
Platform-Based Embedded Software Design and
System Integration for Autonomous Vehicles

BENJAMIN HOROWITZ, MEMBER, IEEE, JUDITH LIEBMAN, CEDRIC MA,
T. JOHN KOO, ALBERTO SANGIOVANNI-VINCENTELLI, FELLOW, IEEE, AND

S. SHANKAR SASTRY, FELLOW, IEEE

Invited Paper

Automatic control systems typically incorporate legacy code and
components that were originally designed to operate independently.
Furthermore, they operate under stringent safety and timing con-
straints. Current design strategies deal with these requirements and
characteristics with ad hoc approaches. In particular, when de-
signing control laws, implementation constraints are often ignored
or cursorily estimated. Indeed, costly redesigns are needed after a
prototype of the control system is built because of missed timing
constraints and subtle transient errors. In this paper, we use the
concepts of platform-based design to develop a methodology for
the design of automatic control systems that builds in modularity
and correct-by-construction procedures. We illustrate our strategy
by describing the (successful) application of the methodology to the
design of a time-based control system for a helicopter-based unin-
habited aerial vehicle.

Keywords—Aerospace simulation, control systems, helicopters,
mobile robots, real-time systems.

I. INTRODUCTION

Automation of traditionally human-controlled domains
has long been a driving force within the controls research
community. From industrial plants to vehicles, from air-
planes to home appliances, the application of embedded
controllers has become pervasive, aided by the relentless

Manuscript received December 20, 2001; revised August 31, 2002. This
work was supported in part by the Defense Advanced Research Projects
Agency (DARPA) under Contract no. F33615-98-C-3614, Software En-
abled Control, administered by the Air Force Research Laboratory, Dayton,
OH; and in part by the Microelectronics Advanced Research Corporation
(MARCO)/DARPA Gigascale Silicon Research Center.

B. Horowitz, J. Liebman, T. J. Koo, A. Sangiovanni-Vincentelli, and S.
S. Sastry are with the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, Berkeley, CA 94720-1776
USA (e-mail: bhorowit@cs.berkeley.edu; judithl@eecs.berkeley.edu;
koo@eecs.berkeley.edu; alberto@eecs.berkeley.edu; sastry@eecs.berkeley
.edu).

C. Ma is with the Northrup Grumman Corporation, El Segundo, CA
90245 USA (e-mail: cedric.ma@northropgrumman.com).

Digital Object Identifier 10.1109/JPROC.2002.805827

increase in capabilities of integrated circuit technology and
the advances in control theory. The design process has been,
in most cases, a staged process where control laws were first
chosen and then an appropriate implementation selected.
Initially, the implementation of the control laws required the
use ofad hochardware. Lately, the increase in computing
power of microprocessors has led to the implementation of
control laws in software. Owing to cost and safety consider-
ations, the microprocessors of choice were often not the top
of the line in terms of speed. For this reason, and because
most control applications require real-time responses, con-
trol laws were often “cheap” heuristics that were validated
in an empirical way. In addition, software designers for
these applications used techniques that were at best unsound
(e.g., communication among tasks implemented by common
variables, home-grown primitive operating systems). As
long as the complexity of the systems to control was low,
this design methodology could yield working implementa-
tions. However, recent incidents where incorrect software
caused severe problems in very expensive systems, such
as the Mars Polar Lander and the Ariane rocket, point out
the risks associated with using an outdated approach when
developing embedded controllers. A great deal of concern
about the control of vehicles, such as airplanes and cars,
and about the control of armaments, has led to a strong push
for novel design methods that take full advantage of control
theory, formal verification, integrated circuit technology,
and software practices.

One of the most serious problems in controller design is
the current disregard for the interaction of the control laws
with their implementation. When a control law is designed,
the computational power of the implementation platform is
only grossly estimated. This neglect leads to long redesign
cycles when the timing requirements of the applications
are not met. This situation has its origin in the difficulty of
mixing implementation and functional design, and in the

0018-9219/03$17.00 © 2003 IEEE

198 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

difficulty of evaluating quickly an alternative control law or
implementation architecture.

Another problem in current controller design is the defi-
ciency in component reusability. Reusing components that
are specific to function or implementation decreases time to
market and validation time. Assuming several components
are fully validated, the difficulty is in composing these ob-
jects to work properly. Components may be full subsystems
such as engine controllers and antilock braking systems for
cars, or sensors such as global positioning systems (GPSs)
for airplanes, or software modules such as device drivers, op-
erating systems, and algorithms.

This paper proposes a methodology where the dichotomy
between functional design and implementation is bridged
and issues related to component reuse are addressed. One
main goal of our design strategy is to build in modularity
in order to make code reuse and substitutions of subsystems
simple. The other main goal is to guarantee performance
without exhaustive testing. To achieve these goals we draw
on the principles ofplatform-based design[1]. A platform, in
this context, is a layer of abstraction that hides the unneces-
sary details of the underlying implementation and yet carries
enough information about the layers below to prevent design
iterations. We achieve the goal of guaranteed performance
without extensive testing by using a time-based controller.
In particular, the choice of a specific software platform to
guarantee correct timing performance for the control laws is
of interest. Here, we focus on the Giotto software platform,
and we show how this platform substantially aids the de-
velopment of correct embedded controller software in com-
parison with other approaches. To quantitatively compare
the resulting designs, we also present a hardware-in-the-loop
(HIL) simulation framework.

We present the platform-based design methodology for
embedded controller design by means of a challenging ex-
ample of automatic control: a helicopter-based uninhabited
aerial vehicle (UAV). The difficulty and complexity of the ap-
plication serve well the purpose of underlining the features of
the design method and demonstrating its power. The choices
of design solutions are somewhat application dependent, but
the overall scheme is not. In this way, the example provides
general guidelines for the application of our method. In sum-
mary, the methodology we propose works particularly to in-
tegrate systems with the following key traits.

1) They contain a sizable amount of real-time embedded
software.

2) They often integrate subsystems that were designed to
work independently—for example, sensors from dif-
ferent vendors.

3) Their proper operation is important to ensure human
safety.

4) They often need to reuse existing code in the form of
applications or device drivers or controllers.

The structure of this paper is as follows. In Section II,
we lay the groundwork for the helicopter example. Next,
in Section III, we introduce the reader to the principles of

platform-based design. In Section IV, we describe a soft-
ware platform for programming time-based controller ap-
plications. Finally, in Section V, we present alternative he-
licopter-based UAV designs that use the concepts of the pre-
vious three sections, and we discuss how to compare these
designs using simulation.

II. BACKGROUND FOR AMODEL HELICOPTER

In this section, we introduce the Berkeley Aerial Robot
(BEAR) helicopters, and motivate the redesign of their em-
bedded software. We begin with a brief description of the
BEAR helicopters and of why autonomous flight is difficult
(see Section II-A). We next discuss the first-generation flight
control system (see Section II-B), and describe some of its
limitations (see Section II-C). Finally, we describe what is
needed for a second-generation system (see Section II-D) to
overcome these limitations.

A. The BEAR Helicopters

The first goal of the BEAR project was to build a flight
control system for small, remotely controlled helicopters.
The aim was to fly autonomously and to provide a base for
research in other areas such as vision. Basic autonomous
flight capabilities include hovering, forward flight, turning
at a fixed point, and so on. More advanced maneuvers in-
clude formation flying and obstacle avoidance. However, it
is difficult to achieve even basic autonomous flight, for the
following reasons.

1) The helicopter is unstable during hover. It will tip over
within a few seconds if left alone. Therefore, the flight
control system needs to take an active role in the sta-
bilization of the helicopter.

2) A crash is very dangerous, even at low speeds.
3) The helicopter is an intricate machine, whose mechan-

ical and electronic systems must operate harmoniously
under harsh conditions, such as physical vibration and
electromagnetic interference.

Moreover, it is difficult to obtain an accurate dynamic model
of the helicopter, for the following reasons.

1) The helicopter controls are often coupled. For ex-
ample, changing the collective pitch affects the
amount of power available to the tail rotor, which
temporarily affects the yaw characteristics.

2) The behaviors of the helicopter are dissimilar in dif-
ferent flight regimes, such as hover versus forward
flight.

3) The airflow surrounding the helicopter body is
chaotic, especially near the tail rotor. In addition, the
helicopter is affected by wind, and its aerodynamic
behavior changes when it hovers near the ground.

In spite of the challenges, the BEAR team managed to build a
working flight control system that makes autonomous flight
possible. One of the autonomous helicopters, the Yamaha
R-50, is shown in flight in Fig. 1. In Section II-B we intro-
duce the structure of this system in more detail.

HOROWITZ et al.: PLATFORM-BASED EMBEDDED SOFTWARE DESIGN AND SYSTEM INTEGRATION FOR AUTONOMOUS VEHICLES 199

Fig. 1 A Yamaha R-50 Berkeley autonomous helicopter.

Fig. 2 Structure of the first-generation flight control system.

B. The Flight Control System

As illustrated in Fig. 2, the first-generation flight control
system includes a flight computer, a suite of sensors, and ac-
tuators. The flight control system interacts with the vehicle
dynamics through the sensors and actuators. The major func-
tions of the flight computer are to collect the sensor measure-
ments, to compute control commands based on an underlying
control law, and to generate the control commands for the ac-
tuators.

The actuators consist of servomotors controlling the main
rotor collective pitch , longitudinal cyclic pitch , lateral
cyclic pitch , and tail rotor collective pitch to generate
forces and torques applied to the helicopter. We assume the
use of an engine governor to regulate the main rotor RPM
so the throttle is not directly controlled by our flight control
system.

The primary sensors of the flight control system are as
follows.

1) Inertial Navigation System (INS). The INS consists of
accelerometers and gyroscopes that provide frequent
measurements of angular rates and linear acceler-
ations. With proper initialization, the INS can also
provide frequent estimations of the helicopter’s posi-
tion, velocity, and orientation. Although this estimate
is provided at a high rate—roughly 100 Hz—the error
in estimate could grow unbounded over time, owing
to sensor bias and limits in sensor accuracy.

2) GPS. The GPS provides position measurement and ve-
locity estimation. The measurement is provided infre-
quently—roughly 5 Hz—but the error of the position
measurement is small—on the order of 1 cm—and is
bounded over time.

The INS drift problem is solved by properly integrating the
GPS data with the INS data. A Kalman filter is constructed to
perform the data integration by taking the dynamic relations
of the data into consideration. The Kalman filter provides a
frequent and relatively accurate estimation of the helicopter
states. In our first-generation system, the Kalman filter is run
by the flight computer at 100 Hz; a control law is computed at

50 Hz, and the control commands are received by the actua-
tors at 50 Hz. The derivation of control laws and the selection
of the rates are strongly related to the helicopter dynamics.

The helicopter is a nonlinear dynamical system; its equa-
tions of motion can be derived from the Newton–Euler equa-
tion for a rigid body subject to body forces and
torques applied at the center of mass [2]. Let
and be the position and velocity, respectively,
of the center of mass expressed in terms of the inertial frame
in north-east-down orientation. The orientation
of the helicopter can be parameterized relative to the iner-
tial frame by (or “roll, pitch, yaw”). Euler angles are
denoted by . Let and be
the body angular velocity vector and the body linear accel-
eration vector, respectively. The equations of motion of the
helicopter model can be written as

where is the body mass, is the inertial matrix,
maps the body rotational velocity to Euler

angle velocity, is the state vector,
and is the input vector. In [3], the previ-
ously described system is characterized to be nonminimum
phase, i.e., it has unstable internal dynamics. Furthermore,
since input affects both body forces and torques, the linear
and rotational dynamics are tightly coupled. Therefore, con-
trolling a helicopter is an extremely difficult task.

Experimental system identification was used to obtain the
dynamic model parameters of the helicopter for control de-
sign [4]. Given multiobjective design specifications, a spe-
cific set of output tracking controllers of satisfactory perfor-
mance are designed [3]–[6]. Each controller has the static
feedback form associated with an
output such that shall track a set point

where , ,
for each . By appropriately switching be-
tween the controllers a variety of tasks, such as waypoint nav-
igation and high-altitude takeoff, can be accomplished [7].

C. Limitations of the First-Generation System

With basic autonomous flight successfully demonstrated,
the BEAR team then set off to equip a number of helicopters
with a similar flight control system. Over time, two new and
unfamiliar challenges emerged.

1) The first challenge resulted from a widening choice of de-
vices: as the fleet of helicopters became more diverse, so
did the selection of sensors, actuation schemes, and com-
puting hardware. Each device provided or received data
at different speeds, used different data formats, commu-
nicated using different protocols, and so on. To take just
one example, the actuators of the first-generation heli-
copter expected pulse-width modulation signals as input,

200 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

whereas the actuators of later helicopters had a serial in-
terface.

The first-generation flight control system reflected
the desire to demonstrate the feasibility of autonomous
flight, rather than elegance of design. Consequently,
the design of the initial system emphasized fast flight
computer reaction, achieved by means of tightly coupled
sensors, actuators, computer hardware, and embedded
software. The tightly integrated flight control system
was not prepared to handle the diverse assortment of new
devices. Inevitably, any change to the original system
required an extensive software rewrite followed by an
extended verification process.

In short, the original embedded software was not
written with modularity in mind. Yet it would be pro-
hibitively expensive to rewrite all of the software for
each particular combination of devices. Instead, we
would like to develop embedded software that is simple
to configure, so that new components can be added or
substituted with relative ease.

2) The second challenge resulted from the event-based na-
ture of the first-generation flight control computer. To en-
sure the fastest possible response, the computer was set
up to process the incoming sensor data as soon as it ar-
rived and to immediately send the control output to the
actuators.

As an example of the problems that arose in this
event-based system, consider the following first-gen-
eration setup. The GPS and INS were synchronized
with each other but not with the control computer. The
GPS sent readings to the control computer at 5 Hz. The
INS sent readings at 100 Hz. The control computer
ran the control task at 50 Hz. Because of the lack of
synchronization, the sensor data seen by the control
computer ranged from 0 ms to 10 ms out of date. Owing
to clock drift, this amount of time was nondeterministic.
Similarly, the servos were triggered by a clock whose
rate was independent of the control computer’s clock.
Since the servos were triggered at 23.78 Hz, by the time
the actuators used the control data, these data could be
42 ms out of date.

Unfortunately, the different rates of the sensors, actu-
ators, and computer resulted in a system whose timing
behavior was not particularly easy to analyze. Conse-
quently, the physical behavior of the helicopter could
vary greatly from the simulation results.

We have presented several limitations of the first-genera-
tion helicopter system. In the next section, we discuss proper-
ties that the second generation should have in order to lessen
these limitations.

D. A Second-Generation System

We would like a helicopter system whose overall phys-
ical behavior can be analyzed and predicted. To this end,
we need a unified approach to the timing behavior of the
elements—sensors, actuators, and computer—of the control
system. We believe the key to this unified approach lies in a
time-based, modular design.

1) A time-based design: The system should be time-based
in order to allow easy analysis of its closed loop
behavior. However, the system must maintain com-
patibility with existing devices, such as sensors, that
are not time-based. A clear boundary between the
system’s synchronous and asynchronous elements
must be drawn, and provisions must be made to bridge
the gap.

2) A modular design: The new system must allow the de-
signer to choose from a diverse mix of sensors, actu-
ation schemes, and controllers. The new system must
allow a configuration of the same software to run on
different helicopters, which may have very different
physical dynamics and devices.

III. PLATFORM-BASED DESIGN METHODS

Automatic control systems, such as the BEAR helicopters,
can be designed with legacy code reuse and safety guaran-
tees, and without deficiencies in subsystem integration. This
section presents the building blocks that will later be used to
design such a system.

The building blocks we use are those of platform-based
design. The main tenet of platform-based design is that
systems should employ precisely defined layers of abstrac-
tion through which only relevant information is allowed
to pass. These layers are calledplatforms. For example, a
device driver provides a layer of abstraction between an
operating system and a device. This layer hides most of
the intricacies of the device, but still allows the operating
system to configure, read from, and write to the device.
Designs built on top of platforms are isolated from irrelevant
subsystem details. A good platform provides enough useful
information so that many applications can be built on top
of it. For example, the C programming language, despite its
flaws, provides an abstraction of instruction set architectures
that is versatile enough to allow many applications to be
written in C.

A system can often be usefully presented as the combi-
nation of a top level view, a bottom level view, and a set of
tools and methods to map between the views. On the bottom,
as depicted in Fig. 3, is the architecture space. This space in-
cludes all of the options available for implementing the phys-
ical system. For example, a PC can be made from a CPU
from Intel or AMD, motherboards from a variety of vendors,
etc. On the very top is the application space, which includes
high-level applications for the system and leaves space for fu-
ture applications. These two views of the system, the upper
and the lower, should be decoupled. Instead of interacting
directly, the two design spaces meet at a clearly defined in-
terface, which is displayed as the shared vertex of the two
triangles in Fig. 3. The thin waist of this diagram conveys
the key idea that the platform exposes only the necessary in-
formation to the space above. The entire figure, including the
top view, the bottom view, and the vertex, is called thesystem
platform stack.

The platform-based design process is a “meet-in-the-
middle” approach, rather than being top-down or bottom-up.

HOROWITZ et al.: PLATFORM-BASED EMBEDDED SOFTWARE DESIGN AND SYSTEM INTEGRATION FOR AUTONOMOUS VEHICLES 201

Fig. 3 The system platform stack.

Top-down design often results in unimplementable require-
ments, and bottom-up design often results in a mess. In
platform-based design, a successive refinement process is
used to determine the abstraction layer. In this process,
an initial application design helps to define a provisional
platform interface. This platform interface in turn suggests
what the architecture implementation needs to provide.
The architecture space can then be explored to find an
implementation that comes closest to satisfying both the
platform interface and the preset physical requirements.
The platform interface may need modification, and the
application design may need some rethinking. This process
repeats until an appropriate platform interface has been
defined. At this point the platform interface is a reasonable
and well-specified point of contact between the application
and architecture spaces. As a result, new applications may be
developed to use the same platform, and new architectures
may be explored for future support of the same platform
interface. As we have seen, the focus of platform-based
design is the correct definition of the platform interface, a
process that may involve feedback loops.

IV. A T IME-BASED CONTROL PLATFORM: GIOTTO

Control laws for autonomous vehicles are typically
implemented on architectural platforms consisting of
programmable components (e.g., microprocessors, digital
signal processors), memory (e.g., flash, RAM, and ROM),
sensors, and actuators. The control laws are almost always
implemented as software stored on ROM or flash memory
running on the programmable components. There are dif-
ficulties in mapping the control laws onto these kinds of
architectural platforms.

1) In most cases, the controller must react in real time. A
software implementation is intrinsically slower than
hardware. In addition, the computing part of the plat-
form is, most of the time, a standard single processor.
Thus, the concurrency of the function to implement is
lost: concurrent tasks have to be sequentialized. These
platforms are equipped with a real-time operating
system (RTOS), i.e., a lightweight, low-overhead op-
erating system that schedules tasks to be executed on
the processor. There are many scheduling algorithms
available to optimize the processor utilization while
maintaining deadlines for task execution. The most

efficient ones in terms of processor utilization are dy-
namic. However, it isverydifficult, if not impossible,
to guarantee that deadlines are met with these sched-
uling algorithms. Static scheduling algorithms are
much less efficient in terms of processor utilization,
but the analysis is much easier. However, owing to
the inefficiencies in the use of the resources, meeting
deadlines with this scheme implies an overdesign that
is hardly affordable. The most popular RTOSs support
preemption and dynamic scheduling.

2) The sensor measurements and the commands given
to actuators must be carefully analyzed for errors
and malfunctions. The implementation of the control
laws must be aware of these nonidealities. However,
if the software implementation of the control laws
directly includes information about the peripherals of
the platform, then reusing the software with different
platforms is virtually impossible. An efficient solution
for this problem is to use device-geared software
processes to isolate the control software and the
algorithms from the physical characteristics of the
devices.

To ameliorate these difficulties, we introduce a new ab-
straction layer that sits between the RTOS and the functional
description of the control laws. This abstraction layer pro-
vides the control designer with a more relevant and very
simple method for programming the control laws to meet
real-time constraints. However, the control designer must ad-
here to the simple guidelines that this abstraction allows. In
this way, the abstraction layer restricts the design space avail-
able to develop the control laws, but significantly shortens the
time to market and increases the correctness of the design.

To illustrate this idea using the hourglass platform-based
design figure, we place the possible control laws in the ap-
plication space on the top, and the RTOS in the architec-
ture space on the bottom, as shown in Fig. 4. The proposed
abstraction layer makes up the interface between these two
views. Ideally, this platform interface should pass the timing
constraints of the application downwards, and should pass
the performance capabilities of the architecture instance up-
wards. On the basis of these constraints, the platform’s tools
should be able to determine if the timing requirements of the
application can be fulfilled. In this section, we discuss in de-
tail an abstraction layer between the RTOS and the real-time
control laws that is chosen for the helicopter embedded soft-
ware. This abstraction layer is the Giotto programming lan-
guage.

Giotto consists of a formal semantics and a retargetable
compiler [8]. Giotto has already been used to reimplement
the control system onboard a small autonomous helicopter
developed at ETH Zürich [9]. In this section, we first present
a comparison between Giotto and other tools that may be
used to build the abstraction layer we desire (Section IV-A).
We then present a brief introduction to Giotto (Section IV-B).
Finally, we discuss the tools that may be used to map a Giotto
application to its possible implementations (Section IV-C). A
more detailed introduction to Giotto is presented in [10].

202 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 4 Platform-based design illustration of control-law
implementation on an RTOS.

A. Giotto Compared with Related Technologies

The benefits of introducing a platform always trade off
with a decrease in efficiency. Therefore, we would like
the chosen platform layer between the control laws and
the RTOS to be as efficient and well suited to our needs
as possible. In this section, we demonstrate why Giotto
is the best fit for our platform implementation. The most
popular alternative tools that might be used to build such a
platform are the synchronous programming languages, the
services provided by the RTOS itself, and the time-triggered
architecture (TTA).

The synchronous programming languages are a family of
programming languages that have been under development
since the 1980s. Esterel and Lustre are the exemplars of this
family of languages [11], [12]. Esterel is appropriate for
applications in which control flow is of primary importance,
and Lustre is appropriate for applications in which data
processing is of primary importance. Both Giotto and syn-
chronous languages try to reduce the unpredictable effects of
concurrency. The same general approach is taken by both: all
activities of the program may be dated on a single timeline.
Informally, a timeline is a sequential ordering of the activi-
ties of a program. In a traditional multithreaded application,
each thread has its own timeline. These timelines may be
interleaved in many possible ways depending on the oper-
ating system scheduler and the inputs from the environment.
In contrast, a synchronous program or a Giotto program
specifies exactly one way to interleave the timelines of the
program’s components. Thus, programs written in Giotto
and the synchronous languages are more deterministic
than those written for traditional multithreaded operating
systems. The main problem with the implementation of syn-
chronous programming languages is that they do not make
efficient use of the multitasking capabilities provided by a
standard RTOS. The synchronous programming community
has often avoided the use of multitasking features, since
without care these may lead to nondeterministic behavior.
However, without the use of multiple tasks, the CPU of
a control system may go underutilized. In contrast, since
Giotto programs are multithreaded, they can incorporate
preemption, and thus fuller CPU utilization.

As will be further discussed in Section IV-C, Giotto tasks
are transformed by the Giotto compiler to operating system
threads. At runtime, these threads are scheduled by an RTOS.
Thus, the Giotto programmer’s abstraction could be viewed

as similar to the abstraction provided by an RTOS. How-
ever, standard RTOSs do not provide integrated schedula-
bility analysis. It is up to the programmer to perform such
analysis on her own. In addition, RTOSs commonly provide
many styles of intertask communication. Some of these (e.g.,
shared memory) can be tricky to program. In contrast, Giotto
provides only a single communication semantics, but auto-
mates its implementation.

The TTA is a hardware and software system that provides
fault-tolerant time-based services [13]. It consists of spe-
cialized boards that communicate using its own time-based
communication protocols. In contrast, Giotto concentrates
on providing anabstractprogrammer’s interface. The TTA’s
time-based nature makes it particularly suitable for running
Giotto. However, Giotto can also be run in other hardware
and software environments. For example, Giotto is run on
custom hardware and software designed at ETH Zürich, on
the Motorola MPC 555 processor running the RTOS OSEK-
Works, and on Linux (without real-time guarantees).

B. The Giotto Programmer’s Abstraction

In this section, we discuss the abstraction that Giotto
presents to the programmer. Control applications often
have periodic, concurrent tasks. For example, the helicopter
control application runs a measurement fusion task at a
frequency of 100 Hz, and a control computation at 50 Hz.
Typically, the periodic tasks communicate with each other.
Control applications also need a means to input from and
output data to their physical environment. Finally, control
applications often have distinctmodesof behavior; in two
different modes, different sets of concurrent tasks may need
to run, or the same set of tasks may need to run but at
different rates. For example, a robot on a discovery mission
may first need to run one set of tasks to navigate to a
location; once that location is found, the robot may need to
run a different set of tasks to query its surroundings. Giotto
provides the programmer a way to specify applications
with periodic, concurrent, communicating tasks. Giotto
also provides a means for I/O interaction with the physical
environment, and for mode switching between different sets
of tasks.

Consider the example program of Fig. 5. The concurrent
tasks—Fusion and Control—are shown as rectangles with
rounded corners. Each task has a logical execution interval.
In our example, Fusion logically executes from 0 ms to 10
ms, from 10 ms to 20 ms, etc., whereas Control logically ex-
ecutes from 0 ms to 20 ms, from 20 ms to 40 ms, and so on.
Each task hasinput portsandoutput ports, shown as black
circles. A task’s input ports are set at the beginning of its log-
ical execution interval. During its execution, the task com-
putes some function, and the results are written to its output
ports at end of its logical execution interval. For example, the
input ports of Fusion are set at 0 ms; between 0 ms and 10
ms, Fusion computes its function; at 10 ms, the result of this
function is written to Fusion’s output ports.

A Giotto program may also containsensorsandactuators,
both of which are depicted as white circles. Rather than being
actual devices, sensors and actuators are programming lan-

HOROWITZ et al.: PLATFORM-BASED EMBEDDED SOFTWARE DESIGN AND SYSTEM INTEGRATION FOR AUTONOMOUS VEHICLES 203

Fig. 5 An example Giotto program for helicopter control.

guage constructs that let the programmer define how to input
data to and output data from a Giotto program. Logically,
sensors and actuators are passive: they arepolled at times
specified in the Giotto program, and cannot push data into
the program at their own times. Our example program has
two sensors, GPS and INS, and one actuator, Servos. The
sensors are read at 0 ms, 10 ms, 20 ms, etc., and the actuator
is written at 0 ms, 20 ms, and so on.

Tasks communicate with each other, and with sensors
and actuators, by means ofdrivers, which are shown as
diamonds. In Fig. 5, the drivers connect the GPS and INS
sensors to the input ports of the Fusion task. They also con-
nect the output port of Fusion to the input port of Control,
and the output of Control to the Servos actuator. Thus, the
Fusion task that executes between 0 and 10 ms receives its
inputs from the GPS and INS readings at 0 ms. Similarly,
the Control task that starts at 0 ms receives its inputs from
the Fusion task that finishes at 0 ms, and writes its outputs
to the Servos actuator at 20 ms.

In this section, we have described the abstraction that
Giotto presents to the programmer. In the next section, we
will discuss the Giotto compiler, which transforms Giotto
programs into RTOS applications.

C. Tools to Implement Giotto

The platform-based design methodology advocates the use
of tools to map from high-level abstractions to the underlying
architecture. Here, the Giotto language is the abstraction, and
RTOSs constitute the architecture. This section describes the
Giotto compiler, which maps Giotto programs to RTOS exe-
cutables. Just as a conventional C compiler transforms C pro-
grams into object files for an instruction set architecture, the
Giotto compiler transforms Giotto programs into executables
for an RTOS.

The input to the Giotto compiler is a Giotto program, to-
gether with code to implement the tasks, drivers, sensors, and
actuators. These other pieces of code may be written in a con-
ventional programming language such as C. These pieces of
code are annotated with worst-case execution times. In effect,
these annotations allow constraints to pass upwards from the
architecture to the platform. The Giotto program also speci-
fies timing constraints that pass downwards toward the archi-
tecture. Using both sets of constraints, the compiler performs

schedulability analysis, which ensures that all deadlines in
the executable it produces will be met [14]. The compiler
then generates an object file that can be run on any RTOS.
This object file contains instructions for the Embedded Ma-
chine, which is an RTOS-independent virtual machine [15].
At runtime the Embedded Machine sequences and schedules
the tasks, drivers, sensors, and actuators of the Giotto pro-
gram.

An RTOS typically supports applications with multiple
threads of control, whether they are called threads, processes,
or tasks. In addition, an RTOS usually provides a means for
scheduling these threads, whether by priorities, deadlines, or
round robin. The Giotto compiler aims to make efficient use
of these RTOS services. The Giotto compiler currently uses
heuristics for developing a preruntime schedule: drivers, sen-
sors, and actuators are executed at the fixed times given by
the Giotto program, whereas tasks are scheduled using ear-
liest deadline first. For example, in the program of Fig. 5,
GPS and INS are executed at 0 ms, 10 ms, and so on, and the
deadline of Fusion is always 10 ms after its start time.

V. CASE STUDY: END TO END DESIGN OF

HELICOPTER-BASED UAV

In this section, we discuss strategies for building a heli-
copter-based UAV, with two main goals in mind.

1) The first goal is to incorporate both asynchronous
input devices and a time-based controller. In Sec-
tion II, we saw that the sensors send data at their
own, possibly drifting, rates. We also presented the
advantages of using a time-based controller. However,
we also saw in Section IV that our chosen time-based
controller reads from input devices at its own fixed
times. Thus, combining these components gives rise
to a mismatch in timing behavior that needs to be
addressed.

2) The second goal is to build a system that is modular
enough to allow one suite of devices (e.g., a sensor
suite) to be replaced by another.

To achieve these two goals, we will use the principles of plat-
form-based design presented in Section III. We will show
how the insertion of a layer of abstraction between the de-
vices and the controller can be used to bridge the timing mis-
match and allow for the inclusion of different sensor suites.

204 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

In Section V-A, the platform-based design principles
are used to specify a functional description of the heli-
copter-based UAV. In Section V-B, we describe the process
of implementing the functional description. Finally, in
Section V-C, we discuss how to compare implementation
alternatives.

A. Building Functional Description Using Platform-Based
Design

In Section III, we explained how to begin the plat-
form-based design process by separating the system into
two views: the application and the architecture. Here we
apply this separation to our helicopter-based UAV, which
is naturally seen from two views. From the top, a designer
sees the time-based control application. From the bottom,
a designer sees the available physical devices, such as the
helicopter, the sensors, and the actuators. Fig. 6 situates
these two views in the context of platform-based design:
the time-based control application sits in the application
space, while the physical devices make up the architecture
space. Following themeet-in-the-middleapproach of plat-
form-based design, we include an intermediate abstraction
layer, the UAV platform, whose top view is suitable for
time-based control and whose bottom view is implementable
using the available devices.

We next describe the functionality of the UAV platform.

1) Interaction with devices: The UAV platform should
be able to receive transmissions from the sensors at
their own rates and without loss of data. Similarly, the
platform should be able to send commands to the ac-
tuators in the correct formats. The platform will also
need to initialize the devices. Furthermore, the plat-
form should be able to carry out these interactions with
a variety of different sensor and actuator suites.

2) Interaction with control application: The UAV plat-
form should provide measurement data to the control
application in the format and at the frequency dictated
by the controller. Similarly, the platform should re-
ceive the commands from the controller at times dic-
tated by the controller, and immediately send them on
to the actuators. The platform should also be able to
support a variety of controllers.

One natural conclusion is that the platform should buffer in-
coming data from the sensors, convert sensor data into for-
mats usable by controller applications, and convert control
commands into formats usable by actuators. In Section V-B
we describe in detail two ways to implement the functions of
the platform.

B. Implementing Functional Description Using
Platform-Based Design

While the platform-based design methodology is a
meet-in-the-middle approach, it suggests implementing the
application first. In this section we begin by discussing the
realization of the controller application. This implemen-
tation, as discussed in Section V-A, places constraints on
the platform. Platform implementations that meet these

Fig. 6 Platform-based design of helicopter-based UAV.

constraints are presented next. Though the platform is
constructed to work with a variety of available devices, we
work with only one such architecture instance. Comparing
the efficacy of alternate sensors and actuators is beyond the
scope of this paper.

1) Implementing the Controller Application:To attain
the benefits of time-based control, presented in Section II-D,
the controller application is realized using the Giotto pro-
gramming language. Section IV-B presented a rough sketch
of the Giotto implementation in Fig. 5. The two essential
tasks are Fusion and Control. Fusion combines the INS and
GPS data using a Kalman filter and is run at a frequency of
100 Hz. Control uses the output from Fusion to compute the
control law shown in Section II-B at a frequency of 50 Hz.
The frequencies of these two tasks are chosen based on the
expectations of the control law and on the limitations of the
devices. Each task is written as a separate C function. These
C functions are referenced inside of the Giotto program,
which schedules and runs them as described in Section IV-C.

Unfortunately, the advantages of using such a time-based
controller application—in particular, reduced jitter—trade
off with the disadvantage of increased latency. For example,
in Fig. 5, consider the Control instance that executes from
0 to 20 ms. The incoming sensor data for this instance was
sampled at 10 ms. At 0 ms the data has been transformed
by Fusion and is ready for use by Control. The output of
Control is not written to the actuator until 20 ms, resulting
in a total latency of 30 ms. This is unfortunate, since a new
output of Fusion is available at 10 ms. In fact, the actual
execution time of the Control task is much less than 10 ms,
so Control should ideally be scheduledafter Fusion has
made a new output available at 10 ms.

One way to reduce the latency of the program of Fig. 5
is to increase the frequency of Control to 200 Hz, so that its
deadline reduces to 5 ms. However, this results in Control
being executed unnecessarily often. Instead, we wish to exe-
cute Control only once per 20 ms interval, but to retain the 5
ms deadline. Achieving this result in Giotto is possible, with

HOROWITZ et al.: PLATFORM-BASED EMBEDDED SOFTWARE DESIGN AND SYSTEM INTEGRATION FOR AUTONOMOUS VEHICLES 205

Fig. 7 Refined Giotto program.

a little extra effort. We first note that each Giotto driver is
equipped with aguard, which is a condition on the driver’s
input ports. If the guard of a task driver evaluates to true, the
task is executed, but if it evaluates to false, the task is not
executed. To fix our problem, we add a counter that is incre-
mented every 5 ms, and we add a guard to the driver of Con-
trol that evaluates to true when the counter equals .
Control thus executes from 0 to 5 ms, from 20 to 25 ms, and
so on. The refined Giotto implementation with reduced la-
tency is displayed in Fig. 7.

2) Implementing the UAV Platform:Having considered a
realization of the time-based controller, we now turn to the
UAV platform. In Section V-A, we discussed the require-
ments that our UAV platform needs to fulfill. We now present
two possible implementations of the UAV platform, both of
which fulfill these requirements. The first implementation
uses one computer, effectively implementing in software the
buffer discussed in Section V-A. The second uses two com-
puters, and implements the buffer in hardware.

a) First Implementation: One Computer:The single-
computer implementation has three main elements, which
are depicted in Fig. 8.

1) Data processor. The data processor is an independent
process, similar to a standard interrupt handler. In the
sensing case, it responds to the new sensor data sent
by the devices, and saves this data to a shared memory
space with the sensor-specific data format intact. In
the actuating case, the data processor passes on to the
servos the messages sent by the controller application.

2) Shared memory. The shared memory contains re-
cent sensor readings, and is implemented as circular
buffers. Data are placed into the circular buffers by the
data processor, and can be accessed by the controller
application. In this way the controller application
can grab the sensor data without worrying about the
timing capabilities of each sensor.

3) Data-formatting library. Within the controller ap-
plication, the sensor-specific data format must be
transferred to the format that the control computation
expects. In the sensing case, the controller applica-
tion uses the data-formatting library to transform
the buffered sensor readings. In the actuating case,
the controller application uses the library to convert

Fig. 8 First implementation of UAV platform. The dashed line
encloses the platform implementation.

actuation commands into the format expected by the
servos.

Recall from Section IV-C that the controller application
comes with guarantees about the deadlines of its own internal
tasks. These guarantees, however, do not take into account
the time that may be needed by other processes or interrupt
handlers. If more than a “negligible” amount of time is spent
in the other processes, then the timing guarantees of the con-
troller application may cease to be valid. For this reason, the
previously shown design keeps the time needed by the data
processor to a bare minimum. The data transformations nec-
essary are instead written into the data-formatting library and
called from within the control tasks. The benefit of this ap-
proach is that the timing guarantees of the controller appli-
cation are preserved, as much as possible.

b) Second Implementation: Two Computers:Though
the single-computer implementation results from a platform-
based design methodology, one might well argue that it does
not adhere to a strict separation of the control from the sensor
details. This problem results from the fact that the format
conversion functions are run from within the controller. We
have argued that this is needed to preserve the guarantees on
the timing of the controller application. In a second imple-
mentation, both the timing guarantees and the separation of

206 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 9 Second implementation of UAV platform. The dashed line
encloses the platform implementation.

control from sensor details are maintained by including two
computers on the helicopter. This alternative is depicted in
Fig. 9. The two computers perform distinct functions.

1) The control computer runs the controller application.
When the application needs the most recent sensor
reading, it sends a request to the data computer. The ap-
plication also forward actuator commands to the data
computer.

2) The data computer performs the same functions as
the data processor and data-formatting library from
the first implementation. It receives readings from
the sensors. When the control computer requests the
most recent reading, the data computer replies with
this reading in the correct format. When the control
computer sends an actuator command, the data com-
puter relays the command to the servos in the correct
format.

In this implementation, the separation of control from
sensor details is strictly followed, and the timing guarantees
of the controller application are maintained. However, there
is a tradeoff. The downside to this second approach is an
added amount of latency that is introduced between the
time the sensor readings are taken and the time the control
laws use the measurements. This latency is introduced by
the communication between the control computer and the
data computer. This increase in the staleness of the data is a
common tradeoff with more structured designs. In the next
section, we discuss methods for a quantitative comparison
of the two designs.

C. Comparison of Implementation Alternatives

Now that we have two platform implementations the next
question is natural: which one is the best? Ideally, carefully
controlled tests could be performed on the physical system.
However the fact that we are working with an automatic con-
trol system makes that a difficult proposition.

1) Testing is expensive and potentially dangerous. For the
helicopter, a safety pilot must be on hand for every test
run in case a takeover is necessary.

2) Tests are difficult to standardize. For example, the
winds and GPS signal strength cannot be controlled.

To ameliorate this problem, we propose the use of a HIL
simulator, which allows for the direct testing of the entire
control system [16], [17]. Instead of mounting the control
system onto the helicopter, the controller (often called the
system under test) is connected to a simulation computer.
The simulation computer uses a dynamic model to mimic the
exact inputs and outputs of the sensors and actuators on the
helicopter.

HIL simulators are well suited to take advantage of the ab-
straction layers provided by platform-based design. The suit-
ability arises from the capacity to slide back and forth the di-
viding line between the simulation computer and the system
under test, as shown in Fig. 10. To compare the controller
applications, the simulator should act as the platform inter-
face, and the controller applications should act as the system
under test. To compare platform implementations, the sim-
ulator inputs and outputs should closely approximate those
of the actual devices, and the controller application and plat-
form implementation should be part of the system under test.

The Giotto controller utilizes the first-generation he-
licopter controller algorithm of [4] that was used to
demonstrate autonomous flight on the Yamaha R-50. This
controller application, along with the realization of the first
platform, runs on VxWorks, an RTOS, and communicates by
serial with the simulator computer. The simulator uses the
dynamic model for the Yamaha R-50, whose origin was also
presented in Section II-B. The simulator solves the model’s
differential equations using a numerical recipes package and
also runs on VxWorks. To properly view the working com-
bination of the Giotto controller, platform realization, and
simulation process, the motion of the simulated helicopter
was communicated by Ethernet to a graphical flight display
program where a three-dimensional helicopter performed on
screen. Fig. 11 displays a screen shot of this GUI.

Because the simulation computer must imitate a physical
system, the simulator must meet two additional constraints.

1) The simulator must run in real time. This greatly limits
the choice of operating systems available to run the
simulator. It also mandates a careful selection of the
numerical methods used for solving the model’s dif-
ferential equations [17].

2) The simulated helicopter should faithfully duplicate
the dynamics of the real-world helicopter. The param-
eters of the simulator should be set to values that have
been measured on the helicopter. To check that the
simulator software mathematically implements the be-
havior of the physical models, we propose the use
of system identification techniques. The parameters
of the mathematical model should be compared with
those obtained using system identification on the I/O
behavior of the HIL simulator.

HOROWITZ et al.: PLATFORM-BASED EMBEDDED SOFTWARE DESIGN AND SYSTEM INTEGRATION FOR AUTONOMOUS VEHICLES 207

(a)

(b)

Fig. 10 HIL simulation.

Fig. 11 Graphical flight display.

The proposed simulation framework, in combination with
platform-based design, allow for the development of auto-
matic control systems that are modular and have guaranteed
performance.

In this project, we have thus far obtained results through
the combination of a controller application running in Giotto,
the first platform implementation option, and a realization of
the HIL simulator.

A further research effort is to realize the second platform
implementation option. On the completion of this step,
the HIL simulator can be used to examine the comparative

performance of the second platform implementation as well
as alternative control algorithms. In addition, the chosen
Giotto controller and platform realization that reside on
one or more flight computers can be flown on the physical
helicopter without any alterations.

VI. CONCLUSION

In this paper, we presented a methodology for the design of
embedded controllers. Our methodology is predicated on the

208 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 12 Flight capable hardware with RTOS.

principles of platform-based design, which uses layers of ab-
straction to isolate applications from low-level system details
and yet provides enough information about the important pa-
rametersof the lower layersofabstraction to prevent costly re-
designs. The platform-based design approach also provides a
frameworktopassconstraintsfromhigher levelsofabstraction
tolowerones.Thus,platform-baseddesignprovidesabasisfor
successive refinement and correct-by-construction design. In
addition, by providing the appropriate layers of abstraction,
the methodology allows for the integration of legacy code and
“foreign” subsystems. An essential layer of abstraction in our
methodology is the software platform provided by the pro-
gramming language Giotto, which allows a clean implemen-
tation of a time-based controller application. To present how
our design methodology can be applied, we have discussed
tworedesignsof thecontrolsystemofahelicopter-basedUAV.
These designs go a long way toward meeting the goals for our
second-generation helicopter control system.

1) The use of platform-based design allows us to build a
bridge between the time-based controller application
and the non-time-based sensors and actuators.

2) A time-basedcontrollereliminates the timing irregular-
ities present in the first-generation systems. Further, the
Giotto compiler ensures that the controller application
meets its timing requirements.

3) Our platform-based design achieves a high degree of
modularity.Forexample, tosubstituteadifferentsensor
suite in our first redesign requires only changes to the
data processor and the data-formatting library. The data
processor would require a different sensor initialization
routine and a new circular buffer; the formatting library
would need a new format conversion routine. However,
no part of the controller application would need to be
changed.

Though our case study contains many details that are spe-
cific to our helicopter system, our methodology is widely ap-
plicable. We believe that the combination of time-based con-
trol and platform-based design can be generally applied to
automatic control systems, for which legacy software, inde-
pendently engineered subsystems, and strict reliability and
timing requirements all play a crucial role.

REFERENCES

[1] A. Sangiovanni-Vincentelli. (2002, Feb.) Defining
platform-based design. EEDesign [Online] Available:
http://www.eedesign.com/story/OEG20020204S0062 and
http://www.gigascale.org/pubs/"

[2] R. Murray, Z. Li, and S. S. Sastry,A Mathematical Introduction to
Robotic Manipulation. Boca Raton, FL: CRC, 1994.

[3] T. Koo and S. Sastry, “Output tracking control design of a helicopter
model based on approximate linearization,” inProc. 37th Conf. De-
cision Contr., 1998, pp. 3635–3640.

[4] D. Shim, “Hierarchical flight control system synthesis for rotorcraft-
based UAV’s,” Ph.D. dissertation, Univ. California, Berkeley, 2000.

[5] D. Shim, T. Koo, F. Hoffmann, and S. Sastry, “A comprehensive
study of control design for an autonomous helicopter,” inProc. 37th
Conf. Decision Contr., 1998, pp. 3653–3658.

[6] T. J. Koo, “Hybrid system design and embedded controller syn-
thesis for multi-modal control,” Ph.D. dissertation, Univ. California,
Berkeley, 2000.

[7] T. J. Koo, G. J. Pappas, and S. Sastry, “Mode switching synthesis
for reachability specifications,” inHybrid Systems: Computation
and Control. Heidelberg, Germany: Springer-Verlag, 2001, pp.
331–346.

[8] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: A time-triggered
language for embedded programming,” inProc. 1st Int. Workshop
Embedded Software, 2001, pp. 166–184.

[9] C. Kirsch, M. Sanvido, T. Henzinger, and W. Pree, “A Giotto-based
helicopter control system,” presented at the 2nd Int. Workshop Em-
bedded Software, Grenoble, France, 2002.

[10] T. Henzinger, B. Horowitz, and C. Kirsch, “Embedded control sys-
tems development with Giotto,” inProc. Int. Workshop Lang., Com-
pilers, Tools Embedded Syst., 2001, pp. 64–72.

[11] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,”Sci. Comput. Pro-
gram., vol. 19, no. 2, pp. 87–152, Nov. 1992.

HOROWITZ et al.: PLATFORM-BASED EMBEDDED SOFTWARE DESIGN AND SYSTEM INTEGRATION FOR AUTONOMOUS VEHICLES 209

[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous data flow programming language Lustre,”Proc. IEEE,
vol. 7, pp. 1305–1320, Sept. 1991.

[13] H. Kopetz,Real-Time Systems: Design Principles for Distributed
Embedded Applications. Norwell, MA: Kluwer, 1997.

[14] T. Henzinger, C. Kirsch, R. Majumdar, and S. Matic, “Time safety
checking for embedded programs,” presented at the 2nd Int. Work-
shop Embedded Software, Grenoble, France, 2002.

[15] C. Kirsch and T. Henzinger, “The embedded machine: Predictable,
portable real-time code,” inProc. ACM SIGPLAN Conf. Program.
Lang. Design Implementation, 2002, pp. 315–326.

[16] M. Sanvido and W. Schaufelberger, “Design of a framework for
hardware-in-the-loop simulation and its application to a model
helicopter,” presented at the 4th Int. Eurosim Cong., Delft, the
Netherlands, 2001.

[17] J. Ledin, “Hardware-in-the-loop simulation,”Embedded Syst. Pro-
gram., vol. 12, no. 2, pp. 42–60, Feb. 1999.

Benjamin Horowitz (Member, IEEE) received
the B.A. degree with highest honors in philos-
ophy from Wesleyan University, Middletown,
CT, in 1994. From 1995 to 1997, he studied
computer science at the University of Massachu-
setts, Amherst. He is currently a Ph.D. degree
candidate in computer science at the University
of California, Berkeley.

His research interests include real-time
programming languages, scheduling theory, and
the design of embedded systems.

Mr. Horowitz is a member of Phi Beta Kappa. He received the Alumni
Association Outstanding Achievment Award from the University of Massa-
chusetts, Amherst.

Judith Liebman received the B.S. degree
with distinction in electrical engineering from
Stanford University, Stanford, CA, in 2000,
and the M.S. degree from the Department of
Electrical Engineering and Computer Sciences at
the University of California, Berkeley, in 2002.

Her research interests include embedded soft-
ware design for safety-critical systems, and her
work has been applied to the control system of the
Berkeley helicopter uninhabited aerial vehicle.

Ms. Liebman is a member of the engineering
honor society Tau Beta Pi. In 2001–2002, she was the president of Women
in Computer Science and Electrical Engineering, University of California,
Berkeley.

Cedric Ma received the B.S. and M.S. degrees
in electrical engineering and computer sciences
from the University of California, Berkeley, in
2000 and 2002, respectively.

He is currently an Engineer, Vehicle Systems
group, Air Combat Systems business area,
Integrated Systems sector, Northrop Grumman
Corporation, El Segundo, CA. He works with a
core group of control system and fault detection,
fault isolation, and recovery experts on various
research and development projects contracted

from DARPA, other DoD customers, as well as internal customers. As
a student of Shankar Sastry, his graduate research interests were the
embedded control system for an autonomous helicopter.

T. John Koo received the B.Eng. degree in
electronic engineering and the M.Phil. in infor-
mation engineering from the Chinese University
of Hong Kong, Hong Kong, China, in 1992
and 1994, respectively, and the Ph.D. degree
in electrical engineering from the University of
California, Berkeley, in 2000.

In 1994, he was a Graduate Research Fellow in
the Signal and Image Processing Institute of the
University of Southern California, Los Angeles.
From 1995 to 2002, he was Project Leader in the

Berkeley Aerial Robot project, University of California, Berkeley. In 1998,
he was a Consultant at the Stanford Research Institute International, Menlo
Park, CA. He was a Postdoctoral Fellow in the Department of Electrical En-
gineering, University of Pennsylvania, Philadelphia, in 2000. In 2001, he
was a Research Specialist at the Electronics Research Laboratory, Univer-
sity of California, Berkeley. He is currently a Visiting Faculty Member in the
Department of Electrical Engineering and Computer Sciences Department,
University of California, Berkeley. His research interests include hybrid sys-
tems, embedded software, nonlinear control theory, and soft computing with
applications to robotics, power electronics, and networks of autonomous ve-
hicles.

Dr. Koo received the Distinguished M.Phil. Thesis Award of the Faculty
of Engineering, the Chinese University of Hong Kong in 1994.

Alberto Sangiovanni-Vincentelli (Fellow,
IEEE) received theDottore in Ingegneriadegree
summa cum laudefrom the Politecnico di
Milano, Milano, Italy, in 1971.

From 1980 to 1981, he was a Visiting Scientist
at the Mathematical Sciences Department of the
IBM T. J. Watson Research Center, Yorktown
Heights, NY. In 1987, he was Visiting Professor
at the Massachusetts Institute of Technology,
Cambridge. From 1976 to the present, he
has been on the Faculty of the University of

California, Berkeley,where he holds the Edgar L. and Harold H. Buttner
Chair of Electrical Engineering and Computer Sciences and the Vice-Chair
position for Industrial Relations.

He was a Cofounder of Cadence Design Systems, Inc., San Jose, CA,
and Synopsys Inc., Mountain View, CA, the two leading companies in the
area of electronic design automation. He is the Chief Technology Adviser
of Cadence Design Systems. He is a member of the Board of Directors
of Cadence, Softface, Sonics Inc., and Accent, a ST Microelectronics-Ca-
dence joint venture. He is a member of the HP Strategic Technology Ad-
visory Board. He has consulted for a number of U.S. companies including
IBM, Intel, ATT, GTE, GE, Harris, DEC, HP; Japanese companies including
Kawasaki Steel, where he holds the title of Chief Technology Advisor, Fu-
jitsu, Sony, and Hitachi; and European companies including ST Microelec-
tronics, Alcatel, Daimler-Chrysler, Ericsson, Magneti-Marelli, BMW, Bull.
He is the founder and Scientific Director of the Project on Advanced Re-
search on Architectures and Design of Electronic Systems, Rome, Italy,
a European group of economic interest supported by Cadence, Magneti-
Marelli and ST Microelectronics. He is a member of the Advisory Board
of the Lester Center for Innovation of the Haas School of Business, Univer-
sity of California, Berkeley, and of the Center for Western European Studies
and a member of the Berkeley Roundtable of the International Economy. He
is the author or coauthor of more than 600 papers and 15 books in the area
of design tools and methodologies, large-scale systems, and embedded and
hybrid systems.

Dr. Sangiovanni-Vincentelli has been a Member of the National
Academy of Engineering since 1998. He was the Technical Program
Chairperson of the International Conference on Computer Aided Design
and its General Chair. He was the Executive Vice-President of the IEEE
Circuits and Systems Society. In 1981, he received the Distinguished
Teaching Award of the University of California. He has also received the
Guillemin-Cauer Award (1982–1983), the Darlington Award (1987–1988),
and two awards for the best paper published in the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS and IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN, three best paper awards and one best presentation awards at the
Design Automation Conference. He received the worldwide 1995 Graduate

210 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Teaching Award of the IEEE (a Technical Field award for “inspirational
teaching of graduate students”). In 1999, he was awarded the CASS Golden
Jubilee Medal. In 2001, he was given the prestigious Kaufman Award of the
Electronic Design Automation Council for pioneering contributions to elec-
tronic design automation. In 2002, he received the Aristotle Award of the
Semiconductor Research Corporation given to “faculty whose deep com-
mitment to the educational experience of SRC students has had a profound
and continuing impact on their professional performance over a long period
of time.”

S. Shankar Sastry (Fellow, IEEE) received
the M.S. degree (honoris causa) from Harvard
University, Cambridge, MA, in 1994, and the
Ph.D. degree from the University of California,
Berkeley, in 1981.

From 1980 to 1982, he was an Assistant Pro-
fessor at Massachusetts Institute of Technology,
Cambridge. In 2000, he was Director of the
Information Technology Office at the Defense
Advanced Research Projects Agency, Arlington,
VA. He is currently the NEC Distinguished

Professor of Electrical Engineering and Computer Sciences and Bioengi-
neering and the Chairman of the Department of Electrical Engineering and

Computer Sciences, University of California, Berkeley. He has coauthored
more than 250 technical papers and has authored, coauthored, or coedited
several books, including his latest,Nonlinear Systems: Analysis, Stability
and Control (New York: Springer-Verlag, 1999). Books on embedded
software and structure from motion in computer vision are in progress. He
served as Associate Editor for numerous publications, includingJournal of
Mathematical Systems, Estimation and Control, IMA Journal of Control
and Information, International Journal of Adaptive Control and Signal
Processing, andJournal of Biomimetic Systems and Materials.His research
interests are embedded and autonomous software, computer vision, com-
putation in novel substrates such as DNA, nonlinear and adaptive control,
robotic telesurgery, control of hybrid systems, embedded systems, sensor
networks, and biological motor control.

Dr. Sastry was elected into the National Academy of Engineering in
2001 “for pioneering contributions to the design of hybrid and embedded
systems.” He also received the President of India Gold Medal in 1977,
the IBM Faculty Development award for 1983–1985, the National
Science Foundation Presidential Young Investigator Award in 1985, the
Eckman Award of the American Automatic Control Council in 1990, the
distinguished Alumnus Award of the Indian Institute of Technology in
1999, and the David Marr prize for the best paper at the International
Conference in Computer Vision in 1999. He was a chaired Gordon McKay
professor at Harvard University, Cambridge, MA, in 1994. He has served as
Associate Editor for IEEE TRANSACTIONS ONAUTOMATIC CONTROL, IEEE
CONTROL SYSTEMS MAGAZINE, and IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS.

HOROWITZ et al.: PLATFORM-BASED EMBEDDED SOFTWARE DESIGN AND SYSTEM INTEGRATION FOR AUTONOMOUS VEHICLES 211

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

