Programming Real-Time Embedded
systems . Ada 2005 and RTEMS

Frank Singhoff
Office C-202
University of Brest, France

singhoff@univ-brest.fr

University of Brest — Page 1/120

Summary

Introduction and sequential programming.
Concurrency features.

Real-Time features.

Examples of Ada runtimes.

Conclusion.

o R~ Wb E

. References.

University of Brest — Page 2/120

Introduction to Ada (1)

e Why this language for Real-Time embedded systems:

#® Has concurrency and real-time features: task, interruptions, synchronization, timers,
real-time scheduling features,...

International ISO standard (portability).
Separate compilation (large software).

Provides numerous reliability mechanisms (e.g. strong typing).

o o o @

Complex language.

e Domains: transportations (train, aircraft, spacecraft) and military devices.

e Examples: Airbus (320, 380), Boeing (777), Fokker, Tupolev, Eurostar, Underground (line
14 of Paris), TGV, Ariane (4 and 5), Satellites (Intersat), spacecraft (Cassini, Huygens, Soho,
Mars Express), military (Tiger, Apache, Patriot) —-

http://lwww.seas.gwu.edu/ mfeldman/ada-project-summary.html.

e Historical matters: Ada 83, Ada 95, Ada 2005, Ada 2012.

University of Brest — Page 3/120

Introduction to Ada (2)

. What is an Ada program?

. Types, operators, variables, constants.
Flow of control.

Inputs/Outputs.

Pointers and dynamic allocations.

o bk W

Generic packages.

University of Brest — Page 4/120

What Is an Ada program (1)

e Separate compilation: unit of program = unit of
compilation.

e Types of program units (GNAT files) :
Main procedures: entry point of a program (.adb file).

Packages: set of declarations (subprograms, types, tasks, ...).
s Public part: (package specification, .ads file).
s Hidden/private part: (package body, .adb file).

o Tasks : specification (.ads file) and body (.adb file).

o Generic units: units that are parametrized (packages or
subprograms). Possible parameters: types, constants, subprograms
or packages.

University of Brest — Page 5/120

What Is an Ada program (2)

e Structure of a main procedure:

with package namel; use package namel,;
with package name2; use package nameZ2;

procedure main_procedure_name is
— declarations

begin

—— statements

end main_procedure _name,;

o File mai n_procedure_nane. adb
Wit handuse clauses.

Use is optional (pointed notation otherwise) — do not use them for

reliable software.
University of Brest — Page 6/120

What is an Ada program (3)

e Example of a main procedure:

with text 10 ;
use text 10 ;

procedure Hello is

begin
Put Line("Hello world");
end Hello;

University of Brest — Page 7/120

What Is an Ada program (4)

e Structure of a package specification:

package package name is
— public declarations
private

— private declarations
end package name;

e Structure of a package implementation:

package body package name is

—— Sub—programs

begin

— initialization of the package
end package name;

University of Brest — Page 8/120

What is an Ada program (5)

e Package specification (file nypackage. ads) :

package mypackage is

procedure sum(a : in integer;
b : Iin integer; result : out integer);
function sum(a : in integer; b : in integer)

return integer;
private

Internal _variable : integer;
end mypackage;

University of Brest — Page 9/120

What is an Ada program (6)

e Package implementation (nypackage. adb) :

package body mypackage is

procedure sum(a : in integer;
b : in integer; result : out integer) is
begin
result:=a+b+internal_variable;
end sum;
function sum(a : in integer; b : in integer)

return integer is
begin
return a+b+internal_variable;

end sum;

begin
internal_variable:=100;
end mypackage;

University of Brest — Page 10/120

What Is an Ada program (7)

e Use of nypackage :

with text 1o;
use text io;
with mypackage;
use mypackage;

procedure main is
a . integer :=0;
begin
sum(10,20,a);
put_line (integer 'image(a));
a:=sum(40,50);
put_line (integer 'image(a));
end main;

University of Brest — Page 11/120

What is an Ada program (8)

e Compile this program (with GNAT) :

>gnatmake main.adb
gcc —c mypackage.adb
gcc —c main.adb
gnatbind —x main. ali
gnatlink main. ali

gnatmake : manage compilation unit dependencies.

gcc : compile.

gnatbind : elaboration (packages initialization).

o gnatlink : addresses link edit.

o Results : mai n, nypackage.ali, nypackage.o, nain.ali
and mai n. o

University of Brest — Page 12/120

What is an Ada program (9)

e EXercise 1:

package Compute is
function Add(A : in Integer; B : In Integer)
return Integer;
function Multiply (A : in Integer; B : in Integer)
return Integer;
function Substract(A : in Integer; B : in Integer)
return Integer;
function Divide(A : In Integer; B : in Integer)
return Integer;
end Compute;

Write a main procedure which computes and displays the value of the
following expression: (2 - 3) + 4. Provide also a package implementation

for conput e.
University of Brest — Page 13/120

Types, operators, variables (1)

e Strong typing:
Increase maintainability and source code readability.

Increase safety: static analysis at compilation time, runtime time
exception => reduce latency of bug occurrence.

Forbid operation between variables with different types (no implicit
cast).

e What is a type:

o Type = size in memory and its representation + allowed possible
values + attributes/operators.

o Range of possible values defined by the standard (portability).

Attributes : pre-defined operators for any types (including the types
you may define).

University of Brest — Page 14/120

Types, operators, variables (2)

e Scalar types:

s float, Integer, bool ean, character,
access and enumerations.

s Examples of attributes: i nt eger’ | ast,
lnteger’ first, 1nteger’range

e Composed types: array, string (whichis also an
array), record, union, task, protected

e Main operators:
s Arithmetic: +, -, =, [/, nod

s Relational: =, /=, <=, >=, in, not, and, or,
XOr

University of Brest — Page 15/120

Types, operators, variables (3)

» Derived types: if type a Is derived from type b, then a
and b are two different types that are non compatible.

» Subtypes: if type a is a subtype of type de b, then a and
b are compatible. a Is an alias of .

University of Brest — Page 16/120

Types, operators, variables (4)

e Examples of declarations:

with Text io;
use Text io0;

procedure Declare_Var is

i1 : Integer;

i2 . Integer := O0;

sl : String (1..10);

f1 . Constant Float := 10.5;
begin

Put_Line ("Integer’ First=" & Integer Image(Integer’ First));
Put_Line ("Integer’'Last=" & Integer Image(lnteger’Last));
end Declare_Var;

University of Brest — Page 17/120

Types, operators, variables (5)

e Some subtypes and derived types:

procedure Derive is
type Temperature is new Integer Range —280 .. 300;

tl : Temperature = O0;

t2 : Temperature = 300;

| . Integer :=10;
Begin

tl:=t1+t2;

tl:=tl+i;

t2:=t2+1;

end Derive:

University of Brest — Page 18/120

Types, operators, variables (6)

e Some subtypes and derived types:

procedure Derive is
subtype Temperature is Integer Range —280 .. 300;

tl : Temperature = O0;

t2 . Temperature = 300;

| . Integer :=10;
Begin

tl:=t1+t2;

tl:=tl+i;

t2:=t2+1;

end Derive:

University of Brest — Page 19/120

Types, operators, variables (7)

» Strong typing allows static analysis.
» Example (from D. Lesens [LES 10]):

[/l Wrong C program ...

/1l but this program will compile !
typedef enum {ok, nok} t ok nok;
typedef enum {off, on} t on_off;

void main() {
t ok _nok status = nok;

if (status == on)
printf("is on\n");

University of Brest — Page 20/120

Types, operators, variables (8)

» And the Ada program now:

with Text _lo;
use Text lo;

— Wrong Ada program
— but this program will not compile

procedure Ada_Wrong is
type t ok _nok is (ok, nok);
type t _on_off is (off, on);
status : t_ok _nok := nok;
begin
iIf (status = on)
then Put Line("is on\n");
end if;
end Ada Wrong;

University of Brest — Page 21/120

Types, operators, variables (9)

e Composed types:
1. Type constructor: type

2. Enumeration: discrete type, memory representation is hidden
(similar to C enum) but specific attributes (succ and pos).

3. Record: set of variables (similar to C struct). Initialization of each
field can be done either by declaration order or by giving its name.

4. Array: 1 or 2 dimensions. Indexes must be discrete types (integer or
enumeration). Array size is known at type declaration (constrained
array) or at variable declaration (unconstrained array).

University of Brest — Page 22/120

Types, operators, variables (10)

e Example of an enumeration:

with text io;
use text io;
procedure enumeration is

type a_day is (monday, tuesday, wednesday, thuesday,
friday , saturday, sunday);
j : a_day := monday;

package io is new text io.enumeration_io(a_day);

begin

io.Put(a_day’ first);

io.Put(a_day’ last);

j:=a _day’ succ(]j);

io.Put(j); Put_Line(a_day’image(j));
end enumeration;

University of Brest — Page 23/120

Types, operators, variables (11)

e Example of an array:

type a_day is (monday, tuesday, wednesday, thursday,
friday , saturday, sunday);

type tabl is array (0..3) of integer;

type tab2 is array (1..4) of a day;

type tab3 is array (monday..sunday) of integer;

tl : tabl := (30,43,28,100);

t2 : tab2 := (4=>monday, 2=>tuesday,
3=>sunday, l=>wednesday);

t3 : tab3;

begin
t1(0):=t1(0)x2;
t2 (2):=monday;
t3 (monday):=2;

University of Brest — Page 24/120

Types, operators, variables (12)

e Example of a record:

with Text _lo;
use Text lo;
procedure Point is

type A_Point is record
X : Integer;
Y : Integer;

end record;

P1L : A_Point := (10,20);
P2 : A_Point := (Y=>20, X=>10);

begin
Put_Line(Integer 'Image(P1.X));
Put_Line(Integer 'Image(P1.Y));
end Point;

University of Brest — Page 25/120

Types, operators, variables (13)

e Exercise 2 : for each following statement, check if it compiles or not. Explain why it can
not be compiled.

type tl is new integer range 0..10;
type t2 is new integer range 0..100;
subtype t3 is t1;

subtype t4 is t3;

subtype t5 is t2;

a, b . tl;
C t2

d t3;

e, f t4 ;
a:=b+c;
d:=cxa;
d:=cxf;
f:=atb;
e.=ex100;

University of Brest — Page 26/120

Flow of control (1)

Sequence:

11:12

Conditional test:

If cond
then i1;
else 12;

end if;

University of Brest — Page 27/120

Flow of control (2)

o Some different loops:

while cond

loop
11:12;
end loop;
for i in a..b loop
11:12;
end loop;

— Typical real—time design
loop

i11;i2;

exit when cond; — optional test
end loop;

University of Brest — Page 28/120

Flow of control (3)

e Example with attributes:

sl,s2,s3 : integer:=0;
subtype index is integer range 1..10;

for i in 1..10 loop
sl:=sl+i;
end loop;

for |J in index’ first..index’last loop
S2:=82+]j;
end loop;

for k in index’'range loop

$3:=s3+Kk;
end loop;

University of Brest — Page 29/120

Inputs/Outputs (1)

s Strong Typing: each type must have its own
Inputs/Outputs subprograms, fortunately type families
exist.

» Services provided by package Text | o : for types
String and Char act er only:
s Get : read a constant size string from the keyboard.
s Put : display a string on the screen.
s New Li ne : send a carriage return to the screen
s Put _Line:Put +New Line
s Get _Li ne : read a variable size string from the

keyboard.

s Othertypes: generic units Fl oat | o,
| nt eger | o, Enuneration_| o,

University of Brest — Page 30/120

Inputs/Outputs (2)

e Specification of Text | o:

package Ada.Text IO is
procedure Get (Item : out String);
procedure Put (ltem : String);
procedure Get_Line (ltem : out String;
Last : out Natural);
procedure Put _Line (ltem : String);
procedure New_Line (Spacing : Positive _Count

1),

generic
type Num is range <>;
package Integer 10 is

generic

type Num is range <>;
package Enumeration IO is

University of Brest — Page 31/120

Inputs/Outputs (3)

e Part of the generic unit | nt eger | o:

generic
type Num is range <>;
package Ada.Text IO.Integer IO is

Default Width : Field := Num’ Width;
Default Base : Number Base := 10;

procedure Put

(Item : Num;
Width : Field := Default_Width;
Base : Number Base := Default Base);

procedure Get
(Item : out Num;
Last : out Positive);
end Ada.Text 10.Integer_10;

University of Brest — Page 32/120

Inputs/Outputs (4)

e Example of use of I nteger | o:

with text io; use text _io;
procedure Intio is
type temperature is new integer range —300..300;
package temperature_io is new text io.integer_io(temperature);
tl, t2 . temperature;
begin
Put("Get temperature 1:");
temperature_io.Get(tl);
New_ Line;
Put (" Get temperature 2:");
temperature_io.Get(t2);
New Line;
Put("Sum = "); temperature_io.Put(tl+t2);
New Line;
exception
when Data_Error =>
Put line ("Data is not compliant with ’'temperature’ type");

end Intio: University of Brest — Page 33/120

Inputs/Outputs (5)

e EXercise 3:
Write a program that reads integers from the keyboard and

displays the sum of the read integers each time an integer
IS entered. If a read data is not compliant with the integer
type, our program must display it.

University of Brest — Page 34/120

Pointers, dynamic allocations (1)

e Usually, no pointer and dynamic allocations in real-time .. . but

Strong typing: a pointer can only address a data with the same
type. Pointers are typed!
o Static analysis on pointer: reliability.

» Example of declarations :

type integer_ptr is access integer;

pointerl : integer_ptr := null;
my_integer : integer;
pointer2 : integer_ptr := my_integer’access,;

o Dynamic allocation: new operator.

Deallocation: none! Why?

University of Brest — Page 35/120

Pointers, dynamic allocations (2)

e Example:

with Text lo; use Text lo;
procedure Pointer is
package lo is new Text lo.Integer_lo(Integer);
type Integer Ptr is access Integer;
| . Integer = 110;
P1, P2, P3, P4 : Integer_Ptr;
begin
Pl:= new Integer;
Pl1.all:=100;
P2:= new Integer '(1);
P4:= new Integer ’'(10);
lo.Put(P1. all);
lo.Put(P2. all);
lo.Put(P4. all);
lo.Put(P3. all);
end Pointer;

University of Brest — Page 36/120

Pointers, dynamic allocations (3)

e Static analysis on pointers: reliabiliy.

with Text lo; use Text lo;
procedure Wrong_Allocate is

type Integer_ Ptr is access Integer;
Global : Integer_Ptr;

procedure Assign_Value is
| : Integer := 100;
begin

Global:=1"access;
end Assign_Value;

package lo is new Text lo.Integer_lo(Integer);
begin

Assign_Value;

lo.Put(Global. all);

end Wrong_ Allocate;
University of Brest — Page 37/120

Generic units (1)

Program unit that is parametrized by: types, constants,
subprograms and packages.

o Generic functions/procedures or packages.

o Provide the same service on different types: we can not use object
and dynamic linking (those mechanisms are not timely deterministic).

Instanciation step: required to use a generic package. Consists in
giving a value for each parameter of the generic unit.

® Structure:

generic

— parameters

package foo

package body foo

— use parameters to write the

— implementation of the generic unit

University of Brest — Page 38/120

Generic units (2)

generic
type Element is private;
with procedure Put(E : in Element);
package Lists is
type Element Ptr is access Element;
type Cell is private;
type Link is access Cell;

procedure Put(L : in Link);

procedure Add(L : in out Link; E : in Element_Ptr);
private

type Cell is record

Next : Link;
Data . Element_Ptr;
end record;

end Lists;

University of Brest — Page 39/120

Generic units (3)

package body Lists is
procedure Add(L : in out Link; E : in Element Ptr) is
New Cell : Lien;
begin
New Cell:=new Cell;
New_Cell.Data:=E; New_Cell.Next:=L; L:=New_Cell;
end Add;

procedure Put(L : in Link) is
Current : Link := L;
begin
while Current/=null loop
Put(Current.Data. all);
Current:=Current. Next;
end loop;
end Put;
end Lists;

University of Brest — Page 40/120

Generic units (4)

with Lists;
procedure Test Lists is

type Guy is record
procedure Put(Display : in Guy) is

package My List is new Lists(Guy, Display);
use My List;

A _List : Link;

G . My_List.Element_Ptr; — pointer to
— a qguy
begin
G:= new Guy;
Add(A _List, G);
Put(A_List);

University of Brest — Page 41/120

Summary

Introduction and sequential programming.
Concurrency features.

Real-Time features.

Examples of Ada runtimes.

Conclusion.

o R~ Wb E

. References.

University of Brest — Page 42/120

Concurrency

» Tasks.
» Synchronization and communication with rendez vous.
o Communication with protected objects.

University of Brest — Page 43/120

Task (1)

e An Ada task is composed of:

» A specification: interface of the task. Visible part of the
component.

» An implementation: contains the source code of the

task (statements sequentially run by the task). Hidden
part.

» Optional type (anonymous task otherwise).

e An Ada task is declared as follow:

s task/task type (specification of the task) and t ask
body (implementation of the task).

» A main procedure is also a task.

University of Brest — Page 44/120

Task (2)

e A task can be: active, aborted, achieved, terminated.

e Activation rules:

o Statically allocated: in the beginning of the bloc in which the task is
declared.

o Dynamically allocated: at dynamic allocation (new statement).

e Termination rules:
On exception (exceptions in a task are lost if not catched).

When all slaves tasks are terminated.

e Abortion : with abort x statement, x is a task name. Should be

avoided.

University of Brest — Page 45/120

Task (3)

e Example of an anonymous task, statically allocated:

with Text lo; use Text lo;
procedure Anonymous_Task is
task My Task;
task body My Task is
begin
loop
Put _Line("Task is running");
delay 1.0;
end loop;
end My Task;
begin
null;
end Anonymous_Task;

e How many tasks here?

University of Brest — Page 46/120

Task (4)

e Example of a task type, statically allocated:

with Text lo; use Text lo;
procedure Task Type is
task type A _Type;
task body A Type is
begin
loop
Put _Line("task is running");
delay 1.0;
end loop;
end A _Type;
T1, T2: A _Type;
T : array (1..10) of A _Type;
begin
null;
end Task Type;

e How many tasks here?

University of Brest — Page 47/120

Task (5)

e Example of a task type, dynamically allocated:

with Text lo; use Text lo;
procedure Dynamic_Task is
task type A _Type;
task body A Type is
begin
loop
Put_Line("task is running");
delay 1.0;
end loop;
end A _Type;
type A _Type Ptr is access A Type;
T : array (1 .. 3) of A_Type_ Ptr;
begin
for 1 in 1..3 loop
T(i):= new A _Type;
end loop;

end Dynamic_Task;
University of Brest — Page 48/120

Task (6)

e This program is wrong. Why?

procedure Wrong Task is
cpt : integer :=0;
task type A _Type;
task body A Type is
begin
loop
Cpt:=cpt+1;
delay 1.0;
end loop;
end A _Type;
T1, T2 : A _Type;
begin
delay 3.0;
Cpt:=cpt+1;
abort T1l; abort T2;
end Wrong_Task;

University of Brest — Page 49/120

Task (7)

e Exercise 4:
For programs of pages 46, 47 and 48, say when the tasks
are activated and when they are terminated.

University of Brest — Page 50/120

Task (8)

e EXxercise 5:

Write a program composed of two tasks. The first task com-
putes and displays the elements of the recurrent equation
U, = U,_1 -2 with Uy = 1. The task must be delayed one
second between the display of two successive values. The
second task must have the same behavior but with the fol-

lowing recurrent equation: U,, = U,,_1 + 2 with Uy = 0.

University of Brest — Page 51/120

Concurrency

» Tasks.
» Synchronization and communication with rendez vous.
» Communication with protected objects.

University of Brest — Page 52/120

Rendez-vous (1)

A t Start of the End of the
ccep () rendez-vous rendez-vous
: . p Called
(blocked) Statements
during the
rendez-vous
""" —# Caller
Call()
Accept()
Start of the End of the
rendez-vous rendez-vous
—————————————————————————————————————— P Called
Statements
call() during the
I rendez-vous
1 P Caller
(blocked)

e A rendez-vous is:
o Asymmetric: calling task and called task. Server and client.
Synchronization: two tasks must be ready to do the rendez-vous.

» Allow data exchange between two tasks.

University of Brest — Page 53/120

Rendez-vous (2)

e What is a rendez-vous with Ada:

>

Entry: synchronization point, declared in the task
specification (task interface).

Task specification: may include several entries.

accept statement. allow a called task to wait for an
entry call, and then, during the rendez-vous, runs
statements included in the accept.

Caller task: callers use entry names to make a
rendez-vous with a task.

University of Brest — Page 54/120

Rendez-vous (3)

e Example of rendez-vous (synchronization only):

with Text lo; use Text lo;
procedure Hello is
task My Task is
entry Hello_World;
end My Task;
task body My Task is
begin
loop
accept Hello_World do
Put_Line("Hello word");
end Hello_World;
end loop;
end My Task;
begin
My Task.Hello_World;
abort My Task;

end Hello;
University of Brest — Page 55/120

Rendez-vous (4)

e Rendez-vous with data exchange:

task type My Task is
entry Increment(S1 : in out Integer);
end My Task;
task body My Task is
begin
loop
accept Increment(S1 : in out Integer) do
S1:=S1+1;
end Increment;
end loop;
end My Task;
T1 : My Task;
Val : Integer :=0;
begin
T1.Increment(Val);
Put Line("Val = " & Integer 'Image(Val));

abort T1;
University of Brest — Page 56/120

Rendez-vous (5)

e Some additional clauses:
» select: simultaneously wait for several entry calls.

s terminate : stop a task which is waiting for an entry call
when its master task is completed.

» Guarded entry: the entry can be called only when the
boolean condition is satisfied.

» else : non blocking entry call.

University of Brest — Page 57/120

Rendez-vous (6)

e Task with several entries:
task body My Task is

Bool : Boolean := False;
begin
loop
select

accept Hello_World do

Put_Line("Hello word");

end Hello_World;
or
accept Do_Exit do
Put_Line ("Bye bye");
Bool:=True;
end Do_Exit;
end select;
exit when Bool;
end loop;
end My Task;

task My Task is
entry Hello_World;
entry Do_Exit;

end My Task;

begin
My Task.Hello_World;
My Task.Do_EXxit;

end Main;

University of Brest — Page 58/120

Rendez-vous (7)

e Example with a t er m nat e clause:

task body My Task is
begin
loop
select
accept Increment
(S1:in out Integer) do
S1:=S1+1,;
end Increment;
or
terminate;
end select;
end loop;
end My Task;

task My Task is
entry Increment
(S1 : in out Integer);

end My Task;

Val : Integer :=0;

begin
My Task.Increment(Val);
Put_line("Val = " &

Integer 'Image (Val));
end Increment_Terminate;

University of Brest — Page 59/120

Concurrency

» Tasks.
» Synchronization and communication with rendez-vous.
o Communication with protected objects.

University of Brest — Page 60/120

Protected types and objects (1)

e A protected object is:

A structure protecting concurrent access to a set of variables.

A synchronization mechanism which is a kind of readers-writers
paradigm.

e A protected object is composed of:

A specification (interface): declaration of functions, procedures and
entries. Visible part of the unit.

o An implementation (body): protected variables + implementation of
the functions, procedures and entries. Hidden part of the unit.

o Optional type (anonymous protected object otherwise).

University of Brest — Page 61/120

Protected types and objects (2)

e Synchronizations provided by a protected object:

» Functions: can be run simultaneously (concurrency is
allowed on functions as they do not change object
data).

» Procedures:. concurrency is not allowed: source code
of a procedure Is run in a critical section.

— Function and procedure synchronization =
readers-writers synchronization.

s Entry: similar to procedures but with a boolean guard:
an entry can be run only if its guard is true, blocking of
the task otherwise.

University of Brest — Page 62/120

Protected types and objects (3)

e Example of a protected variable (specification):

package Vars is
protected type Var is
procedure Write(Value : in Integer);
function Read return Integer;
private
Variable : Integer:=0;
end Var;
end Vars;

University of Brest — Page 63/120

Protected types and objects (4)

e Example of a protected variable (body):

package body Vars is
protected body Var is
procedure Write(Value : in Integer) is
begin
Variable:=Value;
end Write;
function Read return Integer is
begin
return Variable;
end Read;
end Var;
end Vars;

University of Brest — Page 64/120

Protected types and objects (5)

e Example of a protected variable (use):

With Text lo; use Text io;

with Vars; use Vars;

procedure Protected Variable is

One : Vars.Var;
task My Task;

task body My Task is

begin
loop

Put_Line (" Val

end loop;
end My Task;
| : Integer :=0;
begin
loop
One. Write (1);
l:=1+1;
end loop;

end Protected Variable;

' & Integer ’'Image(One.Read));

University of Brest — Page 65/120

Protected types and objects (6)

e Example of a semaphore (specification):

package Semaphores is
protected type Semaphore is
entry P;
procedure V;
procedure Init (
Val : in Natural);
private
Value : Natural:=1;
end Semaphore;
end Semaphores;

University of Brest — Page 66/120

Protected types and objects (7)

e Example of a semaphore (body):

package body Semaphores is
protected body Semaphore is
entry P when Value > 0 is
begin
Value:=Value —1;
end P;
procedure V is
begin
Value:=Value+1,;
end V;
procedure Init (Val : in Natural) is
begin
Value:=Val;
end Init;
end Semaphore;
end Semaphores;

University of Brest — Page 67/120

Protected types and objects (8)

Mutex : Semaphore;
task type One;
task body One is
begin
loop
Mutex .P;
Put_Line ("Running in critical section !!");
Mutex .V;
end loop;
end One;

type One_ Ptr is access One;
Several : array (1..10) of One_Ptr;

begin
Mutex. Init (1);
for 1 in 1..10 loop

Several(i):= new One; o
University of Brest — Page 68/120

Protected types and objects (9)

e Example of a readers-writers synchronization:

package Readers_Writers is
protected type Reader_Writer is
entry Start Read;
procedure End Read;
entry Start _Write ;
procedure End_Write;
private
Nb_ Readers : Natural :=0;
Nb_Writers : Natural :=0;
end Reader_ Writer;
end Readers_Writers;

University of Brest — Page 69/120

Protected types and objects (10)

protected body Reader_Writer is
entry Start Read when Nb_Woriters = 0 is
begin
Nb_Readers:=Nb_Readers+1;
end Start Read;
entry Start_Write when Nb_Readers + Nb_Writers = 0 is
begin
Nb_Writers=Nb_Writers+1,;
end Start_Write;
procedure End Read is
begin
Nb_Readers:=Nb_Readers —1;
end End_Read;
procedure End_Write is
begin
Nb_ Writers=Nb_Writers —1;
end End_Write;

end Reader_Writer; o
University of Brest — Page 70/120

Summary

Introduction and sequential programming.
Concurrency features.

Real-Time features.

Examples of Ada runtimes.

Conclusion.

o R~ Wb E

. References.

University of Brest — Page 71/120

Real-time

e Real-time scheduling facilities available for Ada
practitioners:

o ISO/IEC Ada 1995 and 2005 : the Systems
Programming Annex C and the Real-Time Annex D
[TAF 06].

s Ada POSIX 1003 Binding [BUR 07, GAL 95].
s ARINC 653 [ARI 97].

» ...

University of Brest — Page 72/120

Ada 2005 real-time scheduling facilities

e With Ada 1995/2005, real-time scheduling features
are provided by pragmas and specific packages:

» How to implement a periodic task:
1. Representing time (Ada.Real_Time package).

2. Implementing periodic release times (delay
statement).

3. Assigning priorities (pragma).

» How to activate priority inheritance with shared
resources (protected objects/types).

» How to select a scheduler (fixed priority scheduling,
EDF, ..)).

University of Brest — Page 73/120

Ada 2005: periodic task (1)

package Ada.Real Tine is

type Tinme is private;
Time_Unit : constant := inplenentation-defined;
type Tinme_Span is private;

function O ock return Tine;

functi on Nanoseconds (NS : Integer) return Tine_Span;
function Mcroseconds (US : Integer) return Tinme_Span;
function MIliseconds (M5 : Integer) return Tine_Span;

function Seconds (S : Integer) return Tinme_Span;
function Mnutes (M: Integer) return Tinme_Span;

e Ada.Real_Time provides a new monotonic , high-resolution and doc-

umented "Calendar" package.

University of Brest — Page 74/120

Ada 2005: periodic task (2)

» Time Implements an absolute time. The range of this
type shall be sufficient to represent real ranges up to 50
years later.

s Time_Span represents the length of real-time duration.

o Time_Unit Is the smallest amount of real-time
representable by the Time type. It is iImplementation
defined. Shall be less than or equal to 20
microseconds.

o Clock returns the amount of time since epoch.

» Some sub-programs which convert input parameters to
Time_Span values (e.qg. Nanoseconds, Microseconds,

).

University of Brest — Page 75/120

Ada 2005: periodic task (3)

e Implementing periodic release times with delay
statements:

1.
2.

delay expr . blocks a task during at least expr amount of time.

delay until expr . blocks a task until at least the absolute time
expressed by expr is reached.

A task can not be released before the amount of time specified with
the delay statement.

But tasks can be released after the amount of time specified with
the delay statement

No upper bound on the release time lateness for a delay statement.

Upper bound lateness shall be documented by the implementation.

University of Brest — Page 76/120

Ada 2005: periodic task (4)

e Example of a periodic task (car embedded software example):
with Ada. Real Tine; use Ada. Real _Ti ne;

task Tspeed is
end Tspeed;

task body Tspeed is
Next Time : Ada.Real Tine.Tine := d ock;
Period : constant Tine _Span := MIIliseconds (250);
begi n
| oop
-- Read the car speed sensor

Next Time := Next _Tinme + Period;
del ay until Next Ti me;
end | oop;
end Tspeed;

e Use delay until instead of delay (due to clock cumulative drift).

University of Brest — Page 77/120

Ada 2005: periodic task (5)

e Ada priority model :
package Systemis

-- Priority-related Declarations (RM D. 1)

Max_Priority . constant Positive := 30;
Max_Interrupt _Priority : constant Positive := 31;
subtype Any Priority I s | nteger range 0 .. 31;
subtype Priority Is Any Priority range 0 .. 30;

subtype Interrupt Priority is Any Priority range 31 .. 31;

Default Priority : constant Priority := 15;

o Base priority : statically assigned.
Active priority : inherited (rendez-vous, ICPP/protected objects).

® System.Priority must provide at least 30 priority levels (but having
more levels is better for real-time scheduling analysis).

University of Brest — Page 78/120

Ada 2005: periodic task (6)

e Task base priority assignment rules with Ada 1995/2005:
Priority pragma can be used in task specifications.
Priority pragma can be assigned to main procedures.

o Any task without Priority pragma has a priority equal to the task that
created it.

o Any task has a default priority value (see the System package).

University of Brest — Page 79/120

Ada 2005: periodic task (7)

® Declaring a task:

task Tspeed is
pragma Priority (10);
end Tspeed;

® Declaring with a task type:

task type T is

pragma Priority (10);
end T;
Tspeed : T

® Declaring with a task type and a discriminant:

task type T (My_Priority : System.Priority) is
entry Service (
pragma Priority (My_Priority);

end T;

Tspeed : T(My_Priority =>10);

University of Brest — Page 80/120

Ada 2005: periodic task (8)

e Let assume this task set:

Task

Period

(milli-secondes)

Priority

Tdisplay Pdisplay = 100
Tengine Pengine — 500
Tspeed Pspeed = 250

12
10
11

e And their source code:

procedure Display Speed is
begin

Put_Line ("Tdisplay displays the speed of the car");

end Display_ Speed;

procedure Read Speed is
procedure Monitor_Engine is

University of Brest — Page 81/120

Ada 2005: periodic task (9)

with System;
generic
with procedure Run;
package Generic_Periodic_Task is
task type Periodic_Task (Task_Priority : System.Priority;
Period In_Milliseconds : Natural) is
pragma Priority (Task _Priority);
end Periodic_Task;
end Generic_Periodic_Task;

University of Brest — Page 82/120

Ada 2005: periodic task (10)

package body Generic_Periodic_Task is
task body Periodic_Task is

Next Time : Ada.Real Time.Time := Clock;
Period . constant Time_Span :=
Milliseconds (Period_In_Milliseconds);
begin
loop
Run;
Next Time := Next Time + Period;

delay until Next Time;
end loop;
end Periodic_Task;
end Generic_Periodic_Task;

University of Brest — Page 83/120

Ada 2005: periodic task (11)

procedure Car_System is
package Pl is new Generic_Periodic_Task (Run => Display Speed);
package P2 is new Generic_Periodic_Task (Run => Read Speed);
package P3 is new Generic_Periodic_Task (Run => Monitor_Engine);

Tdisplay : Pl.Periodic_Task (Task_ Priority => 12,

Period _In_Milliseconds => 100);
Tspeed . P2.Periodic_Task (Task_Priority => 11,

Period _In_Milliseconds => 250);
Tengine : P3.Periodic_Task (Task_Priority => 10,

Period In_Milliseconds => 500);

pragma Priority (20);

begin
Put_Line (" All tasks start when the main procedure completes");
end Car_System;

University of Brest — Page 84/120

Ada 2005: protected objects (1)

e Inheritance priority protocols supposed by Ada 2005:
ICPP (Immediate Ceiling Priority Protocol) and PLCP
(Preemption Level Control Protocol).

e ICPP iIs a kind of PCP that works as follows:

» Celling priority of a resource = maximum static priority
of the tasks which use it.

» Dynamic task priority = maximum of its own static
priority and the ceiling priorities of any resources it has
locked.

University of Brest — Page 85/120

Ada 2005: protected objects (2)

e Assignment of a celling priority to a protected object:

protected A Mutex Is
pragma Priority (15);
entry E
procedure P...

end A Mutex;

e To activate ICPP on protected objects:

pragma Locking Policy(Ceiling Locking);

University of Brest — Page 86/120

Ada 2005 real-time scheduling facilities

e With Ada 1995/2005, real-time scheduling features
are provided by pragmas and specific packages:

» How to implement a periodic task:
1. Representing time (Ada.Real_Time package).

2. Implementing periodic release times (delay
statement).

3. Assigning priorities (pragma).

» How to activate priority inheritance with shared
resources (protected objects/types).

» How to select a scheduler (fixed priority scheduling,
EDF, ..)).

University of Brest — Page 87/120

Ada 2005 scheduling model (1)

Head {7 Tail

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Priority'last

B

[N N J
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Priority'first

e Ada 2005 real-time scheduling model:

o A queue for each priority level. All ready tasks which have the same
active priority level are put in the same gueue.

o Each queue has a dispatching policy.

Two-levels of scheduling:
1. Choose the highest priority queue with at least one ready task.

2. Choose the task to run of the queue selected in (1), according to

the queue dispatching policy.
University of Brest — Page 88/120

Ada 2005 scheduling model (2)

Head < Tail
B 8

e Example of the preemptive FIFO_Within_Priorities dispatching
policy:

o When a task becomes ready, it is inserted in the tail of its
corresponding priority queue.

The task at the head of the queue gets the processor when it
becomes the highest ready priority task/queue.

When a running task becomes blocked or terminated, it leaves the
gueue and the next task in the queue gets the processor.

— We can easily apply fixed priority scheduling feasibility te sts if
all tasks have different priority levels.

University of Brest — Page 89/120

Ada 2005 scheduling model (3)

e The FIFO_Within_Priorities dispatching policy is activated by:

pragnma Task _Di spatching Policy(FIFOWthin Priorities);

e Ada 2005 also provides other dispatching policies:

1. Non preemptive fixed priority dispatching:

pragma Task Di spatching Policy(
Non Preenptive FIFO Wthin Priorities);

2. Earliest deadline first dispatching:

pragma Task_Di spatching Policy(
EDF Across Priorities);

3. Round robin dispatching:

pragma Task Di spatching Policy(
Round_Robin Wthin Priorities);

University of Brest — Page 90/120

Ada 2005 scheduling model (4)

Policies Priority levels
FIFO_Within_Priorities ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 31
FIFO_within_Priorities | | | [| | [| | | 3
EDF_Across_Priorities ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 2
Round_Robin_Within_Priorities ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1
Round_Robin_Within_Priorities ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0
e \We can run altogether critical and non critical tasks by mixi ng

dispatching protocols. Each priority level may have its own dispatching

protocol:

pragma Priority Specific_D spatching(
FIFOWthin Priorities, 3, 31);

pragma Priority Specific_D spatching(
EDF Across Priorities, 2, 2);

pragma Priority Specific_D spatching(
Round Robin Wthin Priorities, 0, 1);

University of Brest — Page 91/120

Ada 2005 scheduling model (5)

e Example of the software embedded into a car:

procedure Car_System is

Tdisplay : Pl.Periodic_Task (Task_ Priority => 12,

Period _In_Milliseconds => 100);
Tspeed . P2.Periodic_Task (Task_Priority => 11,

Period_In_Milliseconds => 250);
Tengine : P3.Periodic_Task (Task_Priority => 10,

Period In_Milliseconds => 500);
pragma Priority (20);

end Car_System;
— File gnat.adc (or directly in the compilation unit)

pragma Task Dispatching Policy(FIFO_Within_Priorities);
pragma Locking Policy(Ceiling_Locking);

University of Brest — Page 92/120

Ada 2005 Ravenscar profile (1)

o Remember the feasibility tests examples:

factor test, worst case response time.

o Each feasibility test has several applicability assumptio ns.

Processor utilization factor test assumes:

o

o

o

o

o

Fixed preemptive scheduling.

Rate monotonic priority assignment.
ICCP shared resources/protected object.
Periodic release times.

Critical instant.

o ...

How to be sure that your applications is compliant with those
feasibility tests assumptions ?

o How to increase compliance of your applications with feasib
tests ? — use Ravenscar.

processor utilization

lity

University of Brest — Page 93/120

Ada 2005 Ravenscar profile (2)

¢ \What is Ravenscar:

» Ravenscar defines an Ada sub-language which is
compliant with Rate Monotonic feasibility tests.

» Ravenscar is a profile which is part of the Ada 2005
standard.

» A profile is a set of restrictions a program must meet.

» Restrictions are expressed with pragmas. They are
checked at compile-time to enforce the restrictions at
execution time.

University of Brest — Page 94/120

Ada 2005 Ravenscar profile (3)

e The Ravenscar profile is activated by:
pragma profil e(Ravenscar);

e Examples of the restrictions enforced by Ravenscar:

-- Use preenptive fixed priority scheduling
pragma Task Di spatching Policy(FIFOWthin Priorities);

-- Use | CPP
pragma Locking Policy(Ceiling_Locking);

pragnma Restrictions(
No Task Allocators, -- No task dynamc allocation
-- ASSUMPTI ON RELATED TO TASK
-- THE CRI Tl CAL | NSTANT
No Dependence => Ada. Cal endar, -- Use Real -tine calendar only
No Relative Delay, -- Disallowtine drifting due to
-- the use of the delay statenent

University of Brest — Page 95/120

Real-time

e Real-time scheduling facilities available for Ada
practitioners:

o ISO/IEC Ada 1995 and 2005 : the Systems
Programming Annex C and the Real-Time Annex D
[TAF 06].

s Ada POSIX 1003 Binding [BUR 07, GAL 95].
s ARINC 653 [ARI 97].

» ...

University of Brest — Page 96/120

POSIX 1003 standard (1)

e Define a standardized interface of an operating system similar to UNIX
[VAH 96].

e Published by ISO and IEEE. Organized in chapters:

Chapters Meaning

POSIX 1003.1 System Application Program Interface
(e.g. fork, exec)

POSIX 1003.2 Shell and utilities (e.g. sh)

POSIX 1003.1b [GAL 95] | Real-time extensions.

POSIX 1003.1c [GAL 95] | Threads

POSIX 1003.5 Ada POSIX binding

e Each chapter provides a set of services. A service may be mandatory

or optlonal. University of Brest — Page 97/120

POSIX 1003 standard (2)

o Example of operating systems providing 1003.1b : Lynx/OS,
VxWorks, Solaris, Linux, QNX, etc .. (actually, most of real-time

operating systems).
o POSIX 1003.1b services::

Name

Meaning

_POSIX_PRIORITY_SCHEDULING
_POSIX_REALTIME_SIGNALS
_POSIX_ASYNCHRONOUS_|O
_POSIX_TIMERS

_POSIX_SEMAPHORES

Fixed priority scheduling
Real-time signals
Asynchronous 1/O
WatchDogs
Synchronization tools

University of Brest — Page 98/120

POSIX 1003 standard (3)

e How the Ada programmer can run POSIX 1003.1b
applications ? POSIX 1003.5 Ada binding (e.g. Florist).

e This Ada binding provides access to POSIX 1003:
o Scheduling services for fixed priority scheduling, EDF,

» Timers to implement periodic release times.

University of Brest — Page 99/120

POSIX 1003 standard (4)

Head — { Tail

Get Maximum Priority()

[] 8

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Get Minimum Priority()

e POSIX real-time scheduling model:
Preemptive fixed priority scheduling. At least 32 priority levels.

o Two-levels scheduling :
1. Choose the queue which has the highest priority level with at
least one ready process/thread.

2. Choose a process/thread from the queue selected in (1)

according to a policy .
University of Brest — Page 100/120

POSIX 1003 standard (5)

Head < Tail
B 8

e POSIX policies:

1. SCHED_FIFO : similartothe FIFO_Within_Priorities. Ready
processes/threads of a given priority level get the processor
according to their order in the queue.

2. SCHED RR:SCHED FIFO with atime quantum. A time
guantum is a maximum duration that a process/thread can run on the
processor before preemption by an other process/thread of the same
gueue. When the quantum is exhausted, the preempted
process/thread is moved to the tail of the queue.

3. SCHED OTHER : implementation defined (usually implements a

time sharing scheduler).
University of Brest — Page 101/120

POSIX 1003 standard (6)

e Example of the Process Scheduling package which
defines:

® Priority/policy types.
® Sub-programs to adapt POSIX application to RTOS features.

® Sub-programs to change scheduling properties of processes.

package POSI X. Process _Scheduling is
subtype Scheduling Priority is |Integer;
type Scheduling Policy is new Integer;
Sched FIFO : constant Scheduling Policy := ...
Sched RR . constant Scheduling Policy = ...
Sched Ot her : constant Scheduling Policy .= ...

type Scheduling Paraneters is private;

University of Brest — Page 102/120

POSIX 1003 standard (7)

e Sub-programs which allow the application to adapt itself to the
underlying real-time operating system:

package POCSI X. Process _Scheduling is

function Get _MaximumPriority (Policy: Scheduling Policy)
return Scheduling Priority;

function Get M nimumPriority (Policy: Scheduling Policy)
return Scheduling Priority;

function Get Round_Robin_Interval

(Process : POSI X_Process_ldentification.Process_|D)
return POSI X Ti mespec;

University of Brest — Page 103/120

POSIX 1003 standard (8)

e Set or get policy/priority of a process:

package PQOSI X. Process _Scheduling is

procedure Set Priority

(Paraneters : in out Scheduling Paraneters;
Priority . Scheduling Priority);
procedure Set Scheduling Policy
(Process . PCSI X _Process _ldentification.Process_|ID;

New Policy : Scheduling Policy;
Paraneters : Schedul i ng Paraneters);
procedure Set Schedul ing Paraneters
(Process . PCSI X _ Process _ldentification.Process_|D;
Paraneters : Schedul i ng Paraneters);

function Get_Scheduling Policy ...

function Get _Priority ...
function Get_Schedul i ng_Paraneters ...

University of Brest — Page 104/120

POSIX 1003 standard (9)

e Example of the car embedded software example:

with POSI X. Process Identification; use POSIX. Process |dentification;
with POSI X. Process _Schedul i ng; use POSI X. Process_Schedul i ng;

Pidl : Process |ID;
Schedl : Schedul i ng_Par aneters;

begi n
Pidl: =CGet _Process _|d;

Schedl: =Get _Schedul i ng_Paraneters(Pi dl);
Put Line("Current priority/policy ="
& I nteger’ l mage(Get _Priority(Schedl))
& I nteger’ | mage(Get _Scheduling Policy(Pidl)));

Set Priority(Schedl, 10);

Set Scheduling Policy(Pidl, SCHED FI FO, Schedl);
Set Schedul i ng_Paraneters(Pi dl, Schedl);

University of Brest — Page 105/120

POSIX 1003 standard (10)

e Does an Ada programmer should use POSIX Ada binding ?

e Nice sides of POSIX:

o POSIX is supported by a large number of RTOS.

Analysis with feasibility tests can be performed with the POSIX

scheduling framework.

e But POSIX also has some drawbacks:

>

>

What is a POSIX process ? a POSIX thread ? a task ?

Programs may be more complex (timers to implement periodic task
releases, use of scheduling services).

No Ravenscar to handle feasibility test assumptions.

Does POSIX really portable since many services are optional ?

University of Brest — Page 106/120

Summary

Introduction and sequential programming.
Concurrency features.

Real-Time features.

Examples of Ada runtimes.

Conclusion.

o R~ Wb E

. References.

University of Brest — Page 107/120

Examples of Ada runtimes (1)

e \What is a runtime:

o Library providing execution environment for Ada programs.

Adapt the operating system services to the one required for Ada
features: tasks, protected object, priority.

o Warning: a runtime may not provide all Ada features:
1. Compiler may help to detect missing features.
2. Package Syst emdescribes available services.

University of Brest — Page 108/120

Examples of Ada runtimes (2)

>

The Open-Ravenscar project, ORK operating system with Ada 2005
scheduling and POSIX binding. (Universidad Politécnica de Madrid,
http://polaris.dit.upmes/~ork/).

Marte operating system, implemented with AdaCore GNAT compiler.
(Universidad de Cantabria, htt p: // marte. uni can. es/)

GNAT GPL, Ada 2005 scheduling and POSIX binding (Florist). GNAT
Runtime available for Windows, Linux, Solaris and numerous real
time operating systems. (AdaCore, htt p: // ww. adacor e. cont).

RTEMS operating system (OAR Corporation,
http://www. rtens. com).

University of Brest — Page 109/120

Examples of Ada runtimes (3)

Ada applications
GNARL

GNULL C applications

Real time operating
system (RTEMS)

BSP

GNAT runtime

Hardware (LEON3)

e RTEMS Runtime:

o RTEMS : real-time operating systems for high critical application.
Low memory footprint.

Available for many BSP (including Leon processor: 32 bits, VHDL
open-source, SMP ou AMP, compatible SPARC, devoted for
space/aircraft applications).

o GNAT compiler (AdaCore company).

o Cross-compiling on Linux, Leon will be our target system.

University of Brest — Page 110/120

Examples of Ada runtimes (4)

e Cross-compiling:
1 Compile on Linux and generate SPARC binaries:

#sparc—rtems4.8—gnatmake hello
sparc—rtems4.8—gcc —c hello.adb
sparc—rtems4.8—gnatbind hello. ali
sparc—rtems4.8—gnatlink hello. ali —o hello. obj
sparc—rtems4.8—size hello. obj

text data bss dec hex filename
288800 13012 17824 319636 4e094 hello.obj
sparc—rtems4.8—nm hello.obj >hello.num
#file hello.obj
hello.obj: ELF 32—bit MSB executable, SPARC, version 1 (SYSV),
statically linked, not stripped
#file /bin/ls
/bin/ls: ELF 32—Dbit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs),for GNU/Linux 2.6.15,stripped

University of Brest — Page 111/120

Examples of Ada runtimes (5)

e Cross-compiling (cont) :
2 Send the binary to a Leon board (serial link, TCP/IP, ...)

3 Run the program on the Leon board or with an emulator such as
t si m(Leon processor emulator).

#tsim hello.obj

TSIM/LEON3 SPARC simulator, version 2.0.15 (evaluation version)
allocated 4096 K RAM memory, in 1 bank(s)
allocated 32 M SDRAM memory, in 1 bank
allocated 2048 K ROM memory

read 2257 symbols

tsim> go

resuming at 0x40000000

x* lnit start xx

x% Init end xx

Hello World

Program exited normally.

tsim> o
University of Brest — Page 112/120

Examples of Ada runtimes (6)

e Syst ens. ads package of RTEMS runtime:

package System is
Tick . constant := 0.01;

type Bit _Order is (High_Order_First, Low_Order_ First);
Default _Bit_Order : constant Bit _Order := High_Order_First;

— Priority —related Declarations (RM D.1)
— RTEMS provides 0..255 priority levels

Max_Priority . constant Positive := 30;

Max _Interrupt_ Priority : constant Positive := 31;

subtype Any_ Priority is Integer range 0 .. 31;
subtype Priority is Any_Priority range 0 .. 30;
subtype Interrupt_Priority is Any_Priority range 31 .. 31;
Default _Priority : constant Priority := 15;

University of Brest — Page 113/120

Examples of Ada runtimes (7)

e Runtime GNAT Intel/Linux :
Linux/Intel : non real-time system, but can be used for soft real-time
application with POSIX 1003.

o GNAT compiler.

o Compliant with Ada 2005 and also POSIX 1003 (Ada/POSIX 1003.5
florist binding)

No cross-compiling.

University of Brest — Page 114/120

Examples of Ada runtimes (8)

e Runtime GNAT Intel/Linux scheduling services:

o Compliant with POSIX 1003.
Priority O for SCHED OTHER (time sharing processes).
o Priority 1 to 99 for SCHED FI FO' SCHED RR (real-time processes).

o Require root privileges to use priority 1 to 99.

o GNAT Intel/Linux maps Ada priority to Linux priority as follows:
1. SCHED OTHER processes: Ada priorities are ignored.

2. SCHED RRor SCHED FI FOprocesses: direct mapping of Ada
task priorities.

University of Brest — Page 115/120

Examples of Ada runtimes (9)

e Syst ens. ads package of Linux runtime:

package System is
Tick . constant := 0.000_001;

type Bit _Order is (High _Order_ First, Low_Order_First);
Default _Bit_Order : constant Bit _Order := Low_Order_First;

— Priority —related Declarations (RM D.1)

— Linux provides 0..99 priority levels (0 for SCHED OTHER, 1 99
— for SCHED_ FIFO/SCHED RR

Max_Priority . constant Positive := 97;

Max _Interrupt_ Priority : constant Positive := 98;

subtype Any_Priority is Integer range 0 .. 98;
subtype Priority is Any_Priority range 0 .. 97;
subtype Interrupt_Priority is Any_Priority range 98 .. 98;
Default _Priority : constant Priority := 48;

University of Brest — Page 116/120

Summary

Introduction and sequential programming.
Concurrency features.

Real-Time features.

Examples of Ada runtimes.

Conclusion.

o R~ Wb E

. References.

University of Brest — Page 117/120

Conclusion

» Reliable programming: strong typing and various
verifications (access pointer, index, in/out argument), ...

s Separate compilation and large projects.
o Portability.

» Concurrency, synchronization and communication:
Ada task, rendez-vous, protected objects.

» Real-time features: periodic task, priority, EDF/Fixed
priority scheduling, ICPP.

» Ravenscar. beeing compliant with real-time scheduling
analysis.

» Cross-compiling and runtimes.

University of Brest — Page 118/120

Summary

Introduction and sequential programming.
Concurrency features.

Real-Time features.

Examples of Ada runtimes.

Conclusion.

o R~ Wb E

. References.

University of Brest — Page 119/120

References

[ARI 97] Arinc. Avionics Application Software Standard Interface. The Arinc Committee,
January 1997.

[BUR 07] A. Burns and A. Wellings. Concurrent and Real Time programming in Ada. 2007.
Cambridge University Press, 2007.

[GAL 95] B. O. Gallmeister. POSIX 4 : Programming for the Real World . O’Reilly and
Associates, January 1995.

[LES 10] D. Lesens. « Using Static Analysis in Space. Why doing so ? ». pages 51-70.
Proceedings of the SAS 2010 conference, Springer Verlag, LNCS, volume 6337,
September 2010.

[TAF 06] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Ploedereder, and P. Leroy. Ada 2005
Reference Manual. Language and Standard Libraries. International Standard ISO/IEC
8652/1995(E) with Technical Corrigendum 1 and Amendment 1. LNCS Springer Verlag,
number XXII, volume 4348., 2006.

[VAH 96] U. Vahalia. UNIX Internals : the new frontiers. Prentice Hall, 1996.

University of Brest — Page 120/120

	Summary
	Introduction to Ada (1)
	Introduction to Ada (2)
	What is an Ada program (1)
	What is an Ada program (2)
	What is an Ada program (3)
	What is an Ada program (4)
	What is an Ada program (5)
	What is an Ada program (6)
	What is an Ada program (7)
	What is an Ada program (8)
	What is an Ada program (9)
	Types, operators, variables (1)
	Types, operators, variables (2)
	Types, operators, variables (3)
	Types, operators, variables (4)
	Types, operators, variables (5)
	Types, operators, variables (6)
	Types, operators, variables (7)
	Types, operators, variables (8)
	Types, operators, variables (9)
	Types, operators, variables (10)
	Types, operators, variables (11)
	Types, operators, variables (12)
	Types, operators, variables (13)
	Flow of control (1)
	Flow of control (2)
	Flow of control (3)
	Inputs/Outputs (1)
	Inputs/Outputs (2)
	Inputs/Outputs (3)
	Inputs/Outputs (4)
	Inputs/Outputs (5)
	Pointers, dynamic allocations (1)
	Pointers, dynamic allocations (2)
	Pointers, dynamic allocations (3)
	Generic units (1)
	Generic units (2)
	Generic units (3)
	Generic units (4)
	Summary
	Concurrency
	Task (1)
	Task (2)
	Task (3)
	Task (4)
	Task (5)
	Task (6)
	Task (7)
	Task (8)
	Concurrency
	Rendez-vous (1)
	Rendez-vous (2)
	Rendez-vous (3)
	Rendez-vous (4)
	Rendez-vous (5)
	Rendez-vous (6)
	Rendez-vous (7)
	Concurrency
	Protected types and objects (1)
	Protected types and objects (2)
	Protected types and objects (3)
	Protected types and objects (4)
	Protected types and objects (5)
	Protected types and objects (6)
	Protected types and objects (7)
	Protected types and objects (8)
	Protected types and objects (9)
	Protected types and objects (10)
	Summary
	Real-time
	Ada 2005 real-time scheduling facilities
	Ada 2005: periodic task (1)
	Ada 2005: periodic task (2)
	Ada 2005: periodic task (3)
	Ada 2005: periodic task (4)
	Ada 2005: periodic task (5)
	Ada 2005: periodic task (6)
	Ada 2005: periodic task (7)
	Ada 2005: periodic task (8)
	Ada 2005: periodic task (9)
	Ada 2005: periodic task (10)
	Ada 2005: periodic task (11)
	Ada 2005: protected objects (1)
	Ada 2005: protected objects (2)

	Ada 2005 real-time scheduling facilities
	Ada 2005 scheduling model (1)
	Ada 2005 scheduling model (2)
	Ada 2005 scheduling model (3)
	Ada 2005 scheduling model (4)
	Ada 2005 scheduling model (5)
	Ada 2005 Ravenscar profile (1)
	Ada 2005 Ravenscar profile (2)
	Ada 2005 Ravenscar profile (3)
	Real-time
	POSIX 1003 standard (1)
	POSIX 1003 standard (2)
	POSIX 1003 standard (3)
	POSIX 1003 standard (4)
	POSIX 1003 standard (5)
	POSIX 1003 standard (6)
	POSIX 1003 standard (7)
	POSIX 1003 standard (8)
	POSIX 1003 standard (9)
	POSIX 1003 standard (10)
	Summary
	Examples of Ada runtimes (1)
	Examples of Ada runtimes (2)
	Examples of Ada runtimes (3)
	Examples of Ada runtimes (4)
	Examples of Ada runtimes (5)
	Examples of Ada runtimes (6)
	Examples of Ada runtimes (7)
	Examples of Ada runtimes (8)
	Examples of Ada runtimes (9)
	Summary
	Conclusion
	Summary
	References

