
Cache-Aware Real-Time Scheduling Simulator:
Implementation and Return of Experience

Hai Nam Tran, Frank Singhoff, Stéphane Rubini, Jalil Boukhobza
Univ. Bretagne Occidentale, UMR 6285, Lab-STICC, F-29200 Brest, France

{hai-nam.tran,singhoff,rubini,boukhobza}@univ-brest.fr

ABSTRACT
Evaluating cache related preemption delay (CRPD) in pre-
emptive scheduling context for Real-Time Embedded Sys-
tem (RTES) stays an open issue despite of its practical im-
portance. Indeed, various parameters should be taken into
account such as cache utilization of tasks, memory layout
of tasks, processor utilization and priority assignment algo-
rithm. In state-of-the-art work, dependencies amongst those
parameters are not investigated with precision because of the
lack of scheduling analysis tool taking them into account.
In this article, we propose a tool to investigate and eval-
uate scheduling analysis of RTES with cache memory and
various scheduling parameters. Both modeling guidelines
and implementation is detailed. Implementation is made in
Cheddar, an open-source scheduling analyzer, which is freely
available; Experiments are conducted in order to illustrate
performance and applicability of our tool. Furthermore, we
discuss about implementation issues, problems raised and
lessons learned from those experiments.

1. INTRODUCTION
Cache memory is a crucial hardware component used to

reduce the performance gap between processors and main
memories. In the context of real-time embedded system
(RTES), the popularization of processors with large size and
multi level caches motivates the proposition of verification
methods handling this hardware component [14], [5], [2].

Scheduling simulation is a classical verification method
performed at design step of RTES. It provides means to in-
vestigate that all timing constraints of a RTES are satisfied.
To perform scheduling simulation, several assumptions are
usually made in order to simplify system modeling. One of
them is that preemption costs are negligible. Preemption
cost is the additional time to process interrupts, manipulate
task queues and actually perform context switches.

Integrating cache memory in RTES generally enhances the
whole performance in term of execution time, but unfortu-
nately it can lead to an increase in preemption cost and
execution time variability [15]. When a task is preempted,
memory blocks belonging to the task could be removed from
the cache. Once the task resumes, previously removed mem-
ory blocks have to be reloaded into the cache. Thus, a new
preemption cost named Cache Related Preemption Delay
(CRPD) is introduced. By definition, CRPD is the addi-
tional time to refill the cache with memory blocks evicted
by the preemption. In [15], the authors showed that the
cost of context switching raises from the range of 4.2µs to
8.7 µs to the range of 38.6µs to 203.2µs when the size of the

data sets of programs is larger than the cache. Thus, tak-
ing CRPD into account may be important when performing
scheduling analysis of a RTES.

Problem statement: Scheduling analysis of RTES with
cache memory in fixed priority preemptive scheduling con-
text is complex because there are many parameters affecting
the outcome and dependencies amongst them. For example,
CRPD analysis, which is the process of evaluating the im-
pact of CRPD on a RTES, cannot be only based on single-
task analysis as it depends on correlations amongst tasks.
For a set of tasks, CRPD analysis has to take into account
parameters such as cache utilizations of tasks, memory lay-
out of tasks, processor utilization but also priority assign-
ment algorithms and WCET tasks.

To address all parameters, many tools are involved, in
two domains: WCET/Cache analysis and scheduling analy-
sis. Each of those domains is only dedicated to a sub-part
of those parameters. Unfortunately, there are no tools ad-
dressing the whole problem in state-of-the-art work.

Contributions : We propose a tool to investigate and eval-
uate scheduling analysis of RTES with cache memory and
various scheduling parameters. The work is implemented in
Cheddar, an open-source scheduling analyzer, which is freely
available to researchers and practitioners. We propose an
approach to use the analysis models and results of WCET/-
cache analysis tools into a scheduling analysis tool. The
programming model we used is compliant with the existing
one in [14], [5], [2] and [17]. Experiments are performed to
illustrate performance and applicability of our tool.

The rest of the article is organized as follows. Section 2
presents background of our work. In Section 3, we give an
overview of our approach. In Section 4, we present devel-
opment process and detailed information about the imple-
mentation of our work. In Section 5, an evaluation of our
proposed scheduling simulator is given. Section 6 discusses
related works and Section 7 concludes the article.

2. BACKGROUND
In this section, we introduce the system model and we

explain how preemption cost and CRPD are computed. We
assume an uniprocessor RTES with direct-mapped instruc-
tion cache. As far as we know, instruction cache is popular in
practical implementation of RTES. The assumption about
direct-mapped is used to simplify the data flow analysis,
it could be easily relaxed. There are n independent tasks,
τ1, τ2, ..., τn scheduled by a preemptive scheduler. CPRD is
bounded by g ·BRT , where g is an upper bound on the num-
ber of cache block reloaded due to preemption, and BRT is

System Model
(Cheddar-ADL)

2. Data Flow
Analysis

Cache Access
Profile (UCB, ECB)

3. Scheduling
Simulation

1. ModelingRTES

: Input : Output

Figure 1: Approach

an upper-bound on the time necessary to reload a memory
block in the cache (block reload time). To analyze the effect
of preemption on a preempted task, Lee et al.[14] introduced
the concept of useful cache block (UCB):

Definition 1. A memory block m is called a useful cache
block (UCB) at program point P , if m may be cached at P
and m may be reused at program point P ′ after P that may
be reached from P without eviction of m on this path.

The number of UCB at program point P gives an upper
bound on the number of additional reloads due to a pre-
emption at P . The maximum possible preemption cost for
a task is determined by the program point with the highest
number of UCB. In [22], the authors exploit the fact that for
the i-th preemption, only the i-th highest number of UCB
has to be considered. However, as shown in [1] and [3], a
significant reduction typically only occurs at a high number
of preemptions. Thus, we only consider the program point
with highest number of UCB.

The impact of preempting task is given by the number
of cache blocks that the task may evict during its execu-
tion. Busquet et al.[5] introduce the concept of evicting
cache block (ECB):

Definition 2. A memory block of the preempting task is
called an evicting cache block (ECB), if it is accessed during
the execution of the preempting task.

The notation UCBi and ECBi are used to present the set
of UCBs and ECBs of a task τi. Assume that the sets of UCB
and ECB of each task are preliminary computed, UCB’i is
the set of UCBs currently in the cache of the preempted
task. γi,j is the preemption cost (i.e. the CRPD) when a
task τj directly preempt task τi. In case of a preemption
between two tasks τi and τj , γi,j is computed by:

γi,j = BRT · | UCB’i ∩ ECBj | (1)

However, in case of nested preemptions, a task τj can pre-
empt more than one task. Thus, computation of CRPD
must take all preempted tasks into account.

3. OUR APPROACH
Our approach consists of three steps as shown in Fig. 1.

First, we modeled a RTES with components required to ap-
ply analysis methods stated in Section 2. Those components
include hardware and software parts. Hardware components
are processor, core and cache memory. Software components
are tasks and control flow graphs of tasks.

Second, from this model, we applied data flow analysis
presented in [14] in order to compute the set of UCB and
ECB of each task, which is called cache access profile in the
sequel. A detailed description of these first and second steps
could be found in [24], which is a preliminary work toward
cache integration.

Third, system model with computed cache access profiles
are loaded into the scheduling simulator. Scheduling simula-
tion is done and provides various outcomes such as feasibility
of the system, worst case response time of tasks, number of
preemption, CRPD per task and total CRPD.

In our work, the cache utilization of a program at step 1
is modeled at both low level, which is the control flow graph
of program produced by a WCET analysis tool, and at high
level, which is a pre-computed set of UCB and ECB. We
expect the user to re-use results produced by a WCET anal-
ysis tool within Cheddar. We can extract all information
related to CRPD from the scheduling simulator as written
above to fully investigate the impact of CRPD. Detailed im-
plementation of each step is presented in the next section.

4. IMPLEMENTATION
In this section, we present the implementation of our ap-

proach. We introduce our framework, discuss about the de-
velopment process and point out several implementation is-
sues. The source code of the presented work is available
under GNU GPL licence at http://beru.univ-brest.fr/

svn/CHEDDAR/trunk/src/.
The work took place in the context of the Cheddar project

[21]. Cheddar is an open source real-time scheduling analy-
sis tool. Classical feasibility tests, scheduling algorithms and
scheduling simulator for real-time systems are implemented
in Cheddar. System architecture is defined with Cheddar
Architecture Description Language (Cheddar-ADL). Ched-
dar class files are automatically generated by the tool Platy-
pus [20] through a model-driven process. The Cheddar meta-
model defines hardware components such as: processor, core
and shared resource; and software components such as: task
and task group [11].

The development process consisted of three steps. First,
Cheddar-ADL is extended to model RTES with cache mem-
ory and cache access profile. Second, we implemented UCB
computation by data flow analysis. Third, a cache-aware
scheduling simulator is implemented by extending the schedul-
ing simulator of Cheddar. In [24], we presented how Cheddar-
ADL is extended to take into account cache memory and
how data flow analysis in [14] is implemented. In this arti-
cle, we provide a summary of our models and focus more on
the implementation of the cache-aware scheduling simulator
and its application.

4.1 Cache Model and Cache Access Profile
To support cache aware scheduling analysis, the Cheddar

meta-model has been extended with the entities below:

1 ENTITY Generic Cache
2 cache size : Natural;
3 line size : Natural;
4 associativity : Natural;
5 miss time : Natural;
6 cache category : Cache Type;
7 ENTITY Generic Task
8 task type : Natural;
9 capacity : Natural;

10 deadline : Natural;
11 priority : Priority Range;
12 cache access profile name : String;
13 cfg name : String;
14 ENTITY Cache Access Profile
15 UCBs : Cache Blocks Table;
16 ECBs : Cache Blocks Table;

17 ENTITY CFG
18 nodes : CFG Nodes Table;
19 edges : CFG Edges Table;
20 ENTITY Basic Block SUBTYPE OF (CFG Node);
21 instruction offset : INTEGER;
22 instruction capacity : INTEGER;

Cache memory is modeled by classical attributes such as
cache size, line size, associativity and block reloading time
or miss time. From this model of cache and control flow
graph of a task, we can compute the memory layout, the
memory-to-cache mapping and the set of UCB and ECB of
a task.

A task is modeled by an entity with classical attributes
such as capacity, deadline, priority and offsets. The task type
specifies the type of a task, such as periodic, aperiodic,
sporadic or poisson [11].

Two attributes, UCBs and ECBs are added to handle
caches. They are the set of UCBs and ECBs of a task, re-
spectively. The model is designed according to two assump-
tions: first, a task is assumed to have a fixed set of UCB and
ECB. UCB is computed by the program point with highest
number of UCB ; second, any partial execution of a task
uses all its ECBs and UCBs ; thus, CRPD achieved from
scheduling simulation is always upper-bounded.

In order to compute the set of UCB and ECB of a task, we
need its control flow graph (which is modeled by the CFG
EXPRESS entity). Each node in the CFG stores informa-
tion about the capacity and the location in main memory
of its assembly instruction. At the moment, our analysis
method takes into account direct mapped instruction cache
because instruction access pattern is simpler to be computed
from the CFG of a program.

4.2 Computing Cache Access Profile
UCB analysis is implemented following the work in [14].

The input of the algorithm is an annotated CFG of a pro-
gram. From the input CFG, our tool analyzes and computes
the set of UCB and ECB.

4.3 The Cache-Aware Scheduling Simulator
The scheduling simulation in Cheddar works as follows.

First, a system architecture model, including hardware/-
software components, is loaded. Then, the scheduling is
computed by three successive steps: computing priority, in-
serting ready task into queues and electing task. The elected
task will receive the processor for the next unit of time.

The scheduling simulator records different events raised
during the simulation, such as task releases, task comple-
tions and shared resources lockings or unlockings. The re-
sult of the scheduling analysis is the set of events produced
at simulation time.

We extended the scheduling simulator of Cheddar as fol-
lows. First, we extended the set of events Cheddar can
produce. For example, an event PREEMPTION, which is
raised when a preemption occurs, is added. Second, event
RUNNING TASK, which is raised when a task executes, is
extended with the assumption about CRPD that any partial
execution of a task uses all its ECBs and UCBs.

The pseudo code of the event handler is written below.
The notation τi.cUCB represents the set of UCBs of task
τi in the cache. It is computed from a system model at
scheduling simulation time. The function Remove() at line
8 is used to remove an element from a set.

1 event SCHED START
2 for each task τi loop
3 τi.cUCB ← τi.UCB
4 end loop
5 event PREEMPTION
6 τj ← preempting task
7 for each task τi preempted loop
8 τi.cUCB ← Remove(τi.cUCB, τj .ECB)
9 end loop

10 event RUNNING TASK
11 τi ← executing task
12 CRPD ← (τi.UCB − τi.cUCB) ∗ Miss Time
13 τi.cUCB ← τi.UCB

At the start of the scheduling simulation, a SCHED START
event is raised. The WCET of a task is assumed to in-
clude the block reloading time when a task is executed non-
preemptively. So, on event SCHED START, the set of UCBs
of a task is assumed to be filled.

When a preemption occurs, a PREEMPTION event is
raised and the simulator computes the evicted UCBs of pre-
empted tasks using the ECBs of preempting task. The
scheduler keeps track of the number of UCBs for each task.

When a task executes, a RUNNING TASK event is raised.
The scheduler firstly checks if all the UCBs of this task are
loaded into the cache. If so, the task continues its execu-
tion. If not, the task reloads the evicted UCBs. The CRPD
is added to the remaining capacity of the task itself. In our
implementation, CRPD is not added to the capacity of pre-
empted tasks at the preemption point but at the instant at
which those tasks resume execution.

4.4 Implementation Issues
Several issues were raised when designing and implement-

ing the simulator. Most of them were raised because we need
to mix timing specifications of different orders of magnitude.
Others are related to tools interoperability.

In practice, cache block reload time is significantly smaller
than period or capacity of a task. In Cheddar, we do not
prescribe 1 unit of time is equivalent to 1 ms or 1 µs, which
are the unit of task period and block reload time. Mixing
timing specifications of different orders of magnitude makes
complex the computation of the feasibility interval. We re-
call that a feasibility interval is an interval for which testing
of task feasibility is needed [10]. The scheduling simula-
tion interval needed to verify the schedulability of a task set
could be significantly large if a µs is chosen as a time unit.
A solution in practice is to design a system with harmonic
task set in order to reduce the feasibility interval; however,
it is clearly not always possible. In addition, instead of us-
ing 1 µs, we use the cache block reload time as a base value
for 1 unit of time as in our experiment. Furthermore, a
long scheduling simulation interval also raises issues regard-
ing performance and scalability. Even with harmonic task
set, the tool must be able to perform scheduling simulation
in a large interval to overcome the different between cache
block reload time and task period, which may be CPU and
memory expensive. As Cheddar stores scheduling simula-
tion results into XML files, it can also be I/O intensive. To
reduce memory and I/O overhead, we selected a subset of
events the simulator has to handle and store.

A second issue we are facing is about tool interoperability.
The input data of the CRPD analysis in our tool is designed
to be compatible with data provided by a WCET analysis

tool. We also support import data in XML format. At
the moment, we do not enforce tool interoperability and we
expect to investigate WCET tools in order to overcome this
issue.

5. EXPERIMENT AND DISCUSSION
In this section, we show that our tool can handle param-

eters compliant with the existing works in [14], [5], [2] in
the first experiment. In addition, we discuss about the de-
pendency between CRPD and scheduling parameters. Fur-
thermore, we point out that our tool can run CRPD opti-
mization techniques by taking an example of memory layout
optimization by simulated annealing following the work of
[17] in the second experiment. We also provide performance
and scalability tests of the tool in the third experiment.

Task period and cache utilization generation of our ex-
periments is based on the existing work in [1]. Task sets
are generated with the following configuration. Task peri-
ods are uniformly generated from 5 ms to 500 ms, as found
in most automotive and aerospace hard real-time applica-
tions [1]. Generated task sets are harmonic in order to have
a low feasibility interval and scheduling simulation period.
Task deadlines are implicit, i.e. ∀i : Di = Ti. Processor uti-
lization values (PU) are generated using the UUniFast algo-
rithm [4]. Task execution times are set based on the proces-
sor utilizations and the generated periods: ∀i : Ci = Ui · Ti,
where Ui is the processor utilization of task i. Task offsets
are uniformly distributed from 1 to 30 ms.

Cache memory and cache access profile of tasks are gener-
ated as follows. The cache is direct mapped. The number of
cache blocks is equal to 256. The block-reload time is 8 µs.
The cache usage of each task is determined by the number
of ECBs. They are generated using UUniFast algorithm for
a total cache utilization (CU) of 5. UUniFast may produce
values larger than 1 which means a task fills the whole cache.
ECBs of each tasks are consecutively arranged from a cache
set. For each task, the UCBs are generated according to a
uniform distribution ranging from 0 to the number of ECB
multiplied by a reuse factor (RF). If the set of ECBs gen-
erated exceeds the number of cache sets, the set of ECBs is
limited to the number of cache sets. For the generation of
the UCBs, the original set of ECBs is used.

5.1 CRPD with Priority Assignment and Pro-
cessor Utilization (PU)

In this experiment, we present CRPD analysis with dif-
ferent priority assignments or scheduling algorithms. In ad-
dition, we discuss about the impact of changing priority as-
signment/scheduling algorithm and increasing PU to CRPD.

PU is varied from 0.5 to 0.95 in steps of 0.05. RF is fixed
at 0.3. For each value of PU, we performed scheduling sim-
ulations with 100 task set and computed the average num-
ber of preemptions and average total CRPD in a scheduling
interval of 1000 ms. Experiments are conducted with two
priority assignment algorithms: Rate Monotonic (RM) and
one named PA*, which assigns the highest priority level to
the task with the largest set of UCB. In addition, we also
take into account Earliest Deadline First (EDF) scheduler.

The result of this experiment is Fig. 2. As the graph
illustrates, the number of preemptions and the preemption
cost increases steadily from the processor utilization of 50%
to 80%. After this point, there is a downward trend in the
preemption cost and in the number of preemptions of EDF

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

50 55 60 65 70 75 80 85 90 95

T
o

ta
l
C

R
P

D
 (

m
s
)

N
u

m
b

e
r

o
f

P
re

e
m

p
ti
o

n

Processor Utilization (%)

RM (#) EDF (#) PA*(#)

RM (CRPD) EDF (CRPD) PA*(CRPD)

Figure 2: Varying PU, RF=0.3

while there is an upward trend in those data of RM and
PA*. Observed from the scheduler, when PU is larger than
80%, many task sets are not schedulable.

In conclusion, first, when PU increases, the total num-
ber of preemption and CRPD also increase. However, the
change is not linear. Second, a priority assignment algo-
rithm with less number of preemption tends to give lower
total CRPD. EDF and PA* generate less preemption and
CRPD than RM. In fact, to enforce the fixed priority order,
the number of preemptions that typically occur under RM
is higher than under EDF [6]. From this experiment, we see
that CRPD depends on the chosen priority assignment or
scheduler.

In addition, this experiment shows that both scheduling
analysis and CRPD analysis should be performed jointly.
PA*, a priority assignment taking CRPD into account has
a significant lower total CRPD; however, feasibility con-
straints are disregarded. Considering the decrease in total
CRPD of PA* with RM and EDF, which is roughly 30ms on
a scheduling interval of 1000ms, we should take CRPD into
account when assigning priorities to tasks in particular and
scheduling analysis in general. In [25], we proposed a prior-
ity assignment heuristic to take into account the problem of
feasibility constraints and CRPD.

5.2 CRPD with Memory Layout Optimization
by Simulated Annealing

The objective of this experiment is to show that users can
use CRPD optimization approaches with our tool. We apply
memory layout optimization by simulated annealing (SA)
based on the work of [17] with our generated task sets. In our
experiment, the objective of SA is to lower the total CRPD
after a scheduling simulation over a scheduling interval of
1000 ms.

For each iteration of SA, we perform a swap in memory
layout between two random tasks. Changes are made to
the layout of tasks in memory, and then mapped to their
cache layout for evaluation. The total CRPD is computed
by scheduling simulation. The optimum layout is the layout
which has the lowest total CRPD. Initial temperature of SA
is 1.0, and after every iteration, it is reduced by multiplying
it by a cooling rate of 0.5 until it reaches the target tem-
perature of 0.2. Number of iteration for each temperature
is 10.

The result of this experiment is Fig. 3. From the graph,
we can see the impact of memory layout optimization to to-
tal CRPD. We can reduce roughly 20-30 ms of total CRPD.
To sum up, this experiment shows that our tool allows users
to perform a specific optimization of CRPD.

5.3 Performance/Scalability Analysis

0

10

20

30

40

50

60

70

50 55 60 65 70 75 80 85 90 95

T
o

ta
l
C

R
P

D
 (

m
s
)

Processor Utilization (%)

RM RM-SA

Figure 3: Total CRPD with and without memory
layout optimization

0

2

4

6

8

10

12

14

16

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

C
o
m

p
u

ta
ti
o
n

 T
im

e
 (

s
)

Simulation Interval (x10000)

Average Computation Time Max Computation Time

Figure 4: Computation time of the simulator

The objective of this experiment is to test the performance
and the scalability of our tool when scheduling simulation
interval increases. In general, there are four factors affecting
the performance of a scheduling simulator: (1) the number
of tasks, (2) the scheduling simulation interval, (3) the cache
size and (4) the number of events. The first three factors
depend on a chosen RTES. The number of events depends on
characteristics of the RTES; for example, a higher processor
utilization means a higher number of preemption events. In
this experiment, we choose to test a system model of 10 tasks
and 256 cache blocks. Processor utilization is set to 70 %.
Scheduling simulation is ranging from 100,000 to 1,000,000
units of time where 1 unit = 8 µs.

Fig. 4 displays results of our experiment on a PC with
Intel Core i5-3360 CPU, running Ubuntu 12.04. For each
simulation interval, 100 task sets are generated. We perform
scheduling simulation and compute the max and average
computation time.

As we can see, while maximum computation time increases
slightly when simulation interval increases, average compu-
tation time only fluctuates around 6 seconds. This shows
that the tool is scalable when simulation interval is high.

6. RELATED WORKS
In this section, we present several real-time scheduling

analysis and WCET analysis tools.
MAST[12] is a modeling and analysis suite for real-time

applications. The hardware component abstraction of MAST
model is generic and it includes processing resources and
shared resources. The shared resource component is not
supposed to model a cache memory unit. However, MAST
considers the overhead parameters of the components that
may be used to model CRPD.

STORM[26] and YARTISS [7] are scheduling simulation

tools mainly designed for evaluating and comparing real-
time scheduling algorithm for multiprocessor architectures.

SymTA/S[13] and RealTime-at-Work 1 are model-based
scheduling analysis tools targeting automotive industry. The
hardware components supported in those tools are specific
to their domains (ECU, CAN and AFDX Networks).

To the best of our knowledge, the support for cache mem-
ory does not exists in the tools above.

SimSo[8] is a scheduling simulation tool. It supports cache
sharing on multi-processor systems. It takes into account
impact of the caches through statistical models and also the
direct overheads such as context switches and scheduling
decisions. The memory behavior of a program is modeled
based on Stack Distance Profiles (SDP) - the distribution
of the stack distances for all the memory accesses of a task,
where a stack distance is by definition the number of unique
cache lines accessed between two consecutive accesses to a
same line [18]. The difference between SDP and our model
is that SDP is achieved by on-line monitored counters such
as valgrind [19] while UCB and ECB are achieved by an off-
line WCET analysis tools as below. At the moment, there
is no archived comparison between the two. UCB analysis
with scheduling simulation could be more pessimistic but
safer because it takes into account the program point with
largest number of UCB.

Several WCET analysis tools allow designers to perform
cache analysis. SymTA/P[23], HEPTANE[9], Chronos[16]
and aiT2 are examples of them. UCB computation of a
program is supported by aiT. The analysis of those tools are
based on program path analysis of the control flow graph of
the program. It is compliant with the requirement of our
proposed tool.

In conclusion, WCET tools focus on the evaluation of pro-
gram’s control flow graph to compute the WCET and also a
few tools can compute cache access profile. The analysis re-
sult could be used as an input for a scheduling analysis tool.
In the domain of real-time scheduling analysis, the support
for cache and CRPD when performing scheduling analysis
is not very well specified. As far as we know, only SimSo
clearly supports scheduling simulation with cache analysis
based on SDP. Then, we proposed a tool available to the
community which can either compute cache access profile
of a task from its control flow graph or re-use informa-
tion obtained from a WCET/cache analysis tool to perform
scheduling analysis. Our model is compliant with existing
work in [14], [5], [2] and [17]. In addition, because Cheddar
provides a large set of scheduling analysis methods, we can
fully investigate the dependency between CRPD and other
scheduling parameters in order to either adjust or optimize
a RTES design to meet its timing constraints.

7. CONCLUSIONS
In the article, we presented an approach to implement a

cache-aware scheduling simulator. The work was proceeded
in the context of the Cheddar real-time scheduling ana-
lyzer, which is open-source, freely available to researchers
and practitioners that want to investigate scheduling anal-
ysis of RTES with cache memory. Our solution consists of
three parts: modeling cache memory and cache access pro-
file, implementing several cache analysis methods and per-

1RealTime-at-Work, http://www.realtimeatwork.com/
2AbsInt Inc., http://www.absint.com/

forming scheduling simulation. We extended Cheddar to be
able to deal with cache memory and illustrated the depen-
dency between cache and other scheduling parameters.

There are open problems we are aiming to address in
the future. The first one concerns the refinement of other
CRPD analysis methods. Several improvements have been
proposed in [2] to reduce the upper-bound of the CRPD.
In addition, we plan to compare our approach with the ap-
proach based on Stack Distance Profile in [8]. Second, we are
going to study the problem of feasibility interval of RTES
with cache memory.

8. REFERENCES
[1] S. Altmeyer, R. I. Davis, and C. Maiza. Improved

cache related pre-emption delay aware response time
analysis for fixed priority pre-emptive systems.
Real-Time Systems, 48(5):499–526, 2012.

[2] S. Altmeyer and C. Maiza Burguière. Cache-related
preemption delay via useful cache blocks: Survey and
redefinition. Journal of Systems Architecture,
57(7):707–719, 2011.

[3] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito,
and G. Buttazzo. Optimal selection of preemption
points to minimize preemption overhead. In Real-Time
Systems (ECRTS), 2011 23rd Euromicro Conference
on, pages 217–227. IEEE, 2011.

[4] E. Bini and G. C. Buttazzo. Measuring the
performance of schedulability tests. Real-Time
Systems, 30(1-2):129–154, 2005.

[5] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil,
and A. Wellings. Adding instruction cache effect to
schedulability analysis of preemptive real-time
systems. In Proceedings of the 2nd IEEE Real-Time
Technology and Applications Symposium (RTAS),
pages 204–212, 1996.

[6] G. C. Buttazzo. Rate monotonic vs. edf: judgment
day. Real-Time Systems, 29(1):5–26, 2005.

[7] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet,
M. Qamhieh, et al. Yartiss: A tool to visualize, test,
compare and evaluate real-time scheduling algorithms.
In Proceedings of the 3rd International Workshop on
Analysis Tools and Methodologies for Embedded and
Real-time Systems, pages 21–26, 2012.

[8] M. Chéramy, A.-M. Déplanche, P.-E. Hladik, et al.
Simulation of real-time multiprocessor scheduling with
overheads. In International Conference on Simulation
and Modeling Methodologies, Technologies and
Applications (SIMULTECH), 2013.

[9] A. Colin and I. Puaut. Worst-case timing analysis of

the rtems real-time operating system. Rapport NâŮ ↪e
PI1277, IRISA, France, 1999.

[10] L. Cucu and J. Goossens. Feasibility intervals for
fixed-priority real-time scheduling on uniform
multiprocessors. In IEEE Conference on Emerging
Technologies and Factory Automation, pages 397–404.
IEEE, 2006.

[11] C. Fotsing, F. Singhoff, A. Plantec, V. Gaudel,
S. Rubini, S. Li, H. N. Tran, L. Lemarchand,
P. Dissaux, and J. Legrand. Cheddar architecture
description language. 2014.

[12] M. González Harbour, J. Gutiérrez Garćıa,
J. Palencia Gutiérrez, and J. Drake Moyano. Mast:

Modeling and analysis suite for real time applications.
In Real-Time Systems, 13th Euromicro Conference on,
2001., pages 125–134. IEEE, 2001.

[13] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter,
and R. Ernst. System level performance analysis–the
symta/s approach. IEE Proceedings-Computers and
Digital Techniques, 152(2):148–166, 2005.

[14] C.-G. Lee, H. Hahn, Y.-M. Seo, S. L. Min, R. Ha,
S. Hong, C. Y. Park, M. Lee, and C. S. Kim. Analysis
of cache-related preemption delay in fixed-priority
preemptive scheduling. IEEE Transactions on
Computers, 47(6):700–713, 1998.

[15] C. Li, C. Ding, and K. Shen. Quantifying the cost of
context switch. In Proceedings of the 2007 workshop
on Experimental computer science. ACM, 2007.

[16] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury.
Chronos: A timing analyzer for embedded software.
Science of Computer Programming, 69(1):56–67, 2007.

[17] W. Lunniss, S. Altmeyer, and R. I. Davis. Optimising
task layout to increase schedulability via reduced
cache related pre-emption delays. In Proceedings of the
20th International Conference on Real-Time and
Network Systems, pages 161–170. ACM, 2012.

[18] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger. Evaluation techniques for storage hierarchies.
IBM Systems journal, 9(2):78–117, 1970.

[19] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
ACM Sigplan notices, volume 42, pages 89–100, 2007.

[20] A. Plantec and F. Singhoff. Refactoring of an ada 95
library with a meta case tool. In ACM SIGAda Ada
Letters, volume 26, pages 61–70. ACM, 2006.

[21] F. Singhoff, J. Legrand, L. Nana, and L. Marcé.
Cheddar: a flexible real time scheduling framework.
ACM SIGAda Ada Letters, 24(4):1–8, 2004.

[22] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling
analysis of real-time systems with precise modeling of
cache related preemption delay. In Proceedings of the
17th Euromicro Conference on Real-Time Systems
(ECRTS), pages 41–48, 2005.

[23] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling
analysis of real-time systems with precise modeling of
cache related preemption delay. In Euromicro
Conference on Real-Time Systems (ECRTS), Palma
de Mallorca, Spain, 2005.

[24] H. N. Tran, F. Singhoff, S. Rubini, and J. Boukhobza.
Instruction cache in hard real-time systems: modeling
and integration in scheduling analysis tools with
AADL. In Proceedings of the 12th IEEE International
Conference on Embedded and Ubiquitous Computing,
Milan, Italy, 2014.

[25] H. N. Tran, F. Singhoff, S. Rubini, and J. Boukhobza.
Addressing cache related preemption delay in fixed
priority assignment. In Proceedings of the 20th IEEE
International Conference on Emerging Technologies
and Factory Automation, Luxembourg, 2015.

[26] R. Urunuela, A. Deplanche, and Y. Trinquet. Storm, a
simulation tool for real-time multiprocessor scheduling
evaluation. In IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), pages
1–8, 2010.

