Efficient Parallel Multi-Objective Optimization for
Real-time Systems Software Design Exploration

Rahma Bouaziz*, Laurent LemarchandT, Frank SinghoffT , Bechir Zalila*, Mohamed Jmaiel**
* ReDCAD Laboratory, University of Sfax, ENIS, B.P. 1173, 3038 Sfax, Tunisia
tLab-STICC Laboratory, University of Bretagne Occidentale, UMR CNRS 6285, F-29200 Brest, France
iDigital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia
rahma.bouaziz@redcad.org, {laurent.lemarchand, singhoff} @univ-brest.fr, {bechir.zalila, jmaiel.mohamed} @enis.tn

Abstract—Real-time embedded systems may be composed of
a large number of time constrained functions. During software
architecture design, these functions must be assigned to tasks that
will run the functions on the top of a real-time operating systems
(RTOS). This is a challenging work due to the large number of
valid candidate functions to tasks assignment solutions. Moreover,
the impact of the assignment on the system performance criteria
(often conflicting) should be taken into account in the architecture
exploration. The automation of the design exploration by the use
of metaheuristics such as multi-objective evolutionary algorithm
(MOEA) is a suitable way to help the designers. MOEAs
approximate near-optimal alternatives at a reasonable time when
compared to an exact search method. However, for large-scale
systems even a MOEA method is impractical due to the increased
time required to solve a problem instance. To tackle this problem,
we present in this article a parallel implementation of the Pareto
Archived Evolution Strategy (PAES) algorithm used as a MOEA
for the design exploration. The proposed parallelization method is
based on the well-known Master-Slave paradigm. Additionally, it
involves a new selection scheme in the PAES algorithm. Results of
experimentations provide evidence that, on one hand, the parallel
approach can considerably speed up the design exploration and
the optimization processes. On the other hand, the proposed
selection strategy improves the quality of obtained solutions as
compared to the original PAES selection schema.

Keywords—Real-Time Embedded Systems, Design exploration,
Multi-Objective Optimization, PAES, Parallelism, Master-Slave
Model

I. INTRODUCTION

Real-time embedded systems are frequently designed ac-
cording to multi-tasked architectures that have timing con-
straints to meet. Usually, the designer has to assign the
functions of the real-time embedded system to a set of
tasks. The verification of the timing constraints (referred to
as schedulability analysis) is then performed at the design
level. The design of software architectures of these systems
involves dealing with a number of competing performance
criteria. Improving one criterion leads to the degradation of
another. Therefore, software architects must explore several
architecture alternatives in order to design architectures that
meet at best the trade-off between performance criteria. Due
to the major increase in complexity and size of today real-time
software architectures, the exploration and the selection are
time-consuming and complex tasks. This complexity motivates
the automation of the design exploration process to help
software designers.

The design space exploration for real-time embedded
systems can be addressed as a multi-objective optimization
(MOO) problem [1], [2], [3]. Multi-Objective Evolutionary
Algorithms (MOEASs) are metaheuristics that allow designers
to find suboptimal (or near-optimal) solutions in a reasonable
time when exact methods fail to handle large scale problems
due to computing resource requirements.

In a previous work [1], we have addressed the problem of
assigning functions to tasks in the design of software archi-
tectures of real-time systems. A MOO approach was applied
to consider the trade-off between the number of preemptions
and the overall laxity of tasks. The number of preemptions
increases with the granularity of the assignments whereas the
tasks laxities decrease when more functions are assigned to one
task. We have chosen the Pareto Archived Evolution Strategy
(PAES) [4] as a MOEA to investigate this trade-off.

a) Problem Statement: Design exploration problems in-
volves multiple degrees of freedom in the exploration process,
with a huge size of the design search space, and multi-objective
evaluation complicates comparison between those solutions.
MOEA methods usually require to explore huge portions of
the search space because they should identify a (often large)
set of Pareto-optimal solutions and not a single optimum like
with single-objective optimization methods. This would result
in a very large number of solution evaluations. Moreover,
many real-world MOO problems, as the design exploration of
real-time systems, have computationally expensive objective
functions and constraints verification. This is the case when
the objective functions and the constraints are derived from
schedulability analysis. These two factors hinder MOEAs (e.g
PAES) from solving efficiently such real-world problems.

b) Contributions of this Article: In this article, we
propose an implementation of the PAES algorithm based on the
well-known master-slave parallel model [5]. With this coarse-
grained approach, multiple candidate solutions are processed
in parallel for checking constraints and evaluating objective
functions. We show how this approach improves the efficiency
of the architecture exploration with MOEAs for large-scale
problem instances. Both the computational time and the quality
of the resulting solution sets are improved. The former is due
to the asynchronous parallel evaluations and the latter is due
to the use of a new selection scheme in PAES. This parallel
scheme could also be applicable paired with other optimization
criteria and design evaluation methods.

The remainder of the article is organized as follows.
Section II introduces the multi-objective optimization (MOO),
the PAES algorithm and gives an overview of our design
exploration method to assign the functions of a real-time
embedded system to tasks. Section III presents our approach,
corresponding to the parallel multi-objective search model for
the PAES algorithm. Section IV shows experimental results.
Section V presents the related work and section VI concludes
the article.

II. BACKGROUND AND CONTEXT

This section presents the basic concepts of the Multi-
Objective Optimization (MOO) and introduces the PAES al-
gorithm as the MOO technique used in our design exploration
method. Then it gives an overview of our PAES-based method-
ology for the design exploration.

A. Multi-Objective Optimization (MOO)

Many engineering problems involve more than one compet-
ing objectives that need to be optimized simultaneously with
respect to a set of constraints. Then, we have to evaluate the
performance of candidate solutions in more than one objective
[5]. Finally, the outcome of running MOO is a single or a set of
solutions, with each solution representing a trade-off between
objectives.

A single solution that yields the best value for all objectives
rarely exists. Instead, a set of alternative solutions called non-
dominated (or Pareto optimal) solutions are searched for. A
solution is Pareto-optimal with respect to a set of objectives if
there exists no other solution in the search space that improves
on all of the objectives at once. These solutions constitute the
Pareto Set. As depicted in Figure 1, the associated objective
vectors correspond to the Pareto Front which represents the
best trade-off set for the considered objectives.

f2

reference + . ,* |

non-dominate:

/
Pareto front

fi

Fig. 1: Pareto front for two minimization objectives

Many metaheuristic algorithms that seek to approximate
the Pareto set have been developed to solve MOO prob-
lems [6]. The key points for those algorithms are their accuracy
(how close to the Pareto front are the values of the solutions
they provide) and their efficiency (are the solutions numer-
ous and well spaced over the whole Pareto front). A large
amount of MOO techniques is derived from Multi-Objective
Evolutionary Algorithms (MOEA). Evolutionary algorithms
are metaheuristic optimization algorithms inspired from nature,
e.g. particle swarm (PSO), ant colony, simulated annealing,
genetic algorithms (GA).

B. PAES MOEA

The Pareto Archived Evolution Strategy (PAES) [4] is
a MOEA technique using archiving. It manipulates a single
solution as opposed to other methods used for MOO such
as GA or PSO. This is a key point in running very time-
consuming evaluation functions such as those stemmed from
the scheduling analysis. The sequential PAES schema is out-
lined in the pseudo code of algorithm 1.

Algorithm 1: Sequential form of PAES Algorithm

1 begin

2 Generate initial random solution c;

3 Evaluate ¢ and add it to the archive A;

4 repeat

5 Mutate ¢ to produce a candidate solution m;

6 Evaluate m;

7 if ¢ dominates m then

8 | Discard m;

9 else if m dominates ¢ then

10 Replace ¢ with m;

11 Add m to the archive;

12 else if m is dominated by any member of A

then

13 | Discard m;

14 else

15 Apply test (¢,m,A) to determine which
becomes the new current solution and
whether to add m to A;

16 end if

17 until termination condition is satisfied,

18 end

The PAES algorithm is based on a (1+1) evolution strategy
which means that it maintains a single current solution (par-
ent) and, at each iteration, generates a single new candidate
(offspring). It makes it through a random mutation. This
algorithm is confined to a local search, i.e. it performs only a
small change (mutation) operator that moves from a current
solution to a nearby neighbour. The mutation procedure is
also specific for each problem, and depends on the way the
solution is represented into a chromosome. The current solution
is replaced at each iteration by its mutated offspring if the
latter dominates or is in a less crowded region than its parent.
Otherwise, the next iteration is realized keeping the same
current individual as a basis for mutation. PAES maintains
a list of some non-dominated solutions called archive used as
reference set with respect to which each new candidate is being
compared (lines 11,12).

C. Software Design Exploration Method for Real-Time Appli-
cations Based on PAES

In our research, we focus on real-time systems design
and implementation. These systems may consist of a large
number of time constrained high-level functions. During soft-
ware architecture design, these functions must be assigned
to tasks that will run the functions on the top of a RTOS.
The main objective of our proposed method [1] is to guide
the designer by providing solutions of functions to the tasks
assignment, referred to as design (or architecture) alternatives.

An optimal design from a scheduling point of view might be
an architecture that minimizes preemptions while maximizing
the overall laxity. The number of preemptions increases with
the granularity of the assignments whereas the tasks laxities
decrease when more functions are assigned to one task. There-
fore, these two goals are conflicting: one architecture may
achieve high performance (maximum overall laxity) at high
cost (high number of preemptions) or vice versa. This is the
main motivation to rely on an iterative multi-objective search
and optimization process by the mean of a MOEA, notably
PAES. This proposal allows us to explore the design space for
Pareto-optimal solutions in a reasonable time and then to help
designers to reach a final design.

Figure 2 gives an overview of our design exploration
methodology. The entry point is the function specification of a
real-time system. From this specification, a first architecture
is proposed so that each functional block is assigned to a
single task. A scheduling analysis is performed on this initial
architecture by the Cheddar scheduling simulator [7]. This
analysis is achieved through a simulation-based schedulability
test on the hyperperiod (the least common multiple of task
periods).

Once the initial solution is defined, we come to the multi-
objective design exploration and optimization part. The latter
involves the execution of the PAES algorithm. At each itera-
tion, (1) an alternative design (mutated solution) is generated
from the current solution by small random changes in the as-
signment of functions to tasks. The new candidate architecture
should fulfil the timing constraints (i.e. schedulability of the
task set) as well as the functions to tasks assignment constraints
(2). This alternative design is evaluated according to the two
performance criteria computed by Cheddar, i.e. the preemption
cost and the overall laxity (3). Then, the optimization steps
of PAES are performed such as the ranking, the archiving
and the selection of the current solution for the next iteration
(4). These steps are iterated until the termination condition of
PAES is reached, e.g. number of iterations. The result is a set
of schedulable alternative architectures that approximates the
Pareto set.

III. TOWARDS FAST AND MORE EFFICIENT SOFTWARE
DESIGN EXPLORATION

In [1], we conducted experiments to assess the proposed
design exploration method described in section II-C. For such
experiments beyond 50 functions, the execution of our method
takes several hours. This is due to the significant time spent
to process the scheduling analysis and objectives evaluation of
each investigated solution. Thus, to speed up the exploration
and the optimization without degrading the quality of solutions,
we propose a parallel implementation of our design exploration
method.

Parallelizing the MOEA technique (i.e PAES) arises as a
possible way of facing this drawback and obtain the results
in a reasonable amount of time. We propose a parallel imple-
mentation of the PAES algorithm based on the master-slave
paradigm, with coarse-grained asynchronous tasks performing
the mutation and evaluation of solutions. We not only aim
to speed up the search but to hopefully improve the solution
quality. In the remaining of this section, we first detail the

A. Functional Specification & initial architecture
R ——
| Generation of the
linitial current design
solution

Functional Specification

Initial current design solution|

F2 FE e R3

1
! Assigning each
! function to a task

X NOT schedulable

¥ schedulable |

B. Design Exploration and Optimization e

Mutated solution

Candidate Design
alternative

Mutation

Current solution °

Current Design 1 Transformation !

alternative 1Changing the assignment ! >
fof functions to tasks to 1

N 1

\generate a new alternative !

XNo Idesign I
1

toppil
criteriof

v Yes

1
B Scheduling constraints
& Assignment constraint:

°' PAES steps 9—
* Ranking of solutions Evaluation of the design
= Updating the archive of

1
1 1
! | alternative
1 non-dominant solutions <1
Te Selecting the design !
i i
1
1,

Archive of non-

Archive of
Pareto-optimal according to the set of
competing performance
criteria

design alternatives

alternative for the next
I iteration

Fig. 2: Overview of the PAES-based Software Design Explo-
ration Method

parallel scheme proposed for PAES and then we present our
new selection strategy adapted to the proposed parallel scheme.

A. Parallel PAES implementation: The Master-Slave Asyn-
chronous Model

According to [5], three main parallel paradigms are used in
the MOEA domain for splitting the computational load across
several processors: the Island model, the Diffusion model
and the master-slave model. The two former paradigms are
dedicated for sub-population searching problems. However, we
deal with the parallelization of PAES algorithm that maintains
a single current solution. Furthermore, the master-slave model
is a simple parallel programming paradigm for optimization
techniques. Therefore, the case we consider here is a master-
slave asynchronous framework (Figure 3). This model is
aimed at distributing the objective function evaluations of
the candidate solutions on several slave processors while a
single master processor maintains the central archive and runs
the selection part of the MOEA. As stated by the master-
slave paradigm, slaves are started by the master, and interact
exclusively with it, receiving solutions to process and sending
back mutated solutions and associated objective values. The
additional cost of the parallelization, that is mainly due to
solution data transfers must be reasonable as compared to the
computation costs, since data for a solution consist only in a
set of function indexes and a few objective function values. For
simplicity, the proposed parallel asynchronous PAES is called
PA-PAES in the rest of the article.

Generally speaking, this algorithmic framework needs the
following components: (1) a selection strategy (based on
crowded region with dominance, or indicator based), (2) a
mutation and an evaluation procedures and eventually, (3) a
local search procedure that outputs one or more neighbours.
The selection strategy is explained in the next section, derived
from the PAES original one. The mutation, evaluation and

Scheduling Analysis

Cheddar scheduling

nnnonooonn
Processor 2

Mutate, check schedulability and
evaluate a given solution

gooooonno

Processorl

—— Slaveinput : a selected solution
for mutation and evaluation

0000000000

Processor 3

¢ = = = =| Mutate, check schedulability and === Slaveresult: a mutated
evaluate a given solution and evaluated solution

Optimization steps:
selection, archiving, ..

AN 0noononoon
Master) Processor n

N
Mutate , check schedulability and
evaluate a given solution

Slaves

Fig. 3: Master-Slave Model

associated schedulability analysis procedures are the same as
in our previous work [1]. The algorithm also takes as input
a number S of slaves and a number [of iterations (or other
more sophisticated convergence criteria for loop termination).
We only use [for lack of simplicity. The master and slave com-
putations in the parallel PAES implementation are described in
Algorithms 2 and 3 respectively. Parallel evaluations (or other
computing process) are realized asynchronously. This means
that the master processor does not have to wait for all of the
evaluations from the other processors (slaves). The results of
the slave computations are taken into account as soon as they
become available: when a slave sends an evaluated solution,
the master archives it using the original PAES approach, and
goes on the optimization by selecting a new solution to send
to the slave for mutation and evaluation. This way, we save
the overall computation time and resource usage, especially as
the processing time of different solutions by slaves may be
different.

Algorithm 2: Parallel Asynchronous PAES: Master al-
gorithm

1 begin

2 start S slaves;

3 send to each of them a seed unevaluated solution;

4 iteration = 1;

5 while iteration < I do

6 receive a set or a single evaluated solution(s)
from any slave s;

7 compare it/them with the archive A;

8 update the archive A with non-dominated
solutions;

9 if iteration < I — S then

10 select a candidate solution from A;

11 send it to idle slave s;

12 end if

13 iteration = iteration + 1;

14 end while

15 terminate slaves;

16 output A;

17 end

The algorithm needs a selection strategy for the search
procedure. In the original PAES, the selection strategy, referred
to as local selection, is working as follows: admitting

Algorithm 3: Parallel Asynchronous PAES: Slave algo-
rithm

1 begin

2 while not terminated do

3 receive a candidate solution from master;
4 mutate it;

5 evaluate it;
6

7

8

9

if local search then
generate and evaluate neighbours;
discard locally dominated neighbours;
end if
10 send back to the master the evaluated
solution(s);
11 end while
12 end

the mutated solution as current solution or keeping current
solution for the next iteration. Since selection (by the master)
is overlapped with the slave computations that are expected to
be time consuming, we can spend more time in the selection
process, looking to the whole archive, instead of using solely
the received solution from the slave as the potential candidate
for the next iteration. Our new selection strategy is described
in the next subsection.

B. Global Archive Selection Strategy

As opposed to the sequential version, there is no current
solution maintained by the master process, but the solution sent
to a slave for mutation and evaluation (lines 9-10, Algorithm
2) is selected from the archive as follows. We randomly choose
a selection criterion among the followings:

e random criterion: a random solution from the archive
is selected, to ensure the exploration process.

e one of the objective functions: one of the archive so-
lutions which is within the 10% best for this objective
is picked. This is an exploitation criteria for the most
promising solutions.

e crowding criterion: a solution from the archive within
the less crowded area is chosen. This helps in main-
taining the diversity of the front.

These choices are equiprobable. The proposed selection strat-
egy (referred to as global selection) is designed to
balance between exploration and exploitation of the solution
space.

IV. EXPERIMENTS AND RESULTS

In this section, we present experiments that assess the
efficiency of the above proposals when applied to our de-
sign exploration problem. We perform two evaluations. The
first evaluation aims at investigating the efficiency (in terms
of quality of fronts) of PAES with the new global archive
selection strategy as compared to the original PAES (with
the local selection strategy) for different problem scales. The
second evaluation is performed in order (1) to check that
the parallelization does not induce lost on fronts quality as

compared to the sequential version, (2) and to assess its
efficiency regarding to the temporal behavior.

In order to perform experiments, we need different test
cases (with different sizes) of our design exploration prob-
lem. We propose and implement a function set generator.
Experiments are conducted on a SMP 48 processors machine
running Linux OS. Our method is implemented in Ada, with
parallelization based onto the Ada concurrency features (task-
ing, synchronization and communication with Rendezvous or
protected objects, ...).

In the following, first we describe our test case generator
(section IV-A). Then, we give an overview of the performance
metrics used for measuring the results and assessing our pro-
posals (section IV-B). In sections IV-C and IV-D, we present
(i) experiments protocol, (ii) the results and (iii) their analysis
of the two conducted evaluations.

A. Test Case Generator for the Design Exploration problem

In order to perform the experiments, we apply our PAES-
based functions to tasks assignment method on synthetically
generated function sets. Function periods are uniformly dis-
tributed between a set of a maximum of 10 different periods
by function set following Goossens and Macq method [8],
ensuring that the scheduling simulations have to be run on
a limited feasibility interval. Processor utilization factors for
each function F; are tuned with the UUnifast algorithm [9],
so that the sum of function utilizations is equal to the desired
overall processor utilization factor for the function set. The
overall processor utilization is fixed at 80% for all the exper-
iments. Furthermore, the function deadlines are implicit, i.e.
set to be equal to the periods. The capacities are set based on
the generated periods and processor utilization factors.

B. Performance Metrics

In our evaluations, we used two metrics in order to evaluate
the performance of the proposed method : (1) the speed-up
metric (2) and quality of solution sets through the hypervolume
metric.

Speed-up: is a classical way for measuring the efficiency
of parallel algorithms [10]. The speed-up .5, is defined as .S}, =
%, with p the number of processors (i.e. slaves) involved in
the parallel computations and 7, the execution time with x
Processors.

Hypervolume Indicator: In MOO techniques, the com-
parison between solution sets (fronts) is generally difficult
since one set is not decidedly superior to another. Many
unary metrics exist [5], that map a front to a single value
thereby allowing us to easily compare the quality of produced
fronts. These metrics take into account both the closeness of
the obtained solutions to the optimal set (accuracy) and their
spread across objective space (diversity). One of these metrics
is the hypervolume indicator [5]. Given a set of solutions
and associated front (points in objective space), it computes
a reference point dominated by all of the points of the front
(see Figure 1). Then for each subset of points of interest (e.g
produced by different algorithms), it provides as hypervolume
the area bounded by the reference point and the considered
subset (light grey area in the Figure 1). The subset (front;)

with the largest hypervolume is likely to present the best set
of trade-offs.

For a test case, in order to compare results from different
algorithms (PAES+Global Selection; PAES+Local selection;
PA-PAES implementation and PAES-Sequential version), we
compute the best and the worst results obtained (considering
non dominated solutions) for each objective (mini, mins),
(maz1, mazs) over the set of solutions provided by all of the
runs of each algorithm Ua cruns front,. Moreover, in order to
allow the objectives to contribute approximately equally, values
are normalized according to a linear normalization technique
defined by [11]:

(x,y) € front, = (2',y') € normy
with o/ = —Z=M_ apd o = _Y—mins

maxri—mini maxro—minsg
The reference point used is (1 + €, 1+ ¢), in order to ensure
that every point in norm is dominated, with a small value
of ¢, e.g 0.001. The resulting hypervolume computed for one
front can grow up to 1+ €2 (when the front contains a single
value, dominating all other values in fronts considered for
comparison).

C. Evaluation 1: Global Archive Selection
Method Evaluation

This evaluation aims at qualitatively comparing global
selection regarding to local selection. A number of experiments
were run in order to investigate the quality of solution sets for
different function set sizes that range from 20 to 100 by step
of 20 functions. For each size, we generate 5 different test
cases (function sets) and each test case is processed with the
following PAES versions: (1) Local selection with sequential
PAES, (2) Local selection with PA-PAES,; (4 slaves), (3)
Global selection with sequential PAES, (4) Global selection
with PA-PAES, (4 slaves). Each of these versions is run 5
times because of the stochastic nature of PAES. The number
of PAES iterations for each run is fixed at 2000. For each
test case, we compute the average hypervolume value over the
5 runs for each of the considered PAES versions. Figure 4
reports, for each size, the hypervolume average value over all
test cases of each PAES version.

A Global selection + PA-PAES (4slaves)

Global selection + sequential PAES
m Local selection + PA-PAES (4slaves)

® Local selection + sequential PAES

0,90 3
0,80 1
0,70 4 :
(]
13
3 060 4
[}
>
@ 050 -
2o »
3
x
0,40 4
0,30 4
0,20
20 40 60 80 100

System scale

Fig. 4: Hypervolume comparison between the global selection
and the local selection in sequential-PAES and PA-PAES,
(with 4 slaves) implementations for different system scales
(function set sizes)

This figure shows that the best hypervolume values are
obtained by the PA-PAES, with the global selection strategy
for the most scales. In addition, we can observe that the
efficiency of the global selection with respect to the local
selection is more significant for test cases with larger scales
(> 60 functions), i.e. larger space search and problems. This
conjecture is reinforced by the average hypervolume improve-
ment between the global selection and local selection in both
sequential PAES and PA-PAES,, which are reported in table
I. For example, for 20 functions test cases, the improvement
is practically negligible. This can be explained by the fact that
all versions lead to the same results for small-scale test cases.
Moreover, for PA-PAES,, we also computed the speed-ups
for the performed experiments. The average speed-up for the
overall experiments is about 3.8 which represents a promising
speed-up value for a 4 slaves parallel version.

TABLE I: The average hypervolume improvement between
global selection and local selection in sequential and parallel
versions

Sequential version Parallel version
Function set size Avg HV Avg HV
improvement (%) improvement (%)
20 0.43 0.06
40 5,15 7,64
60 15,5 19.08
80 16.03 12.53
100 28.79 20.3

D. Evaluation 2: Parallel Method Evaluation

The second evaluation is performed in order to assess the
efficiency of the parallel implementation (PA-PAES) compar-
ing to the sequential one. We have run a set of experiments in
a range of different slaves (4, 8 and 16) to observe speed-up of
the parallel approach. These experiments are achieved on three
problem scales, i.e. test cases of 50, 80 and 100 function sets.
The selection strategy is set to the proposed global selection.
For each scale, we generate 5 different test cases thanks to our
function set generator. Each test case is processed 5 times by
the sequential version as well as by the PA-PAES,, PA-PAESg
and PA-PAES;4. All these versions perform 2000 iterations.

Figure 5 provides the average speed-up against the number
of slaves involved in the parallel computation. In this figure, we
can notice that even if they are not linear, speed-ups increase
regularly with the number of involved slaves, reaching up to
11.7 for 16 slaves with 100 functions test cases.

‘ —=—>50 function sets 80 function sets ~ —#— 100 function sets ‘

16

Speed-up
o]

IS

0 »>
4 8 16

Slaves

Fig. 5: Speedup of the parallel PAES against the number of
slaves involved in the parallel computation

As shown in figure 6 quality is preserved, with almost
roughly constant hypervolume values from 4 to 16 slaves.

‘ —=—50 function sets 80 function sets —4—100 function sets ‘

09
085
08 1

075 1 \'/\
07 + '/\./.

0,65 +

Hypervolume

06 1
0,55 +

05 >

Slaves

Fig. 6: Average Hypervolume against the number of slaves
involved in the parallel computation

To conclude, the results of this evaluation provide evidence
that the new implementation of our design exploration method
allows us to handle more tractably large-scale problem in-
stances (i.e. to ensure scalability).

V. RELATED WORK

Our work comes within the scope of design exploration
using multi-objective optimization techniques. Some research
contributions have been developed in this field. Most of them
are based on MOEAs. In [2], the authors proposed a method
that explores architecture alternatives for real-time embedded
systems, in order to produce architectures that fulfil at best a
set of conflicting non-functional properties stemmed from the
requirements of the addressed systems. This method is based
on model transformations compositions and MOEA by means
of the NSGA-II multi-objective optimization strategy. AQOSA
[3] is another generic framework that provides an automated
design exploration process based on a set of MOEAs namely
NSGA-II, SPEA2, and SMS-EMOA. The proposed framework
is evaluated through both a small-scale and a large-scale case
study. Experimental results for both case studies show that all
used MOEA techniques take a considerable amount of time to
generate results, even for a few number of iterations.

This motivates the use of parallelism of MOEA techniques
in the context of design exploration problems. All of those
MOEA techniques are population-based ones, evaluating a
set of solutions at each iteration, before exploiting them to
update the front and go to the next iteration. This implies
a large computational effort when the architectural solutions
are costly to evaluate, as stated by [3]. Unlike these methods
and frameworks, we apply an asynchronous parallel algorithm
that exploits a solution as soon as it is evaluated in order to
guide the optimization process, and takes also benefit from
parallelization.

Parallelization of metaheuristics for multi-objective opti-
mization have been widely studied in [5], [12]. For example,
[12] presents a survey of parallel algorithms for MOO tech-
niques. Few works address the parallelization of PAES. The
algorithm ppaes [12] is based on a sub-population search
model. It works with an island-based approach as follows:

Each process runs the PAES algorithm and maintains its
own local archive of non-dominated solutions. Periodically,
processes exchange solutions. When results from all processes
become available, the last step consists in building the final
Pareto-front by merging local results. Results of experiments
of ppaes show that it is not suitable for MOO problems
with very expensive computational objective functions like
our specific design exploration problem. Considering distinct
populations seems not computationally efficient for design
optimization with costly evaluations. In [13], the authors pro-
pose another parallelization of PAES by running simultaneous
parallel evaluations at each iteration, and comparing results
against the current solution at the end of each iteration. In
order to generate candidate solutions to be evaluated at an
iteration, they consider a prediction tree taking into account the
probability of a mutated solution to be better than its parent.
As our local selection scheme, this work tries to avoid useless
evaluations, but still handles solutions synchronously like a
population instead of taking them into account asynchronously.
Again and in contrary, we focus on an asynchronous parallel
implementation for PAES.

VI. CONCLUSION AND FUTURE WORK

In this article, we propose a parallel implementation of
the Pareto Archived Evolution Strategy (PAES) algorithm
used as a multi-objective evolutionary strategy. The proposed
parallel multi-objective strategy is applied to the problem of
functions to tasks assignment of a real-time system in order
to improve the applicability of this method for large-scale
real-time systems. This implementation involves a master-
slave asynchronous formulation. Furthermore, we proposed
and investigated a new selection strategy for the PAES al-
gorithm. The proposed approach is particularly suitable for
multi-objective problems with large and variable time objective
function computation. It was evaluated by a set of experiments
on our problem by synthetically generated test cases. Results
show an improvement not only in the execution time (e.g.
with 8 slaves, the average speed-up is about 7.8 for test cases
of 100 functions) but also in the quality of solutions when
compared to our previous implementation. In the future, we
plan to improve the efficiency of the parallel search model
for high number of processors by investigating the solution
choice like in [13]. We also plan to explore the applicability of
the approach with other architecture exploration optimization
goals.

REFERENCES

[11 R. Bouaziz, L. Lemarchand, F. Singhoff, B. Zalila, and M. Jmaiel,
“Architecture exploration of real-time systems based on multi-objective
optimization,” in 20th International Conference on Engineering of
Complex Computer Systems, 2015, pp. 1-10.

[2] S. Rahmoun, E. Borde, and L. Pautet, “Automatic selection and
composition of model transformations alternatives using evolutionary
algorithms,” in Proceedings of the European Conference on Software
Architecture Workshops. ACM, 2015, p. 25.

[31 R. Li, R. Etemaadi, M. T. Emmerich, and M. R. Chaudron, “An
evolutionary multiobjective optimization approach to component-based
software architecture design,” in Congress on Evolutionary Computa-
tion. 1EEE, 2011, pp. 432-439.

[4] J. D. Knowles and D. W. Corne, “Approximating the nondominated

front using the pareto archived evolution strategy,” Evolutionary com-
putation, vol. 8, no. 2, pp. 149-172, 2000.

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems. Springer Science &
Business Media, 2007.

S. Bandyopadhyay and S. Saha, “Some single and multiobjective
optimization techniques,” in Unsupervised Classification. — Springer
Berlin Heidelberg, 2013, pp. 17-58.

F. Singhoff, A. Plantec, and P. Dissaux, “Can we increase the usability
of real time scheduling theory? the cheddar project,” in International
Conference on Reliable Software Technologies, 2008, pp. 240-253.

J. Goossens and C. Macq, “Limitation of the hyper-period in real-time
periodic task set generation,” in Proceedings of the RTS Embedded
System, 2001.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129-154, 2005.

E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
IEEE Transactions on Evolutionary Computation., vol. 6, no. 5, pp.
443-462, 2002.

C. M. Fonseca, J. D. Knowles, L. Thiele, and E. Zitzler, “A tutorial
on the performance assessment of stochastic multiobjective optimiz-
ers,” in 3rd International Conference on Evolutionary Multi-Criterion
Optimization, vol. 216, 2005, p. 240.

F. Luna, A. J. Nebro, and E. Alba, “Parallel evolutionary multiobjective
optimization,” in Parallel Evolutionary Computations. Springer, 2006,
pp. 33-56.

J. C. Calvo, J. Ortega, and M. Anguita, “Comparison of parallel multi-
objective approaches to protein structure prediction,” The Journal of
Supercomputing, vol. 58, no. 2, pp. 253-260, 2011.

