RabbitMQ tutorial - "Hello World!" — RabbitMQ

1sur9

BhRabbitVIO.

1 "Hello World!"

The simplest thing that does something

Python Java Spring AMQP Ruby PHP C# JavaScript Go Elixir Objective-C Swift

2 Work queues

Distributing tasks among workers (the competing

consumers pattern)

Python Java Spring AMQP Ruby PHP C# JavaScript Go Elixir Objective-C Swift

3 Publish/Subscribe

Sending messages to many consumers at once

Python Java Spring AMQP Ruby PHP C# JavaScript Go Elixir Objective-C Swift

4 Routing

Receiving messages selectively

Python Java Spring AMQP Ruby PHP C# JavaScript Go Elixir Objective-C Swift

https://www.rabbitmq.com/tutorials/tutorial-one-java.html

Menu

23/01/2023 16:10

https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/tutorials/tutorial-one-java.html
https://www.rabbitmq.com/tutorials/tutorial-one-java.html
https://www.rabbitmq.com/tutorials/tutorial-one-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-one-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-one-ruby.html
https://www.rabbitmq.com/tutorials/tutorial-one-ruby.html
https://www.rabbitmq.com/tutorials/tutorial-one-php.html
https://www.rabbitmq.com/tutorials/tutorial-one-php.html
https://www.rabbitmq.com/tutorials/tutorial-one-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-one-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-one-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-one-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-one-go.html
https://www.rabbitmq.com/tutorials/tutorial-one-go.html
https://www.rabbitmq.com/tutorials/tutorial-one-elixir.html
https://www.rabbitmq.com/tutorials/tutorial-one-elixir.html
https://www.rabbitmq.com/tutorials/tutorial-one-objectivec.html
https://www.rabbitmq.com/tutorials/tutorial-one-objectivec.html
https://www.rabbitmq.com/tutorials/tutorial-one-swift.html
https://www.rabbitmq.com/tutorials/tutorial-one-swift.html
https://www.rabbitmq.com/tutorials/tutorial-two-python.html
https://www.rabbitmq.com/tutorials/tutorial-two-python.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/CompetingConsumers.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/CompetingConsumers.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/CompetingConsumers.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/CompetingConsumers.html
https://www.rabbitmq.com/tutorials/tutorial-two-python.html
https://www.rabbitmq.com/tutorials/tutorial-two-python.html
https://www.rabbitmq.com/tutorials/tutorial-two-java.html
https://www.rabbitmq.com/tutorials/tutorial-two-java.html
https://www.rabbitmq.com/tutorials/tutorial-two-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-two-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-two-ruby.html
https://www.rabbitmq.com/tutorials/tutorial-two-ruby.html
https://www.rabbitmq.com/tutorials/tutorial-two-php.html
https://www.rabbitmq.com/tutorials/tutorial-two-php.html
https://www.rabbitmq.com/tutorials/tutorial-two-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-two-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-two-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-two-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-two-go.html
https://www.rabbitmq.com/tutorials/tutorial-two-go.html
https://www.rabbitmq.com/tutorials/tutorial-two-elixir.html
https://www.rabbitmq.com/tutorials/tutorial-two-elixir.html
https://www.rabbitmq.com/tutorials/tutorial-two-objectivec.html
https://www.rabbitmq.com/tutorials/tutorial-two-objectivec.html
https://www.rabbitmq.com/tutorials/tutorial-two-swift.html
https://www.rabbitmq.com/tutorials/tutorial-two-swift.html
https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://www.rabbitmq.com/tutorials/tutorial-three-java.html
https://www.rabbitmq.com/tutorials/tutorial-three-java.html
https://www.rabbitmq.com/tutorials/tutorial-three-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-three-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-three-ruby.html
https://www.rabbitmq.com/tutorials/tutorial-three-ruby.html
https://www.rabbitmq.com/tutorials/tutorial-three-php.html
https://www.rabbitmq.com/tutorials/tutorial-three-php.html
https://www.rabbitmq.com/tutorials/tutorial-three-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-three-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-three-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-three-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-three-go.html
https://www.rabbitmq.com/tutorials/tutorial-three-go.html
https://www.rabbitmq.com/tutorials/tutorial-three-elixir.html
https://www.rabbitmq.com/tutorials/tutorial-three-elixir.html
https://www.rabbitmq.com/tutorials/tutorial-three-objectivec.html
https://www.rabbitmq.com/tutorials/tutorial-three-objectivec.html
https://www.rabbitmq.com/tutorials/tutorial-three-swift.html
https://www.rabbitmq.com/tutorials/tutorial-three-swift.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-java.html
https://www.rabbitmq.com/tutorials/tutorial-four-java.html
https://www.rabbitmq.com/tutorials/tutorial-four-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-four-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-four-ruby.html
https://www.rabbitmq.com/tutorials/tutorial-four-ruby.html
https://www.rabbitmq.com/tutorials/tutorial-four-php.html
https://www.rabbitmq.com/tutorials/tutorial-four-php.html
https://www.rabbitmq.com/tutorials/tutorial-four-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-four-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-four-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-four-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-four-go.html
https://www.rabbitmq.com/tutorials/tutorial-four-go.html
https://www.rabbitmq.com/tutorials/tutorial-four-elixir.html
https://www.rabbitmq.com/tutorials/tutorial-four-elixir.html
https://www.rabbitmq.com/tutorials/tutorial-four-objectivec.html
https://www.rabbitmq.com/tutorials/tutorial-four-objectivec.html
https://www.rabbitmq.com/tutorials/tutorial-four-swift.html
https://www.rabbitmq.com/tutorials/tutorial-four-swift.html
https://www.rabbitmq.com/tutorials/tutorial-five-python.html
https://www.rabbitmq.com/tutorials/tutorial-five-python.html

RabbitMQ tutorial - "Hello World!" — RabbitMQ https://www.rabbitmq.com/tutorials/tutorial-one-java.html

6 RPC

Request/reply pattern example

Python Java Spring AMQP Ruby PHP C# JavaScript Go Elixir

7 Publisher Confirms

Reliable publishing with publisher

confirms

Java C# P

Introduction

RabbitMQ is a message broker: it accepts Prerequisites
and forwards messages. You can think about
it as a post office: when you put the mail This tutorial assumes RabbitMQ is

that you want posting in a post box, you can installed and running on localhost on the

be sure that the letter carrier will eventually = standard port (5672). In case you use a

deliver the mail to your recipient. In this different host, port or credentials,
analogy. RabbitMQ is a post box, a post connections settings would require
office, and a letter carrier. adjusting.

The major difference between RabbitMQ Where to get help

and the post office is that it doesn't deal

with paper, instead it accepts, stores, and If you're having trouble going through this
forwards binary blobs of data — messages. tutorial you can contact us through the

mailing_list or RabbitMQ community
RabbitMQ, and messaging in general, uses Slack.

some jargon.

e Producing means nothing more than sending. A program that sends messages is a

&

e A queueis the name for the post box in RabbitMQ. Although messages flow through
RabbitMQ and your applications, they can only be stored inside a queue. A queue is

producer :

2 sur 9 23/01/2023 16:10

https://www.rabbitmq.com/tutorials/tutorial-six-python.html
https://www.rabbitmq.com/tutorials/tutorial-six-python.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReply.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReply.html
https://www.rabbitmq.com/tutorials/tutorial-six-python.html
https://www.rabbitmq.com/tutorials/tutorial-six-python.html
https://www.rabbitmq.com/tutorials/tutorial-six-java.html
https://www.rabbitmq.com/tutorials/tutorial-six-java.html
https://www.rabbitmq.com/tutorials/tutorial-six-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-six-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-six-ruby.html
https://www.rabbitmq.com/tutorials/tutorial-six-ruby.html
https://www.rabbitmq.com/tutorials/tutorial-six-php.html
https://www.rabbitmq.com/tutorials/tutorial-six-php.html
https://www.rabbitmq.com/tutorials/tutorial-six-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-six-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-six-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-six-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-six-go.html
https://www.rabbitmq.com/tutorials/tutorial-six-go.html
https://www.rabbitmq.com/tutorials/tutorial-six-elixir.html
https://www.rabbitmq.com/tutorials/tutorial-six-elixir.html
https://www.rabbitmq.com/tutorials/tutorial-seven-java.html
https://www.rabbitmq.com/tutorials/tutorial-seven-java.html
https://www.rabbitmq.com/tutorials/tutorial-seven-java.html
https://www.rabbitmq.com/tutorials/tutorial-seven-java.html
https://www.rabbitmq.com/tutorials/tutorial-seven-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-seven-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-seven-php.html
https://www.rabbitmq.com/tutorials/tutorial-seven-php.html
https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/networking.html#ports
https://www.rabbitmq.com/networking.html#ports
https://groups.google.com/forum/#!forum/rabbitmq-users
https://groups.google.com/forum/#!forum/rabbitmq-users
https://rabbitmq-slack.herokuapp.com/
https://rabbitmq-slack.herokuapp.com/
https://rabbitmq-slack.herokuapp.com/
https://rabbitmq-slack.herokuapp.com/

RabbitMQ tutorial - "Hello World!" — RabbitMQ https://www.rabbitmq.com/tutorials/tutorial-one-java.html

3 sur 9

only bound by the host's memory & disk limits, it's essentially a large message buffer.
Many producers can send messages that go to one queue, and many consumers can
try to receive data from one queue. This is how we represent a queue:

queue_name

e Consuming has a similar meaning to receiving. A consumer is a program that mostly

D

Note that the producer, consumer, and broker do not have to reside on the same host;

waits to receive messages:

indeed in most applications they don't. An application can be both a producer and
consumet, too.

"Hello World"

(using the Java Client)

In this part of the tutorial we'll write two programs in Java; a producer that sends a single
message, and a consumer that receives messages and prints them out. We'll gloss over
some of the detail in the Java API, concentrating on this very simple thing just to get
started. It's a "Hello World" of messaging.

In the diagram below, "P" is our producer and “C" is our consumer. The box in the middle is
a queue - a message buffer that RabbitMQ keeps on behalf of the consumer.

The Java client library

RabbitMQ speaks multiple protocols. This tutorial uses AMQP 0-9-1, which is an open,
general-purpose protocol for messaging. There are a number of clients for RabbitMQ
in many different languages. We'll use the Java client provided by RabbitMQ.

23/01/2023 16:10

https://rabbitmq.com/devtools.html
https://rabbitmq.com/devtools.html

RabbitMQ tutorial - "Hello World!" — RabbitMQ https://www.rabbitmq.com/tutorials/tutorial-one-java.html

Download the client library and its dependencies (SLF4J API and SLF4J Simple). Copy
those files in your working directory, along the tutorials Java files.

Please note SLF4J Simple is enough for tutorials but you should use a full-blown
logging library like Logback in production.

(The RabbitMQ Java client is also in the central Maven repository, with the groupld
com.rabbitmg and the artifactld amgp-client.)

Now we have the Java client and its dependencies, we can write some code.
Sending

hello

We'll call our message publisher (sender) send and our message consumer (receiver)

Recv . The publisher will connect to RabbitMQ, send a single message, then exit.

In Send.java, we need some classes imported:

import com.rabbitmg.client.ConnectionFactory;
import com.rabbitmg.client.Connection;

import com.rabbitmqg.client.Channel;

Set up the class and name the queue:

public class Send {
private final static String QUEUE _NAME = "hello";

public static void main(String[] argv) throws Exception {

then we can create a connection to the server:

ConnectionFactory factory = new ConnectionFactory();
factory.setHost("localhost");

try (Connection connection = factory.newConnection();

4 sur 9 23/01/2023 16:10

https://repo1.maven.org/maven2/com/rabbitmq/amqp-client/5.7.1/amqp-client-5.7.1.jar
https://repo1.maven.org/maven2/com/rabbitmq/amqp-client/5.7.1/amqp-client-5.7.1.jar
https://repo1.maven.org/maven2/org/slf4j/slf4j-api/1.7.26/slf4j-api-1.7.26.jar
https://repo1.maven.org/maven2/org/slf4j/slf4j-api/1.7.26/slf4j-api-1.7.26.jar
https://repo1.maven.org/maven2/org/slf4j/slf4j-simple/1.7.26/slf4j-simple-1.7.26.jar
https://repo1.maven.org/maven2/org/slf4j/slf4j-simple/1.7.26/slf4j-simple-1.7.26.jar
https://logback.qos.ch/
https://logback.qos.ch/
https://github.com/rabbitmq/rabbitmq-tutorials/blob/main/java/Send.java
https://github.com/rabbitmq/rabbitmq-tutorials/blob/main/java/Send.java
https://github.com/rabbitmq/rabbitmq-tutorials/blob/main/java/Send.java

RabbitMQ tutorial - "Hello World!" — RabbitMQ https://www.rabbitmq.com/tutorials/tutorial-one-java.html

Channel channel = connection.createChannel()) {

The connection abstracts the socket connection, and takes care of protocol version
negotiation and authentication and so on for us. Here we connect to a RabbitMQ node on
the local machine - hence the localhost. If we wanted to connect to a node on a different
machine we'd simply specify its hostname or IP address here.

Next we create a channel, which is where most of the API for getting things done resides.
Note we can use a try-with-resources statement because both connection and channel
implement java.lang.AutoCloseable . This way we don't need to close them explicitly in our

code.

To send, we must declare a queue for us to send to; then we can publish a message to the
queue, all of this in the try-with-resources statement:

channel.queueDeclare(QUEUE_NAME, false, false, false, null);
String message = "Hello World!";
channel.basicPublish("", QUEUE_NAME, null, message.getBytes());

System.out.println(" [x] Sent '" + message + "'");

Declaring a queue is idempotent - it will only be created if it doesn't exist already. The
message content is a byte array, so you can encode whatever you like there.

Here's the whole Send.java class.

Sending doesn't work!

If this is your first time using RabbitMQ and you don't see the "Sent" message then
you may be left scratching your head wondering what could be wrong. Maybe the
broker was started without enough free disk space (by default it needs at least 200
MB free) and is therefore refusing to accept messages. Check the broker logfile to

confirm and reduce the limit if necessary. The configuration file documentation will

show you how to set disk free limit.

Receiving

That's it for our publisher. Our consumer listens for messages from RabbitMQ, so unlike

5sur9 23/01/2023 16:10

https://github.com/rabbitmq/rabbitmq-tutorials/blob/main/java/Send.java
https://github.com/rabbitmq/rabbitmq-tutorials/blob/main/java/Send.java
https://www.rabbitmq.com/configure.html#config-items
https://www.rabbitmq.com/configure.html#config-items

RabbitMQ tutorial - "Hello World!" — RabbitMQ https://www.rabbitmq.com/tutorials/tutorial-one-java.html

6 sur 9

the publisher which publishes a single message, we'll keep the consumer running to
listen for messages and print them out.

hello

The code (in Recv.java) has almost the same imports as send:

import com.rabbitmqg.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

import com.rabbitmq.client.DeliverCallback;

The extra beliverCallback interface we'll use to buffer the messages pushed to us by the

server.

Setting up is the same as the publisher; we open a connection and a channel, and declare
the queue from which we're going to consume. Note this matches up with the queue that
send publishes to.

public class Recv {
private final static String QUEUE_NAME = "hello";

public static void main(String[] argv) throws Exception {
ConnectionFactory factory = new ConnectionFactory();
factory.setHost("localhost");
Connection connection = factory.newConnection();

Channel channel = connection.createChannel();

channel.queueDeclare(QUEUE _NAME, false, false, false, null);

System.out.println(" [*] Waiting for messages. To exit press CTRL+C");

Note that we declare the queue here, as well. Because we might start the consumer
before the publisher, we want to make sure the queue exists before we try to consume

23/01/2023 16:10

https://github.com/rabbitmq/rabbitmq-tutorials/blob/main/java/Recv.java
https://github.com/rabbitmq/rabbitmq-tutorials/blob/main/java/Recv.java
https://github.com/rabbitmq/rabbitmq-tutorials/blob/main/java/Recv.java

RabbitMQ tutorial - "Hello World!" — RabbitMQ https://www.rabbitmq.com/tutorials/tutorial-one-java.html

7 sur 9

messages from it.

Why don't we use a try-with-resource statement to automatically close the channel and
the connection? By doing so we would simply make the program move on, close
everything, and exit! This would be awkward because we want the process to stay alive
while the consumer is listening asynchronously for messages to arrive.

We're about to tell the server to deliver us the messages from the queue. Since it will
push us messages asynchronously, we provide a callback in the form of an object that will
buffer the messages until we're ready to use them. That is what a DeliverCallback

subclass does.

DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
System.out.println(" [x] Received '" + message + "'");

+

channel.basicConsume (QUEUE NAME, true, deliverCallback, consumerTag -> { });

Here's the whole Recv.java class.

Putting it all together

You can compile both of these with just the RabbitMQ java client on the classpath:

javac -cp amgp-client-5.7.1.jar Send.java Recv.java

To run them, you'll need rabbitmq-client.jar and its dependencies on the classpath. In a

terminal, run the consumer (receiver):

java -cp .:amgp-client-5.7.1.jar:slf4j-api-1.7.26.jar:slf4j-simple-1.7.26.jar Recv
then, run the publisher (sender):

java -cp .:amgp-client-5.7.1.jar:slf4j-api-1.7.26.jar:slf4j-simple-1.7.26.jar Send

On Windows, use a semicolon instead of a colon to separate items in the classpath.

The consumer will print the message it gets from the publisher via RabbitMQ. The
consumer will keep running, waiting for messages (Use Ctrl-C to stop it), so try running the
publisher from another terminal.

23/01/2023 16:10

https://github.com/rabbitmq/rabbitmq-tutorials/blob/main/java/Recv.java
https://github.com/rabbitmq/rabbitmq-tutorials/blob/main/java/Recv.java

RabbitMQ tutorial - "Hello World!" — RabbitMQ https://www.rabbitmq.com/tutorials/tutorial-one-java.html

Listing queues

You may wish to see what queues RabbitMQ has and how many messages are in
them. You can do it (as a privileged user) using the rabbitmgctl tool:

sudo rabbitmgctl list queues

On Windows, omit the sudo:

rabbitmgctl.bat list queues

Time to move on to part 2 and build a simple work queue.

Hint
To save typing, you can set an environment variable for the classpath e.g.

export CP=.:amgp-client-5.7.1.jar:slf4j-api-1.7.26.jar:slf4j-simple-1.7.26.jar

java -cp $CP Send

or on Windows:

set CP=.;amqgp-client-5.7.1.jar;slf4j-api-1.7.26.jar;slf4j-simple-1.7.26.jar

java -cp %CP% Send

Production [Non-ISuitability Disclaimer

Please keep in mind that this and other tutorials are, well, tutorials. They demonstrate one
new concept at a time and may intentionally oversimplify some things and leave out
others. For example topics such as connection management, error handling, connection
recovery, concurrency and metric collection are largely omitted for the sake of brevity.
Such simplified code should not be considered production ready.

Please take a look at the rest of the documentation before going live with your app. We

8 sur 9 23/01/2023 16:10

https://www.rabbitmq.com/tutorials/tutorial-two-java.html
https://www.rabbitmq.com/tutorials/tutorial-two-java.html
https://www.rabbitmq.com/documentation.html
https://www.rabbitmq.com/documentation.html

RabbitMQ tutorial - "Hello World!" — RabbitMQ https://www.rabbitmq.com/tutorials/tutorial-one-java.html

particularly recommend the following guides: Publisher Confirms and Consumer

Acknowledgements, Production Checklist and Monitoring.

Getting Help and Providing Feedback

If you have questions about the contents of this tutorial or any other topic related to
RabbitMQ, don't hesitate to ask them on the RabbitMQ mailing list.

Help Us Improve the Docs <3

If you'd like to contribiite an improvement to the site, its source is available on GitHub.

S....ply forthe repository and submit a pull request. Thank you!

Copyright © 2007-2022 VMware, Inc. or its affiliates. All rights

reserved. Terms of Use - Privacy + Trademark Guidelines - Your

California Privacy Rights + Parameétres des cookies

9 sur 9 23/01/2023 16:10

https://tanzu.vmware.com/
https://tanzu.vmware.com/
https://www.vmware.com/help/legal.html
https://www.vmware.com/help/legal.html
https://www.vmware.com/help/privacy.html
https://www.vmware.com/help/privacy.html
https://www.rabbitmq.com/trademark-guidelines.html
https://www.rabbitmq.com/trademark-guidelines.html
https://www.vmware.com/help/privacy/california-privacy-rights.html
https://www.vmware.com/help/privacy/california-privacy-rights.html
https://www.vmware.com/help/privacy/california-privacy-rights.html
https://www.vmware.com/help/privacy/california-privacy-rights.html
https://www.rabbitmq.com/confirms.html
https://www.rabbitmq.com/confirms.html
https://www.rabbitmq.com/confirms.html
https://www.rabbitmq.com/confirms.html
https://www.rabbitmq.com/production-checklist.html
https://www.rabbitmq.com/production-checklist.html
https://www.rabbitmq.com/monitoring.html
https://www.rabbitmq.com/monitoring.html
https://groups.google.com/forum/#!forum/rabbitmq-users
https://groups.google.com/forum/#!forum/rabbitmq-users
https://github.com/rabbitmq/rabbitmq-website
https://github.com/rabbitmq/rabbitmq-website
https://www.rabbitmq.com/
https://www.rabbitmq.com/

