
MARZHIN 2.0
AADL Inspector
Plugin Manual

AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013 - page 1

Ellidiss Technologies
http://www.ellidiss.fr

aadl@ellidiss.fr

page 2- AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013

http://www.ellidiss.fr/

1 Multi-Agents simulation principles

Marzhin simulator that is embedded inside AADL Inspector is based on a “Multi-
Agents” simulation kernel. The main advantage of this approach is that each AADL
thread is implemented by an autonomous “Agent”, which behaviour directly follows the
semantics specified by the standard. Threads interactions are only described
architecturally and the complexity of the global scheduler is thus dramatically reduced.

The simulator operates as follow: each simulation cycle starts with an evaluation of the
priority of each thread according with the specified scheduling and concurrency control
protocols. Then all the threads are randomly awaken and react according to their current
state and specified dispatch protocol. Finally, one instruction belonging to one of the
eligible threads is executed, the new state of each thread is evaluated and a new cycle
can begin.

ADDL Inspector uses its own AADL import feature that is implemented with the LMP
technology developed by Ellidiss. This approach makes use of a generic AADL
syntactic analyser (aadlrev) that produces a list of Prolog predicates describing the
AADL specification to be analysed. An AADL to Marzhin model transformation
expressed by a set of Prolog rules is then used to generate the corresponding
appropriate XML input file for Marzhin. This model transformation is stored in the
marzhin.sbp file within the config directory of the product installation.

The AADL instance hierarchy is dynamically deduced from the AADL declarative
model defined by the current set of opened files. The root of the instance hierarchy is
automatically set to the first found System component declaration that contains an
Actual_Processor_Binding property association.

AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013 - page 3

2 Supported AADL Run-Time semantics
2.1 Processor

The current version of Marzhin only supports a single AADL Processor. The first
processor subcomponent that is found in the deduced instance hierarchy will be seen as
the one to simulate. Then, an Actual_Processor_Binding property value is searched
within the encompassing AADL System implementation in order to identify the
corresponding AADL Processes and the specified AADL Scheduling_Protocol
property value. Finally, all the AADL Thread, Subprogram and Data subcomponents, as
well as the corresponding AADL connections are analysed to initialize the simulation.

Supported Scheduling Protocols
Rate_Monotonic_Protocol (or RM) each thread must have a period
Deadline_Monotonic_Protocol (or DM) each thread must have a deadline
POSIX_1003_Highest_Priority_First_Proto
col (or HPF)

each thread must have a priority

Hierarchical_Offline_Protocol (or
ARINC653)

Each processor must define the
following properties:
ARINC653::module_major_frame
ARINC653::partition_slots
ARINC653::slots_allocation

In case of a rate monotonic scheduling protocol, thread priorities are set according to the
value specified in their standard AADL period property value. In that case, the highest
priority is given to thread having the shortest period.

In case of a deadline monotonic scheduling protocol, thread priorities are set according
to the value specified in their standard AADL deadline property value. In that case,
the highest priority is given to thread having the shortest deadline.

In case of a highest priority first protocol, thread priorities are set according to the value
specified in their standard AADL priority property value. Note that the internal
representation for priorities ordering is reversed: for the simulator, the highest priority
value is zero. When priority values are set in the AADL specification, there are known
by the simulator as “user priority” values.

page 4- AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013

In case of a hierarchical scheduler (ARINC 653), the AADL model must comply with
the ARINC 653 Annex to the standard. In particular, each partition must be defined by
the binding between a Virtual Processor and a Process. In addition, the
ARINC653::Module_Major_Frame, ARINC653::Partition_Slots and
ARINC653::Slots_Allocation must be specified with appropriate values.

The simulator also supports the AADL property Scheduler_Quantum which specifies
the maximum continuous amount of time that can be allocated to a given thread. In
practice, this property is only used by Marzhin to schedule multiple Background
threads with a round robin protocol. If no Scheduler_Quantum is specified, the highest
priority background thread runs until completion.

2.2 Thread

The AADL standard defines the possible states and state transitions of a thread during
run-time. The subset of this state automaton that is currently supported by Marzhin is
shown below:

AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013 - page 5

A thread is in state Suspended when it has finished all its computation and is waiting
for another dispatch. When it is dispatched, it reaches state Ready where it stays until it
is the highest priority thread, in which case it moves to state Running. In state Running,
the thread executes its instructions until it completes and goes back to state Suspended.
Meanwhile, its execution may be delayed by higher priority threads, in which case its
state becomes Ready, by unavailable resources, in which case its state becomes
Awaiting Resource, or by remote subprogram call execution, in which case its state
becomes Awaiting Return.

Thread dispatch is controlled by the AADL Dispatch_Protocol property value.
Marzhin supports all the dispatch protocols that are specified by the AADL standard.

Supported Dispatch Protocols
Periodic (default) dispatched periodically with specified period
Aperiodic dispatched by received events
Sporadic same as Aperiodic, with a minimum inter-arrival time
Timed same as Aperiodic, with a timeout

page 6- AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013

Suspended

Ready

Running

Awaiting
Resource

Awaiting
Return

Dispatch

Resume

Preempt

Block due to
Get Resource

Complete
Unblock due to
Release Resource

Call remote
subprogram

Return remote
subprogram

Hybrid disjunction of Periodic and Aperiodic dispatch conditions
Background dispatched when the processor is free

Threads are described by their standard AADL features, property values and annexes.
Marzhin only considers the following the ones specified below:

Supported Thread Features
Event Port used to dispatch Aperiodic, Sporadic, Timed and

Hybrid threads
Data Port local variable whose value can be accessed within a

Behavior Annex
Event Data Port combination of a Data Port and a Event Port
Provides Subprogram Access same as Event Port
Requires Subprogram Access used to express a remote subprogram call
Requires Data Access used to express a remote data access

Supported Thread Properties
Period required for Periodic, Sporadic, Timed and Hybrid

threads
Deadline required when the scheduling protocol is

Deadline_Monotonic_Protocol
Priority required when the scheduling protocol is

POSIX_1003_Highest_Priority_First_Protocol
Compute_Execution_Time required when no behaviour annex is specified

In addition, a few additional standard AADL properties can be used to refine the
behaviour of dispatching events:

Supported Feature Properties
Queue_Size maximum number of stored events or calls (default is 1)
Dequeue_Protocol may be OneItem or AllItems

When a thread is in state Running, it executes a sequence of instructions that can be
specified by a Behavior_Specification annex, otherwise default instructions are
deduced from existing features and properties. Supported instructions are described in a

AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013 - page 7

further section.

2.3 Shared Data

AADL data subcomponents can be shared between thread subcomponents thanks to
data access features and connections. If no Behavior_Specification annex subclause
is defined for the thread accessing a shared data subcomponent, the corresponding
critical section will be considered starting at Dispatch time and ending at Complete
time. However, it is possible to define a more precise critical section using appropriate
instructions in a Behavior_Specification subclause.

By default, no specific protocol is supported by the simulator for concurrent access to
shared data subcomponents. The only one that is supported at that time is
Priority_Ceiling_Protocol which requires to be specified in a proper
Concurrency_Control_Protocol property.

Supported Data Properties
Concurrency_Control_Protocol can be used to ensure mutually exclusive access

with: Priority_Ceiling_Protocol

2.4 Subprograms

A client-server communication can be expressed in AADL thanks to subprogram access
features. Client thread must have a requires subprogram access feature whereas the
server thread must have a provides subprogram access feature. Both features must
then be linked by a proper access connection. Note that local calls to subprogram
subcomponents within the same thread are not supported yet.

The behaviour of the called subprogram must be expressed within the corresponding
subprogram component classifier, under the form of a Behavior_Specification
annex subclause or a Compute_Execution_Time property value.

Supported Subprogram Properties
Compute_Execution_Time specify use of the processor for a given duration.

Required when no behaviour annex is specified

page 8- AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013

2.5 Instructions

Marzhin can process a limited set of execute instructions that may be explicitly
specified with standard AADL Behavior_Specification annex subclauses attached to
threads or subprogram component classifiers, or implicitly from existing features and
properties.

Supported Behavior Annex Actions
Computation specify use of the processor for a given duration
!< specify lock of a shared data (GetResource)
>! specify unlock of a shared data (ReleaseResource)
! specify send of an out event or call of a subprogram
:= assigns a value to an out data port
If specify a conditional action block
For specify a loop action block

Note that only integer values are currently supported for Data Ports.

2.6 Main shortcomings

In addition to the fact that the simulation can only deal with a single processor, this first
version of Marzhin suffers from three main restrictions.

The first limitation resides in that each instruction defines in a Behavior Annex
subclause has a fixed duration of one execution tick. If both a
compute_execution_time property and a Behavior Annex are provided, the latter will
be taken into accounts.

The second restriction is related to the time scale. As opposed to normal AADL
specifications, it is not possible to use different time units within the same AADL
specification to simulate. Time values are interpreted by their integer value, and a value
of one represents a single tick in the simulation trace.

Finally, as described above in this section, Marzhin does not support the entire set of

AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013 - page 9

AADL constructs yet. In particular, AADL modes and mode transitions are currently
not implemented.

3 Simulation output
When the simulator is running, it sends information about the current state of each
element of the architecture such as partitions (processes), threads, port and subprogram
queues, data sharing status. This information is refreshed at each simulation step (tick)
and displayed in the simulation area. It can also be stored in a file when the appropriate
control buttons are used.

3.1 Chronograms

page 10- AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013

Identifiers Scrolling time
lines

Simulator toolbar Current Processor

The chronogram represents the activity of the current processor. In case of a multi-
processors system, the processor to be analysed can be specified in the simulator control
panel. Each chronogram is composed of a separate time line for each process, thread,
and shared data.

In case of a multi-partitions processor (ARINC 653), the time slots allocated to each
process is represented by a discontinuous line. Otherwise, the single process is shown as
a continuous line. Possible states for processes are:

Active
Inactive

Each thread is identified by the name of the process followed by the thread
subcomponent full name (i.e. its name in the instance hierarchy). Thread state is
represented by a symbol, as specified in the table below:

Unknown
Running
Ready
Awaiting Resource
Awaiting Return
Suspended

Each shared data subcomponent is identified by the name of the processor followed by
the data subcomponent full name. Data sharing state is represented by a symbol, as
specified in the table below:

Busy
Free

Each thread feature is identified by the full name of the thread subcomponent followed
by the name of the feature. Feature state is represented by a symbol, as specified in the
table below:

Get_Count on In Event (Data) Port 1..9 or + if more than 9

AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013 - page 11

Get_Count on Provides Subprogram Access 1..9 or + if more than 9

The graphical properties can be controlled to best fit screen width and identifiers length.
This can be done thanks to the Simulator Properties button and the scrolling time lines:

3.2 Simulator toolbar and control panel

The simulator toolbar is composed of the following buttons:

start the simulator
pause the simulator
stop the simulator
open the simulator control panel

The simulator control panel can be used to send commands to the simulator. It is also
possible to control the simulator from the Tools menu. Depending on the status of the
simulation, the following actions are proposed:

start recording the simulation trace
stop recording the simulation trace
go to the current tick
refresh the simulation input file
provide help about the simulation trace

When the General tab of the simulator control panel is selected, it allows for selecting
the processor to analyse, the simulation speed and the time line zoom factor:

page 12- AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013

Note that the speed factor and the zoom factor values can be customized in the
AADLConfig.ini file.

For each partition (process) that is bound on to the current processor, another tab is
added to the simulator control panel. This tab can be used to filter the information to be
displayed on the chronogram.

AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013 - page 13

To restrict the number of threads or shared data to be displayed, select the Apply filter
radio button and unselect the components to be removed. It is required to validate the
changes by clicking on the Apply button.

page 14- AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013

AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013 - page 15

Sales office:
TNI Europe Limited

Triad House
Mountbatten Court

Worall Street
Congleton
Cheshire

CW12 1AG
UK

info@ellidiss.com
+44 1260 291 44

Technical support :
Ellidiss Technologies
24 quai de la douane

29200 Brest
Brittany
France

aadl@ellidiss.fr
+33 298 451 870

page 16- AADL Inspector :Marzhin Plugin © Ellidiss Technologies - October 2013

www.ellidiss.com

