
A model-driven engineering approach for rapid real-time system simulations

Alain Plantec, Frank Singhoff, Mickaël Kerbœuf
Université Européenne de Bretagne

Université de Brest, France
Laboratoire d’Informatique des Systèmes Complexes (LISyC)

{plantec,singhoff,kerboeuf}@univ-brest.fr

Abstract

Because it encourages the incremental development of
software and the reuse of components by abstracting away
platform dependent details, model-driven engineering is an
intuitive and sensible way to conceive large software out
of existing application components and libraries. In prac-
tice, however, just a few practical tools make it possible to
generate partially automatically but efficiently large scale
industrial applications.

We introduce in this article a meta-modeling tool called
Platypus. It enables to specify very quickly within a ho-
mogenous framework a model and the meta-model with
witch it complies. In this generic framework, some gen-
erated components can dynamically enrich the framework
itself in order to incrementally adapt it to a specific domain.

The benefits of this tool are illustrated by a concrete and
practical example: the adaptation of Cheddar, a simulation
tool designed to real-time software system analysis.

Introduction

This article deals with the use if a model-driven engi-
neering tool in the context of real-time system verifications.

Many meta-modeling tools are now available. The most
known areMetaEdit+ [15] and theEMF framework [5].
They provide a meta-modeling language and a set of tools
allowing meta-modeling and domain editors implementa-
tion. Specific source code or documentation generators can
be implemented using a dedicated language. Meta-models
and complying models are usually edited using a graphi-
cal user interface with boxes and lines. They are multi-
language based. Classically, these languages are designed
for meta-modeling, for source code generating and option-
ally, for meta-constraints expressing.

Platypus[17, 19] is aSTEPbased environment imple-
mented within the free Smalltalk system Squeak [21]. The

distinctive feature ofPlatypusis the use of a unique lan-
guage to specify meta-models as also as domain constraints,
translation rules and domain complying models. This lan-
guage isEXPRESS, a data modeling language.

Cheddaris a library designed for the performance anal-
ysis of real-time systems. WithinCheddar, a real-time sys-
tem is modeled as a set of software and hardware com-
ponents such as tasks, processors, schedulers, or buffers.
These components can be specified with the domain specific
language ofCheddar, or with AADL [20]. Cheddarpro-
vides a set of real-time schedulers and their analysis tools
implemented in Ada. Schedulers currently implemented in
Cheddarare mostly used in real-time systems.Cheddarcan
be used to perform performance analysis of many different
types of real-time systems. However, it exists a need to ex-
tend theseCheddaranalysis tools with user-defined sched-
ulers or task models. ExtendingCheddarwith new sched-
ulers or new task models requires that the user well under-
stands the design ofCheddar. Furthermore, specifying a
new scheduler or a new task model may be difficult with-
out an environment especially designed to easily write and
test the scheduler source code. In order to ease the specifi-
cation of new schedulers,Cheddarprovides a specific pro-
gramming language. The model of a scheduler described
and tested with theCheddarprogramming environment is
interpreted. Thus, the designer can easily experiment his
scheduler models.

Some case studies showed that the interpreter lacks
of efficiency on large scheduling simulations. Regarding
this problem of performance, an optimal solution is to re-
implement this kind of scheduler with theCheddarlibrary
and integrate it as a built-in one withinCheddar.

However, this solution is expensive and error prone be-
cause of the complexity of the domain. We propose to trans-
late automaticallyCheddarschedulers into their equivalent
Ada programs with the help ofPlatypus.

In this article, we presentPlatypusand the associated
meta-modeling methods used in order to implement a part
of Cheddar. This experiment shows how real-time system

performance analysis tools can be automatically produced
with model-driven engineering tools. These tools help de-
signers to verify the design of their systems at an early stage.

Different experiments have shown how model-driven en-
gineering method and tools can help system prototyping.
For example, ASSERT [8] has proposed a process based on
AADL [20] for such a purpose.

The main other software engineering tools that are
able to model and generate real-time system software are
STOOD (Ellidiss Technologies), Artisan Studio, UML STP
(AONIX), Rhapsody (Telelogic) or Rational Rose [4, 6, 11,
12]. Most of them are built with a fixed meta-model which
enforces the domain specific features of real-time systems.

This article is organized as follow. The first section de-
scribesPlatypustool. The second section gives an outline
of the Cheddarlibrary. Then, in the third section, we ex-
plain howPlatypusis used to automatically produceChed-
dar software components. Finally, conclusion and ongoing-
works are presented in the fourth section.

1 Platypus, a STEP/EXPRESS based meta-
environment

Platypusis a meta-environment fully integrated inside
Squeak[21], a freeSmalltalksystem.Platypusallows meta-
model specification, integrity and translation rules defini-
tion. Meta-models are instantiated from user-defined mod-
els. Given a particular model, integrity and translation rules
can be interpreted.

Platypusprovides only textual meta-modeling and mod-
eling facilities. Platypusbenefits from the STEP [9] stan-
dard for models and meta-models specification and imple-
mentation.STEPis an ISO standard which was developed
to easily share product informations by specifying sufficient
semantic for data and their usage. WithinSTEP, models
are specified with the data oriented modeling languageEX-
PRESS[10].

Platypusmakes use only ofEXPRESSto build models
and meta-modeling, and to specify constraints and code
generators. InPlatypus, models and meta-models consist
in sets ofEXPRESSschemas. A schema is a root element
of an EXPRESSspecification. A schema contains primary
modeling elements which are constants, types, entities, pro-
cedures, functions and global rules. Entities are used in or-
der to specify domain concepts. An entity contains a list
of attributes that provide buckets to store meta-data while
local constraints are used to ensure meta-data soundness.

Platypusis primarily aSTEPenvironment that involves
an editor forEXPRESS, a parser, an interpreter and two
built-in Smalltalk generators that allowEXPRESSmodels
to be mapped in Squeak [21] and VisualWorks [22].

1.1 Platypus and the STEP technical space

Hand edited Transformation ProjectionConforms to

STEP
meta−meta−model

PLATYPUS
meta−model

?

?EBNF

EXPRESS−Map
grammar

EXPRESS
grammar

EXPRESS
model

EXPRESS−Map
model

A grammar

EBNF

M1

M2

M3

EBNF TS STEP TS OTHER TS EBNF TS

Some codeDomain
meta−data

Domain
meta−model

?

(e)

(c)
(d)

(b)

(a)

Figure 1. Model transformation and projection
with Platypus

Figure 1 depicts aPlatypusarchitecture using the con-
cept oftechnical space. A technical space(TS) is defined
as a set of models and the tools that can operate on these
models [13]. In figure 1, technical spaces are presented ver-
tically. Each one is made of three rows. Each row corre-
sponds to a level of the MDA four levels architecture [16].
A generative operation across several TS is called aprojec-
tion. A generative operation inside the same TS is called a
transformation.

The main TS is theSTEPTS in whichPlatypusis built.
Platypusis implemented around a fixed meta-meta-model
that is mainly aSTEPcore meta-model (M3 level) and
around thePlatypusmeta-model (M2 level). ThePlatypus
meta-model complies with theSTEPmeta-meta-model and
is fixed for a particular version ofPlatypus.

As a meta-environment,Platypusprovides two main
functionalities. The first one allows meta-modeling, which
consists in editing meta-models. The second one allows the
implementation of meta-models which at least consists in
meta-data instanciation, browsing, checking and transfor-
mation.

Platypuscan be specialized in order to handle a specific
domain. Such a specialization is called a domain specific
environment. The next sections explain how such domain
specific environments are specified and used.

2

1.2 Specifying a domain specific environment

In order to specializePlatypus, a designer only has to
specify a meta-model which describes the concepts of the
domain he would like to handle.EXPRESSis used as a
domain modeling language. The meta-model is edited in the
EBNF TS (EBNF stands forExtended Backus-Naur Form)
and is projected byPlatypusin theSTEPTS at the M2 level
(see (a) in figure 1).

ThePlatypusmeta-model is itself an EXPRESS model.
Since it mainly consists in an EXPRESS language meta-
model, a user-defined meta-model can reuse and specialize
it. In this way, a user can specify a domain specific special-
ization of the EXPRESS language and thus, makePlatypus
a domain specific environment.

1.3 Using a domain specific environment

Using a domain specific environment consists in provid-
ing meta data, and in checking them or using them in order
to produce some realization. These two points are explained
below.

1.3.1 Providing meta data

Meta data building can be either made externally, by a tool
implemented outsidePlatypusor made internally with the
help of the mapping feature ofPlatypus.

External meta data producing is represented in figure 1
by the projection from ana priori unknownOther TSto
the STEPTS (see (c) in figure 1). A specific tool imple-
mentation can be a difficult and a costly task. However, if
the meta-model has been specified as a specialization of the
Platypusmeta-model, this implementation is not mandatory
because internal meta data producing can be used with the
help of anEXPRESS-mapmodel.

EXPRESS-mapis a Platypusspecific extension ofEX-
PRESSthat allows the definition ofconform-torelations be-
tween an EXPRESS model and a meta-model. Then, in or-
der to use a domain specific meta model, the user has to
provide a domain model written in standardEXPRESSand
a mapping model written inEXPRESS-map. Figure 2 de-
picts an example of an explicit mapping.

The benefit is thatPlatypusis able to automatically im-
plement a projection from the EBNF TS to theSTEPTS
(see (b) in figure 1). Such a projection builds meta-data re-
lated to a domain specific model. This feature allows very
rapid implementation of domain models since the user has
only to deal with domain meta-models and domain models
specification.

ENTITY Record SUBTYPE OF (e n t i t y d e f i n i t i o n) ;
END ENTITY;

ENTITY B u f f e r ;
END ENTITY;

MAP B u f f e r TO Record;
END MAP;

The upper frame shows the entityRecordfrom a user-defined meta-model
which is specializing thePlatypusmeta-model for a domain specific pur-
pose. The middle frame shows the entityBuffer from a user-defined model
and the lower frame shows a mapping declaration.

Figure 2. Explicit mapping

1.3.2 Using meta data

After a model has been provided, constraints and transla-
tion rules defined within the meta-model allows meta data
checking, transformations and projections.

Typically, a projection from theSTEPTS to the EBNF
TS is implemented as a derived attribute which result is a
string (see (e) in figure 1). A transformation within the
STEPTS is implemented as a derived attribute which result
is a new meta-data (see (d) in figure 1).

Definition of the
translation rule

A Tagged Record
instance

Meta data set

The result of a translation

The meta−model

Users can browse the meta data, select a derived attribute (e.g. an
ada adsattribute of aTaggedRecordinstance) and evaluate it. Then, the
corresponding result is stored as a child of the selected attribute. The same
kind of interaction is possible for the checking of constraints.

Figure 3. Translation from Platypustool

Constraints and translation rules are interpreted by a
genericPlatypuscomponent called a repository. Using of

3

a repository is made through thePlatypusmodel browser
with which all elements of a model can be visualized. The
checking of constraints and the evaluation of derived at-
tributes are available from the model browser itself. Figure
3 shows a snapshot ofPlatypus. This snapshot depicts how
one can evaluate a translation rule from the user interface.

Regarding the example ofCheddar, we now explain the
analysis tool that we expect to generate with the meta-
environmentPlatypus. First, we briefly presentCheddar
architecture, and then, the applied model-driven engineer-
ing process.

2 Cheddar architecture outline

As shown by figure 4,Cheddaris made of six main com-
ponents and the overall architecture is made of two layers.

Serializer
Unserializer

CompilerInterpreter

Semantic
Checker

CDAI

Schedulers
Built−in

High layer

Low layer

Figure 4. Major Components of Cheddar

2.1 The low layer

The low layer is built around a repository for data and
meta-data storage. Data and meta-data accessing to and
from the repository are all implemented by theCheddar
Data Acces Interface (CDAI). TheCDAI is a central com-
ponent that is used by all otherCheddarcomponents.

The lower layer implements some additional data spe-
cific components such as a data checker component and a
data exchange component which is responsible for the writ-
ing and the reading of XML data files.

2.2 The high layer

This layer allows real-time systems simulation at two
levels:

1. Cheddar natively implements several well known
scheduling algorithms. These schedulers are hand-
written. Ada components implementing these sched-
ulers are called ”built-in schedulers”.

2. The compiler and the interpreter are respectively re-
sponsible for the compiling and the running of user-
defined schedulers programmed with theCheddarlan-
guage.

3 Cheddar engineering with Platypus

The use ofPlatypusis twofold. First, theCheddarlow
layer, which is dedicated to data management, is generated
with Platypus. This layer directly depends on manipulated
data types and constraints. It is very generic in nature and
its components are classically automatically generated from
the specification of related data types.

The goal of the second use is to make it possible the
translation ofCheddarprograms to Ada components. Then,
a user-defined scheduler programmed with theCheddar
language can be integrated within theCheddarlibrary as
any built-in scheduler Ada components.

In the sequel, we focus on implementation of source
code generators withPlatypus. First, section 3.1 explains
with details the CDAI source code generator implementa-
tion. Since both CDAI source code generator and sched-
uler source code generator has numerous similarities, sec-
tion 3.2 just outlines the source code generator devoted to
user-defined schedulers.

3.1 The CDAI generator

Cheddardeals with a clearly defined set of primary data
types which are tasks, processors, schedulers, buffers, ...
This data model (called theCheddardata model in the se-
quel) allows users to specify the real-time system architec-
tures that they expect to analyze. We decided to usePlaty-
pus in order to generate a clean source code according to
well defined coding rules [18]. The main goal is to provide
a clear data accessing interface (the CDAI) implementing
a standardized data access protocol. Figure 5 depicts the
translation schema.

EBNF

M1

M2

M3

ProjectionHand edited Conforms to

PLATYPUS
meta−model

EXPRESS−Map
grammar

EXPRESS
grammar

model

EBNF TS STEP TS

STEP
meta−meta−modelEBNF

Ada
grammar

Cheddar data

EXPRESS to Ada
model

EBNF TS

Cheddar data
meta−data

EXPRESS to Ada
meta−model

CDAI code

(a)
(b)

(e)

Figure 5. Generation of the CDAI

4

Hand editedEXPRESSmodels are theExpressToAda
meta-model and theCheddar data model. TheEx-
pressToAdameta-model specifies the translation rules
whereas theCheddardata model specifies the primary data
types manipulated byCheddar. ExpressToAdameta-model
is projected to theSTEPTS at M2 level and theCheddar
data model is projected at the M1 level of theSTEPTS (see
(a) and (b) in figure 5) with the help of the mapping feature.

3.1.1 Meta-modeling: specification ofExpressToAda

It consists in the specification of target concepts and the as-
sociated translation rules. Translation rules allow the pro-
jection ofEXPRESSconstructs to target Ada language con-
structs and to CDAI related Ada sub-programs. The meta-
model is specified as a specialization of thePlatypus meta-
model: each Ada construct, mainlyPackage, Recordand
Tagged record, is defined as a subtype of a concept from
thePlatypusmeta-model, mainly,SchemaandEntity defi-
nitions.

SCHEMA p l a t ypus d i c t i ona ry schema; . . .
ENTITY named type SUBTYPE OF (d i c t i o n a r y i n s t a n c e) ;

name : s t r i n g ;
where ru les : LIST OF where ru le ; . . .

END ENTITY;

ENTITY e n t i t y d e f i n i t i o n SUBTYPE OF (named type) ;
supertypes : LIST OF e n t i t y d e f i n i t i o n ;
a t t r i b u t e s : LIST OF a t t r i b u t e ; . . .

END ENTITY; . . .
END SCHEMA;

SCHEMA ExpressToAda;
USE FROM p l a t ypus d i c t i ona ry schema;

ENTITY record SUBTYPE OF (e n t i t y d e f i n i t i o n) ;
DERIVE

ada ads : STRING : = ’ Type ’ + SELF. name + ’ I s \n ’
+ ’ Record\n ’ + ’ . . . \ n ’ + ’ End Record; ’ ;

WHERE
no supertype : SIZEOF (supertypes) = 0 ;

END ENTITY;

ENTITY tagged record SUBTYPE OF (e n t i t y d e f i n i t i o n) ;
p r i v a t e : BOOLEAN;

DERIVE
ada ads : STRING : = ’ Type ’ + SELF. name + ’ I s New ’
+ supertype name (SELF) + ’ \n ’
+ ’ With Record\n ’ + ’ . . . \ n ’ + ’ End Record; ’ ;

WHERE
one supertype maxi : SIZEOF (supertypes) <= 1 ;

END ENTITY;

FUNCTION supertype name(t g : tagged record) : STRING;
I F (SIZEOF (t g . supertypes) = 0) THEN

RETURN (’ Ada. F i n a l i z a t i o n . Con t ro l l ed ’) ;
ELSE

RETURN (t g . supertypes [1] . r e f . name) ;
END IF;

END FUNCTION;
END SCHEMA;

Figure 6. The ExpressToAdameta-model

A very simplified version ofExpressToAdais shown in

figure 6.
platypusdictionary schemais a part of the reusedPlaty-

pus meta-model. It is read-only because the used ver-
sion of Platypus engine depends on it. It ownsen-
tity definitionmeta-entity that specifies what anEXPRESS
concept is.entity definition inherits fromnamedtype. An
entity has a name (nameattribute), a list of local constraints
(whererules attribute), a list of supertypes (supertypesat-
tribute) and a list of attributes (attributesattribute).

Figure 6 presentsRecordandTagged recordAda con-
cepts specification. A tagged record is an Ada construct
which is equivalent to a Java class.taggedrecord private
attribute is added because the concept of privacy which is
useable in Ada isn’t available inEXPRESS. Ada source
code is computed by the derived attributeada ads; Each
concept definition can own constraints. Such a constraint is
useful statically as well as dynamically in order to, respec-
tively, provide a rich documentation of the meta-model and
to allow the validation of meta data before any projection
is computed. Constraints are defined in order to ensure that
projections can be computed.

3.1.2 Data modeling: theCheddar data model

The modeling activity consists inCheddarprimary data
types specification. Figure 7 shows a very simplified ver-
sion ofCheddardata model with three data types which are
Buffer, GenericTaskand one of its specialization,Aperi-
odic Task. CheddarDatais a standardEXPRESSmodel. It
can be used as input for otherEXPRESSrelated tools. As an
example, an external tool can use this model in order to pro-
duce some source code or some other model. In other terms,
CheddarDatacan be considered as a pivot representation of
Cheddararound which other tools can be articulated. As an
example,CheddarDatacan serve as a domain andCheddar
reference model to perform analysis of Marte/UML real-
time system models [14].

SCHEMA CheddarData ;

ENTITY B u f f e r ;
S ize : INTEGER;
Time : INTEGER;

END ENTITY;

ENTITY Generic Task;
Cpu Name : STRING;
Capac i ty : INTEGER;
Deadl ine : INTEGER;
S ta r t T i me : INTEGER;

END ENTITY;

ENTITY Aper iod ic Task
SUBTYPE OF (Generic Task) ;

END ENTITY;
END SCHEMA;

Figure 7. The CheddarDatamodel

5

3.1.3 EXPRESS-map modeling

SCHEMA CheddarData To ExpressToAda Mapping;
META FROM ExpressToAda;
USE FROM CheddarData ;

MAP B u f f e r TO record () ;
END MAP;

MAP TO tagged record (f a l s e) ;
Generic Task;
Aper iod ic Task ;

END MAP;
END SCHEMA;

Figure 8. The mapping schema for CheddarD-
ata

The two previous sections have described both the meta-
model and the model designed to automatically produce the
real-time systems simulation tool components. We now
explain how to specify relationships between these meta-
model and model.

Figure 8 shows a mapping model for the CDAI genera-
tor example. A mapping model is made of two parts. The
first part is the declaration of used meta-models and mod-
els. Used meta-models are declared with theMETA FROM
expression and used models are declared with the standard
EXPRESSexpressionUSE FROM. The second part is made
of the declaration of theconform torelations for the model
elements. In this example:

• Buffer is declared as conform to aRecord,

• GenericTaskandAperiodicTaskare declared as con-
form to aTaggedRecord.

Then, the projection from the EBNF TS to theSTEPTS
can be driven according to these mapping rules: it builds
an instance of theRecordmeta entity from theBufferentity
and two instances of theTaggedRecordmeta entity from
bothGenericTaskandAperiodicTaskentities.

As a consequence, the CDAI generator considers that
a Buffer is checked or translated to Ada components fol-
lowing respectively the constraints and the translation rules
declared by theRecordspecification of theExpressToAda
meta-model. The same process is applied toGenericTask
andAperiodicTaskbut with theTaggedRecordmeta entity.

3.2 The scheduler generator

User-defined schedulers can be programmed with the
Cheddarlanguage. TheCheddarlanguage is a small do-
main specific language. ACheddarprogram modeling a
new scheduler is organized as a set of timed automata such
as those proposed by UPPAAL [7, 1, 2].

Scheduler
code

Scheduler
code

EXPRESS
grammar

Cheddar language
meta−model

meta model

Cheddar
language

EBNF

ProjectionHand edited Conforms to

EBNF TS STEP TS

STEP
meta−meta−modelEBNF

Ada
grammar

Scheduler
meta−data

Cheddar
language
grammar

(a)

(e)
(c)

EBNF TS

M2

M3

M1

Figure 9. Source code generation of sched-
ulers

Figure 9 depicts the translation schema. TheCheddar
language grammar is an EBNF grammar. The meta-model
for this language is specified withEXPRESSand is pro-
jected to theSTEPTS at M2 level (see (a) in figure 9). This
meta-model specifies theCheddarlanguage constructs (au-
tomaton, expression and statement types). The using of this
meta-model is twofold:

• This meta-model is used as input to the CDAI gener-
ator, then, withinCheddar, a part of the CDAI is ded-
icated to the management ofCheddarprogram meta
data.

• Meta entities of theCheddarlanguage meta-model are
defined with their own translation rules which specify
how to produce an Ada scheduler component.

Cheddar
Program

Meta
data

Cheddar Platypus

Scheduler
Code

Figure 10. Meta data exchange between Ched-
dar and Platypusfor a scheduler source code
generation

Figure 10 depicts the meta data flow. For the generation of
a scheduler component, external meta data producing is im-
plemented.Cheddaris itself responsible for their produc-
ing. Thank to the CDAI, from a given program,Cheddaris

6

able to generate an exchange file. This file contains the meta
data corresponding to the program. These meta data comply
with theCheddarlanguage meta-model. Then,Platypusis
able to read and use these meta data for the generation of a
Ada scheduler component:Platypusinstanciates theChed-
dar language meta-model and evaluates its translation rules
(respectively (c) and (e) in figure 9).

4 Conclusion

This article has presentedPlatypusand the associated
meta-modeling methods used in order to implement a part
of Cheddar, a real-time system analysis tool. These tools
aim at helping designers to verify the design of their sys-
tems at an early stage. This experiment shows how perfor-
mance analysis tools can be automatically produced with a
model-driven engineering tool.

So far, two code generators were proposed. A first one is
responsible for the generation of the data management layer
of Cheddar. It is fully implemented and generates all Ada
components related to model and meta-model data required
for performance analysis of a real-time system. The imple-
mentation of the second one is in progress. It will be able to
automatically generate Ada packages from the user-defined
schedulers expressed with the domain specific language of
Cheddar. The scheduler generator will give to the users the
possibility to produce new versions ofCheddarimplement-
ing their own schedulers.

Some large scheduler models already exist. For example,
Airbus Industries has developed a model of a flight simula-
tor architecture that is composed of several schedulerChed-
dar programs [3]. Simulations are operationnal with these
models but require a large amount of memory and comput-
ing resources. There is a need to speed-up these simulations
and source code generators presented in this article could be
useful in this context. It is planned to evaluate source code
generators by experiments with large scale scheduler mod-
els. We expect to perform these experiments with scheduler
models proposed by Airbus.

References

[1] R. Alur and D. L. Dill. Automata for modeling real time sys-
tems. Proc. of Int. Colloquium on Algorithms, Languages
and Programming, Vol 443, LNCS, pages 322–335, 1990.

[2] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on
UPPAAL. Technical Report Updated the 17th November
2004, Department of Computer Science, Aalbord Univer-
sity, Denmark, 2004.

[3] M. Castor, J. Casteres, and F. Gasmi. Modélisation et
simulation de l’Architecture des simulateurs avion pour la
mesure de performance. Rapport technique Airbus, Septem-
ber 2007.

[4] P. Dissaux. AADL Model transformations. In the DAta
Systems in Aerospace conference (DASIA 2005), Edinbugh,
July 2005.

[5] Eclipse Modeling Framework.
http://www.eclipse.org/modeling/emf.

[6] M. Hause. Artisan Studio : support for Model Driven Ar-
chitecture (MDA). White paper of Artisan Software Tools,
2002.

[7] J. E. Hopcroft and J. D. Ullman. Introduction of Automata
Theory, Languages and Computation. Addison-Wesley edi-
tor, 2001.

[8] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From
the prototype to the final embedded system using the Oca-
rina AADL tool suite. ACM Transactions on Embedded
Computing Systems (TECS) , ACM Press, New York, USA,
7(4):42:2–42:25, July 2008.

[9] ISO 10303-1.Part 1: Overview and fundamental principles,
1994.

[10] ISO 10303-11.Part 11: edition 2, EXPRESS Language Ref-
erence Manual, 2004.

[11] J. Rumbaugh and I. Jacobson and G. Booch. The Unified
Modeling Language - Reference Manual.Addison-Wesley,
1999.

[12] M. Kersten, J. Matthes, C. F. Manga, S. Zipser, and H. B.
Zeller. Customizing UML for the development of distributed
reactive systems and code generation to Ada 95.Ada User
Journal, 23(6), 1999.

[13] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-
based DSL frameworks. InOOPSLA ’06: Companion to
the 21st ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications, pages 602–
616, New York, NY, USA, 2006. ACM.

[14] E. Maes. Validation de systèmes temps-réel et embarqué à
partir d’un modèle MARTE. Thales RT, Journée Ada-France
2007, Brest, décembre 2007.

[15] MetaEdit+ Technical Summary.
http://www.metacase.com/papers/index.html.

[16] OMG. Model Driven Architecture.
http://www.omg.org/mda, 2003.

[17] A. Plantec and V. Ribaud. Platypus : A step-based integra-
tion framework. In14th Interdisciplinary Information Man-
agement Talks (IDIMT-2006), Sept. 2006.

[18] A. Plantec and F. Singhoff. Refactoring of an Ada 95 Library
with a Meta CASE Tool.ACM SIGAda Ada Letters, ACM
Press, New York, USA, 26(3):61–70, November 2006.

[19] Platypus web site. http://cassoulet.univ-brest.fr/mme.
[20] SAE. Architecture Analysis and Design Language (AADL)

AS 5506. Technical report, The Engineering Society For
Advancing Mobility Land Sea Air and Space, Aerospace In-
formation Report, Version 1.0, November 2004.

[21] Squeak web site. http://squeak.org.
[22] VisualWorks web site. http://cincomsmalltalk.com/.

7

