
AADL Inspector 1.2
AADL Legality Rules

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 1

Ellidiss Technologies
http://www.ellidiss.fr

aadl@ellidiss.fr

page 2 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

http://www.ellidiss.fr/

1 Static Rules Checkers

AADL Inspector comes with a set of pre-defined static rules checkers. Their goal is to
cover the various semantic rules specified by the AADL standard. In the standard
document SAE-AS5506B, they are classified into three categories:

- naming rules: specify the appropriate usage of identifiers.
- legality rules: express semantic restrictions on syntactically valid text.
- consistency rules: define constraints related to the instance model.

This document describes the AADL Inspector Legality Rules checker.

These standard legality rules are not fully implemented in the current version of the tool
and the following sub-sections provide details about the actual AADL rules coverage.
For easier traceability, precise references to the standard document are given for each
implemented rule.

2 AADL subset
Legality rule identifiers are composed the letter L followed by an integer number.
Numbering restarts at the beginning of each section in the AADL standard document.
Rules that are currently implemented refer to the following sections of the document
SAE-AS5506B:

- Packages: section 4.2
- Component Types: section 4.3
- Component Implementations: section 4.4

2.1 Packages (AS5506B-4.2)

Checked legality rules for AADL packages are L1, L2 and L3.

2.2 Component Types (AS5506B-4.3)

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 3

Checked legality rule for AADL component types is L1, L3, L4 and L6. The other rules
will be implemented in the next releases of the product.

2.3 Component Implementations (AS5506B-4.4)

Checked legality rule for AADL component implementations is L1, L3, L4, L5, L6,
L7, L8 and L9. The other rules will be implemented in the next releases of the product.

3 Test Cases
3.1 Packages (AS5506B-4.2)

L1 The defining package name following the reserved word end must be identical to
the defining package name following the reserved word package.

PACKAGE package1
PUBLIC

END package2;

WARNING line 9: begin and end identifiers should match for Package package1 (ref.
AADL v2 - 4.2 - L1)

L2 For each package there may be at most one public section declaration and one
private section declaration. These two sections may be declared in a single package
declaration or in two separate package declarations.

Test case 1:
PACKAGE package1
PUBLIC

END package1;

PACKAGE package1
PUBLIC

END package1;

page 4 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

WARNING lines 7 and 12: there should be only one Public section for Package
package1 (ref. AADL v2 - 4.2 - L2)

Test case 2:
PACKAGE package1
PRIVATE

END package1;

PACKAGE package1
PRIVATE

END package1;

WARNING lines 12 and 7: there should be only one Private section for Package
package1 (ref. AADL v2 - 4.2 - L2)

L3 A component implementation may be declared in both the public and private part of
a package. In that case the declaration in the public part may only contain a
properties subclause and a modes subclause.

PACKAGE P1
PUBLIC

THREAD T1 END T1;

THREAD T2 END T2;

THREAD IMPLEMENTATION T2.I
END T2.I;

PROCESS P1
END P1;

PROCESS IMPLEMENTATION P1.I
SUBCOMPONENTS
 X : THREAD T2.I;
PROPERTIES
 Source_Code_Size => 100 KBytes;
END P1.I;

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 5

PRIVATE

THREAD IMPLEMENTATION T1.I
END T1.I;

PROCESS IMPLEMENTATION P1.I
SUBCOMPONENTS
 Y : THREAD T1.I;
END P1.I;

END P1;

ERROR line 21: There should be only Properties and Modes subclauses in the public
part of component implementation P1.I (ref. AADL v2 - 4.2 - L3)

L4 The component category in an alias declaration must match the category of the
referenced component type.

PACKAGE P1
PUBLIC

PROCESS T
END T;

END P1;

PACKAGE P2
PUBLIC
WITH P1;

T RENAMES THREAD P1::T;

END P2;

ERROR lines 10 and 18 Component categories do not match (ref. AADL v2 - 4.2 - L4)

3.2 Component types (AS5506B-4.3)

page 6 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

L1 The defining identifier following the reserved word end must be identical to the
defining identifier that appears after the component category reserved word.

PACKAGE P1
PUBLIC

THREAD T1
END T;

END P1;

WARNING line 10: begin and end identifiers should match for Component Type T1 (ref.
AADL v2 - 4.3 - L1)

L2 The prototypes, features, flows, modes, and properties subclauses are optional. If
a subclause is present but empty, then the reserved word none followed by a semi-
colon must be present.

This rule is checked by the AADL syntactic analyser (aadlrev).

L3 The category of the component type being extended must match the category of the
extending component type, i.e., they must be identical or the category being
extended must be abstract.

PACKAGE P1
PUBLIC

THREAD TH1
END TH1;

PROCESS PR1 EXTENDS TH1
END PR1;

END P1;

ERROR lines 13 and 10: the category of PR1 must match the category of TH1 (ref.
AADL v2 - 4.3 - L3)

L4 The classifier being extended in a component type extension may include prototype
bindings. There must be at most one prototype binding for each prototype, i.e., once

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 7

bound a prototype binding cannot be overwritten by a new binding in a component
type extension.

PACKAGE P1
PUBLIC

DATA D
END D;

SUBPROGRAM S
END S;

THREAD T1
PROTOTYPES
 p1 : DATA;
 p2 : SUBPROGRAM;
END T1;

THREAD T2 EXTENDS T1
(p1 => DATA D,
 p2 => SUBPROGRAM S)
END T2;

THREAD T3 EXTENDS T2
(p1 => DATA D)
END T3;

END P1;

PACKAGE P2
PUBLIC
WITH P1;

T4 RENAMES THREAD P1::T2;
D RENAMES DATA P1::D;
S RENAMES SUBPROGRAM P1::S;

THREAD T5 EXTENDS T4
END T5;

THREAD T6 EXTENDS T5
(p1 => DATA D,
 p2 => SUBPROGRAM S)

page 8 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

END T6;

END P2;

ERROR lines 27 and 22: prototype p1 is already bound in component type T2 (ref.
AADL v2 - 4.3 - L4)
ERROR lines 44 and 22: prototype p1 is already bound in component type T2 (ref.
AADL v2 - 4.3 - L4)
ERROR lines 45 and 23: prototype p2 is already bound in component type T2 (ref.
AADL v2 - 4.3 - L4)

L5 A component type must not contain both a requires_modes_subclause and a
modes_subclause.

This rule is checked by the AADL syntactic analyser (aadlrev).

L6 If the extended component type and an ancestor component type in the extends
hierachy contain modes subclauses, they must both be
requires_modes_subclause or modes_subclause.

PACKAGE P1
PUBLIC

SYSTEM S1
MODES
 M1 : INITIAL MODE;
 M2 : MODE;
END S1;

SYSTEM S2 EXTENDS S1
REQUIRES MODES
 M3 : MODE;
 M4 : MODE;
END S2;

END P1;

PACKAGE P2
PUBLIC
WITH P1;

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 9

S RENAMES SYSTEM P1::S2;

SYSTEM S3 EXTENDS S
REQUIRES MODES
 M5 : MODE;
END S3;

END P2;

ERROR lines 17 and 11: component type S2 and component type S1 should have both
modes or requires modes subclauses (ref. AADL v2 - 4.3 - L6)
ERROR lines 31 and 11: component type S3 and component type S1 should have both
modes or requires modes subclauses (ref. AADL v2 - 4.3 - L6)

3.3 Component implementations (AS5506B-4.4)

L1 The pair of identifiers separated by a dot (“.”) following the reserved word end must
be identical to the pair of identifiers following the reserved word implementation.

Test case 1:
PACKAGE P1
PUBLIC

PROCESS P1
END P1;

PROCESS IMPLEMENTATION P1.I
END P1.J;

PROCESS P2
END P2;

PROCESS IMPLEMENTATION P2.I
END P1.I;

END P1;

WARNING line 13: begin and end identifiers should match for Component
Implementation P1.I (ref. AADL v2 - 4.4 - L1)

page 10 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

WARNING line 19: begin and end identifiers should match for Component
Implementation P2.I (ref. AADL v2 - 4.4 - L1)

L2 The prototypes, subcomponents, connections, calls, flows, modes, and properties
subclauses are optional. If they are present and the set of feature or required
subcomponent declarations or property associations is empty, none followed by a
semi-colon must be present in that subclause.

This rule is checked by the AADL syntactic analyser (aadlrev).

L3 The category of the component implementation must be identical to the category of
the component type for which the component implementation is declared.

PACKAGE P1
PUBLIC

THREAD T
END T;

SUBPROGRAM IMPLEMENTATION T.I
END T.I;

END P1;

PACKAGE P2
PUBLIC
WITH P1;

T RENAMES THREAD P1::T;

SUBPROGRAM IMPLEMENTATION T.J
END T.J;

END P2;

ERROR lines 10 and 13: component categories must be identical for component type T
and its implementation T.I (ref. AADL v2 - 4.4 - L3)
ERROR lines 21 and 24: component categories must be identical for component type T
and its implementation T.J (ref. AADL v2 - 4.4 - L3)

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 11

L4 If the component implementation extends another component implementation, the
category of both must match, i.e., they must be identical or the category being
extended must be abstract.

PACKAGE P1
PUBLIC

ABSTRACT D
END D;

PROCESS E
END E;

SYSTEM F
END F;

ABSTRACT IMPLEMENTATION D.I
END D.I;

PROCESS IMPLEMENTATION E.I EXTENDS D.I
END E.I;

SYSTEM IMPLEMENTATION F.J EXTENDS E.I
END F.J;

END P1;

PACKAGE P2
PUBLIC
WITH P1;

H RENAMES SYSTEM P1::F;

DATA G
END G;

DATA IMPLEMENTATION G.K EXTENDS H.J
END G.K;

END P2;

ERROR lines 21 and 24: component categories must be identical for component

page 12 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

implementations F.J and E.I (ref. AADL v2 - 4.4 - L4)
ERROR lines 24 and 38: component categories must be identical for component
implementations G.K and F.J (ref. AADL v2 - 4.4 - L4)

L5 The classifier being extended in a component implementation extension may include
prototype bindings. There must be at most one prototype binding for each unbound
prototype.

PACKAGE P1
PUBLIC

DATA D END D;
SUBPROGRAM S END S;
THREAD T1 END T1;
THREAD T2 EXTENDS T1 END T2;
THREAD T3 EXTENDS T2 END T3;

THREAD IMPLEMENTATION T1.i
PROTOTYPES
 p1 : DATA;
 p2 : SUBPROGRAM;
END T1.i;

THREAD IMPLEMENTATION T2.i EXTENDS T1.i
(p1 => DATA D,
 p2 => SUBPROGRAM S)
END T2.i;

THREAD IMPLEMENTATION T3.i EXTENDS T2.i
(p1 => DATA D)
END T3.i;

END P1;

PACKAGE P2
PUBLIC
WITH P1;

T4 RENAMES THREAD P1::T2;
D RENAMES DATA P1::D;
S RENAMES SUBPROGRAM P1::S;

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 13

THREAD T5 EXTENDS T4 END T5;

THREAD IMPLEMENTATION T5.i EXTENDS T4.i
END T5.i;

THREAD T6 EXTENDS T5 END T6;

THREAD IMPLEMENTATION T6.i EXTENDS T5.i
(p1 => DATA D,
 p2 => SUBPROGRAM S)
END T6.i;

END P2;

ERROR lines 27 and 22: prototype p1 is already bound in component implementation
T2.i (ref. AADL v2 - 4.4 - L5)
ERROR lines 48 and 22: prototype p1 is already bound in component implementation
T2.i (ref. AADL v2 - 4.4 - L5)
ERROR lines 49 and 23: prototype p2 is already bound in component implementation
T2.i (ref. AADL v2 - 4.4 - L5)

L6 If the component type of the component implementation contains a
requires_modes_subclause then the component implementation must not
contain any modes subclause.

PACKAGE P1
PUBLIC

SYSTEM S1
FEATURES
 E : IN EVENT PORT;
REQUIRES MODES
 M0 : INITIAL MODE;
END S1;

SYSTEM IMPLEMENTATION S1.I
MODES
 M1 : MODE;
 T1 : M0 -[E]-> M1;
END S1.I;

SYSTEM S2 EXTENDS S1

page 14 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

END S2;

SYSTEM IMPLEMENTATION S2.I
MODES
 M2 : MODE;
 T2 : M0 -[E]-> M2;
END S2.I;

END P1;

PACKAGE P2
PUBLIC
WITH P1;

S RENAMES SYSTEM P1::S2;

SYSTEM S3 EXTENDS S
END S3;

SYSTEM IMPLEMENTATION S3.I
MODES
 M3 : MODE;
 T3 : M0 -[E]-> M3;
END S3.I;

END P2;

ERROR lines 18 and 13: component implementation S1.I must not contain any modes
subclause (ref. AADL v2 - 4.4 - L6)
ERROR lines 27 and 13: component implementation S2.I must not contain any modes
subclause (ref. AADL v2 - 4.4 - L6)
ERROR lines 44 and 13: component implementation S3.I must not contain any modes
subclause (ref. AADL v2 - 4.4 - L6)

L7 If modes are declared in the component type, then modes cannot be declared in
component implementations.

PACKAGE P1
PUBLIC

SYSTEM S1
FEATURES

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 15

 E : IN EVENT PORT;
MODES
 M0 : INITIAL MODE;
 M1 : MODE;
 T1 : M0 -[E]-> M1;
END S1;

SYSTEM IMPLEMENTATION S1.I
MODES
 M2 : MODE;
 T2 : M0 -[E]-> M2;
END S1.I;

SYSTEM S2 EXTENDS S1
END S2;

SYSTEM IMPLEMENTATION S2.I EXTENDS S1.I
MODES
 M3 : MODE;
 T3 : M0 -[E]-> M3;
END S2.I;

END P1;

PACKAGE P2
PUBLIC
WITH P1;

S RENAMES SYSTEM P1::S2;

SYSTEM S3 EXTENDS S
END S3;

SYSTEM IMPLEMENTATION S3.I EXTENDS S.I
MODES
 M4 : MODE;
 T4 : M0 -[E]-> M4;
END S3.I;

END P2;

ERROR lines 13 and 20 modes cannot be declared in both component type S1 and
component implementation S1.I (ref. AADL v2 - 4.4 - L7)

page 16 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

ERROR lines 13 and 29 modes cannot be declared in both component type S2 and
component implementation S2.I (ref. AADL v2 - 4.4 - L7)
ERROR lines 13 and 46 modes cannot be declared in both component type S3 and
component implementation S3.I (ref. AADL v2 - 4.4 - L7)

L8 If modes or mode transitions are declared in the component type, then mode
transitions can be added in the component implementation. These mode transitions
may refer to event or event data ports of the component type and of
subcomponents.

This rule is not checked.

L9 The category of a subcomponent being refined must match the category of the
refining subcomponent declaration, i.e., they must be identical or the category
being refined must be abstract.

PACKAGE P1
PUBLIC

DATA D END D;
THREAD T END T;
ABSTRACT A END A;
SYSTEM S1 END S1;

SYSTEM IMPLEMENTATION S1.I
SUBCOMPONENTS
 X : DATA D;
 Y : ABSTRACT A;
END S1.I;

DATA IMPLEMENTATION D.I
END D.I;

THREAD IMPLEMENTATION T.I
END T.I;

SYSTEM IMPLEMENTATION S1.J EXTENDS S1.I
SUBCOMPONENTS
 X : REFINED TO THREAD T.I;
 Y : REFINED TO THREAD T;

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 17

END S1.J;

SYSTEM S2 EXTENDS S1
END S2;

SYSTEM IMPLEMENTATION S2.I EXTENDS S1.I
SUBCOMPONENTS
 X : REFINED TO THREAD T.I;
 Y : REFINED TO THREAD T;
END S2.I;

END P1;

PACKAGE P2
PUBLIC
WITH P1;

RENAMES P1::ALL;

SYSTEM IMPLEMENTATION S1.K EXTENDS S1.I
SUBCOMPONENTS
 X : REFINED TO THREAD T.I;
 Y : REFINED TO THREAD T;
END S1.K;

SYSTEM S3 EXTENDS S1
END S3;

SYSTEM IMPLEMENTATION S3.I EXTENDS S1.I
SUBCOMPONENTS
 X : REFINED TO THREAD T.I;
 Y : REFINED TO THREAD T;
END S3.I;

END P2;

ERROR lines 28 and 16 Categories do not match (ref. AADL v2 - 4.4 - L9)
ERROR lines 37 and 16 Categories do not match (ref. AADL v2 - 4.4 - L9)
ERROR lines 51 and 16 Categories do not match (ref. AADL v2 - 4.4 - L9)
ERROR lines 60 and 16 Categories do not match (ref. AADL v2 - 4.4 - L9)

L10 For all other refinement declarations the categories must match (see the respective
sections).

page 18 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

This rule is not checked.

L11 Component implementations and component implementation extensions must not
refine prototypes declared in a component type.

PACKAGE P1
PUBLIC

DATA D END D;
SUBPROGRAM S END S;
THREAD T2 EXTENDS T1 END T2;
THREAD T3 END T3;

THREAD T1
PROTOTYPES
 p1 : DATA;
END T1;

THREAD IMPLEMENTATION T1.I
PROTOTYPES
 p2 : SUBPROGRAM;
END T1.I;

THREAD IMPLEMENTATION T2.I EXTENDS T1.I
PROTOTYPES
 p1 : REFINED TO DATA D;
 p2 : REFINED TO SUBPROGRAM S;
END T2.I;

END P1;

PACKAGE P2
PUBLIC
WITH P1;

T4 RENAMES THREAD P1::T2;
D RENAMES DATA P1::D;
S RENAMES SUBPROGRAM P1::S;

THREAD T5 EXTENDS T4 END T5;

THREAD IMPLEMENTATION T5.I EXTENDS T4.I

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 19

END T5.I;

THREAD T6 EXTENDS T5 END T6;

THREAD IMPLEMENTATION T6.I EXTENDS T5.I
PROTOTYPES
 p1 : REFINED TO DATA D;
 p2 : REFINED TO SUBPROGRAM S;
END T6.I;

END P2;

ERROR lines 26 and 16: prototype p1 cannot be refined in component implementation
T2.I (ref. AADL v2 - 4.4 - L11)
ERROR lines 49 and 16: prototype p1 cannot be refined in component implementation
T6.I (ref. AADL v2 - 4.4 - L11)

page 20 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 21

page 22 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013 - page 23

Sales office:
TNI Europe Limited

Triad House
Mountbatten Court

Worall Street
Congleton
Cheshire

CW12 1AG
UK

info@ellidiss.com
+44 1260 291 449

Technical support :
Ellidiss Technologies
24 quai de la douane

29200 Brest
Brittany
France

aadl@ellidiss.fr
+33 298 451 870

page 24 - AADL Inspector : Legality Rules © Ellidiss Technologies - October 2013

www.ellidiss.com

