proposed the evolution of a TSP unicore system to a TSP multicore
system while considering inter and intra-partition parallelism mechanisms. They
propose to activate simultaneously many partitions on different cores. The work
in [185] explored a similar idea. The authors specifically focused on symmetric
multiprocessing (SMP) architectures where each core has access to a common
shared memory and I/O resources with a single operating system for all the
cores. They defined patterns for SMP/TSP multicore systems with which they
extended the Ocarina code generation tool.

Since safety and security are important requirements for TSP systems, several
researchers showed interest in these domains. In [186], the authors proposed a
survey for validation and certification of TSP multicore systems deployed on the
Xtratum hypervisor [1]. For example, it highlights fault tolerance for safety and
data protection for security. The authors of [150] addressed multicore platforms
not specifically for TSP systems, but for real-time systems in general. They
also addressed the systems’ security vulnerabilities. Then the authors added

–158–

9.5. Conclusion

security mechanisms such as a hash algorithm to their systems and then proposed
a DSE to optimize their schedulability while exploring the security tasks to cores
assignment possibilities.

The potential schedulability benefits of deploying TSP systems on multicore plat-
forms have led to multiple researches on the design and analysis of such systems.
Some have addressed their security and safety vulnerabilities. Few have studied
the assignment of tasks to cores through a DSE for real-time systems in gen-
eral. We propose a DSE approach for multicore TSP systems that investigates
not only tasks to cores assignment but also tasks to partitions assignment and
securing communications in order to find trade-offs. We also integrate safety
constraints into our proposal. As far as we know, no work has proposed such a
set of combinations.

9.5 Conclusion

The purpose of this chapter is to show that the DSE can be adapted to similar
problems in different contexts. In this chapter, we investigate the impact of mul-
ticore platforms on safe and secure TSP systems by proposing an adaptation of
our DSE. Our adapted DSE approach covers the different possibilities of tasks to
partitions assignment, tasks to cores assignment, and securing communications,
which is a combinatorial problem. Then, we propose trade-offs between schedu-
lability and security for a safe TSP system while considering different numbers
of cores, and redundancy.

As expected, our approach confirms that for a safe and secure TSP system with
some missed deadlines, increasing the number of cores effectively helps to optimize
the system schedulability. Better solutions can also be obtained by moving some
tasks from one partition to another or from a core to another. The DSE can find
the required minimal number of core for a safe and secure TSP system. This first
result confirms the interest of our DSE.

To illustrate the interest of our approach, we test the DSE by considering shared
hardware resources overhead existing in multicore platform. This overhead re-
sults from tasks on different cores accessing simultaneously the same hardware
resources. It may increase considerably the required number of cores to keep a
certain level of schedulability. Our experiments show that the shared hardware
resources overhead, the number of cores, the number of partitions are key param-
eters in the design of multicore safe and secure TSP systems. This work confirms
that the proposed DSE is an extensible approach that can be adapted to different
contexts.

–159–

10
Tool design and implementation

In this chapter, we present the Cheddar framework and the prototype imple-
mented for our work. This implementation is developed in Ada and based on
the Cheddar scheduling analysis tool. Our prototype includes security analysis,
DSE with PAES and exhaustive search methods. The DSE starts with a Cheddar-
ADL model that specifies the architecture of the considered system. We extended
Cheddar-ADL with MILS, PAES, and architecture exploration tools libraries.

Section 10.1 describes the Cheddar framework into which is integrated the proto-
type implemented in the scope of this thesis. Section 10.2 presents the feasibility
tests and scheduling simulation provided by the Cheddar analyzer tool to per-
form scheduling analysis on an RTS. Section 10.3 presents the packages for DSE
that we implemented to address the MOOP between security and schedulability
in this thesis. Finally, a conclusion of the chapter is given in section 10.4.

10.1 Cheddar framework

Cheddar framework is an open-source scheduling framework designed by the Lab-
oratory Lab-STICC at the University of Western Brittany, and Ellidis Technolo-
gies. It uses the Cheddar Architecture Description Language (ADL) which is a
language dedicated to the design and the validation of real-time systems. It also
includes a scheduling analyzer.

10.1.1 Cheddar Architecture Description Language (ADL)

Cheddar-ADL proposes to specify hardware, software entities, and connections
between entities needed to model an RTS and perform its scheduling analysis. It

–161–

Chapter 10. Tool design and implementation

also supports the modeling of TSP systems.

A RTS can be modeled with Cheddar-ADL through an XML file where each
hardware and software component can be instantiated with its specific attributes.
Listing 10.1 shows an overview of a TSP system with Cheddar-ADL. It is com-
posed of multiple sections that correspond to the specification of components
such as cores, processors, partitions, tasks, and dependencies.

Listing 10.1: Cheddar ADL model in XML format

<?xml version="1.0" encoding="utf-8"?>
<cheddar>

<!--Cores specification section (Listing 10.5) -->
<core_units>

...
</core_units>

<!--Processors specification section (Listing 10.7) -->
<processors>

...
</processors>

<!--Address spaces specification section (Listing 10.2) -->
<address_spaces>
...

</address_spaces>

<!--Tasks specification section (Listing 10.3) -->
<tasks>

...
</tasks>

<!--Dependencies specification section (Listing 10.4) -->
<dependencies>

...
</dependencies>

</cheddar>

Listing 10.1 shows an example of a TSP system composed of two partitions
deployed on a unicore processor platform. For sake of simplicity, the specification
of each of its components has been presented in Listings 10.2, 10.3, 10.4, 10.5,
and 10.7.

–162–

10.1. Cheddar framework

10.1.1.1 Software entities

The different software components proposed by Cheddar-ADL are described be-
low and depicted in figure 10.1.

Figure 10.1: Software entities in Cheddar ADL [11]

Address spaces are components that group entities such as tasks and resources.
The entities inside the same address space have access to the same memory space,
and there are mechanisms to protect the memory space between address spaces
if needed. For TSP systems an address space can be used to model a partition.

–163–

Chapter 10. Tool design and implementation

Listing 10.2: Partitions modeling in Cheddar-ADL

<address_spaces>
<address_space id="id_4">
<object_type>ADDRESS_SPACE_OBJECT_TYPE</object_type>
<name>addr1</name>
<cpu_name>processor1</cpu_name>
<scheduling>

<scheduling_parameters>
<scheduler_type>
POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL

</scheduler_type>
...

</scheduling_parameters>
</scheduling>
...

</address_space>
<address_space id="id_5">
<object_type>ADDRESS_SPACE_OBJECT_TYPE</object_type>
<name>addr2</name>
<cpu_name>processor1</cpu_name>
...

</address_space>
...

</address_spaces>

Listing 10.2 presents the partitions section of a TSP system modeled in Cheddar
ADL. It considers the specification of each partition that composes the model.

Tasks are entities that correspond to control of flow and that are running a given
program. Each task is associated to an address space. For TSP systems, tasks
are partitioned by being placed on different partitions.

Listing 10.3: Tasks modeling in Cheddar-ADL

<tasks>
<periodic_task id="id_8">
<object_type>TASK_OBJECT_TYPE</object_type>
<name>Task1</name>
<task_type>PERIODIC_TYPE</task_type>
<cpu_name>processor1</cpu_name>
<address_space_name>addr1</address_space_name>
<capacity>20</capacity>
<deadline>500</deadline>
<start_time>0</start_time>
<priority>5</priority>
<period>500</period>
<policy>SCHED_FIFO</policy>
...

</periodic_task>

–164–

10.1. Cheddar framework

<periodic_task id="id_9">
<object_type>TASK_OBJECT_TYPE</object_type>
<name>Task2</name>
<task_type>PERIODIC_TYPE</task_type>
<cpu_name>processor1</cpu_name>
<address_space_name>addr2</address_space_name>
...

</periodic_task>
...

</tasks>

Listing 10.3 presents the tasks section of a system modeled in Cheddar ADL. It
considers the specification of each task composing a TSP model with the main
task attributes such as capacity (i.e. WCET), period, deadline.

Dependencies specify the relationships between tasks. They may implicitly define
the order of execution of the tasks. They may also specify the relationships
between tasks and other entities such as resources.

Listing 10.4: Dependencies modeling in Cheddar-ADL

<dependencies>
<dependency>

<type_of_dependency>
PRECEDENCE_DEPENDENCY

</type_of_dependency>
<precedence_sink ref="id_9"></precedence_sink>
<precedence_source ref="id_8"></precedence_source>

</dependency>
...

</dependencies>

Listing 10.4 presents the dependencies section of a TSP system modeled in
Cheddar-ADL. It considers the specification of each dependency that composes
the model. Listing 10.4 shows a dependency from task source (Task1 with iden-
tification number ”id 8” in Listing 10.3) to task sink (Task2 with identification
numbers ”id 9” in Listing 10.3). The execution of Task2 can only start after the
completion of Task1.

There are many other software entities such as resources. A resource can model
any data structure assigned to an address space. Tasks can share the same
resource and have access to it through different synchronization protocols. It is
also possible to specify asynchronous communications between tasks inside the
same address space.

Buffers may model queued asynchronous data exchanges between tasks assigned
to the same partition (i.e. intra-partition communications).

–165–

Chapter 10. Tool design and implementation

Messages may be used to model queued asynchronous data exchanges between
tasks assigned to different partitions (i.e. inter-partition communications).

10.1.1.2 Hardware entities

The hardware description consists of specifying the platform on which the system
will be deployed. It consists of components such as core and processor units which
are represented in figure 10.2.

Figure 10.2: Hardware entities in Cheddar ADL [11]

A core is a unit that provides a resource to sequentially run tasks. It includes the
scheduling parameters specification such as the preemptivity and the scheduling
policy.

Listing 10.5: Core units in Cheddar-ADL

<core_units>
<core_unit id="id_1">
<object_type>CORE_OBJECT_TYPE</object_type>
<name>core1</name>
<scheduling>

<scheduling_parameters>
<scheduler_type>
HIERARCHICAL_OFFLINE_PROTOCOL

</scheduler_type>
<preemptive_type>PREEMPTIVE</preemptive_type>
<user_defined_scheduler_source_file_name>

partition_scheduling_paes2.xml
</user_defined_scheduler_source_file_name>
...

</scheduling_parameters>
</scheduling>

–166–

10.1. Cheddar framework

...
</core_unit>
...

</core_units>

Listing 10.5 presents the core units section of a TSP system modeled in Cheddar-
ADL. It shows the attributes of a core named core1 such as the scheduling param-
eters of the partitions (e.g. offline scheduling). For TSP systems, the scheduling
of the partitions is defined with an offline protocol via an XML file that specifies
the major time frame on which the partitions should be scheduled. The attribute
user defined scheduler source file name in the core specification corresponds
to the name of this file. Listing 10.6 presents an example of partitions schedul-
ing model with two partitions. It corresponds to the MAF of the specified TSP
system. Each partition is defined by an event that corresponds to the partition
activation time and its duration.

Listing 10.6: partitions scheduling model in Cheddar-ADL

<!DOCTYPE Cheddar_Event_Table SYSTEM "event_table.dtd">
<?xml-stylesheet type="text/xsl" href="event_table.xsl"?>
<event_table>
<time_unit>0</time_unit>
<time_unit_event>
<type_of_event>ADDRESS_SPACE_ACTIVATION</type_of_event>
<activation_address_space>addr1</activation_address_space>
<duration>250</duration>

</time_unit_event>
<time_unit>250</time_unit>
<time_unit_event>

<type_of_event>ADDRESS_SPACE_ACTIVATION</type_of_event>
<activation_address_space>addr2</activation_address_space>
<duration>250</duration>

</time_unit_event>
</event_table>

Cheddar-ADL supports the modeling of unicore and multicore processors. It also
proposes tasks migration during the execution.

Listing 10.7: Processors modeling in Cheddar-ADL

<processors>
<mono_core_processor id="id_3">
<object_type>PROCESSOR_OBJECT_TYPE</object_type>
<name>processor1</name>
<processor_type>MONOCORE_TYPE</processor_type>
<migration_type>NO_MIGRATION_TYPE</migration_type>
<core ref="id_1"> </core>

</mono_core_processor>

–167–

Chapter 10. Tool design and implementation

...
</processors>

Listing 10.7 presents the processors section of a TSP system modeled in Cheddar-
ADL. It specifies a unicore processor.

10.2 Cheddar scheduling analyzer

For a given model, the Cheddar tool provides scheduling analysis through feasi-
bility tests or scheduling simulation on the feasibility interval.

10.2.1 Design of a model

The entry point of the Cheddar analyzer is a real-time system that can be modeled
with various methods:

• Cheddar-ADL model: A real-time system to analyze with the Cheddar tool
can be modeled with Cheddar-ADL as presented in the previous section.

• AADL model: A real-time system to analyze with the Cheddar tool can be
modeled through the Architecture Analysis and Design Language (AADL) [187]
by editors such as AADL inspector [26].

• Cheddar GUI: Cheddar proposes a graphical editor that helps to model eas-
ily a real-time system. The whole system can be designed by selecting and
adding one by one any needed component (hardware or software). After the
instantiation of all the components needed to build the given architecture,
the model can be saved and exported in Cheddar-ADL.

• Ada: A program in Ada language can be created to model and call the
Cheddar analyzer. This option can be difficult because users need to have
a deeper knowledge about the Cheddar implementation.

10.2.2 Scheduling simulation

Cheddar tool proposes different scheduling policies such as RM, EDF, Round
Robin (RR), Posix 1003 Highest Priority First. It also supports preemptive
and non-preemptive policies. Tasks are then scheduled based on the specified
scheduler. Simulation can be performed for partitioned systems with an offline
scheduling of the partitions while considering an online scheduler for tasks inside
partitions.

–168–

10.2. Cheddar scheduling analyzer

Figure 10.3: Cheddar scheduling simulation illustration

The simulation with the Cheddar analyzer considers all the components cited in
the Cheddar-ADL sections. Then it managed periodic or aperiodic tasks while
considering shared resources, dependencies, messages, buffers depending on the
instantiated components.

A designer of a given model can get multiple informations from the scheduling
simulation. Figure 10.3 shows the simulation results of the model described at
listing 10.1.

The simulation results provide a layout showing the scheduling of the tasks on
the assigned cores and address spaces (partitions). It also provides the number
of context switches, the number of preemptions, the worst-case execution time
(WCRT) of each task. The simulation reveals if the task set is schedulable and
if not, it specifies the tasks that have missed their deadline.

The simulation with the Cheddar tool can be launched through Cheddar GUI,
or via a terminal with a command line, or inside an Ada program.

10.2.3 Feasibility tests

Feasibility tests are implemented to evaluate the feasibility of a given model and
then confirm or not the schedulability of the model. The Cheddar tool integrates
many feasibility tests. As an example, it proposes a feasibility test proposed

–169–

Chapter 10. Tool design and implementation

Figure 10.4: Cheddar feasibility test illustration

by Liu & Layland [43] based on the processor utilization which is a necessary
condition for a schedulable model.

The Cheddar tool proposes also tests based on the WCRT for periodic tasks
while including eventual delays implied by components such as shared resources.
As for the simulation, feasibility tests with the Cheddar tool can be launched
through its graphical editor, or via a terminal with a command line or inside an
Ada program.

Figure 10.4 shows the results of the feasibility test applied to the model in list-
ing 10.1 through the Cheddar GUI.

10.3 Implementation

In this section, we present the prototype implemented in the scope of this the-
sis. Figure 10.5 gives a set of libraries existing in Cheddar (e.g. Cheddar-ADL,
graphical editor, scheduling simulator, feasibility tests) and an overview of our
prototype. For the sake of lightness, all the packages and relations between them
are not represented in the figure.

Our prototype is made of two libraries (PAES library, MILS library) that ex-
tend Cheddar framework, and a tool library called architecture exploration tools

–170–

10.3. Implementation

Legend :

Library in Cheddar

Libraries of our prototype

Packages

Package B instantiates Package AA B

A B

A B

Package B uses Package A

Package B extends Package A

Others packages

Figure 10.5: Prototype overview

–171–

Chapter 10. Tool design and implementation

library. As figure 10.5 shows, each library is made of packages (represented by
blue boxes inside libraries).

10.3.1 MILS library

In order to evaluate our models according to the security properties, first of all,
it was necessary to extend Cheddar with a security architecture. We extended
Cheddar to model MILS architecture. As presented in chapter 4, a MILS archi-
tecture is composed of different entities such as partitions, applications, processes,
and objects. Several components in Cheddar-ADL can be already used to model
few MILS entities:

• MILS partitions or TSP partitions in general can be modeled by Cheddar-
ADL address space entities.

• MILS objects can be modeled by Cheddar-ADL shared resources (i.e. buffer
or message entities).

• MILS processes can be represented by Cheddar-ADL tasks.

• MILS communications have the same semantics as Cheddar-ADL depen-
dencies.

• MILS functions do not need to be represented in Cheddar as they can
be modeled by groups of partitions (i.e. groups of Cheddar-ADL address
spaces).

• Finally, applications (which can be composed of one or more processes) are
modeled by Cheddar-ADL task entities.

To complete the modeling capabilities of Cheddar for MILS architectures, several
Cheddar-ADL entities have to be extended with new attributes modeling MILS
properties. As an example, we need to model buffers and messages confiden-
tiality and integrity levels and also the right levels of tasks and partitions that
are using them, i.e. if a partition or a task is allowed to handle a buffer or a
message according to its authorization levels. We give below the list of properties
we actually added to Cheddar-ADL entities:

• An attribute named confidentiality Level (Top secret, Secret, Classified,
Unclassified) has to be defined for each Cheddar-ADL address spaces,
objects, and tasks entities.

• An attribute named integrity Level (High, Medium, Low) also has to be
defined for each Cheddar-ADL addressspaces, objects, and tasks entities.

–172–

10.3. Implementation

• MILS component type (SLS, MLS, MSLS) is an attribute to specify
MILS type of security level. Again, such attribute has to be defined in
tasks and addressspaces Cheddar-ADL entities.

• Finally, MILS compliant type (Non Compliant, partition,...) specifies if
a Cheddar’s entity models a MILS’s component or not. Such attribute is
defined in any Cheddar-ADL entity.

Thanks to these Cheddar-ADL extensions, we provide the MILS library that
consists of the implementation of BLP, and Biba algorithms. For a specified
Cheddar-ADL model, MILS library can confirm whether the security rules are
respected or not, and enumerate the number of security vulnerabilities.

10.3.2 PAES library

The PAES library contains different packages for the formulation of multi-objective
optimization problems. Most of these packages define subprograms needed for
both PAES and exhaustive search methods and are described below. This work is
an extension and generalization of the work presented by Rahma Bouaziz in [154].

The package paes is for any optimization problem, and implements the PAES
metaheuristic framework itself. It defines a generic chromosome that can be
extended in other packages depending on the optimization problem considered.
It also proposes multiple subprograms such as the programs needed for archiving
process in PAES and exhaustive search methods.

paes-general form (resp. exhaustive general form) is an Ada generic program
that could be instantiated by a PAES (resp. exhaustive search) tool for any
multi-objective optimization problem.

The package paes-t2p and security is an extension to paes package to feet the
schedulability vs security optimization problem in the context of unicore plat-
forms. It contains the complete specification of the needed chromosome.

paes-objective functions intervenes to set the objectives functions. It can be ex-
tended with any additional objective function.

data manipulation t2p and security provides programs specific to the schedula-
bility vs security optimization problem in the context of unicore platforms. It
contains any program that includes chromosome manipulation. There are subpro-
grams such as mutation operator, transformation of a chromosome to a Cheddar-
ADL model on which security and schedulability analysis can be performed.

paes-objective functions-t2p and security is implemented to perform the security
and schedulability analysis of a solution (chromosome) in the context of unicore
platforms. Then with these analysis methods, the feasibility of a solution can

–173–

Chapter 10. Tool design and implementation

be checked. This feasibility test is based on respect of the safety, security, and
schedulability constraints. All solutions that failed the feasibility test are ignored
during DSE. This package also provides an evaluation of solutions by giving the
objective functions values.

paes-security implementation package contains subprograms needed to secure in-
tra or/and inter-partitions communications according to the chromosome security
configuration parameter. These programs are used during the transformation of
a chromosome to the corresponding Cheddar-ADL model.

Each of the PAES library packages has been implemented twice: one version for
unicore platforms and another one for multicore platforms.

As we presented in this section the packages that implement the prototype of this
thesis, the next section is dedicated to present the tools to perform the DSE for
unicore TSP, and multicore TSP systems.

10.3.3 Architecture exploration tools library

This library contains the tools for the unicore PAES, multicore PAES, and the
exhaustive search methods. These programs are respectively
paes-method t2p and security, paes-method multicore t2p and security, and
exhaustive-method t2p and security. Each tool is a program that instantiates
the needed generic programs (e.g. paes-general form, exhaustive general form)
presented in section 10.3.2.

For these tools, a predefined Cheddar-ADL model (initial system) can be given
by the designer as an entry point. But it can also ask the tool to provide a
generated initial system based on the Uunifast algorithm. This option is based
on the model generator package.

In this section, we presented the implementation of the PAES tool implementation
in the scope of our thesis. Table 10.1 gives a specification of the PAES tool for
unicore TSP systems.

We extend the method paes-method t2p and security to comply with multicore
TSP systems while considering safety constraints.

Table 10.2 gives a specification of exhausitive search tool in the context of unicore
TSP systems.

In order to perform jointly schedulability and security analysis, we implemented
the sched security analysis package. It can perform these analysis on a solution
modeled in Cheddar-ADL. It is used by packages such as to evaluate each solution
generated during the PAES or exhaustive methods.

The specification of the security analysis features is presented in Table 10.3.

–174–

10.3. Implementation

Method method paes-method t2p and security
Purpose Provide a set of trade-offs between schedulability and security for

unicore TSP systems through a PAES based DSE. It implements
the DSE proposed to address the conflict between schedulability
and security for unicore TSP systems

Input - A XML file containing a Cheddar-ADL model (set of processors,
tasks, dependencies ...) which is the DSE initial system
- Number of tasks
- Number of applications
- Maximum number of partitions
- A set of XML files that describes the partitions scheduling con-
sidering different number of partitions (from 1 to the maximum
number of partitions)
- Scheduling policy
- Number of iterations that determines the end of the exploration
- List of objective functions (fitness functions)
- The mutation algorithm (app-grain, mix-grain or task-grain)
- Security implementation (e.g. all the intra partition communica-
tions are vulnerable or not)

Output at
the end of the
DSE

- A file that stores the list of non-dominated solutions (chromoso-
mal form)
- A file that stores the values of fitness functions of each non-
dominated solutions in the archive
- A set of XML files that correspond each to a non-dominated so-
lutions in the archive
- A file with the following information:

• The values of fitness functions of each feasible candidate so-
lution generated during the exploration

• The number of rejected solutions during mutations (i.e. non
feasible solutions)

• The number of rejected solutions during archiving process

- A file with the runtime of the PAES method

Table 10.1: PAES tool implementation

–175–

Chapter 10. Tool design and implementation

Method exhaustive-method t2p and security
Purpose Provide optimal trade-offs between schedulability and security for

unicore TSP systems. It implements the exhaustive to address the
conflict between schedulability and security for unicore TSP sys-
tems

Input - A XML file containing a Cheddar-ADL model (set of processors,
tasks, dependencies ...) which is the DSE initial system
- Number of tasks
- Maximum number of partitions
- XML files that described the partitions scheduling considering
different number of partitions (from 1 to the maximum number of
partitions)
- Scheduling policy
- List of objective functions (fitness functions)

Output at the
end of the
exhaustive
search

- A file that shows the list of the optimal solutions (chromosomal
form)
- A file with the values of objectives fitness of each optimal solution
in the archive at the end of the exhaustive search
- A set of XML files that correspond each to an optimal solution
- A file with the following information:

• The values of fitness functions of each solution generated dur-
ing the exhaustive method

• The number of rejected solutions during mutations (i.e. non
feasible solutions)

• The number of rejected solution during archiving process

- A file with the runtime of the exhaustive method

Table 10.2: Exhaustive tool implementation

–176–

10.3. Implementation

Method callCheddar securityAnalysis
Purpose Perform schedulability and security analysis. It includes:

• A scheduling analysis based on a call of Cheddar that com-
putes the scheduling simulation of the input (Cheddar-ADL
model). We extract from the simulation, the WCRT of each
task and then compute the number of tasks that missed their
deadlines.

• A security analysis that computes the number of confidential-
ity vulnerabilities based on BLP security model

• A security analysis that computes the number of integrity
vulnerabilities based on Biba security model

Input - An XML file that describe a Cheddar-ADL model with informa-
tion such as

• set of cores with their parameters including the reference to
an XML file that described the partitions scheduling in case
of TSP systems

• Set of processors

• Set of tasks with parameters of each task (e.g WCET, period,
deadline, confidentiality level)

• Set of dependencies or messages between the tasks

- An XML file that described the partitions scheduling
- The hyperperiod of the set of tasks

Output - A file with the following information

• Schedulability of the taskset

• Number of missed deadlines

• Number of confidentiality vulnerabilities

• Number of integrity vulnerabilities

- A file with the Cheddar scheduling simulation information (e.g.
number of preemption, WCRT of each task)

Table 10.3: Scheduing and security analysis

–177–

Chapter 10. Tool design and implementation

10.4 Conclusion

This chapter presents the prototype implemented during the thesis. This pro-
totype is integrated into the Cheddar framework. Therefore, this chapter starts
with an overview presentation of the Cheddar framework. Then it describes the
packages that we implemented for the different considered DSE. First, it de-
scribes the packages to address the conflict between security and schedulability
in the context of unicore TSP systems with PAES and an exhaustive exploration.
Finally, the libraries can be reused and extended to different MOOPs. We illus-
trate such extensibility in the context of multicore TSP systems while considering
safety constraints.

–178–

Part IV

Conclusion

–179–

11
Conclusion

The work presented in this thesis addresses the conflict between schedulability
and security in real-time TSP systems. Securing real-time systems (RTS) implies
extra features such as encryption and hashing algorithms. These features imply
overheads. These overheads impact the schedulability of the systems and then
may lead some tasks to miss their deadlines. It is then fruitfull to investigate how
to mitigate the impact of the security related overheads on the schedulability of
RTS.

In the scope of this work, an RTS is made of hard and/or soft deadline tasks.
RTS cannot allow a hard deadline task to miss its deadline. On contrary, missed
deadlines can be tolerated for soft deadline tasks. Thus soft deadline tasks can
be allowed to miss their deadlines in order to optimize security.

Furthermore, we address specifically TSP systems that integrate different appli-
cations made of multiple tasks assigned to multiple partitions.

TSP systems host applications of different stakeholders with a potential high level
of legacy. Historically, in order to limit fault propagation in integrated modular
avionics (IMA) architecture, each partition host tasks of the same application. It
is important to highlight that the tasks to partitions assignment has an impact on
the schedulability of a system. Then we investigate different tasks to partitions
assignment policies in order to find assignments that could favor schedulability.
With multiple tasks assigned to multiple partitions, a combinatorial explosion
problem is raised. The number of assignment possibilities grows exponentially
with the number of tasks. Investigating all the possibilities can become humanly
unmanageable and high time-consuming.

Thus the problem statement addressed in this thesis is multi-objective optimiza-
tion problem (MOOP) between schedulability and security in TSP systems and
the combinatorial problem it raised.

–181–

Chapter 11. Conclusion

11.1 Contribution summary

In this section, we present a summary of the contributions of this thesis.

11.1.1 PAES adaptation to the MOOP between schedulability and
security

The conflict between schedulability and security can be addressed as MOOP since
for some systems, both objectives cannot be optimized at 100% simultaneously.
Indeed, for some architectures, it can be impossible to design a schedulable (i.e.
all tasks meet their deadlines) and fully secured system (i.e. security vulnera-
bilities are all fixed). Then we propose a DSE to explore the design space and
compute a set of solutions that realize trade-offs between schedulability and secu-
rity. A DSE approach fits well the combinatorial problem raised by the interest
of investigating all the possibilities of assigning a numerous number of tasks on
a large number of partitions. In that case, a DSE approach based on an exact
method such as an exhaustive method that guaranties optimal solutions is not
envisageable. Then we propose an adaptation of the PAES metaheuristic. This
PAES adaptation proposes a set of near-optimal solutions in a reasonable time
compared to an exhaustive method that can require several days, months, or even
years to provide optimal solutions.

First, according to our addressed objective functions, we define the fitness func-
tions to optimize during the DSE. We choose number of missed soft deadlines
for schedulability and number of confidentiality and integrity vulnerabilities of
weakly sensitive communications for security. Second, we proposed means to per-
form evaluations needed to compare solutions in order to find the best solutions
among the explored solutions. For this purpose, we performed methods based on
schedulability and security analysis to evaluate each solution. This contribution
is presented in [151].

11.1.2 Mutation algorithms

The DSE is based on the exploration of the solutions space. These solutions are
generated during the exploration. In PAES, solutions are generated based on
mutation operations. Then we propose three algorithms that consider different
granularity of mutations, correspond to different solution spaces.

First, we propose the task-grainmutation algorithm that considers all the tasks to
partition assignment possibilities. Then at each iteration, a solution is generated
from the previous solution by changing the location of a random task to a random
partition. For a large-scale problem, this approach implies a large design space

–182–

11.1. Contribution summary

that can impact the quality of the resulting trade-off solutions. As an alternative,
we propose the app-grain mutation algorithm to reduce the design space. It
proposes at each iteration to generate a solution from the previous solution by
changing randomly the location of all the tasks of an application to a different
partition. This design space is a subset of the previous one that is compliant with
IMA architectures especially ARINC 653 standard.

The app-grain mutation algorithm reduces the degree of freedom. We propose
a finer granularity approach while optimizing the exploration of a large design
space. For this purpose, we propose the mix-grain algorithm that starts the DSE
with app-grainmutation for a predefined number of iterations (over the DSE total
number of iterations) and finishes with refining with task-grain mutation algo-
rithm for the remaining iterations. The first phase is expected to find interesting
solutions in the reduced design space, and the second phase to improve solution
quality by enlarging the design space explored. This contribution is presented
in [188].

11.1.3 Mutation algorithm improvement

Furthermore, in order to favor the diversity of explored solutions, we propose an-
other algorithm that considers a better choice of the solution to mutate instead
of only considering the solution generated at the previous iteration. Indeed, it
can happen that during the DSE, after a certain number of iterations, multiple
mutation operations fail to propose another non-dominated solution. The gener-
ated solutions are dominated at least by one solution in the archive. Considering
our initial DSE approach, the current solution remains the same till a mutation
operation finds a non-dominated solution. Then we propose to change the current
solution after a certain number of mutation operations that failed to provide an-
other non-dominated solution. It helps to operate mutation on another solution
of the archive and then increase the chance to generate another non-dominated
solution.

The above algorithms consider the tasks to partitions assignment. It is impor-
tant to highlight that each of these algorithms includes a mutation operator on
vulnerable communications between tasks. At each generation, a random com-
munication that is vulnerable is secured based on four possibilities of security
implementation.

11.1.4 Identification of the key parameters during DSE

From seven experiments, we identify key parameters impacting the trade-off be-
tween schedulability and security in TSP systems. First, we notice that for the

–183–

Chapter 11. Conclusion

systems with low processor utilization and small data size, the overheads intro-
duced by the security do not impact the schedulability of the systems. Then
data size and CPU utilization are key parameters. Second, we also show that
the number of partitions has a high impact on the size of the search space. The
latter increases with the number of partitions. With a larger search space, it
can be difficult for the DSE to converge to non-dominated solutions. A lower
search space can reduce the freedom degree and limit the optimization of the
objective functions. It is also important to highlight a high number of itera-
tions may increase the chance to converge to better solutions. Furthermore, we
confirm that the overheads introduced by the intra and inter-partition communi-
cations mechanisms (e.g. blackboards, sampling ports) have a significant impact
on system schedulability. The DSE is able to optimize the tasks to partitions
assignment in order to minimize inter-partition communications since they have
higher overheads than intra-partition communications. The relevance of using
different security implementations is confirmed by the diversity of the proposed
solutions (i.e solutions with functions calls and solutions with dedicated tasks).

11.1.5 Extensibility of the DSE approach: safe and secure TSP sys-
tems on multicore execution platforms

Our DSE approach is an extensible approach that can be adapted to different
contexts and/or MOOP. In order to investigate the extensibility of our approach,
we propose to extend our approach to TSP systems with multicore execution
platforms. We also considering safety requirements based on active redundancy.
Safety, security, and shared hardware resources impact schedulability through the
overheads they generate. In this approach, there are not only tasks to partitions
assignment to consider but also tasks to cores assignment. This contribution is
presented in [189].

11.1.6 Security architecture modeling and security analysis implemen-
tation

In this thesis, as security properties, we address the confidentiality and integrity
of architecture models. In order to evaluate those properties, we implement Bell-
La Padula (BLP) and Biba security models in Cheddar. This implementation
requires first the modeling of TSP systems based on a security architecture (e.g.
definition of confidentiality and integrity levels of tasks of a given model). There-
fore we proposed to integrate the Multiple Independent Levels of Security (MILS)
architecture [105] into the Cheddar tool that already proposes RTS modeling and
their scheduling simulation. This work has been considered in the security analy-

–184–

11.2. Future work

sis proposed in the AADL Inspector commercial tool of Ellidiss Technologies and
is presented in [190], and [191].

11.2 Future work

The contributions of this thesis raise some questions that could be considered for
future work.

11.2.1 Memory protection mechanism

Considering our experiments, the mix-grain mutation algorithm that considers a
finer granularity proposes good solutions out of the scope of app-grain mutation
algorithm. This finer granularity may assume the existence of a memory pro-
tection mechanism between tasks within a partition in a system as ARINC 653.
Then it could be interesting to study this mechanism since they already exist
with threads and processes [168].

11.2.2 Security: investigation of different security models

In this thesis, we considered security vulnerabilities related to confidentiality
and integrity. For this purpose, we consider BLP and Biba security models
to evaluate security vulnerabilities. It can be interesting to integrate different
security models. Since our approach is extensible, the integration of other security
models [192] can be investigated. It can also be interesting to consider other
security requirements such as availability [83] and then to integrate their related
security models into our approach.

11.2.3 Schedulability: investigation of different possibilities of major
time frame (MAF)

As presented in assumptions, partitions in TSP systems are scheduled based on
offline scheduling executed during a cyclic interval called MAF. In this thesis,
for simplicity, the MAFs considered in all our experiments are made with only
one slot of each partition. However, as shown in [193] multiple time slots can
be allocated to a partition during the MAF. It may be interesting to investigate
the impact of MAF when optimizing schedulability and security since MAF is an
important element to consider in the TSP systems configuration.

–185–

Chapter 11. Conclusion

11.2.4 Conflict between schedulability and security: consideration of
the possible overheads

For TSP on multicore platforms, we consider to introduce overheads due to in-
terconnection. It is important to highlight that interconnection overheads are
not the only overhead due to shared hardware resources in multicore platforms.
There are other shared hardware resources such as cache and memory that im-
plies overheads that can impact the schedulability of the systems. It may be
interesting to evaluate how such overheads impact the DSE.

11.2.5 Extension to distributed network platforms

As we propose to extend the work to multicore execution platforms, it may be
interesting to investigate safe and secure TSP systems on distributed network
platforms. This implies other overhead such as network communications over-
head [194] known to be bounded but variables.

11.2.6 Finer granularity: functions

In this work, we only investigate tasks, partitions, and cores level. Since tasks
can be considered as sets of functions, we may investigate a finer granularity by
considering functions level as future work.

–186–

Bibliography

[1] Miguel Masmano, Ismael Ripoll, Alfons Crespo, and J Metge. Xtratum: a
hypervisor for safety critical embedded systems. In 11th Real-Time Linux
Workshop, pages 263–272. Citeseer, 2009.

[2] Felipe Gohring de Magalhaes, Alexy Torres Aurora Dugo, Jean-Baptiste
Lefoul, and Gabriela Nicolescu. On the benchmarking of partitioned real-
time systems. arXiv e-prints, pages arXiv–2007, 2020.

[3] Insup Lee, Joseph YT Leung, and Sang H Son. Handbook of real-time and
embedded systems. CRC Press, 2007.

[4] Benjamin Rouxel and Isabelle Puaut. Str2rts: Refactored streamit bench-
marks into statically analyzable parallel benchmarks for wcet estimation &
real-time scheduling. In 17th International Workshop on Worst-Case Ex-
ecution Time Analysis (WCET 2017). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

[5] Airlines Electronic Engineering Committee. Arinc 653: Avionics applica-
tion software standard interface, supplement 1. 2003.

[6] Artur Oliveira Gomes. Formal specification of the ARINC 653 architecture
using circus. PhD thesis, University of York, 2012.

[7] Timothy Shimeall and Jonathan Spring. Introduction to information secu-
rity: a strategic-based approach. Newnes, 2013.

[8] Yongwang Zhao. Formal specification and verification of separation kernels:
An overview. ArXiv e-prints, no, 2015.

[9] S Nguyen and Voratas Kachitvichyanukul. Movement strategies for multi-
objective particle swarm optimization. International Journal of Applied
Metaheuristic Computing (IJAMC), 1(3):59–79, 2010.

[10] Lingling Xue, Peng Zeng, and Haibin Yu. Setnds: A set-based non-
dominated sorting algorithm for multi-objective optimization problems.
Applied Sciences, 10(19):6858, 2020.

[11] Hai Nam Tran. Cache memory aware priority assignment and scheduling
simulation of real-time embedded systems. PhD thesis, Brest, 2017.

–187–

Bibliography

[12] John A Stankovic. A serious problem for next-generation systems. IEEE
computer, 21(10):10–19, 1988.

[13] Neil Audsley, Alan Burns, Rob Davis, Ken Tindell, and Andy Wellings.
Real-time system scheduling. In Predictably dependable computing systems,
pages 41–52. Springer, 1995.

[14] Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Caccamo. Soft
Real-Time Systems: Predictability vs. Efficiency: Predictability Vs. Effi-
ciency. Springer Science & Business Media, 2005.

[15] Pierre Bieber, Frédéric Boniol, Marc Boyer, Eric Noulard, and Claire
Pagetti. New challenges for future avionic architectures. AerospaceLab,
(4):p–1, 2012.

[16] Richard Garside and F Joe Pighetti. Integrating modular avionics: A new
role emerges. IEEE Aerospace and Electronic Systems Magazine, 24(3):31–
34, 2009.

[17] HELTON Steven et FEILER Peter HANSSON, Jorgen. Roi analysis of
the system architecture virtual integration initiative. In Carnegie-Mellon
Univerity Software Engineering Institute Pittsburgh United States, 2018.

[18] Christopher B Watkins and Randy Walter. Transitioning from federated
avionics architectures to integrated modular avionics. In 2007 IEEE/AIAA
26th Digital Avionics Systems Conference, pages 2–A. IEEE, 2007.

[19] James Windsor and Kjeld Hjortnaes. Time and space partitioning in space-
craft avionics. In 2009 Third IEEE International Conference on Space Mis-
sion Challenges for Information Technology, pages 13–20. IEEE, 2009.

[20] Andoni Amurrio González and Mario Aldea Rivas. Schedulability analysis
and optimization of time-partitioned distributed real-time systems.

[21] Alvaro Cardenas, Saurabh Amin, Bruno Sinopoli, Annarita Giani, Adrian
Perrig, Shankar Sastry, et al. Challenges for securing cyber physical sys-
tems. In Workshop on future directions in cyber-physical systems security,
volume 5. Citeseer, 2009.

[22] Vuk Lesi, Ilija Jovanov, and Miroslav Pajic. Security-aware scheduling
of embedded control tasks. ACM Transactions on Embedded Computing
Systems (TECS), 16(5s):1–21, 2017.

[23] Jawahar Thakur and Nagesh Kumar. Des, aes and blowfish: Symmetric key
cryptography algorithms simulation based performance analysis. Interna-
tional journal of emerging technology and advanced engineering, 1(2):6–12,
2011.

–188–

Bibliography

[24] Joshua Knowles and David Corne. The pareto archived evolution strategy:
A new baseline algorithm for pareto multiobjective optimisation. In Pro-
ceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat.
No. 99TH8406), volume 1, pages 98–105. IEEE, 1999.

[25] Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé. Ched-
dar: a flexible real time scheduling framework. In ACM SIGAda Ada Let-
ters, volume 24, pages 1–8. ACM, 2004.

[26] Ellidiss Technologies. Aadl inspector.

[27] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre
Siron. The rosace case study: From simulink specification to multi/many-
core execution. In 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 309–318. IEEE, 2014.

[28] Gregory K Wallace. The jpeg still picture compression standard. IEEE
transactions on consumer electronics, 38(1):xviii–xxxiv, 1992.

[29] Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedu-
lability tests. Real-Time Systems, 30(1-2):129–154, 2005.

[30]

[31] Bruce Schneier. Description of a new variable-length key, 64-bit block cipher
(blowfish). In International Workshop on Fast Software Encryption, pages
191–204. Springer, 1993.

[32] Wanzhong Sun, Hongpeng Guo, Huilei He, and Zibin Dai. Design and
optimized implementation of the sha-2 (256, 384, 512) hash algorithms. In
2007 7th International Conference on ASIC, pages 858–861. IEEE, 2007.

[33] Santosh D Chede and Kishore D Kulat. Design overview of processor based
implantable pacemaker. J. Comput., 3(8):49–57, 2008.

[34] James Martin. Programming real-time computer systems. Technical report,
1965.

[35] Andreas Menychtas, Dimosthenis Kyriazis, and Konstantinos Tserpes.
Real-time reconfiguration for guaranteeing qos provisioning levels in grid
environments. Future Generation Computer Systems, 25(7):779–784, 2009.

[36] Alan Burns and Robert Davis. Mixed criticality systems-a review. De-
partment of Computer Science, University of York, Tech. Rep, pages 1–69,
2013.

–189–

Bibliography

[37] RTCA (Firme). Integrated Modular Avionics (IMA) Development Guidance
and Certification Considerations. RTCA, 2005.

[38] Rick Grehan, Ingo Cyliax, and Robert Moote. Real-Time Programming:
A Guide to 32-Bit Embedded Development with Cdrom. Addison-Wesley
Longman Publishing Co., Inc., 1998.

[39] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context
switch. In Proceedings of the 2007 workshop on Experimental computer
science, pages 2–es, 2007.

[40] Neil C Audsley. Optimal priority assignment and feasibility of static priority
tasks with arbitrary start times. Citeseer, 1991.

[41] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, et al. The worst-case execution-time
problem—overview of methods and survey of tools. ACM Transactions on
Embedded Computing Systems (TECS), 7(3):1–53, 2008.

[42] José Carlos Palencia and M González Harbour. Schedulability analysis for
tasks with static and dynamic offsets. In Proceedings 19th IEEE Real-Time
Systems Symposium (Cat. No. 98CB36279), pages 26–37. IEEE, 1998.

[43] Chung Laung Liu and James W Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the ACM
(JACM), 20(1):46–61, 1973.

[44] Kang G Shin and Parameswaran Ramanathan. Real-time computing: A
new discipline of computer science and engineering. Proceedings of the
IEEE, 82(1):6–24, 1994.

[45] Robert I Davis and Alan Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM computing surveys (CSUR), 43(4):1–44,
2011.

[46] Julien Forget, Frédéric Boniol, Emmanuel Grolleau, David Lesens, and
Claire Pagetti. Scheduling dependent periodic tasks without synchroniza-
tion mechanisms. In 2010 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 301–310. IEEE, 2010.

[47] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Seyed MH Ashjaei, and Sara
Afshar. Support for hierarchical scheduling in freertos. In ETFA2011, pages
1–10. IEEE, 2011.

[48] José Rufino, Sergio Filipe, Manuel Coutinho, Sérgio Santos, and James
Windsor. Arinc 653 interface in rtems. In Proc. DASIA, 2007.

–190–

Bibliography

[49] Victor Yodaiken et al. The rtlinux manifesto. In Proc. of the 5th Linux
Expo, 1999.

[50] Robert Kaiser and Stephan Wagner. Evolution of the pikeos microkernel.
In First International Workshop on Microkernels for Embedded Systems,
volume 50, 2007.

[51] Joseph Y-T Leung and Jennifer Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance evaluation,
2(4):237–250, 1982.

[52] Neil C Audsley, Alan Burns, Mike F Richardson, and Andy J Wellings.
Hard real-time scheduling: The deadline-monotonic approach. IFAC Pro-
ceedings Volumes, 24(2):127–132, 1991.

[53] Giorgio C Buttazzo. Rate monotonic vs. edf: Judgment day. Real-Time
Systems, 29(1):5–26, 2005.

[54] Sanjoy K Baruah. Dynamic-and static-priority scheduling of recurring real-
time tasks. Real-Time Systems, 24(1):93–128, 2003.

[55] Alan Burns and Sanjoy Baruah. Sustainability in real-time scheduling.
Journal of Computing Science and Engineering, 2(1):74–97, 2008.

[56] Gilles Lasnier. Une approche intégrée pour la validation et la génération de
systèmes critiques par raffinement incrémental de modèles architecturaux.
PhD thesis, Paris, ENST, 2012.

[57] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J
Wellings. Applying new scheduling theory to static priority pre-emptive
scheduling. Software engineering journal, 8(5):284–292, 1993.

[58] Joël Goossens and Raymond Devillers. The non-optimality of the mono-
tonic priority assignments for hard real-time offset free systems. Real-Time
Systems, 13(2):107–126, 1997.

[59] Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. Periodicity
of real-time schedules for dependent periodic tasks on identical multipro-
cessor platforms. Real-time systems, 52(6):808–832, 2016.

[60] Richard Urunuela, A Deplanche, and Yvon Trinquet. Storm, a simulation
tool for real-time multiprocessor scheduling evaluation. In Proceeding of
the 15th Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE, 2010.

–191–

Bibliography

[61] Hai Nam Tran, Stéphane Rubini, Jalil Boukhobza, and Frank Singhoff. Fea-
sibility interval and sustainable scheduling simulation with crpd on unipro-
cessor platform. Journal of Systems Architecture, 115:102007, 2021.

[62] Gernot Heiser. Virtualization for embedded systems. Open Kernel Labs
Technology White Paper, 2007.

[63] Sanghyun Han and Hyun-Wook Jin. Full virtualization based arinc 653 par-
titioning. In 2011 IEEE/AIAA 30th Digital Avionics Systems Conference,
pages 7E1–1. IEEE, 2011.

[64] Moris Behnam, Thomas Nolte, Insik Shin, Mikael Åsberg, and Reinder Bril.
Towards hierarchical scheduling in vxworks. In OSPERT 2008, Fourth In-
ternational Workshop on Operating Systems Platforms for Embedded Real-
Time Applications, Prague, Czech Republic, July 1, 2008, pages 63–72,
2008.

[65] Moris Behnam, Insik Shin, Thomas Nolte, and Mikael Nolin. Sirap: a
synchronization protocol for hierarchical resource sharingin real-time open
systems. In Proceedings of the 7th ACM & IEEE international conference
on Embedded software, pages 279–288, 2007.

[66] Moris Behnam. Hierarchical Real Time Scheduling and Synchronization.
PhD thesis, Mälardalens högskola, 2008.

[67] Aloysius K Mok, Xiang Feng, and Deji Chen. Resource partition for real-
time systems. In Proceedings Seventh IEEE Real-Time Technology and
Applications Symposium, pages 75–84. IEEE, 2001.

[68] Arvind Easwaran. Advances in hierarchical real-time systems: Incremen-
tality, optimality, and multiprocessor clustering. PhD thesis, University of
Pennsylvania, 2008.

[69] Insik Shin and Insup Lee. Periodic resource model for compositional real-
time guarantees. In RTSS 2003. 24th IEEE Real-Time Systems Symposium,
2003, pages 2–13. IEEE, 2003.

[70] EASA. Amc 20-170‘integrated modular avionics (ima).

[71] James W Ramsey. Integrated modular avionics: Less is more-fresh ap-
proaches to integrated modular avionic architectures will save weight, im-
prove reliability of a380 and b787 systems. Avionics Magazine, 31(2):24,
2007.

[72] Christian M Fuchs et al. The evolution of avionics networks from arinc
429 to afdx. Innovative Internet Technologies and Mobile Communications
(IITM), and Aerospace Networks (AN), 65:1551–3203, 2012.

–192–

Bibliography

[73] Airlines Electronic Engineering Committee et al. Aircraft data network part
7, avionics full duplex switched ethernet (afdx) network, arinc specification
664. Aeronautical Radio, 2002.

[74] Airlines Electronic Engineering Committee et al. Arinc: 653p1· 3-2006
avionics application software standard interface pan1—equired services.

[75] Yann-Hang Lee, Daeyoung Kim, Mohamed Younis, and Jeff Zhou. Partition
scheduling in apex runtime environment for embedded avionics software. In
Proceedings Fifth International Conference on Real-Time Computing Sys-
tems and Applications (Cat. No. 98EX236), pages 103–109. IEEE, 1998.

[76] Franck Wartel, Leonidas Kosmidis, Adriana Gogonel, Andrea Baldovino,
Zoe Stephenson, Benoit Triquet, Eduardo Quinones, Code Lo, Enrico
Mezzetta, Ian Broster, et al. Timing analysis of an avionics case study
on complex hardware/software platforms. In 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 397–402. IEEE,
2015.

[77] Franck Wartel, Leonidas Kosmidis, Code Lo, Benoit Triquet, Eduardo
Quinones, Jaume Abella, Adriana Gogonel, Andrea Baldovin, Enrico
Mezzetti, Liliana Cucu, et al. Measurement-based probabilistic timing anal-
ysis: Lessons from an integrated-modular avionics case study. In 2013 8th
IEEE International Symposium on Industrial Embedded Systems (SIES),
pages 241–248. IEEE, 2013.

[78] SYSGO Embedded Innovations. Pikeos hypervisor eclipse based codeo. En
ligne], disponible: http://www. sysgo. com/en/products/pikeos-rtos-and-
virtualization-concept/eclipsebased-codeo/(Consulté: 27 Juillet 2014).

[79] Julien Delange and Laurent Lec. Pok, an arinc653-compliant operating
system released under the bsd license. In 13th Real-Time Linux Workshop,
volume 10, pages 181–192, 2011.

[80] LYNX Software Technologies. Lynxsecure: software security driven by an
embedded hypervisor.

[81] Jörgen Hansson, Lutz Wrage, Peter H Feiler, John Morley, Bruce Lewis, and
Jerome Hugues. Architectural modeling to verify security and nonfunctional
behavior. IEEE Security & Privacy, 8(1):43–49, 2010.

[82] Jörgen Hansson, Peter H Feiler, and John Morley. Building secure sys-
tems using model-based engineering and architectural models. Technical re-
port, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE EN-
GINEERING INST, 2008.

–193–

Bibliography

[83] Manuel Cheminod, Luca Durante, and Adriano Valenzano. Review of se-
curity issues in industrial networks. IEEE transactions on industrial infor-
matics, 9(1):277–293, 2012.

[84] Prerna Mahajan and Abhishek Sachdeva. A study of encryption algorithms
aes, des and rsa for security. Global Journal of Computer Science and
Technology, 2013.

[85] Sourabh Chandra, Smita Paira, Sk Safikul Alam, and Goutam Sanyal. A
comparative survey of symmetric and asymmetric key cryptography. In
2014 international conference on electronics, communication and computa-
tional engineering (ICECCE), pages 83–93. IEEE, 2014.

[86] Nan Li. Research on diffie-hellman key exchange protocol. In 2010 2nd
International Conference on Computer Engineering and Technology, vol-
ume 4, pages V4–634. IEEE, 2010.

[87] D Elliott Bell and Leonard J La Padula. Secure computer system: Unified
exposition and multics interpretation. Technical report, MITRE CORP
BEDFORD MA, 1976.

[88] L Arockiam and S Monikandan. Efficient cloud storage confidentiality to
ensure data security. In 2014 International Conference on Computer Com-
munication and Informatics, pages 1–5. IEEE, 2014.

[89] Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. Haval—a one-way
hashing algorithm with variable length of output. In International workshop
on the theory and application of cryptographic techniques, pages 81–104.
Springer, 1992.

[90] Ronald Rivest. Rfc1321: The md5 message-digest algorithm, 1992.

[91] James H Burrows. Secure hash standard. Technical report, Department of
Commerce Washington DC, 1995.

[92] Patrick Gallagher and Acting Director. Secure hash standard (shs). FIPS
PUB, 180:183, 1995.

[93] Robert P McEvoy, Francis M Crowe, Colin C Murphy, and William P Mar-
nane. Optimisation of the sha-2 family of hash functions on fpgas. In IEEE
Computer Society Annual Symposium on Emerging VLSI Technologies and
Architectures (ISVLSI’06), pages 6–pp. IEEE, 2006.

[94] Xinxin Fan and Guang Gong. Accelerating signature-based broadcast au-
thentication for wireless sensor networks. Ad Hoc Networks, 10(4):723–736,
2012.

–194–

Bibliography

[95] James M Turner. The keyed-hash message authentication code (hmac).
Federal Information Processing Standards Publication, 198(1), 2008.

[96] Ming-Xin Yang, Li-Na Yuan, and Zhi-Xia Yang. A discuss of computer
security strategy models. In 2010 Int. Conf. on Machine Learning and
Cybernetics, volume 2, pages 839–842. IEEE, 2010.

[97] Barack Obama. Executive order 13526: Classified national security infor-
mation. In United States. Office of the Federal Register, number Executive
order 13526; EO 13526. United States. Office of the Federal Register, 2009.

[98] G Scott Graham and Peter J Denning. Protection: principles and practice.
In Proceedings of Spring Joint Computer conference, pages 417–429. ACM,
1972.

[99] Francois Mouton, Alastair Nottingham, Louise Leenen, and HS Venter.
Underlying finite state machine for the social engineering attack detection
model. In 2017 Information Security for South Africa (ISSA), pages 98–
105. IEEE, 2017.

[100] Lei Gong, Lu Tian, and Fulian Zhang. Application information flow non-
interference transmission model. In Proceedings of 2011 Int. Conf. on Elec-
tronic & Mechanical Engineering and Information Technology, volume 5,
pages 2306–2309. IEEE, 2011.

[101] Kenneth J Biba. Integrity considerations for secure computer systems.
Technical report, MITRE CORP BEDFORD MA, 1977.

[102] Jim Alves-Foss, Paul W Oman, Carol Taylor, and W Scott Harrison. The
mils architecture for high-assurance embedded systems. International jour-
nal of embedded systems, 2(3-4):239–247, 2006.

[103] EURO-MILS Consortium et al. Euro-mils: Secure european virtualisation
for trustworthy applications in critical domains. 2012-2016. 7th framework
programme. Technical report, FP7-ICT-2011-8.

[104] John M Rushby. Design and verification of secure systems. ACM SIGOPS
Operating Systems Review, 15(5):12–21, 1981.

[105] W Mark Vanfleet, Jahn A Luke, R William Beckwith, Carol Taylor, Ben
Calloni, and Gordon Uchenick. Mils: Architecture for high-assurance em-
bedded computing. CrossTalk, 18(8):12–16, 2005.

[106] Sysgo-Embedding Innovations. Pikeos hypervisor, 2015.

–195–

Bibliography

[107] R William Beckwith, W Mark Vanfleet, and Lee MacLaren. High assurance
security/safety for deeply embedded, real-time systems. In Proceedings of
the Embedded Systems Conference, 2004.

[108] Rance J. DeLong. Mils: An architecture for security, safety, and real time,
2006.

[109] W Scott Harrison, Nadine Hanebutte, P Oman, and Jim Alves-Foss. The
mils architecture for a secure global information grid. Crosstalk: The Jour-
nal of Defense Software Engineering, 18(10):20–24, 2005.

[110] Jim Alves-Foss, Carol Taylor, and Paul Oman. A multi-layered approach
to security in high assurance systems. In 37th Annual Hawaii International
Conference on System Sciences, 2004. Proceedings of the, pages 10–pp.
IEEE, 2004.

[111] Bryan Rossebo, Paul Oman, Jim Alves-Foss, Ryan Blue, and Paul
Jaszkowiak. Using spark-ada to model and verify a mils message router.
Technical report, IDAHO UNIVMOSCOWCENTER FOR SECURE AND
DEPENDABLE SYSTEMS, 2006.

[112] Stephen Chong and Ron Van Der Meyden. Using architecture to reason
about information security. ACM Transactions on Information and System
Security (TISSEC), 18(2):1–30, 2015.

[113] Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. Pareto multi ob-
jective optimization. In Proceedings of the 13th International Conference
on, Intelligent Systems Application to Power Systems, pages 84–91. IEEE,
2005.

[114] Carlos A Coello Coello, Silvia González Brambila, Josué Figueroa Gamboa,
Ma Guadalupe Castillo Tapia, and Raquel Hernández Gómez. Evolutionary
multiobjective optimization: open research areas and some challenges lying
ahead. Complex & Intelligent Systems, 6(2):221–236, 2020.

[115] Zhenan He, Gary G Yen, and Jun Zhang. Fuzzy-based pareto optimality
for many-objective evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation, 18(2):269–285, 2013.

[116] Antonio López Jaimes, Carlos A Coello Coello, Hernán Aguirre, and
Kiyoshi Tanaka. Objective space partitioning using conflict information
for solving many-objective problems. Information Sciences, 268:305–327,
2014.

[117] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective op-
timization using genetic algorithms: A tutorial. Reliability engineering &
system safety, 91(9):992–1007, 2006.

–196–

Bibliography

[118] Jin-Hee Cho, Yating Wang, Ray Chen, Kevin S Chan, and Ananthram
Swami. A survey on modeling and optimizing multi-objective systems.
IEEE Communications Surveys & Tutorials, 19(3):1867–1901, 2017.

[119] Il Yong Kim and Oliver L De Weck. Adaptive weighted-sum method for
bi-objective optimization: Pareto front generation. Structural and multi-
disciplinary optimization, 29(2):149–158, 2005.

[120] Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bib-
liography of multiobjective combinatorial optimization. OR-spektrum,
22(4):425–460, 2000.

[121] Yezid Donoso and Ramon Fabregat. Multi-objective optimization in com-
puter networks using metaheuristics. CRC Press, 2016.

[122] Abraham Charnes and William Wager Cooper. Goal programming and
multiple objective optimizations: Part 1. European journal of operational
research, 1(1):39–54, 1977.

[123] James P Ignizio. Generalized goal programming an overview. Computers
& Operations Research, 10(4):277–289, 1983.

[124] Carlos Romero. A survey of generalized goal programming (1970–1982).
European Journal of Operational Research, 25(2):183–191, 1986.

[125] Harold W Kuhn and Albert W Tucker. Nonlinear programming. In Traces
and emergence of nonlinear programming, pages 247–258. Springer, 2014.

[126] Carlos Romero. Extended lexicographic goal programming: a unifying ap-
proach. Omega, 29(1):63–71, 2001.

[127] UC Orumie and DW Ebong. An efficient method of solving lexicographic
linear goal programming problem. International journal of scientific and
research publications, 3(10):1–8, 2013.

[128] Carlos A Coello Coello, Clarisse Dhaenens, and Laetitia Jourdan. Multi-
objective combinatorial optimization: Problematic and context. Advances
in multi-objective nature inspired computing, 272:1–21, 2010.

[129] Christian Blum and Andrea Roli. Metaheuristics in combinatorial opti-
mization: Overview and conceptual comparison. ACM computing surveys
(CSUR), 35(3):268–308, 2003.

[130] Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen, et al.
Evolutionary algorithms for solving multi-objective problems, volume 5.
Springer, 2007.

–197–

Bibliography

[131] Carlos Garćıa-Mart́ınez, Oscar Cordón, and Francisco Herrera. A taxonomy
and an empirical analysis of multiple objective ant colony optimization
algorithms for the bi-criteria tsp. European journal of operational research,
180(1):116–148, 2007.

[132] Margarita Reyes-Sierra, CA Coello Coello, et al. Multi-objective particle
swarm optimizers: A survey of the state-of-the-art. International journal
of computational intelligence research, 2(3):287–308, 2006.

[133] Panta Lučic and Dušan Teodorovic. Simulated annealing for the multi-
objective aircrew rostering problem. Transportation Research Part A: Pol-
icy and Practice, 33(1):19–45, 1999.

[134] Xavier Gandibleux and Arnaud Freville. Tabu search based procedure for
solving the 0-1 multiobjective knapsack problem: The two objectives case.
Journal of Heuristics, 6(3):361–383, 2000.

[135] Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimization us-
ing nondominated sorting in genetic algorithms. Evolutionary computation,
2(3):221–248, 1994.

[136] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMTMeyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions
on evolutionary computation, 6(2):182–197, 2002.

[137] Carlo R Raquel and Prospero C Naval Jr. An effective use of crowding
distance in multiobjective particle swarm optimization. In Proceedings of
the 7th Annual conference on Genetic and Evolutionary Computation, pages
257–264, 2005.

[138] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. A
fast elitist non-dominated sorting genetic algorithm for multi-objective op-
timization: Nsga-ii. In International conference on parallel problem solving
from nature, pages 849–858. Springer, 2000.

[139] Joshua D Knowles and David W Corne. Approximating the nondominated
front using the pareto archived evolution strategy. Evolutionary computa-
tion, 8(2):149–172, 2000.

[140] David A Van Veldhuizen, Gary B Lamont, et al. Evolutionary computation
and convergence to a pareto front. In Late breaking papers at the genetic
programming 1998 conference, pages 221–228. Citeseer, 1998.

[141] Leonardo CT Bezerra, Manuel López-Ibánez, and Thomas Stützle. An
empirical assessment of the properties of inverted generational distance on
multi-and many-objective optimization. In International Conference on
Evolutionary Multi-Criterion Optimization, pages 31–45. Springer, 2017.

–198–

Bibliography

[142] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms:
a comparative case study and the strength pareto approach. IEEE trans-
actions on Evolutionary Computation, 3(4):257–271, 1999.

[143] Lucas S Batista, Felipe Campelo, Frederico G Guimarães, and Jaime A
Ramı́rez. The cone epsilon-dominance: an approach for evolutionary mul-
tiobjective optimization. arXiv preprint arXiv:2008.04224, 2020.

[144] Günter Rudolph. Convergence properties of evolutionary algorithms. Verlag
Dr. Kovač, 1997.

[145] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multi-
objective evolutionary algorithms: Empirical results. Evolutionary compu-
tation, 8(2):173–195, 2000.

[146] Yilin Mo, Emanuele Garone, Alessandro Casavola, and Bruno Sinopoli.
False data injection attacks against state estimation in wireless sensor net-
works. In 49th IEEE Conference on Decision and Control (CDC), pages
5967–5972. IEEE, 2010.

[147] Yulong Zou and Gongpu Wang. Intercept behavior analysis of industrial
wireless sensor networks in the presence of eavesdropping attack. IEEE
Transactions on Industrial Informatics, 12(2):780–787, 2015.

[148] Andrew J Kerns, Daniel P Shepard, Jahshan A Bhatti, and Todd E
Humphreys. Unmanned aircraft capture and control via gps spoofing. Jour-
nal of Field Robotics, 31(4):617–636, 2014.

[149] Tao Xie and Xiao Qin. Scheduling security-critical real-time applications
on clusters. IEEE transactions on computers, 55(7):864–879, 2006.

[150] Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and Rakesh B Bobba.
A design-space exploration for allocating security tasks in multicore real-
time systems. In 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 225–230. IEEE, 2018.

[151] Ill-ham Atchadam, Laurent Lemarchand, Hai Nam Tran, Frank Singhoff,
and Karim Bigou. When security affects schedulability of tsp systems:
trade-offs observed by design space exploration. In 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
Vienna, Austria - Hybrid, volume 1, pages 369–376. IEEE, 2020.

[152] Tao Xie and Xiao Qin. Improving security for periodic tasks in embedded
systems through scheduling. ACM Transactions on Embedded Computing
Systems (TECS), 6(3):20, 2007.

–199–

Bibliography

[153] Quazi N Ahmed and Susan V Vrbsky. Maintaining security in firm real-
time database systems. In Proceedings 14th Annual Computer Security
Applications Conference (Cat. No. 98EX217), pages 83–90. IEEE, 1998.

[154] Rahma Bouaziz, Laurent Lemarchand, Frank Singhoff, Bechir Zalila, and
Mohamed Jmaiel. Multi-objective design exploration approach for raven-
scar real-time systems. Real-Time Systems, 54(2):424–483, 2018.

[155] Binto George and Jayant Haritsa. Secure transaction processing in firm
real-time database systems. In ACM SIGMOD Record, volume 26, pages
462–473. ACM, 1997.

[156] Sang Hyuk Son, Ravi Mukkamala, and Rasikan David. Integrating security
and real-time requirements using covert channel capacity. IEEE Transac-
tions on Knowledge and Data Engineering, 12(6):865–879, 2000.

[157] Qixuan Xue, Yongxin Zhu, Yajie Wang, Kedun Mao, Han Wu, Mengjun
Li, Yishu Mao, and Junjie Hou. A scheduling scheme of task allocation in
real time multiple-partition embedded avionic. In 2017 IEEE International
Conference on Smart Cloud (SmartCloud), pages 41–46. IEEE, 2017.

[158] Wei Jiang, Paul Pop, and Ke Jiang. Design optimization for security-
and safety-critical distributed real-time applications. Microprocessors and
Microsystems, 52:401–415, 2017.

[159] Olivier Gilles. Vers une prise en compte fine de la plate-forme cible dans
la construction des systemes temps réel embarqués critiques par ingénierie
des modeles. PhD thesis, Telecom ParisTech, 2010.

[160] Herbert Dawid and Michael Kopel. On economic applications of the genetic
algorithm: a model of the cobweb type. Journal of Evolutionary Economics,
8(3):297–315, 1998.

[161] Ludo Waltman, Nees Jan van Eck, Rommert Dekker, and Uzay Kaymak.
Economic modeling using evolutionary algorithms: the effect of a binary
encoding of strategies. Journal of evolutionary economics, 21(5):737–756,
2011.

[162] Eduardo Raul Hruschka, Ricardo JGB Campello, Alex A Freitas, et al.
A survey of evolutionary algorithms for clustering. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
39(2):133–155, 2009.

[163] Wei Dai. Crypto++ 5.6. 0 benchmarks. http://www. cryptopp. com/bench-
marks. html, 2009.

–200–

Bibliography

[164] Kui Zhang, Ji Wu, Chao Liu, Syed Sarmad Ali, and Jian Ren. Behavior
modeling on arinc653 to support the temporal verification of conformed
application design. IEEE Access, 7:23852–23863, 2019.

[165] Basil Cameron Rennie and Annette Jane Dobson. On stirling numbers of
the second kind. Journal of Combinatorial Theory, 7(2):116–121, 1969.

[166] Steve Corrigan HPL. Introduction to the controller area network (can).
Appl. Rep. SLOA101, pages 1–17, 2002.

[167] Andrew Kornecki, Janusz Zalewski, Janusz Sosnowski, and D Trawczynski.
A study on avionics and automotive databus safety evaluation. Archives of
Transport, 17(3/4):107–131, 2005.

[168] Juan Carlos Mart́ınez Santos and Yunsi Fei. Hati: Hardware assisted thread
isolation for concurrent c/c++ programs. In 2014 IEEE International
Parallel & Distributed Processing Symposium Workshops, pages 322–331.
IEEE, 2014.

[169] Airlines Electronic Engineering Committee. ”avionics application software
interface part 1 - required services”, 2010.

[170] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and
Robert I Davis. An empirical survey-based study into industry practice in
real-time systems. In 2020 IEEE Real-Time Systems Symposium (RTSS),
pages 3–11. IEEE, 2020.

[171] Dakshina Dasari, Benny Akesson, Vincent Nelis, Muhammad Ali Awan,
and Stefan M Petters. Identifying the sources of unpredictability in cots-
based multicore systems. In 2013 8th IEEE international symposium on
industrial embedded systems (SIES), pages 39–48. IEEE, 2013.

[172] José V Busquets-Mataix, Juan José Serrano, Rafael Ors, Pedro Gil, and
Andy Wellings. Adding instruction cache effect to schedulability analysis of
preemptive real-time systems. IEEE, 1996.

[173] Lei Chai, Qi Gao, and Dhabaleswar K Panda. Understanding the impact
of multi-core architecture in cluster computing: A case study with intel
dual-core system. In Seventh IEEE international symposium on cluster
computing and the grid (CCGrid’07), pages 471–478. IEEE, 2007.

[174] Rakesh Kumar, Victor Zyuban, and Dean M Tullsen. Interconnections
in multi-core architectures: Understanding mechanisms, overheads and
scaling. In 32nd International Symposium on Computer Architecture
(ISCA’05), pages 408–419. IEEE, 2005.

–201–

Bibliography

[175] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic
broadcast: From simple message diffusion to byzantine agreement. Infor-
mation and Computation, 118(1):158–179, 1995.

[176] Steven P Miller, Darren D Cofer, Lui Sha, Jose Meseguer, and Abdullah Al-
Nayeem. Implementing logical synchrony in integrated modular avionics.
In 2009 IEEE/AIAA 28th Digital Avionics Systems Conference, pages 1–A.
IEEE, 2009.

[177] Elisabeth A Strunk, John C Knight, and M Anthony Aiello. Distributed
reconfigurable avionics architectures. In The 23rd Digital Avionics Systems
Conference (IEEE Cat. No. 04CH37576), volume 2, pages 10–B. IEEE,
2004.

[178] Richard D Schlichting and Fred B Schneider. Fail-stop processors: An
approach to designing fault-tolerant computing systems. ACM Transactions
on Computer Systems (TOCS), 1(3):222–238, 1983.

[179] Jaynarayan H Lala and Richard E Harper. Architectural principles for
safety-critical real-time applications. Proceedings of the IEEE, 82(1):25–40,
1994.

[180] WR Moore and NA Haynes. A review of synchronisation and matching in
fault-tolerant systems. IEE Proceedings E (Computers and Digital Tech-
niques), 131(4):119–124, 1984.

[181] Filipe Araujo, Serhiy Boychenko, Raul Barbosa, and António Casimiro.
Replica placement to mitigate attacks on clouds. Journal of Internet Ser-
vices and Applications, 5(1):1–13, 2014.

[182] Certification Authorities Software Team. Multi-core processors - position
paper. technical report cast 32-a, 2016.

[183] Mathieu Patte, Vincent Lefftz, Marco Zulianello, A Crespo, Miguel Mas-
mano, and Javier Coronel. System impact of distributed multi core systems.
Technical Report ESTEC Contract 4200023100, 2011.

[184] Joao Craveiro, José Rufino, and Frank Singhoff. Architecture, mechanisms
and scheduling analysis tool for multicore time-and space-partitioned sys-
tems. ACM SIGBED Review, 8(3):23–27, 2011.

[185] Jérôme Hugues, Christophe Honvault, and Claire Pagetti. Model-based
design, analysis and synthesis for multi-core and tsp avionics targets. 2018.

[186] Javier Coronel, M Tsagkaropoulos, Dimitrios Mylonas, Patricia Balbastre,
Vangelis Kollias, and Alfons Crespo. Validation of securely partitioned

–202–

systems over multicore architectures based on xtratum. In Data systems in
aerospace (DASIA), Proceedings on, 2013.

[187] Peter H Feiler and David P Gluch. Model-based engineering with AADL: an
introduction to the SAE architecture analysis & design language. Addison-
Wesley, 2012.

[188] Ill-Ham Atchadam, Frank Singhoff, Hai Nam Tran, and Laurent Lemarc-
hand. A design space exploration approach to jointly optimize security
and schedulability in tsp systems. In Poster presented in Colloque du GDR
SOC2, Strasbourg, France, 2022.

[189] Ill-ham Atchadam, Laurent Lemarchand, Frank Singhoff, and Hai Nam
Tran. Observing the impact of multicore execution platform for tsp systems
under schedulability, security and safety constraints. In 17th International
Workshop on “Dependable Smart Embedded and Cyber-Physical Systems
and Systems-of-Systems (DECSoS22), Munich, Germany, 2022, volume
13415, pages 83–96. Springer, 2022.

[190] Ill-ham Atchadam, Frank Singhoff, Hai Nam Tran, Noura Bouzid, and Lau-
rent Lemarchand. Combined security and schedulability analysis for mils
real-time critical architectures. In 4th International Workshop on Security
and Dependability of Critical Embedded Real-Time Systems (CERTS 2019),
Stuttgart, Germany, pages 1:1–1:12.

[191] P Dissaux, Frank Singhoff, L Lemarchand, Hai Nam Tran, and Ill-Ham
Atchadam. Combined real-time, safety and security model analysis. In
9th European Congress ERTSS Embedded Real Time Software and System,
Toulouse, France, 2020.

[192] John McLean. Security models. Encyclopedia of software engineering,
2:1136–1145, 1994.

[193] Andoni Amurrio, J Javier Gutiérrez, Mario Aldea, and Ekain Azketa. Pri-
ority assignment in hierarchically scheduled time-partitioned distributed
real-time systems with multipath flows. Journal of Systems Architecture,
122:102339, 2022.

[194] Dar-Tzen Peng, Kang G. Shin, and Tarek F. Abdelzaher. Assignment and
scheduling communicating periodic tasks in distributed real-time systems.
IEEE Transactions on Software Engineering, 23(12):745–758, 1997.

Titre : Exploration d’architectures logicielles pour les systèmes critiques partitionnés sécurisés

Mots clés : systèmes partitionnés, ordonnançabilité, sécurité, optimisation multi-objective

Résumé : Les systèmes temps réel modernes
intègrent de plus en plus de fonctions. Face à
cette complexité, des mécanismes d’isolation
sont employés afin qu’une défaillance survenant
dans une fonction ne puisse pas affecter les
autres. Cette thèse porte sur les architectures
TSP (Time and Space Isolation). Elles
introduisent le concept de partition afin d’assurer
l’isolation spatiale et temporelle des
applications. Les applications peuvent être
assignées à des partitions en fonction de
diverses fonctions objectives ou contraintes
liées aux fonctions à implanter (e.g. sûreté,
performances, sécurité). Certaines de ces
fonctions objectives peuvent être conflictuelles.
Ainsi, l’amélioration de la sécurité d’un système
par ajout de fonctions dédiées à la sécurité (e.g.
chiffrements) peut avoir un impact sur son
ordonnançabilité.
C’est dans ce contexte que nous étudions dans
cette thèse, le caractère conflictuel entre
l’ordonnançabilité et la sécurité (confidentialité et

intégrité) dans les systèmes temps réel TSP.
Nous proposons l’exploration de l’espace de
solutions (DSE) en utilisant une
métaheuristique multi objective, qui fournit des
compromis entre l’ordonnançabilité et la
sécurité pour ces systèmes. Nous proposons
trois algorithmes de DSE pour des systèmes
TSP monoprocesseur basés sur la
métaheuristique Pareto archived evolutionary
Strategy (PAES). Nous proposons également
une méthode afin de favoriser la diversité des
compromis proposés à l’issue d’une
exploration. Ces algorithmes sont implantés
dans Cheddar, un outil d’analyse de
l’ordonnançabilité auquel nous avons intégré
l’analyse de la sécurité. Les algorithmes sont
validés avec sept benchmarks. Enfin, nous
illustrons l’extensibilité de notre approche en
proposant une approche DSE en considérant
la sûreté et les plateformes d’exécution multi-
coeurs.

 Title: A design space exploration approach to jointly optimize security and schedulability in TSP

 systems

 Keywords: time and space partitioning, schedulability, security, multi-objective optimization

Abstract: Modern real-time systems integrate
more and more functions. Faced with this
complexity, isolation mechanisms are employed
so that a failure occurring in one function cannot
affect the others. This thesis focuses on TSP
(Time and Space Isolation) architectures. They
introduce the concept of partition to provide
application isolation. Applications can be
assigned to partitions according to various
objective functions or constraints related to the
functions to implement (e.g. safety,
performance, security). Some of these objective
functions can be conflicting. Thus, improving the
security of a system by adding functions
dedicated to security (e.g. ciphers) can have a
negative impact on its schedulability. In this
thesis, we investigate the conflicting aspect
between schedulability and security
(confidentiality and integrity) in real-time TSP
systems. We propose a design space explora-

tion (DSE) based on a multi-objective
metaheuristic, which provides trade-offs
between schedulability and security for these
systems. We propose three DSE algorithms
for uniprocessor TSP systems based on the
Pareto archived evolutionary Strategy (PAES)
metaheuristic. We also propose a method to
promote the diversity of the compromises
proposed at the end of an exploration. These
algorithms are implemented in Cheddar, a
schedulability analysis tool extended with
security analysis features. The algorithms are
validated with seven benchmarks. We also
investigate the impact of different security
implementations for confidentiality and
integrity in TSP systems. Finally, we illustrate
the extensibility of our approach by proposing
a DSE approach while considering safety and
multicore execution platforms.

	Acknowledgments
	Contents
	List of Figures
	List of tables
	Introduction
	Introduction
	Problem statement
	Contribution
	A PAES based DSE approach for unicore execution plateforms
	Extension of the DSE approach to Multicore execution platforms
	Implementation and evaluations

	Thesis organization

	I State of art
	Real-time systems
	Definitions and classification
	Definitions
	Classification

	Real-Time architecture
	Hardware platform
	Real-time software application layer
	Real-time Operating System

	Real-time scheduling analysis
	Feasibility and schedulability
	Scheduling analysis methods

	Conclusion

	Hierarchical real-time systems
	Definitions and characteristics
	Resource model
	Periodic resource model
	Bounded delay resource

	Time and space partitioning (TSP) and integrated modular avionics (IMA)
	ARINC 653
	Hardware
	Software

	Examples of hypervisors/operating systems for TSP systems
	PikeOS
	Xtratum masmano2009xtratum
	POK
	LynxSecure

	Conclusion

	Security
	Security properties
	Security models
	Security architecture
	MILS classification
	MILS architecture

	Conclusion

	Multi-objective optimization
	Definitions and characteritics
	Scalarization based multi-objective optimization
	Weighted sum method
	-constraints method
	Goal programming

	Direct approaches for multi-objective optimization
	Multi-objective evolutionnary algorithms

	Conclusion

	II Work orientations and positioning
	Work orientations and positioning
	System model, security and schedulability assumptions
	Assumptions on security implementation
	Securing communications through function calls
	Securing communications through dedicated tasks

	Security and scheduling: trade-off in TSP systems
	Related work
	Summary of expected contributions
	Conclusion

	III Contributions
	Design space exploration to secure unicore TSP systems
	PAES general framework for schedulability and security trade-off
	PAES adaptation to the MOOP of schedulability and security
	Objective functions and constraints
	Feasibility tests
	Solutions encoding
	Mutation operator
	Mutation algorithm improvement
	Initial solutions and archiving process adaptation

	Conclusion

	Experiments and evaluations
	Experiment 1: illustration with a flight controller application
	Conditions of experiment
	Results

	Experiment 2: illustration with a flight controller and JPEG applications
	Conditions of experiment
	Results

	Experiments 3-6: illustration with a flight controller, multimedia based application, CFAR and autopilot applications
	Experiment 3: result of PAES when varying processor utilization
	Experiment 4: results of PAES when considering intra-partition communications non-vulnerable
	Experiment 5: results of PAES with variation of the maximum number of partitions from 2 to 4
	Experiment 6: results of PAES while considering APEX calls execution times given in SFPBench gohring2020benchmarking

	Experiment 7: comparison of our PAES tool results vs. exact solutions
	Conditions of experiment
	Results

	Conclusion

	Design space exploration for safe and secure Multi-core TSP systems
	Background and system model
	Multicore TSP systems
	Safety
	System model and assumptions

	PAES adaptation for safe and secure multicore TSP systems
	Initial solution
	Objective functions and constraints
	Encoding of solutions
	Mutation operator

	Test cases and Evaluation
	Case study
	Results of the experiment

	Related work
	Conclusion

	Tool design and implementation
	Cheddar framework
	Cheddar Architecture Description Language (ADL)

	Cheddar scheduling analyzer
	Design of a model
	Scheduling simulation
	Feasibility tests

	Implementation
	MILS library
	PAES library
	Architecture exploration tools library

	Conclusion

	IV Conclusion
	Conclusion
	Contribution summary
	PAES adaptation to the MOOP between schedulability and security
	Mutation algorithms
	Mutation algorithm improvement
	Identification of the key parameters during DSE
	Extensibility of the DSE approach: safe and secure TSP systems on multicore execution platforms
	Security architecture modeling and security analysis implementation

	Future work
	Memory protection mechanism
	Security: investigation of different security models
	Schedulability: investigation of different possibilities of major time frame (MAF)
	Conflict between schedulability and security: consideration of the possible overheads
	Extension to distributed network platforms
	Finer granularity: functions

	Cover Page 2

