Extrait du man POSIX.4

14 Février 2002

NAME

pthread_create - create a new thread

SYNOPSIS

#include <pthread.h>

int pthread_create(pthread_t * thread, pthread_attr_t *
attr, void * (*start_routine)(void *), void * arg);

DESCRIPTION

RETURN

ERRORS

pthread_create creates a new thread of control that exe

cutes concurrently with the calling thread. The new thread
applies the function start_routine passing it arg as first
argument. The new thread terminates either explicitly, by
calling pthread_exit(3), or implicitly, by returning from
the start_routine function. The latter case is equivalent
to calling pthread_exit(3) with the result returned by
start_routine as exit code.

The attr argument specifies thread attributes to be
applied to the new thread. See pthread_attr_init(3) for a
complete 1list of thread attributes. The attr argument can
also be NULL, in which case default attributes are used:
the created thread is joinable (not detached) and has
default (non real-time) scheduling policy.

VALUE

On success, the identifier of the newly created thread is
stored in the location pointed by the thread argument, and
a 0 is returned. 0On error, a non-zero error code is
returned.

EAGAIN not enough system resources to create a process for
the new thread.

EAGAIN more than PTHREAD_THREADS_MAX threads are already
active.

NAME

pthread_join - wait for termination of another thread

SYNOPSIS

#include <pthread.h>

int pthread_join(pthread_t th, void #**thread_return);

DESCRIPTION

RETURN

ERRORS

pthread_join suspends the execution of the calling thread
until the thread identified by th terminates, either by
calling pthread_exit(3) or by being cancelled.

If thread_return is mnot NULL, the return value of th is
stored in the location pointed to by thread_return. The
return value of th is either the argument it gave to
pthread_exit(3), or PTHREAD_CANCELED if th was cancelled.

The joined thread th must be in the joinable state: it
must not have been detached using pthread_detach(3) or the
PTHREAD_CREATE_DETACHED attribute to pthread_create(3).

When a joinable thread terminates, its memory resources
(thread descriptor and stack) are not deallocated until
another thread performs pthread_join on it. Therefore,
pthread_join must be called once for each joinable thread
created to avoid memory leaks.

At most one thread can wait for the termination of a given
thread. Calling pthread_join on a thread th on which
another thread is already waiting for termination returns
an error.

VALUE

On success, the return value of th is stored in the loca
tion pointed to by thread_return, and 0 is returned. On
error, a non-zero error code is returned.

ESRCH No thread could be found corresponding to that
specified by th.
EINVAL The th thread has been detached.

EINVAL Another thread is already waiting on termination of
th.

EDEADLK
The th argument refers to the calling thread.

NAME

pthread_exit - terminate the calling thread

SYNOPSIS

#include <pthread.h>

void pthread_exit(void *retval);

DESCRIPTION

RETURN

pthread_exit terminates the execution of the calling
thread. All cleanup handlers that have been set for the
calling thread with pthread_cleanup_push(3) are executed
in reverse order (the most recently pushed handler is exe
cuted first). Finalization functions for thread-specific
data are then called for all keys that have non- NULL val
ues associated with them in the calling thread (see
pthread_key_create(3)). Finally, execution of the calling
thread is stopped.

The retval argument is the return value of the thread. It
can be consulted from another thread using
pthread_join(3).

VALUE
The pthread_exit function never returns.

NAME
pthread_mutex_init, pthread_mutex_lock,
pthread_mutex_unlock, pthread_mutex_destroy - opera
tions on mutexes

SYNOPSIS
#include <pthread.h>

pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INI
TIALIZER_NP;

pthread_mutex_t errchkmutex =
PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

int pthread_mutex_init(pthread_mutex_t *mutex, const
pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex));
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

DESCRIPTION
A mutex is a MUTual EXclusion device, and is wuseful for
protecting shared data structures from concurrent modifi
cations, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by
any thread), and locked (owned by one thread). A mutex can
never be owned by two different threads simultaneously. A
thread attempting to lock a mutex that is already locked
by another thread 1is suspended until the owning thread
unlocks the mutex first.

pthread_mutex_init initializes the mutex object pointed to
by mutex according to the mutex attributes specified in
mutexattr. If mutexattr is NULL, default attributes are
used instead.

Variables of type pthread_mutex_t can also be initialized
statically, using the constants PTHREAD_MUTEX_INITIALIZER
(for fast mutexes), PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP
(for recursive mutexes), and PTHREAD_ERRORCHECK_MUTEX_INI
TIALIZER_NP (for error checking mutexes).

pthread_mutex_lock 1locks the given mutex. If the mutex is
currently unlocked, it becomes locked and owned by the
calling thread, and pthread_mutex_lock returns immedi
ately. If the mutex is already locked by another thread,
pthread_mutex_lock suspends the calling thread until the
mutex is unlocked.

RETURN

ERRORS

If the mutex is already locked by the calling thread, the
behavior of pthread_mutex_lock depends on the kind of the
mutex. If the mutex is of the ‘‘fast’’ kind, the calling
thread is suspended until the mutex is unlocked, thus
effectively causing the calling thread to deadlock. If the
mutex is of the ‘‘error checking’’ kind,
pthread_mutex_lock returns immediately with the error code
EDEADLK. If the mutex is of the ‘‘recursive’’ kind,
pthread_mutex_lock succeeds and returns immediately,
recording the number of times the calling thread has
locked the mutex. An equal number of pthread_mutex_unlock
operations must be performed before the mutex returns to
the unlocked state.

pthread_mutex_unlock unlocks the given mutex. The mutex is
assumed to be locked and owned by the calling thread on
entrance to pthread_mutex_unlock. If the mutex is of the
‘‘fast’’ kind, pthread_mutex_unlock always returns it to
the unlocked state. If it is of the ‘‘recursive’’ kind, it
decrements the locking count of the mutex (number of
pthread_mutex_lock operations performed on it by the call

ing thread), and only when this count reaches zero is the
mutex actually unlocked.

On ‘‘error checking’’ mutexes, pthread_mutex_unlock actu
ally checks at run-time that the mutex is locked on
entrance, and that it was locked by the same thread that
is now calling pthread_mutex_unlock. If these conditions
are not met, an error code is returned and the mutex
remains unchanged. ‘‘Fast’’ and ‘‘recursive’’ mutexes
perform no such checks, thus allowing a locked mutex to be
unlocked by a thread other than its owner. This is non-
portable behavior and must not be relied upon.

pthread_mutex_destroy destroys a mutex object, freeing the
resources it might hold. The mutex must be unlocked on
entrance.

VALUE

pthread_mutex_init always returns 0. The other mutex func
tions return O on success and a non-zero error code on
error.

The pthread_mutex_lock function returns the following
error code on error:

EINVAL the mutex has not been properly initialized.

EDEADLK
the mutex is already locked by the calling
thread (‘‘error checking’’ mutexes only).

EINVAL the mutex has not been properly initialized.

The pthread_mutex_unlock function returns the following
error code on error:

EINVAL the mutex has not been properly initialized.

EPERM the calling thread does not own the mutex
(¢‘error checking’’ mutexes only).

The pthread_mutex_destroy function returns the following
error code on error:

EBUSY the mutex is currently locked.

NAME

sem_init, sem_wait, sem_post,
sem_destroy - operations on semaphores

SYNOPSIS

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_wait(sem_t * sem);

int sem_post(sem_t * sem);

int sem_destroy(sem_t * sem);

DESCRIPTION

RETURN

ERRORS

Semaphores are counters for resources shared between
threads. The basic operations on semaphores are: increment
the counter atomically, and wait until the counter is non-
null and decrement it atomically.

sem_init initializes the semaphore object pointed to by
sem. The count associated with the semaphore is set ini

tially to value. The pshared argument indicates whether
the semaphore is local to the current process (pshared is
zero) or is to be shared between several processes (
pshared is not zero).

sem_wait suspends the calling thread until the semaphore
pointed to by sem has non-zero count. It then atomically
decreases the semaphore count.

sem_post atomically increases the count of the semaphore
pointed to by sem. This function mnever blocks and can
safely be used in asynchronous signal handlers.

sem_destroy destroys a semaphore object, freeing the
resources it might hold. No threads should be waiting on
the semaphore at the time sem_destroy is called.

VALUE

The sem_wait and sem_getvalue functions always return O.
A1l other semaphore functions return O on success and -1
on error, in addition to writing an error code in errno.

The sem_init function sets errno to the following codes on
error:

EINVAL value exceeds the maximal counter value
SEM_VALUE_MAX

ENOSYS pshared is not zero

The sem_post function sets errno to the following error
code on error:

ERANGE after incrementation, the semaphore value
would exceed SEM_VALUE_MAX (the semaphore
count is left unchanged in this case)

The sem_destroy function sets errno to the following error
code on error:

EBUSY some threads are currently blocked waiting
on the semaphore.

