A model-driven engineering approach for rapid real-time system simulations

Alain Plantec, Frank Singhoff, Mickaél Kerboeuf
Université Européenne de Bretagne
Université de Brest, France
Laboratoire d’'Informatique des Systemes Complexes (C)Sy
{plantec,singhoff,kerboeb@univ-brest.fr

Abstract distinctive feature oPlatypusis the use of a unique lan-
guage to specify meta-models as also as domain constraints,

Because it encourages the incremental development ofranslation rules and domain complying models. This lan-
software and the reuse of components by abstracting awayguage iEXPRESSa data modeling language.
platform dependent details, model-driven engineeringis a Cheddaris a library designed for the performance anal-
intuitive and sensible way to conceive large software out ysis of real-time systems. Withi@heddar a real-time sys-
of existing application components and libraries. In prac- tem is modeled as a set of software and hardware com-
tice, however, just a few practical tools make it possible to ponents such as tasks, processors, schedulers, or buffers.
generate partially automatically but efficiently large #2a These components can be specified with the domain specific
industrial applications. language ofCheddar or with AADL [20]. Cheddarpro-

We introduce in this article a meta-modeling tool called vides a set of real-time schedulers and their analysis tools
Platypus. It enables to specify very quickly within a ho- implemented in Ada. Schedulers currently implemented in
mogenous framework a model and the meta-model withCheddarare mostly used in real-time systen@heddarcan
witch it complies. In this generic framework, some gen- be used to perform performance analysis of many different
erated components can dynamically enrich the frameworktypes of real-time systems. However, it exists a need to ex-
itself in order to incrementally adapt it to a specific domain tend thes&€Cheddaranalysis tools with user-defined sched-

The benefits of this tool are illustrated by a concrete and ulers or task models. Extendif@heddarwith new sched-
practical example: the adaptation of Cheddar, a simulation ulers or new task models requires that the user well under-

tool designed to real-time software system analysis. stands the design &@heddar Furthermore, specifying a
new scheduler or a new task model may be difficult with-

out an environment especially designed to easily write and
. test the scheduler source code. In order to ease the specifi-
Introduction cation of new scheduler€heddarprovides a specific pro-
gramming language. The model of a scheduler described
This article deals with the use if a model-driven engi- and tested with th€heddarprogramming environment is
neering tool in the context of real-time system verificasion interpreted. Thus, the designer can easily experiment his
Many meta-modeling tools are now available. The most Scheduler models.
known areMetaEdit+ [15] and theEMF framework [5]. Some case studies showed that the interpreter lacks
They provide a meta-modeling language and a set of toolsof efficiency on large scheduling simulations. Regarding
allowing meta-modeling and domain editors implementa- this problem of performance, an optimal solution is to re-
tion. Specific source code or documentation generators carimplement this kind of scheduler with tiéheddarlibrary
be implemented using a dedicated language. Meta-model€ind integrate it as a built-in one with@heddar
and complying models are usually edited using a graphi- However, this solution is expensive and error prone be-
cal user interface with boxes and lines. They are multi- cause of the complexity of the domain. We propose to trans-
language based. Classically, these languages are designddte automaticall{Cheddarschedulers into their equivalent
for meta-modeling, for source code generating and option-Ada programs with the help dflatypus
ally, for meta-constraints expressing. In this article, we preserflatypusand the associated
Platypus[17, 19] is aSTEPbased environment imple- meta-modeling methods used in order to implement a part
mented within the free Smalltalk system Squeak [21]. The of Cheddar This experiment shows how real-time system

performance analysis tools can be automatically producedl.1l Platypus and the STEP technical space
with model-driven engineering tools. These tools help de-
signers to verify the design of their systems at an earlyestag
Different experiments have shown how model-driven en-
gineering method and tools can help system prototyping.

For example, ASSERT [8] has proposed a process based on NS STEPTS OTHERTS) DTS
AADL [20] for such a purpose. q\ ‘ @ o ‘ @ @1
EBNF f EBNF M3
The main other software engineering tools that are meta-meta-model
able to model and generate real-time system software are-————&—— | SRRkl REREERL RECERE
STOOD (Ellidiss Technologies), Artisan Studio, UML STP
. . EXPRESS PLATYPUS
(AONIX), Rhapsody (Telelogic) or Rational Rose [4, 6, 11, grammar meta-model
12]. Most of them are built with a fixed meta-model which ‘ EXPRESS-Map ‘ Domain [] A grammar | M2
enforces the domain specific features of real-time systems. grammar meta‘%m"de' .
This article is organized as follow. The first section de- ~--f------- ooy SRRE EEREEES IR
scribesPlatypustool. The second section gives an outline | EXPRESS
of the Cheddarlibrary. Then, in the third section, we ex- Domain E Some code | M1
: : : EXPRESS-Map meta-data
plain howPlatypusis used to automatically produ&hed- model) 1
dar software components. Finally, conclusion and ongoing- (5 ()
works are presented in the fourth section. e
(b) (e)
I— - . -
Hand edited Conforms to Transformation Projection

1 Platypus, a STEP/EXPRESS based meta-

environment Figure 1. Model transformation and projection
with Platypus

Platypusis a meta-environment fully integrated inside
Squeak?1], a freeSmalltalksystem Platypusallows meta-
model specification, integrity and translation rules defini Figure 1 depicts #latypusarchitecture using the con-
tion. Meta-models are instantiated from user-defined mod-cept oftechnical spaceA technical spacgTS) is defined
els. Given a particular model, integrity and translatidesu as a set of models and the tools that can operate on these
can be interpreted. models [13]. In figure 1, technical spaces are presented ver-
Platypusprovides only textual meta-modeling and mod- tically. Each one is made of three rows. Each row corre-
eling facilities. Platypusbenefits from the STEP [9] stan- sponds to a level of the MDA four levels architecture [16].
dard for models and meta-models specification and imple-A generative operation across several TS is callptbec-
mentation.STEPis an ISO standard which was developed tion. A generative operation inside the same TS is called a
to easily share productinformations by specifying sufficie transformation

semantic for data and their usage. WItiBTER models The main TS is th&TEPTS in whichPlatypusis buil.
are specified with the data oriented modeling languzge Platypusis implemented around a fixed meta-meta-model

PRES$10]. _ that is mainly aSTEP core meta-model (M3 level) and
Platypusmakes use only oEXPRESSo build models 5round thePlatypusmeta-model (M2 level). Thelatypus

and meta-modeling, and to specify constraints and codemeta-model complies with tH8TEPmeta-meta-model and
generators. IrPlatypus models and meta-models consist s fixed for a particular version d?latypus

in sets ofEXPRESSchemas. A schema is a root element)))
of an EXPRESSpecification. A schema contains primary AS @ meta-environmentlatypus provides two main

modeling elements which are constants, types, entities, pr functionalities. The first one allows meta-modeling, which
cedures, functions and global rules. Entities are used-in or CONSISts in editing meta-models. The second one allows the

der to specify domain concepts. An entity contains a list implementa}tion of.m_eta—model_f, which at _Ieast consists in
of attributes that provide buckets to store meta-data while Meéta-data instanciation, browsing, checking and transfor
local constraints are used to ensure meta-data soundness. Mation.

Platypusis primarily aSTEPenvironment that involves Platypuscan be specialized in order to handle a specific
an editor forEXPRESSa parser, an interpreter and two domain. Such a specialization is called a domain specific
built-in Smalltalk generators that alloXPRESSnodels environment. The next sections explain how such domain
to be mapped in Squeak [21] and VisualWorks [22]. specific environments are specified and used.

1.2 Specifying a domain specific environment

ENTITY Record SUBTYPE OF (entity_definition);
END_ENTITY;

In order to specializé’latypus a designer only has to
specify a meta-model which describes the concepts of thg

A1

ENTITY Buffer;
END_ENTITY;

domain he would like to handleEXPRESSs used as a

domain modeling language. The meta-modelis edited in the
EBNF TS (EBNF stands foExtended Backus-Naur Fo)m

MAP Buffer TO Record;
END_MAP;

|

and is projected biPlatypusin theSTEPTS at the M2 level
(see (a) in figure 1).

The Platypusmeta-model is itself an EXPRESS model.
Since it mainly consists in an EXPRESS language meta-
model, a user-defined meta-model can reuse and specializ
it. In this way, a user can specify a domain specific special-
ization of the EXPRESS language and thus, mRlatypus
a domain specific environment.

1.3 Using a domain specific environment

Using a domain specific environment consists in provid-

The upper frame shows the entRecordfrom a user-defined meta-model
which is specializing th@latypusmeta-model for a domain specific pur-
pose. The middle frame shows the enByfferfrom a user-defined model
and the lower frame shows a mapping declaration.

e Figure 2. Explicit mapping

1.3.2 Using meta data

After a model has been provided, constraints and transla-
tion rules defined within the meta-model allows meta data
checking, transformations and projections.

Typically, a projection from th&eTEPTS to the EBNF
TS is implemented as a derived attribute which result is a

ing meta data, and in checking them or using them in ordersying (see (e) in figure 1). A transformation within the
to produce some realization. These two points are explainedsTEpPTS is implemented as a derived attribute which result

below.

1.3.1 Providing meta data

Meta data building can be either made externally, by a tool
implemented outsid@latypusor made internally with the
help of the mapping feature &atypus

External meta data producing is represented in figure 1
by the projection from ara priori unknownOther TSto
the STEPTS (see (c) in figure 1). A specific tool imple-
mentation can be a difficult and a costly task. However, if
the meta-model has been specified as a specialization of th
Platypusmeta-model, this implementation is not mandatory
because internal meta data producing can be used with thg
help of anEXPRESS-mamodel.

EXPRESS-mafs a Platypusspecific extension oEX-
PRESShat allows the definition afonform-torelations be-
tween an EXPRESS model and a meta-model. Then, in or-
der to use a domain specific meta model, the user has tq
provide a domain model written in standd&XPRES%nd
a mapping model written iIEXPRESS-mapFigure 2 de-
picts an example of an explicit mapping.

The benefit is thaPlatypusis able to automatically im-
plement a projection from the EBNF TS to tRFEPTS
(see (b) in figure 1). Such a projection builds meta-data re-
lated to a domain specific model. This feature allows very
rapid implementation of domain models since the user has
only to deal with domain meta-models and domain models
specification.

is a new meta-data (see (d) in figure 1).

The meta—model Meta data set

v (fICdaiGeneratog,
v stHExpressToAda
F supertype_name
E record
E tagged_record (private)
» stiuse from platypus/dictionary s¢
» we eXternals
» [/home/plantec/avpt/Pharo/platyp
= #1=SCHEMA_INSTANCE('2009-
= #2=SCHEMA DEFINITION('Cheq¢

ada ads : STRING := "Type ' +
+ 'Record\n’
+ .\

+ 'End Recory/-\

Definition of the
translation rule

= #3=(RECORD() ENTITY_INSTA
= #5=EXPLICIT ATTRIBUTE('Size'
= #6=INTEGER_TYPE(S);
= #7=EXPLICIT ATTRIBUTE('Time
= #8=INTEGER_TYPE(S);
v = #9=(TAGGED_RECORD
v « TAGGED_RECORD(.F.)
@ private
vdadaads (link (n)
"Type Generic Task Is Nqupdate Sditar

" one_supertype maxi
« ENTITY INSTAN g?jﬂgg :zi)’e'
= SDAI_INSTANCE() code pane (p)

= DICTIONARY INST,
2
add td bookmarks

||~ A Tagged Record
Il instance

S

= NAMED_TYPE('GeneKjc_Task
= ENTITY_DEFINITION($\ (), (4
= #11=EXPLICIT_ATTRIB
A T

\The result of a translation

Users can browse the meta data, select a derived attribuge (en
ada.adsattribute of aTaggedRecordinstance) and evaluate it. Then, the
corresponding result is stored as a child of the selectebutt. The same
kind of interaction is possible for the checking of consttsi

Figure 3. Translation from Platypustool

Constraints and translation rules are interpreted by a
genericPlatypuscomponent called a repository. Using of

a repository is made through tidatypusmodel browser 3 Cheddar engineering with Platypus

with which all elements of a model can be visualized. The

checking of constraints and the evaluation of derived at- The yse oPlatypusis twofold. First, theCheddarlow
tributes are available from the model browser itself. Fegur |ayer, which is dedicated to data management, is generated
3 shows a snapshot Blatypus This snapshot depicts how ith platypus This layer directly depends on manipulated
one can evaluate a translation rule from the user interface. gata types and constraints. It is very generic in nature and

Regarding the example @heddar we now explain the jts components are classically automatically generated fr
analysis tool that we expect to generate with the meta-the specification of related data types.

environmentPlatypus First, we briefly presenCheddar The goal of the second use is to make it possible the

Ing process. a user-defined scheduler programmed with @leeddar
language can be integrated within t@é&eddarlibrary as

2 Cheddar architecture outline any built-in scheduler Ada components.

In the sequel, we focus on implementation of source
code generators witRlatypus First, section 3.1 explains
with details the CDAI source code generator implementa-
tion. Since both CDAI source code generator and sched-
uler source code generator has numerous similarities, sec-

High layer Sepodnlers | [nterpreter | [Compier | tion 3.2 just outlines the source code generator devoted to
—— user-defined schedulers.

Low layer Semantic Serializer
Checker Unserializer

As shown by figure 4Cheddaris made of six main com-
ponents and the overall architecture is made of two layers.

3.1 The CDAI generator

Figure 4. Major Components of - Cheddar Cheddardeals with a clearly defined set of primary data

types which are tasks, processors, schedulers, buffers, ..

This data model (called theheddardata model in the se-
2.1 The low layer quel) allows users to specify the real-time system architec

tures that they expect to analyze. We decided toRlagy-

The low layer is built around a repository for data and Pusin order to generate a clean source code according to
meta-data storage. Data and meta-data accessing to andell defined coding rules [18]. The main goal is to provide
from the repository are all implemented by tideddar a clear data accessing interface (the CDAI) implementing
Data Acces InterfacedDAI). TheCDAl is a central com- a standardized data access protocol. Figure 5 depicts the

ponent that is used by all oth€heddarcomponents. translation schema.
The lower layer implements some additional data spe- Cane TS STEP TS CanE TS
cific components such as a data checker component and a
data exchange component which is responsible for the writ- @ @ @1
ing and the reading of XML data files. EENF ‘ meta-meta-model EBNF | MS

.
meta—model
Ada M2
grammar
i H i i EXPRESS-Ma
This layer allows real-time systems simulation at two grammar remodd
levels:

. . EXPRESS to Ada
1. Cheddar natively implements several well known model

. . Cheddar dat
scheduling algorithms. These schedulers are hand- Cheddar daa meta_data CDAl code | M1
model i

written. Ada components implementing these sched-
ulers are called "built-in schedulers”.

2.2 The high layer

EXPRESS
grammar

@) (e)
b
2. The compiler and the interpreter are respectively re- — ® .
sponsible for the compiling and the running of user- Hand edited Conforms to Projection
defined schedulers programmed with @leeddardan-
guage. Figure 5. Generation of the CDAI

Hand editedEXPRESSmodels are theExpressToAda
meta-model and theCheddar data model. TheEx-

pressToAdameta-model specifies the translation rules pus meta-model.

whereas th€heddardata model specifies the primary data
types manipulated b€heddar ExpressToAdaneta-model
is projected to the&STEPTS at M2 level and th&€€heddar
data model is projected at the M1 level of tREEPTS (see

(a) and (b) in figure 5) with the help of the mapping feature.

3.1.1 Meta-modeling: specification oExpressToAda

figure 6.

platypusdictionary.schemas a part of the reuseelaty-
It is read-only because the used ver-
sion of Platypus engine depends on it. It ownen-
tity_definitionmeta-entity that specifies what &XPRESS
concept is.entity definitioninherits fromnamedtype. An
entity has a namen@meattribute), a list of local constraints
(whererules attributg, a list of supertypess(ipertypest-
tribute) and a list of attributesftributesattribute).

Figure 6 presentRecordand Tagged recordAda con-
cepts specification. A tagged record is an Ada construct

It consists in the specification of target concepts and the as which is equivalent to a Java clastggedrecord private
sociated translation rules. Translation rules allow the pr attribute is added because the concept of privacy which is
jection of EXPRESSonstructs to target Ada language con- useable in Ada isn’t available iIEXPRESSAda source
structs and to CDAI related Ada sub-programs. The meta-code is computed by the derived attribitdaads Each

model is specified as a specialization of flatypus meta-
model each Ada construct, mainlyackage Recordand
Tagged recordis defined as a subtype of a concept from
the Platypusmeta-model, mainlySchemaand Entity defi-
nitions.

SCHEMA platypus_dictionary_schema; ...

ENTITY named_type SUBTYPE OF (dictionary.instance);
name : string ;
where_rules :

END_ENTITY;

LIST OF where_rule; ...

ENTITY entity_definition SUBTYPE OF (named-type);

supertypes : LIST OF entity_definition;
attributes : LIST OF attribute; ...
END_ENTITY; ...
END_SCHEMA;

SCHEMA ExpressToAda;
USE FROM platypus_dictionary_.schema;

ENTITY record SUBTYPE OF (entity_definition);

DERIVE
ada-ads : STRING := 'Type.’ + SELF.name + ’'.ls\n’
+ 'Record\n’ + '...\n’ + 'End.Record; ’;
WHERE
no_supertype : SIZEOF (supertypes) = 0;
END_ENTITY;
ENTITY tagged_record SUBTYPE OF (entity_definition);
private : BOOLEAN;
DERIVE
ada_ads : STRING := ’'Type.' + SELF.name + ’'.ls._.New.’
+ supertype_name (SELF) + '\n’
+ 'WithoRecord\n’ + ...\ n’' + 'End.Record; ’;
WHERE
one_supertype_maxi : SIZEOF (supertypes) <=1;
END_ENTITY;

FUNCTION supertype_name(tg : tagged._record): STRING;
IF (SIZEOF (tg.supertypes) = 0) THEN
RETURN ('Ada. Finalization. Controlled’);
ELSE
RETURN (tg.supertypes [1].ref.name);
END.IF;
END_FUNCTION,;
END_SCHEMA;

Figure 6. The ExpressToAdaeta-model

A very simplified version oExpressToAd& shown in

concept definition can own constraints. Such a constraint is
useful statically as well as dynamically in order to, respec
tively, provide a rich documentation of the meta-model and
to allow the validation of meta data before any projection
is computed. Constraints are defined in order to ensure that
projections can be computed.

3.1.2 Data modeling: theCheddar data model

The modeling activity consists i€heddarprimary data
types specification. Figure 7 shows a very simplified ver-
sion of Cheddardata model with three data types which are
Buffer, GenericTaskand one of its specializatio®peri-
odic_ Task CheddarDatas a standardEXPRESS$nodel. It

can be used as input for otHEKPRES $elated tools. As an
example, an external tool can use this model in order to pro-
duce some source code or some other model. In other terms,
CheddarDatacan be considered as a pivot representation of
Cheddararound which other tools can be articulated. As an
exampleCheddarDatacan serve as a domain aGtieddar
reference model to perform analysis of Marte/UML real-
time system models [14].

SCHEMA CheddarData;

ENTITY Buffer;

Size : INTEGER;
Time : INTEGER;

END_ENTITY;

ENTITY Generic_Task;
Cpu-Name : STRING;
Capacity : INTEGER,;
Deadline : INTEGER;
Start_Time : INTEGER;

END_ENTITY;

ENTITY Aperiodic_Task
SUBTYPE OF (Generic_Task);
END_ENTITY;
END_SCHEMA;

Figure 7. The CheddarDatanodel

3.1.3 EXPRESS-map modeling

SCHEMA CheddarData_-To_ExpressToAda_Mapping;
META FROM ExpressToAda;
USE FROM CheddarData;

MAP Buffer TO record ();
END_MAP;

MAP TO tagged_record (false);
Generic_Task;
Aperiodic_Task;
END_MAP;
END_SCHEMA;

Figure 8. The mapping schema for CheddarD-

ata

The two previous sections have described both the meta-
model and the model designed to automatically produce the
real-time systems simulation tool components. We now
explain how to specify relationships between these meta-
model and model.

Figure 8 shows a mapping model for the CDAI genera-
tor example. A mapping model is made of two parts. The
first part is the declaration of used meta-models and mod-
els. Used meta-models are declared withNHETA FROM

expression and used models are declared with the standarac:

EXPRES®xpressiotdSE FROM The second part is made
of the declaration of theonform torelations for the model
elements. In this example:

o Bufferis declared as conform toRecord

e GenericTaskandAperiodic Taskare declared as con-
form to aTaggedRecord

Then, the projection from the EBNF TS to tsTEPTS
can be driven according to these mapping rules: it builds
an instance of thRecordmeta entity from th&ufferentity
and two instances of theaggedRecordmeta entity from
bothGenericTaskandAperiodic Taskentities.

As a consequence, the CDAI generator considers that
a Bufferis checked or translated to Ada components fol-
lowing respectively the constraints and the translatidesru
declared by thdRecordspecification of theExpressToAda
meta-model. The same process is applie@GémericTask
andAperiodic Taskbut with theTaggedRecordmeta entity.

3.2 The scheduler generator
User-defined schedulers can be programmed with the

Cheddarlanguage. Th&heddarlanguage is a small do-
main specific language. £heddarprogram modeling a

EBNF TS STEP TS
STEP
@NF ‘ @—meta—model
EXPRESS Cheddar language
grammar meta—-model
i
Cheddar
language
meta model Scheduler
meta—data
A
@
Hand edited Conform

EBNF TS

M3

Cheddar
language
grammar

Ada
grammar

Scheduler
code
i

Scheduler

code M1

(e)
©

»-
s to Projection

Figure 9. Source code generation of sched-

ulers

Figure 9 depicts the translation schema. Tteeddar

language grammar is an EBNF grammar. The meta-model
for this language is specified witEXPRESSnd is pro-
jected to theSTEPTS at M2 level (see (a) in figure 9). This
eta-model specifies thgheddadanguage constructs (au-
maton, expression and statement types). The using of this
meta-model is twofold:

e This meta-model is used as input to the CDAI gener-
ator, then, withincCheddar a part of the CDAI is ded-

icated to the managemen
data.

t 6heddarprogram meta

e Meta entities of th&€€heddadanguage meta-model are
defined with their own translation rules which specify
how to produce an Ada scheduler component.

Figure 10. Meta data exchange between

) Q)
Cheddar —P—P Platypus

ﬁ‘—‘ data .
Cheddar Scheduler
Program Code

Ched-

dar and Platypusfor a scheduler source code

generation

Figure 10 depicts the meta data flow. For the generation of
a scheduler component, external meta data producing is im-

new scheduler is organized as a set of timed automata suclplemented.Cheddaris itself responsible for their produc-

as those proposed by UPPAAL [7, 1, 2].

ing. Thank to the CDAI, from a given progra@heddaris

able to generate an exchange file. This file contains the meta [4] P. Dissaux. AADL Model transformations. In the DAta
data corresponding to the program. These meta data comply
with the Cheddarlanguage meta-model. Theplatypusis

able to read and use these meta data for the generation of ald]
Ada scheduler componerRlatypusinstanciates th€hed-

dar language meta-model and evaluates its translation rules

(respectively (c) and (e) in figure 9).

4 Conclusion

This article has presentdelatypusand the associated
meta-modeling methods used in order to implement a part
of Cheddar a real-time system analysis tool. These tools
aim at helping designers to verify the design of their sys-
tems at an early stage. This experiment shows how perfor- 0]

mance analysis tools can be automatically produced with a

model-driven engineering tool.

So far, two code generators were proposed. A first one is [11

(6]

(7]

(8]

[10]

responsible for the generation of the data management layer
of Cheddar It is fully implemented and generates all Ada
components related to model and meta-model data required12]
for performance analysis of a real-time system. The imple-
mentation of the second one is in progress. It will be able to
automatically generate Ada packages from the user-defined

schedulers expressed with the domain specific language ofi13

Cheddar The scheduler generator will give to the users the
possibility to produce new versions 6Gheddarimplement-
ing their own schedulers.

Some large scheduler models already exist. For example,[14]
Airbus Industries has developed a model of a flight simula-
tor architecture that is composed of several schedtihed-
dar programs [3]. Simulations are operationnal with these [15]
models but require a large amount of memory and comput-
ing resources. There is a need to speed-up these simulation5'8]
and source code generators presented in this article ceuld b
useful in this context. It is planned to evaluate source code

generators by experiments with large scale scheduler mod-

[17]

els. We expect to perform these experiments with scheduler[1g]
models proposed by Airbus.

References

(1]

(2]

(3]

R. Alur and D. L. Dill. Automata for modeling real time sys
tems. Proc. of Int. Colloquium on Algorithms, Languages
and Programming, Vol 443, LNCS, pages 322-335, 1990.
G. Behrmann, A. David, and K. G. Larsen. A Tutorial on
UPPAAL. Technical Report Updated the 17th November
2004, Department of Computer Science, Aalbord Univer-
sity, Denmark, 2004.

M. Castor, J. Casteres, and F. Gasmi. Modélisation et
simulation de I'Architecture des simulateurs avion pour la
mesure de performance. Rapport technique Airbus, Septem-
ber 2007.

[19]
[20]

[21]
[22]

Systems in Aerospace conference (DASIA 2005), Edinbugh,
July 2005.

Eclipse Modeling
http://www.eclipse.org/modeling/emf.
M. Hause. Artisan Studio : support for Model Driven Ar-
chitecture (MDA). White paper of Artisan Software Topls
2002.

J. E. Hopcroft and J. D. Uliman. Introduction of Automata
Theory, Languages and Computation. Addison-Wesley edi-
tor, 2001.

J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From
the prototype to the final embedded system using the Oca-
rina AADL tool suite. ACM Transactions on Embedded
Computing Systems (TECS) , ACM Press, New York, USA
7(4):42:2-42:25, July 2008.

ISO 10303-1Part 1: Overview and fundamental principles
1994.

1ISO 10303-11Part 11: edition 2, EXPRESS Language Ref-
erence Manugl2004.

Framework.

] J. Rumbaugh and I. Jacobson and G. Booch. The Unified

Modeling Language - Reference Manu#ddison-Weslegy
1999.

M. Kersten, J. Matthes, C. F. Manga, S. Zipser, and H. B.
Zeller. Customizing UML for the development of distributed
reactive systems and code generation to Ada®8a User
Journal, 23(6), 1999.

] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. &&b-

based DSL frameworks. I@OPSLA '06: Companion to
the 21st ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applicatipages 602—
616, New York, NY, USA, 2006. ACM.

E. Maes. Validation de systemes temps-réel et emiéagg
partir d'un modéle MARTE. Thales RT, Journée Ada-France
2007, Brest, décembre 2007.

MetaEdit+ Technical Summary.
http://www.metacase.com/papers/index.html.
OMG. Model Driven Architecture.

http://www.omg.org/mda2003.

A. Plantec and V. Ribaud. Platypus : A step-based igtegr
tion framework. Inl4th Interdisciplinary Information Man-
agement Talks (IDIMT-2006%ept. 2006.

A. Plantec and F. Singhoff. Refactoring of an Ada 95 hityr
with a Meta CASE Tool. ACM SIGAda Ada Letters, ACM
Press, New York, USR6(3):61—-70, November 2006.
Platypus web site. http://cassoulet.univ-brestine.

SAE. Architecture Analysis and Design Language (AADL)
AS 5506. Technical report, The Engineering Society For
Advancing Mobility Land Sea Air and Space, Aerospace In-
formation Report, Version 1.0, November 2004.

Squeak web site. http://squeak.org.

VisualWorks web site. http://cincomsmalltalk.com/.

