
AADL Inspector 1.2
Instance Model Overview
& Declarative Model Metrics

AADL Inspector : Plugin Admin © Ellidiss Technologies - October 2013 - page 1

Ellidiss Technologies
http://www.ellidiss.fr

aadl@ellidiss.fr

page 2 - AADL Inspector : Plugin Admin © Ellidiss Technologies - October 2013

http://www.ellidiss.fr/

1 AADL Metrics

The metrics plugin provides a few statistics on the analysed AADL specification. It is
composed of four parts that are displayed sequentially in the plugin report area of
AADL Inspector:

- AADL Parser Information
- The AADL Instance Model Overview
- The AADL Instance Model Metrics
- The AADL Declarative Model Metrics

AADL Inspector analyses a set of text files containing valid AADL specifications that
are organised as a set of Packages and Property Sets. This raw set of definitions
represents the AADL Declarative Model.

However, most analysis tools require operating on the AADL Instance Model, e.g. on
the instantiated hierarchy of subcomponents starting from an identified Root System
Instance belonging to the Declarative Model. The Instance Model must also take into
accounts the software binding properties to the hardware. It is thus important for the end
user to get an overview of the Instance Model that will be processed by analysis tools
such as Cheddar or Marzhin.

1.1 AADL Parser Information

AADL Inspector uses the aadlrev parser to perform the AADL syntactic analysis and
store the model into an appropriate form for further processing. Depending on the kind
of constructs that are recognized in the source AADL model, the core language or the
various sub-languages defined by AADL annexes will be analysed and merged together
into a common fact base.

The metrics pluging shows which version of the AADL core and annexes have been
recognized while parsing the source model:

AADL Inspector : Plugin Admin © Ellidiss Technologies - October 2013 - page 3

--
aadlrev2.4 (c)Ellidiss Technologies 20Aug2013
AADL-2.1 + BA-1.1 + EMV2-0.95
--

1.2 AADL Instance Model Overview

As opposed to most other AADL processing tools, AADL Inspector does not require
the instance model to be built globally and stored separately from the original source
declarative model. On the contrary, only the parts of the instance model that are
required for a given processing feature are dynamically produced when required. This
approach ensures that the instance model is always synchronized with the declarative
model.

The first step that is required for building the AADL instance model is the identification
of the Root System Instance. This entity that is be part of the source declarative model
represents the “System to Design” and must be a valid AADL system implementation
classifier.

AADL Inspector automatically recognizes the Root System Instance according to the
following criteria in decreasing priority order:

- the first system implementation classifier found that contains an
AI::Root_System property association.

- the first system implementation classifier found that contains an
Actual_Processor_Binding property association.

- the first system implementation classifier found that is not instantiated as a
subcomponent within the current project, i.e. within the set of loaded AADL
source files that constitute the input model.

Note that these rules imply that the file loading order may have an impact on the
detection of the Root System Instance. It is thus recommended to load an AADL
Inspector Configuration file (.aic) that lists all the AADL files that contribute to a
given project and will ensure that they are processed in the right order.

Once the Root System Instance has been recognized, the metrics plugin shows the

page 4 - AADL Inspector : Plugin Admin © Ellidiss Technologies - October 2013

hierarchy of processors, processes, threads and subprograms that can be found by
following the hardware/software binding properties and the subcomponent instantiation
declarations recursively from this starting point. The line number in the source
declarative model is given for each instance model entity and corresponds to the related
subcomponent statement.

Each instance model entity is identified by its unique instance id within the current
Root System Instance (root). This id has the following structure:

root
 [. hardware_component_instance_id
 [. software_component_instance_id]]

Here is a fragment of an instance model overview:

--
 *** INSTANCE MODEL ***
--
Root System Instance: Display_System::AI_adaptation::display.impl
--
 17 (system)..... root
 9146 (processor)... root.s_cdu_l_pn.cpm (RM)
 6662 (process)....... root.s_cdu_l_software.p_flight_manager
 5688 (thread)......... t_csci_status_1_hz_flight_manager (PERIODIC)
 5689 (thread)......... t_csci_status_5_hz_flight_manager (PERIODIC)
 5690 (thread)......... t_efp_data_5_hz_flight_manager (PERIODIC)
 5691 (thread)......... t_flight_plan_5_hz_flight_manager (PERIODIC)
 9615 (processor)... root.s_li_mfd_pn.cpm (RM)
 7062 (process)....... root.s_li_mfd_software.p_eicas_manager
 5842 (thread)......... t_cdu_disp_cmds_20_hz_eicas_manager (PERIODIC)
 5844 (thread)......... t_efp_data_10_hz_eicas_manager (PERIODIC)
 5845 (thread)......... t_efp_data_20_hz_eicas_manager (PERIODIC)
 7063 (process)....... root.s_li_mfd_software.p_mfd_display_manager
 5978 (thread)......... t_comm_alert_data_10_hz_mfd_display_manager
 7476 (process)....... root.s_ro_pp_software.p_dme_manager
 6305 (thread)......... t_comm_alert_data_10_hz_dme_manager (PERIODIC)
 9615 (processor)... root.s_ri_mfd_pn.cpm (RM)
 7062 (process)....... root.s_ri_mfd_software.p_eicas_manager
 5842 (thread)......... t_cdu_disp_cmds_20_hz_eicas_manager (PERIODIC)
 5844 (thread)......... t_efp_data_10_hz_eicas_manager (PERIODIC)
 5845 (thread)......... t_efp_data_20_hz_eicas_manager (PERIODIC)

AADL Inspector : Plugin Admin © Ellidiss Technologies - October 2013 - page 5

1.3 AADL Instance Model Metrics

After the complete instance model hierarchy has been displayed, the metrics plugin
shows the number of processor, process, thread and subprogram subcomponents that
has been found.

--
Number of Component Instances:
--
- Processors: 5
- Processes: 22
- Threads: 123
- Subprograms: 0
--

1.4 AADL Declarative Model Metrics

In a similar way, the number of each kind of AADL core and annexes statement that has
been detected while parsing the source declarative model is displayed in the report area
of AADL Inspector:

--
 *** DECLARATIVE MODEL ***
--
Number of Packages:..............................2
Number of Component Types:.....................642
Number of Component Implementations:...........101
Number of Subcomponents:.......................119
Number of Call Sequences:........................0
Number of Subprogram Calls:......................0
Number of Features:...........................2423
Number of Connections:........................1484
Number of Property Associations:..............1085
---- Prototypes ------------------------------------
Number of Prototypes:............................0
Number of Prototype Bindings:....................0
---- Flows ---

page 6 - AADL Inspector : Plugin Admin © Ellidiss Technologies - October 2013

Number of Flow Specifications:................1559
Number of Flow Implementations:...............1672
---- Modes ---
Number of Modes:.................................0
Number of Mode Transitions:......................0
---- Properties ------------------------------------
Number of Property Sets:.........................2
Number of Property Types:........................0
Number of Property Definitions:.................13
Number of Property Constants:....................0
---- Annexes ---------------------------------------
Number of Annexes:...............................0
---- Behavior Annex Items --------------------------
Number of Behavior Annex Variables:..............0
Number of Behavior Annex States:.................0
Number of Behavior Annex Transitions:............0
Number of Behavior Annex Conditions:.............0
Number of Behavior Annex Actions:................0
---- Error Annex v1 Items --------------------------
Number of Error Annex Properties:................0
---- Error Annex v2 Items --------------------------
Number of Error Type Definitions:................0
Number of Error Type Set Definitions:............0
Number of Error Type Mappings:...................0
Number of Error Type Transformations:............0
Number of Error Behavior Definitions:............0
Number of Error Event Definitions:...............0
Number of Error Behavior States:.................0
Number of Error Behavior Transitions:............0
Number of Error Propagation Definitions:.........0
Number of Error Source Definitions:..............0
Number of Error Sink Definitions:................0
Number of Error Path Definitions:................0
Number of Outgoing Error Propagations:...........0
Number of Error Detections:......................0
Number of Composite Error States:................0
Number of Connection Error Sources:..............0
Number of Propagation Point Definitions:.........0
Number of Propagation Point Connections:.........0
--

AADL Inspector : Plugin Admin © Ellidiss Technologies - October 2013 - page 7

Sales office:
TNI Europe Limited

Triad House
Mountbatten Court

Worall Street
Congleton
Cheshire

CW12 1AG
UK

info@ellidiss.com
+44 1260 291 449

Technical support :
Ellidiss Technologies
24 quai de la douane

29200 Brest
Brittany
France

aadl@ellidiss.fr
+33 298 451 870

page 8 - AADL Inspector: Metrics Plugin © Ellidiss Technologies - October 2013

www.ellidiss.com

