AADL Inspector 1.8

User
Manual

WA Al WCQUALULS

END deadlock:;

(= E e (A

DATA D
9 |-- deadlock occurs if concurrency control protocol is removed
10 PROPERTIES
11 Concurre

=> Priority Ceiling Protocol:;
NTATION dead®

13 ;

148Y i

155 PROCESS G \
16] . ROCESS) . ;
o 38l : PRC PoXs

IES
1 Proces
dlock.others;

=" [L‘ (cpul)) applies to proce

nic_Protocol);

27 PROCESS P 9@

28 END P;

29

30 PROCESS IMPLEMENTATION P.I

31 SUBCOMPONENTS
32 tl : THREAD T.I;
33/ t2 : THREAD T.I;

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 1

' D:/Projets/AADL

g

File Edit Tools 7

agm s @@ =
Show root | control_system 3 Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation
B Projects ~ |21768[PACKAGE ControlSystem Pkg |
[Description 21770WITH ControlSystenTypes: Deadline Computed Max Cheddar Max Marzhin Avg Cheddar Avg Marzl *
; 21771
%% pattems.aic S1772|5v5TEM Controlsystem (2 [Jactuators.act_cpu 15.00 % 2679%
[] Description 21773/5NNEY LAMP (s4) [Factuators.act_sw
dataflow.aic 21774|/ 2 iact_driver 100 15.00000
s messages.aic 21775| write('Composite Assurance Case Assessment:'), 1 [= ([Jdashboard.dsbd_cpu 15.00 % 100.00 %
shared_data.aic 21776| getFlowsLatency, = [7dashboard.dsbd_sw
client_server.aic 21777| checkSecurityRules
- 21778)/ eaboard_driver 200 2000000 20 20 20,00 2000
¥ aninc633.aic 51778)0ay; creen_driver 100 10.00000 10 10 1000 1000
scheduling aic i
[21780(END ControlSystem; 19.50 % 13.90%
dispatching.sic iy
irtualLink
caleulater.aic 21782|SYSTEM IMPLEMENTATION ControlSystem.others
canbus.zic 21783|SUBCOMPONENTS 200000 2 200 19
coffec.aic 21784| Sensors : SYSTEM Sensors.others: < T : w5
display_system.aic 21785 HNetwork : BUS Network;
. flight_deck_door.aic 21786 Controlunit : SYSTEM Controlunit.others; e 5= 5
mars.pathfinderaic 21787 Actuators : SYSTEM Actuators.others; . -
ulticoreaic 21788 Dashboard : SYSTEM Dashboard.others: 25O g 10 15 20 25 30 35 40 454®0 55 60 65 70 75 80 8 00 . |
] 21785|CONNECTIONS - |
» pacemakeraic 21790| cnz4 : PORT Sensors.status -> Controlunit.senso: L sensors.acq_cpu 2
redundancy.aic 21751| cnxS : PORT Sensors.measures —> Controlunit.mea: Ehy{#f sensors.acq_sw
regulator.aic 21792 { Timing => Immediate; }; acq_driver - | & % B
.+ satellite.aic 21793| cnx3 : PORT Controlunit.sensors_settings -> Senm: = ('Dntmlunitml_q 7
code_generation.aic 21794| cnzé : PORT Controlunit.actuators_settings —» A
end.to_end. flow.sic 21785 { Timing => Immediate; }: (=] controlunit.ctr
‘am;te;am;‘ss‘al(21796 cnx2 : PORT Controlunit.monitoring -> Dashboard centroller |
21797 enx7 : PORT ACTUaTOIS.STatus —> CORTrolunit.act: rocessin
. wheel_braking_system.aic 21798| cnxl : PORT Dashboard.settings -> Controlunit.se mupatmmg: "
o safety_security.sic 217¢%| cnx9 : BUS ACCESS Network -> Sensors.Network; L actee %])
Image 21500| cnxll : BUS ACCESS Network -> Controlunit.Netwo: B3] actuators.act_sw [
[Description 21801| cnxl0 : BUS ACCESS Network -> Actuators.Network act_driver P 50 |
F=) control_system.aadl 21802| cnxg : BUS ACCESS Metwork -> Dashboard.Network: dashboard.dsbd_c I l
& control_system _types.aadl 21303 |FLCWS B 27 dashboard.dsbd 0 L
& Scenariol.asc 21304| £1 : END TO END FLOW Sensors.fl —> cnx5 —> Cont: veaboerd. driv ‘ 25 75 iy
ErES Environment 21805 |PROPERTIES L ! — |
& Standard.aic 21806| Actual_Connection Binding => (rsfersnce (Network, screen_driver DDD————————————— | B |
earina i 21807|ANNEX EMV2 (**)) network o
. 21808| use behavior errorlibrary::failstop: ., VirtualLink 0 100 L |
Cheddar.aic 21808| composite error behavior) |
H—— el n) 3 |
< > L1 v
|

Simulator Stop

Pierre Dissaux

Ellidiss Technologies
http://www.ellidiss.com/
aadl@ellidiss.com

page 2 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

http://www.ellidiss.com/

Contents

1
2

4

Ty igoTo (1T 1 To] o EOO SRRSO 4
LT 0] (IR v U T RSSO 6
2.1 INSEAITALION ...ttt ettt et b bt R ettt b et b et bt enes 6
2.2 DiIStFIDULION CONTENTS ... ettt ettt sttt s e et st e ebeebeebeeseen b e neesbe st e 6
2.2.1. BiN SUDGITECIOMES ...ttt bbbttt bbb e e et et seeneas 6
2.2.2. CONFIG SUDTIMECIONY ...ttt bbbttt 8
2.2.3. EXAMPIES SUDAITECIONY ...ttt bbbttt 10
2.2.4., ENVIronment SUDAIFECTONYcuiiiiiiiieic e 12
2.2.5. INCIUAE SUDITECIONY ...ttt bbbt 12
2.2.6. [0 To 0 Lo [T =Tod (o] Y/ PSSP 12
2.2.7. (0o T4 Ta o I8 [T aT=0 o]0 1o S 12
2.3 LIRS .ttt bbb bR R AR E b E R Rt R £ E £ e e et Rt R e bt b e et e b e b e 14
2.3.1. NOUE [OCKEA TICENSES ...ttt bbbt e b b nne s 14
2.3.2. e L0 LA a0 L To=T TSP 15
2.3.3. Lot T4 o] £SO SSRPTTN 15
GrapPhiCal INTEITACE ...ttt bbb et b bbb bbbttt b e bt b 16
3.1 Main Menu and DULEON DAFooiiiice ettt nre s 16
3.1.1. FRIE MBNU L .ottt te st te e st e e et e be s teebesteaneereeeeneenre s 16
3.1.2. BT MEBNU oottt ettt R e Rt et et et teebeeReeneer e et e tenre s 21
3.1.3. LI T0] L3820 1-T 0T PSSR 32
3.1.4. L (=1 T 0 0T 0 S SS 37
3.1.5. BULEON DA ...ttt bbbttt b et b b bbbt bt e n e nre s 37
3.2 (0] B o] (01T SRS 38
3.2.1. Project file CONTEXTUAL MENUccuiiiieece e e e re e nae e sneenreesreeas 39
3.2.2. AADL file CONTEXTUAT MENU ..ottt 40
3.2.3. Scenario file CONEXTUAL MENUooviiiiieee b 40
3.2.4. Description file CONEXTUAT MENU........ouiiiiiiiiieee e 40
3.2.5. Image file CONTEXTURL MENUouiiiiiiii bbb 41
3.3 Lo TU Lot LT =T RS 41
3.3.1L. EditiNg AADL FIlES ... bbb 43
3.3.2. Editing Simulator SCENANIO FIlES.........oiiiiiie e 43
3.4 PrOCESSING TO0IS BIBAcueivieeiiitiiteet bbb bbbtk b bbbttt b e 44
3.4.1.) LT AN T L] USSR 45
3.4.2. LAMP LaD ...ttt ettt bbbt n s 46
3.4.3. TIMING ANAIYSIS ..o et e bt e st e be e be et e e ee e e e s e e aaeenreereenes 52
3.4.4. Safety & SECUILY ANAIYSISviiiiiieiie ittt e s et et e e be e beeaeannes 54
3.4.5. (OfaTo S €= 1T LT DUV PR PP SO TTT PP 56
3.4.6. Do Lol €= 1T - £ [PPSR 56
3.5 Y140 LT] T 14T U 57
3.5.1. SIMUIALOT ACION DULLONSevieceieeeiee et reene e et e seesrenes 57
3.5.2. (=] T I L PSS 58
3.5.3. TRIEA BCTIVITY ...ttt bbbttt bbbt b et b e 58
3.5.4. POM PIODE .. bbbttt 58
3.5.5. SIMUIALION TIMEIINES ... et bbbt e e 59
3.5.6. Navigation t0 the AADL SOUICE COUEecuiriirietiitesteeieeieee sttt sttt st sbe st eseeseeseesbesaens 59
3.6 Status Dar ANd EFTOF REPOIT.........oiiiiieiteiti ettt et b ettt b e b e bbb ene e e sbe b e 60
Used Key WOIdS @n0 ACIONYIMISoieiiiieieeiterieateeteesee st sesiestesseeseeseessesbesaesbesseaseaseessesbesbesbesseeneesnenseseeseens 61

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 3

1 Introduction

AADL Inspector is a model analysis framework for critical and software intensive systems. It
focuses on design verification activities of the development life cycle and addresses a variety
of topics including static rules checking, timing, safety and security analysis, as well as
combination of these in customizable assurance cases. Verification tools are either built-in or
user defined thanks to the powerful LMP (Logic Model Processing) technology and the AADL
LAMP annex. The tool operates at architecture model level and does not require the final
source code to be available. AADL Inspector can process the following kinds of architectures
with appropriate abstractions:

- Multi-threaded software (running on a RTOS: Real-Time Operating System).
- Multi-partition software (TSP: Time and Space Partitioning).

- Multi-processor distributed software with network communication.

- Multi-core architectures with static tasks allocation.

In order to be able to perform advanced model processing in a homogeneous way and to reduce
the effort of developing new analysis plug-ins, AADL Inspector operates on a common
language that can be either the original input or the intermediate result of a prior foreign model
transformation. The common language that has been chosen is the Architecture Analysis and
Design Language (AADL) declarative model. The formal definition of the AADL language
can be found in the SAE AS-5506 document that is made available on the official site
https://www.sae.org/standards/content/as5506¢c. More information about this language is
available on the Ellidiss wiki page: https://www.ellidiss.fr/public/wiki/AADL, and the
OpenAADL web site www.openaadl.org.

AADL Inspector is packaged in a standalone distribution that minimizes installation and
maintenance effort to ease the everyday use of the product on standard personal computers or
network servers. The product is available for both Windows and Linux platforms.

The goal of AADL Inspector is to encompass a variety of specialized tools to process a
complete AADL specification composed of a set of text files. These files can be created within
AADL Inspector itself, loaded from pre-existing local or remote libraries or automatically
generated by an import wizard. AADL files can also be organized into hierarchical projects to
facilitate the management of large models and the reuse of libraries of components. The
processing tools can be used to analyse various facets of the architecture or to offer code
generation and documentation capabilities. These processing tools are organized in a modular
and extendable way so that they can be customized, and additional ones can be easily included.

The standard installation of AADL Inspector 1.8 implements the following model processing
tools:

- Static Analysis of AADL models, using two different frameworks: LMP and Ocarina.
This covers parsing of AADL declarative models, verification of standard AADL
semantic rules (Legality, Consistency and Naming rules) and building the deployed
instance model that is required for most purposes. Customized static rules can be added
to fit corporate or project specific usage.

- LAMP Lab. LAMP (Logical AADL Model Processing) is a powerful and flexible
solution to incorporate online assurance cases within AADL specifications. It takes the
form of AADL Annex subclauses whose sublanguage is standard Prolog. The LAMP

page 4 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

https://www.sae.org/standards/content/as5506c
https://www.ellidiss.fr/public/wiki/AADL
http://www.openaadl.org/

verification engine checks all the user specified verification goals, supports the
definition of reusable libraries of rules and can process analysis results of the Timing
Analysis plugin, such as computed response times and simulation events.

- Timing Analysis of deployed AADL instance models using three complementary
approaches: Scheduling theoretical tests and static simulation over the hyper-period
with the Cheddar analysis kernel, and dynamic simulation with the event based
Marzhin simulator. Moreover, response time statistics are provided in a table and
Scheduling Aware Flow Latency Analysis (SAFLA) is also proposed there.

- Safety & Security Analysis. This plugin proposes transformations from AADL
architectures enriched with Error Model annexes into various input models for existing
safety analysis tools. Currently, proposed bridger uses the OpenPSA language to
connect with the Arbre Analyste Fault Tree Analysis (FTA) tool.

- Code Generation using the Ocarina tool and the PolyORB-HI-Ada or PolyORB-HI-
C middlewares.

- Documentation generation to keep track of timing analysis results.

The current AADL workspace on which the processing tools apply, can managed thanks to a
set of advanced functions such as:

- Creating hierarchical projects to facilitate teamwork and reuse of libraries.

- Using predefined AADL model templates.

- Importing foreign models (SysML, UML MARTE, Capella, FACE?) into AADL.
- Loading AADL models from remote git repositories.

- Specifying simulation scenarios.

- ldentifying the current root of the system instance hierarchy.

- Defining the thread priorities according to predefined ordering algorithms.

- Binding threads to available processors with predefined allocation algorithms.

- Modifying the main thread real-time properties in a spreadsheet.

- Editing textual AADL files and applying text formatting rules (autoformat).

- Converting older versions of source text into the most recent version of AADL.
- Writing your own online model processing tools with the LAMP environment

The current version of AADL Inspector supports the following standard definitions. Note that
most processing tools only comply with a subset of the standard.

- AADL Core v2.2 (AS 5506C)

- AADL Behaviour Annex v2.0 (AS 55606/3)

- AADL Error Model Annex v2.0 (AS 5506/1A)

- AADL Data Model Annex (AS 5506/2)

- AADL ARINC 653 Annex v2.0 (AS 5506/1A)

- AADL Annex for the FACE Technical Standard Edition 3.0 (AS 5506/4)

1 FACE is a trademark of The Open Group

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 5

2 Before starting

2.1 Installation
Installation of the product only requires the following easy actions:

- Get a copy of the installation package for the desired platform (Windows, or Linux 64
bits) from the Ellidiss website: http://www.ellidiss.com/

- Run the installation program on Windows or uncompress and expand the archive file
on Linux.

- Launch the AADLInspector executable file located in the bin subdirectory of the
installation directory, or the corresponding desktop shortcut on Windows.

Downloaded packages usually come with a temporary trial license that can be used free of
charge. If you purchased the product or this temporary license has expired, please contact
Ellidiss customer support service to get the appropriate license information and installation
procedure that fits your situation. A standard installation requires less than 50 Mbytes of free
disk space.

2.2 Distribution contents

Once installed on the computer, the AADL Inspector installation directory contains the
following subdirectories:

- bin subdirectory

- config subdirectory

- examples subdirectory

- environment subdirectory
- include subdirectory

- doc subdirectory

Note that after a first launch of the tool, a directory is created to store temporary files and to be
used as a default storage area for generated documentation and code. The actual location of this
temporary directory can be customized by the 1ogbirectory parameter in the
config/AIConfig.ini file, or the -1 command line option. The default location of the
temporary directory is within the user’s home directory.

2.2.1. Bin subdirectories

These directories contain the executable files for the current platform and Java archive files
that are shared by all platforms. The only external requirement is the availability of a proper
Java 1.8 (or higher) Run-time Environment (JRE) to run the simulator. These files are:

- AADLInspector main executable file

- AIMonitor remote process monitoring executable file
- aadlrev executable file (AADL syntactic analyser)

- xmlrev executable file (XML syntactic analyser)

page 6 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

http://www.ellidiss.com/

- sbprolog executable file (Prolog engine)

- cheddarkernel executable file (Cheddar schedulability analyser)

- ocarina executable file (AADL compiler and code generator)

- aadl-utils executable file (AADL file splitter)

- Marzhin, VAgent and VCore Java archive files for the Marzhin simulator

aadlrev 2.14 is a standalone AADL syntactic analyser that is used by the LMP (Logic
Model Process) plug-ins to convert AADL specifications into a list of Prolog predicates. This
utility tool can analyse textual AADL files that comply with AADL 2.2 (SAE AS-5506C), the
AADL Error Model v2 (SAE AS-5506/1A Annex E), the AADL Behaviour Annex (SAE AS-
5506/2 Annex D), and the AADL ARINC 653 Annex (SAE AS-5506/1A Annex A). In addition,
the previous version of the AADL Error Model (future SAE AS-5506/1 Annex E) is also
supported by aadlrev. Most of the AADL 1.0 (SAE AS-5506), 2.0 (SAE AS-5506A) and 2.1
(SAE AS-5506B) syntax is also recognized and can be automatically converted into the newest
2.2 format.

xmlrev 1.2 is a standalone XML syntactic analyser that is used by the LMP (Logic Model
Process) plug-ins to convert XML or XMI serialized models into a list of Prolog predicates.
This utility is used by the import wizards to load files having extensions such as .uml1, .xml,
.xmi, .ecore, .sysml, .melodymodeller, and to convert them into a list of Prolog
predicates for further processing.

cheddarkernel 3.2.2.1 is a command-line version of the Cheddar v3 schedulability
analysis tool. Cheddar v3 models (.xmlv3) are generated from the AADL specification
thanks to a dedicated LMP model transformation. Cheddar outputs (feasibility test reports and
static time lines) are displayed by the AADL Inspector graphical interface. Cheddar is an
open source project managed by the University of Brest: http://beru.univ-brest.fr/cheddar

sbprolog 3.1 is an open source Prolog engine that is used by the LMP (Logic Model
Processing) technology. AADL Inspector uses LMP to implement the various AADL rules
checkers and model transformations. SB-Prolog was developed by State University of New
York at Stony Brook and the University of Arizona.

marzhin 2.2 is a multi-agent simulator implementing the AADL run-time. It consists of
three Java archive files and requires a Java 1.8 Run-time Environment (JRE) to operate. No
JRE is provided with the AADL Inspector distribution. Marzhin v2 models (.xml) are
generated from the AADL specification thanks to a dedicated LMP model transformation.
Marzhin outputs (dynamic time lines) are displayed in the AADL Inspector graphical
interface. Marzhin is developed in collaboration by Virtualys and Ellidiss Technologies.

ocarina 2.0 is an open source AADL syntactic and semantic analyser. It embeds various
back-ends including Ada and C code generators using the polyORB-HI middleware. Ocarina
was initially developed by Telecom ParisTech and is now maintained by ISAE with support
of ESA: http://www.openaadl.org/ocarina.html

aadl-utils 1.0 is another standalone AADL processing tool. It is used here with
command line option -s to convert an AADL file containing several Packages or Property
Sets into a directory of the same name containing on separate file per Package or Property Set.
This may be required to interoperate with OSATE who enforces this restriction.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 7

http://beru.univ-brest.fr/~singhoff/cheddar
http://www.openaadl.org/ocarina.html

2.2.2. Config subdirectory

This directory contains initialization, configuration and license files that are used by the
executable files.

The files having a .sbp extension contain a binary form of the LMP (Logic Model
Processing) rules that are used to perform each model processing action. Checkers provide a
direct textual output into the AADL Inspector window, whereas bridgers perform dedicated
model transformations to interface with ancillary tools such as Cheddar, Marzhin or Arbre
Analyst. Activation of these processing rules is performed from within a dedicated service
declared in an AADL Inspector plugin (see below).

The files having a .ais extension contain a description of each AADL Inspector plugin.
Each plugin defines one or several services that will be available via menu options, buttons or
the command line. Each service is described by a sequence of elementary instructions.

The AIConfig.ini file contains the declaration of several groups of user variables: config,
projectExplorer, plugins, gantt, accelerators and userConstants. These options are not
supposed to be changed by the end user without assistance from technical support or explicit
recommendation provided in user documentation.

The License file contains the validation keys that enable the use of the fully featured
configuration of the tool in compliance with the terms of end user license. Please refer to
chapter 2.3 for more detailed information on that topic.

In the standard distribution, the config directory contains the following additional sub-
directories and files:

2.2.2.1. plugins

These plugins can be removed and customized. New plugins can also be added there. They are
not platform dependent and are located in the plugins subdirectory. This section only lists
the files that correspond to hardwired features. User customizable features are also available in
the various plugins; they are part of the LAMP library (LAMPLib) and are consequently not
mentioned here.

AADL off-line Static Analysis:

Set of predefined analysis rules that apply to current AADL model. Some of the rules are
defined in Prolog and use the AADL LMP parser and libraries, others are checked thanks to
specific Ocarina services. These rules cannot be modified by the end user.

- 1 StaticAnalysis.ais: plugin description file.

- metrics.sbp: AADL parse and instantiate with LMP.

- naming.sbp: AADL naming rules checker.

- legality.sbp: AADL legality rules checker.

- consistency.sbp: AADL consistency rules checker.

- arinc653.sbp: ARINC 653 rules checker.

page 8 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

AADL on-line Static Analysis (LAMP Lab):

Use the same LMP technology as above, but the Prolog rules can be directly included inside
the AADL model within dedicated LAMP annex subclauses.
- 2 LAMP.ais: plugin description file.
- lampchecker. sbp: check rules defined in LAMP annexes in the AADL model.
- lampexec.sbp: execute the query specified in a dialog box.
- instances. sbp: build the main AADL instance model predicates.
- omgumlparser.sbp: create a UML 2.5.1 facts base using the OMG metamodel.
- omgsysmlparser.sbp: create a SysML 1.5 facts base using the OMG metamodel.
- mdsysmlparser.sbp: create a SysML facts base with Magic Draw ™ extensions.
- faceparser. sbp: create a FACE 3.0 facts base.

AADL Timing Analysis:

- 3 TimingAnalysis.ais: plugin description file.

- chronogram. sbp: timelines configuration rules.

- schedulability.sbp: AADL to Cheddar 3.2 model transformation.
- marzhinv2.sbp: AADL transformation rules for Marzhin.

- scenario.sbp: simulation scenario template generator.

- Marzhin.xml,MarzhinLogs.xml: simulation configuration files.

Safety and Security Analysis:
- 4 SafetySecurityAnalysis.ais: plugin description file.
- openpsa.sbp: generate a fault tree from AADL EMV?2 into OpenPSA standard.

Code Generation:
- 5 CodeGenerator.ais: plugin description file.

Documentation Generation:
- 6_DocGenerator.ais: plugin description file.

Foreign Model Import
- Import.ais: plugin description file.
- marte.sbp: UML MARTE to AADL model transformation.
- capella.sbp: Capellato AADL model transformation.
- lampimport.sbp: customizable SysML and FACE to AADL transformations.

AADL Model Templates
- Templates.ais: plugin description file.
- rts.sbp: template of a multi-thread model.
- tsp.sbp: template of a multi-partition model.
- amp.sbp: template of a multi-processor model.
- bmp. sbp: template of a multi-core model.
- lamptemplate. sbp: template of a lamp model.

Miscellaneous:
- Others.ais: plugin description file for inline features.
- Utilities.ais: plugin description file for helpers and external tools.
- aadlgen.sbp: AADL generator (unparser).

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 9

aadlgen2. sbp: light version of the AADL generator (i.e. without Prolog libraries).
readRTProperties.sbp: AADL real-time properties reader.
writeRTProperties.sbp: AADL real-time properties writer.
rootselector.sbp: AADL instance model configuration rules.

ecore. sbp: create a LMP parser from a metamodel expressed in Ecore.

emof . sbp: create a LMP parser from a metamodel expressed in EMOF-.

uml . sbp: create a LMP parser from a metamodel expressed in UML.

2.2.2.2. images

This directory may contain images that can be referenced in the plugin definition files. It is
especially useful to specify a specific icon to launch a customized service or to change the
company logo that is included in the generated documentation.

2.2.3. Examples subdirectory

This directory contains a set of AADL examples to practice the use of AADL Inspector. Five
kinds of files are accepted:

.aic: AADL Inspector project files containing a list of individual file pathnames or
URLSs, or of sub-project references.

.aadl: individual AADL source files. They may contain several Packages and
Property Sets.

.asc: AADL Inspector simulation scenarios files.

. txt: textual description files.

image files of various formats.

It is recommended that a project file is loaded rather than individual AADL files to ensure all
the required AADL Packages and Property Sets that are required to activate the analysis tools
are opened.

all examples.aic: loads all the examples. They can be further selected
individually in the project browser.

patterns.aic: loads the next seven projects listed below. They illustrate the main
communication and scheduling protocols that are supported by AADL.
dataflow.aic: dataflow communication between threads. It can be used to observe
the effect of Sampled, Immediate and Delayed data port connections.

messages.aic: message-based communication between threads using queued
events. It can be used to observe input queue overflow.

shared data.aic: shared data communication between threads. It can be used to
observe the effect of the Priority_Ceiling_Protocol to avoid a deadlock.

client server.aic: subprogram call communication between threads. It can be
used to observe the effect of the client-server synchronisation protocols.
arinc653.aic: two-layer hierarchical scheduling. It can be used to investigate time
and space partitioned systems with the AADL ARINC653 Annex.
scheduling.aic: illustration of the supported scheduling protocols: Rate
Monotonic, Deadline Monotonic, High Priority First, Round Robin and Earliest
Deadline First.

dispatching.aic: various thread dispatching protocols. It can be used to compare
the behaviour of Periodic, Sporadic, Aperiodic, Hybrid, Timed and Background

page 10 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

threads.

- calculator.aic: integer arithmetics with the AADL Behaviour Annex. It can be
used to show the math library capabilities and the interaction between the user and the
simulator.

- canbus.aic: bus communication between processors. It can be used to observe the
impact of bus latency on thread scheduling.

- coffee.aic: a coffee machine control system. It can be used to show conditional
computation with the AADL Behaviour Annex.

- display system.aic: alarge model (5 processors, 22 processes and 123 threads).
It can be used to check the scalability of the tools. Note that full analysis of this model
can take a few minutes.

- flight deck door.aic: access control to a flight deck door. This model can
interact with a 3D virtual reality simulation.

- mars pathfinder.aic: several threads with different priority and sharing
common data. It can be used to observe the priority inversion problem.

- multicore.aic: partitioned scheduling on a dual-core processor. It can be used to
practice the automatic thread placement wizard.

- pacemaker.aic: ventricular pacemaker simulator.

- redundancy.aic: a simplistic Fault Detection Isolation and Recovery system. It
uses the AADL Behavior Annex to detect erroneous values and isolate the
corresponding devices.

- regulator.aic: a temperature regulation system. It can be used to illustrate the
design and analysis of a discrete control system with the AADL Behaviour Annex.

- satellite.aic: a model defined in the AADLIb github repository. It can be used
to experiment remote model loading via the internet.

- code generation.aic: a basic test case for Ada and C code generation with
Ocarina.

- end to end flow.aic:ageneric control system with sensors, data processing and
actuators that highlights end to end flows. It can be used to perform Scheduling Aware
Flow Latency Analysis (SAFLA) with LAMP.

- lamp examples.aic: two separate test cases to experiment the use of the LAMP
annex.

- wheel braking system.aic: acopy of AADL files that are part of the OSATE
examples. It can be used to perform Fault Tree Analysis (FTA) with Arbre Analyst.

- safety-security.aic: a generic distributed control system that can be used to
perform Scheduling Aware Flow Latency Analysis (SAFLA), Fault Tree Analysis
(FTA) and check customizable security rules.

In addition, examples of UML/ SysML, FACE, MARTE, or Capella models are provided in
the Foreign Models examples sub-directory to try the import features. In all cases, the
corresponding source model is parsed and transformed into a target AADL model that is
automatically loaded in AADL Inspector for further processing. These models can be opened
through File/Import in the main menu.

Note that only those AADL files that are explicitly selected will be considered by the various

processing tools. When a file is selected, a green tick is shown on its icon. To select or unselect
a file, simply click on the corresponding icon or the one of a parent project.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 11

2.2.4. Environment subdirectory

The environment subdirectory contains the common AADL Property Sets and Packages
that are required to properly use the processing tools. They are organized into several projects
to isolate the scope of each group of predefined entities and avoid potential conflicts due to
assumptions made by some of the processing tools. The proper environment configuration is
automatically set by each processing plugin.

- AIEnvironment.aic: lists all the environment subprojects to be loaded at launch
time. It references the four following ones:

- Standard.aic: lists the Property Sets and packages that are explicitly defined in the
AADL standard and its published annexes.

- Ocarina.aic: lists the additional Property Sets that are required by the services
offered by Ocarina.

- cheddar.aic: lists the additional Property Sets that are required by the services
offered by Cheddar.

- Ellidiss.aic: lists the additional common Property Sets and Packages that are
used by the examples. The LAMP libraries (LAMP L.ib) are stored there too.

Note that the AADL files that are part of the environment cannot be modified directly within
the AADL Inspector editor. Changes must be done either offline with a remote text editor, or
after prior move of the files to a writable workspace.

2.2.5. Include subdirectory

The include subdirectory contains libraries that are required by some of the ancillary tools
embedded in AADL Inspector. Currently, it is only needed for generating code with Ocarina.

2.2.6. Doc subdirectory

This directory contains this manual that can be opened from the ?/Help main menu. Other
documentation volumes provide more details on the use of the processing tools. Note that some
of these specialized documentation volumes have not been updated recently, however, most of
the provided information still remains valid.

2.2.7. Command line options

AADL Inspector can be launched from a command line. The following optional parameters
are available:

- --help
show the list of command line options.
- -a filel.aic,file2.aadl,file3.asc, ..
open the specified AADL Inspector files at startup.
- -r dirl, dir2,..
open all the AADL Inspector files contained in the specified directories.
- -1 logdirname
use the specified location to create the temporary files. If used, this information
overrides the one specified by the logDirectory parameter in the ATConfig. ini file.

- -—--selectroot id

page 12 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

set the root of the AADL instance hierarchy to the specified model element id.
--config configdirname

use the specified location to set the pathname to the config directory.
--plugin tool.service

start a service of a tool as defined in a . ais file of the config directory.
--result file

-—-result stdout

store the plugin result file in the specified file or in the console (Unix only).

to be used with option --p1ugin

--pluginVar variable = value

set the value of a variable for further use in a plugin (evariable)

to be used with option --p1ugin

--show false

launch AADL Inspector without showing the graphical interface (batch mode)
default is true (GUI is displayed).

--marzhinAddress address

set the IP address of a remote Marzhin simulator to connect to.
--marzhinCmdPort integer

set the command socket port number to connect to a remote Marzhin simulator.
can also be used to specify the command port number of the embedded simulator.
--marzhinDataPort integer

set the data socket port number to connect to a remote Marzhin simulator.

can also be used to specify the data port number of the embedded simulator.
--marzhinAcknowledgePort integer

set the acknowledge socket port number to connect to a remote Marzhin simulator.
can also be used to specify the acknowledge port number of the embedded simulator.

--marzhinScenario ascfilename
--marzhinScenario ascfilename, scenariol, scenario?2

apply specified scenario file (.asc) and optionally select individual scenarios while
starting the Marzhin simulator.
--tickMax integer
define the default duration of the Marzhin simulation.
--debug integer
if set to 1 or 2, display debug information to the console.
if set to 2, display information about the Marzhin simulator.
if set to 0, no console is shown (default).
—-—-server true
launch AADL Inspector in server mode (on Linux only).
when running in server mode, AADL Inspector accepts the following commands on its
standard input:
° loadFile filename
° launchTool tool.service

An example of use of the command line activation of AADL Inspector is to run Cheddar on a
set of specified AADL files and get the results in a specified output file:

bin/AADLInspector
-a examples/dataflow.aic
--plugin Schedulability.cheddarTheoTest
--result dataflow.xml
--show false

Such a command will create a file containing the result below (fragment). The detailed

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 13

description of the Cheddar output is provided in a separate annex document.

<results>
<feasibilityTest name="processor utilization factor" ..>
<computation name="base period" reference="all" value="300" ../>

<computation name="processor utilization factor with deadline"
reference="all" value="0.78333" ../>

<computation name="processor utilization factor with period"
reference="all" value="0.78333" ../>

</feasibilityTest>
<feasibilityTest name="worst case task response time" ..>
<computation name="response time"
reference="root.my platform.CPU.my process.Tl" value="15" ../>
<computation name="response time"
reference="root.my platform.CPU.my process.T2" value="10" ../>
<computation name="response time"
reference="root.my platform.CPU.my process.T3" value="5" ../>
</feasibilityTest>
</results>

2.3 License

A valid license is required to use AADL Inspector. Various kind of licences are available,
including free of charge evaluation and education licenses. Payment of a license fee is required
for commercial or industrial usage of AADL Inspector. Please contact your Ellidiss sales

representative for more details (sales@ellidiss.com).

Since version 1.7, license information is stored in a separate License file that must be
located inside the config directory. Licenses can be attached to a particular computer and

limited in time or managed by a license tokens server over the network.

2.3.1. Node locked licenses

When the license is attached to a specific computer, or for temporary evaluation licenses, the

information that must be stored inside the License file is provided looks as follows:
Main License

owner <licensee identification>
mac <computer identification>
date <expiration date>

tool AADL Inspector

version 1.8

key <encryption key>

licenseKey <license key>

End License

Note that the complete contents of the License file must be provided by Ellidiss. None of
these fields can be modified by the end user; otherwise the license key will become invalid.

page 14 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

mailto:sales@ellidiss.com

2.3.2. Floating licenses

When the licenses are managed by a floating license server over the network (ETFL), the local
License file must contain the following data:

Main License
owner <licensee identification>
licenseServer <server IP address>

licenseServerPort <server port address>

End License

Note these fields must be compliant with the license server installation. Please contact the
license server administrator to fill in the local license data.

2.3.3. License errors

In case of a mismatch between the license information and the computer identification or the
current date, an error message box is displayed.

[X

@W% Yourlicense is invalid (error 0030). .
! 4 "0" Use of this version of AADLInspector is allowed only with STOOD,

"~ Please contact the support at: aadl@ellidiss.fr

oKk | IIIHIII

An error number is provided to help identify the license problem. Here are the most usual
issues that may occur while installing the license key:

- 0010: this license has expired

- 0020: this license date is invalid

- 0030: this license is attached to another computer

- 0040: this license is linked to a Stood license

- 0050: this license is not valid for this version of the product

- 0067: this license is not valid for specified license server path
- 0069: this license is not valid for this tool

This list of error codes is not exhaustive. Please provide the precise error code when you
contact the tool support team (support@ellidiss.com) to solve the issue.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 15

mailto:support@ellidiss.com

3 Graphical Interface

AADL Inspector opens a single window that encompasses a main menu bar, a button bar, a
project browser, a source files area, a processing tools area, a simulation area and a status bar,
as shown below:

File Edit Tools ? .
Bog ':?%SLT(@ = . Main Menu and Button Bar B
Show root | ce x| Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation
Dg‘:,pmjm ~ KAGE ControlSystem_Pkg ~ o n | B
all_example: LIC
o Blosane Deadline Computed Max Cheddar Max Marzhin Avg Cheddar Avg Marzl
—[] Descri ption -
pettcns.ic = Project Browser 4 Jactustorsact_cp) 1500% 7%
[] Description \EX LAMP {** U Fi =
dataflow.aic e .
messagesai urite ("Composite Assurance Case Assssmment:'). 1 | dshboarddsbd cpu Processina Tools
shared_data.aic getFlowslatency, Ddashboard dsbd_sw
kS ityRul
client serveraic (|2 77) checkSecurd vhates “keaboard_driver 200 2000000 20 20 2000 2000
3]
Hey annchitaic ; W00 10.00000 1) 10.00 10.00
scheduling aic END ControNgystem 19.50 % 23.90%
dispatching.aic J = " g
7 calculator.aic - = rituatin
TEM IMPLEM Al
[conbussic SUBCOMPONENTS Source Files ! 200000 : S
H— coffes.aic Sensors H EF < >
% display_system.aic Necwork H Network:
55, flight_deck_door.aic Controluni SYSTEM Controlunit.others; = ST =
1 mars_pathfinder.aic g“':é‘“; ix g“;‘:“‘f; °§“e“ b O & 5o : |
[ltroresic Dashbosr ashboard.others; o 0 5 10 15 20 25 30 35 40 4340 55 60 65 70 75 &0 & 90
CONNECTIONS — |
e pacemakeraic cnx4 : PORT Sensors.status -> Controlunit.senso: A7) sensors.acq_cpu 2
f—ee redundancy.aic cnxS : PORT Sensors.me es —-> Controlunit.mea: Ehr/z] sensors.acg_sw .
e { Timing => Immedi B i acq_driver
H— cnx3 : PORT Control ensors_settings -> Sem: 7 controlunit.ctr_c
%, end_to_end_flow.aic { Timing => Tmmediate; }: E7/e7 <ontrolunt ‘\
% lamp_examples.zic cnx2 : PORT Cancxalmir..monicorjng -> Dashboazd B cantraller
cnx7 : PORT Actuators.status -> Controlunit.act
i, wheel_braking_system.aic . :
cnxl nboard. se:r.:ngs -> Controlunit.ss) actustors.act ¢
Blren safety_security.aic 5 rk -> Sensors.Network; Py J
i Image 2 55 Network -> Controlunit.Netwo: = E““”““"S'“U“ SlmUIa“On Area -\
[Description 218 nT T - - Actuators.Network 4 act_driver v
P2l control_system.aad| 21802 n: rk -> Dashboard.Network;] dashboard.dsbd_c
& contral_system_types.aadl | [218 « Status Bar B4/7 dashboard.dsbd
$ Scenario 1asc 218 1 1sers. £1 —> onx5 -> Cont: Sbosrd driv
E Environment y, -
& Standard.aic or -
Ocarina.aic i R
Cheddaraic > VirtualLink
S o cax -
> N «2 |
Simulator Stop

3.1 Main menu and button bar

The Main Menu Bar contains the following pull-down menus: File, Edit, Tools and ? (Help).
The button bar provides shortcuts for frequently used menu options.

File Edit Tools

EcoRB®E Tl G 2 @R R K 7]

3.1.1. File menu

The File menu controls all file actions that have a global scope. When a model is loaded,
imported or created from this menu, it will appear at the top level in the project browser (i.e.
one level below the Projects folder). Other file actions with a more restrictive scope are
provided by the contextual menus associated with the items of the project browser. The tool
can process several files that together define a complete AADL specification. The
recommended way to manage multiple files is to link them with an AADL Inspector project
file (.aic). There is no particular restriction for the naming and contents of the AADL files.
In particular, files containing several AADL Packages and Property Sets are allowed.

After having been loaded, AADL files must be selected to define the boundaries of the model
to be processed. A file can be selected on unselected by clicking on its icon in the project
browser tree. Files may be selected individually or collectively if the encompassing project is
selected. When a file is selected, a small green tick is shown on the corresponding icon.

page 16 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

A

For most processing actions, all the selected files are concatenated together before being
processed by the analysis tools. Please note that load ordering may have an impact on obtained
result, especially if the root of the AADL instance hierarchy has not been explicitly defined.
This ordering may be modified by moving the file items up or down in the project browser tree

with the mouse.

File Edit Tools 7
MNew Aadl
MNew Project

E.—_, Load

7% Load from Github

£=! Reload Al

¥ save Al
Utilities r
Templates. .. L4
Import... L

=i Print

B8 quit

- New Aadl: create a new AADL file in memory.
- New Project: create a new AADL Inspector project file in memory.
- Load: load the contents of the specified AADL files or projects into memory.

- Load from Github: load files from remote AADL libraries (requires internet access).

- Reload All: cancel all the non saved changes in the project browser.
- Save All: save to the relevant files all the changes in the project browser.
- Utilities: customizable file utilities (cf. 3.1.1.1)

- Templates: creates a new AADL model applying a predefined template (cf. 3.1.1.2).

- Import: convert a foreign model into AADL and load it (cf. 3.1.1.3).

- Print: build an analysis snapshot of the current project and create a PDF file. This

feature is specified in the DocGenerator.ais plugin definition.
- Quit: quit AADL Inspector

Note that if a file cannot be found — for instance while fetching it from github and that there is

no internet connection — a message is shown in a dialog box:

Project loading error >

The file
e Ci/Projets/AADLInspector/Al-1.7 Aestcases17/AestETEFlow.aadl
does not exists,

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 17

3.1.1.1. Utilities sun-menu

File Edit Tools 7
' New Aadl
Mew Project

E, Load

7% Load from Github

£=l Reload Al

¥ save Al
[E] Load all the AADL Inspector examples

Templates... b | 5% Split AADL packages for OSATE
Import... L

=i Print

B8 auit

The Utilities sub-menus offer two useful features.
- Load all the AADL Inspector examples: shortcut to open all the examples in a single
project hierarchy. Same as load examples/all examples.aic.
- Split AADL packages for OSATE: modify the current AADL file structure of the
selected project to ensure that each file contains a single Package or Property Set and
copy them to the chosen directory to comply with this OSATE restriction.

Note that the contents of this sub-menu can be customized by editing the Utilities.ais
plugin definition file.

3.1.1.2. Templates sub-menu

File Edit Tools 7

¢ New Aadl
Mew Project

E, Load

23 Load from Github
&=l Reload Al

¥ save Al
Utilities L4
Templates... 8 54 Multi thread

Import... P A Multi partiticn

T Multi processor

(= Print
[g Cluit T Multi core (Partitioned Scheduling)

T LAMP model processing

The Templates sub-menus can be used to quickly create an AADL model of a predefined kind
with user parameterization. While selecting one of these sub-menu options, a dialog box is
opened to enter the parameters value.
- Multi thread: create an AADL model of the given name with the given number of
threads. This template can be the starting point for new real-time software (RTS)

page 18 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

architectures. Threads are located on a single process and run on a single processor.

- Multi partition: create an AADL model of the given name with the given number of
partitions. This template can be the starting point for new time and space partitioned
(TSP) software architectures. Threads are distributed on several processes and run
during statically defined time slots on a single processor.

- Multi processor: create an AADL model of the given name with the given number of
processors. This template can be the starting point for new asymmetric multi processor
(AMP) software architectures. Threads are distributed on several processes and run on
different processors connected together by a bus.

- Multi core: create an AADL model of the given name with the given number of cores.
This template can be the starting point for new bound multi processor (BMP) software
architectures. Threads are located on a single process and run on different cores to
which they are statically bound.

- LAMP model processing: create an AADL model of the given name with pre-set
LAMP annex place holders.

3.1.1.3. Import sub-menu

File Edit Tools 7
Mews Aadl
Mew Project
E Load
3 Load from Github
£=! Reload Al

¥ save Al

Utilities r

Templates. .. L4
“L Import SysML model (.sysml, xmi, .model)
=L print ! Import FACE model (face)
@ Quit fa Import UML MARTE model {.uml]

E Import CAPELLA PA model (melody modeller)
Import Textual facts {.pro)

Import Binary facts (shp)

The Import sub-menus can be used to create a new AADL model from “foreign” modelling
languages. Proposed foreign models are SysML, FACE, MARTE, CAPELLA and AADL
models expressed as textual or binary facts bases as specified by the LMP process.

SysML and FACE model import features are implemented with LAMP, and the
corresponding transformation rules are provided in the LAMPLib. They can thus be
customized as needed.

MARTE and CAPELLA model import features are just provided here with a minimal
implementation. Please contact Ellidiss technical support to adapt these import features to your
project.

LMP (Logic Model Processing) was developed by Ellidiss Technologies to support advanced
model processing tools. Dedicated LMP features have been packaged to support the AADL
language. In particular, AADL models can be fully represented by a LMP Prolog facts base
that can itself be serialized in textual or binary format.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 19

- Import SysML.: create a new AADL model from a foreign model expressed in SysML
1.5 with Magic Draw ™ extensions. The file navigator asks for a .sysml, .xmi
or .model file.

- Import FACE: create a new AADL model from a foreign model expressed in FACE
3.0. The file navigator asks for a . face file.

- Import UML MARTE: create a new AADL model from a foreign model expressed with
the MARTE profile. The file navigator asks for a . um1 file.

- Import Capella model: create a new AADL model from a foreign model representing a
CAPELLA Physical Architecture. The file navigator asks for a .melodymodeller
file.

- Import Textual facts: create a new AADL model from a LMP Prolog textual facts base.
The file navigator asks fora . pro file.

- Import Binary facts: create a new AADL model from a LMP Prolog binary facts base.
The file navigator asks for a . sbp file.

The Import Textual facts feature provides a very convenient way to create an AADL model
without taking care of the statements ordering and syntax. LMP predicates can be used to
automatically generate the AADL specification. These predicates can be included into a .pro
file with any text editor or generated by a tool. An example of such a list of predicates is shown
below:

E’ TextPad - Ch\Projets\ AADLInspectort Al-1. Mtestcases 1 Mimport.pro

i File Edit Search View Tools Macros Configure Window Help

NSHISRE| s 2Rac=E==270% HRIEER| one b Findincremental |

import.pro X

begin.

isComponentType ('text import pkg', 'PUBLIC', 'text import', "SYSTEM', 'NIL').

izComponentType ('text import pkg', 'PUBLIC', 'struct', 'DATA', "NIL').

igFeature ("PORT', 'text import pkg', 'text import', 'inpuc', "IN', "DATA', 'struct', "NIL', 'NIL').
isFeature ('PORT', "text_import pkg', 'text_imporc', 'output’, '0OUT', 'DATAR', 'struct', "NIL®, "NIL').
isPackage ('"text_ import pkg', 'FUBLIC').

endJ

The exhaustive list of LMP predicates is described in the Ellidiss technical support website:
https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel.

Note that the LMP predicates may have their last parameter (line number) or not, and that
either the first predicate is isVersion/4 or two dummy predicates begin. and end. are
inserted at the beginning and at the end of the file.

Then, the use of the Import Textual facts menu to load this file will automatically create the
corresponding AADL specification:

page 20 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

| File Edit Tools

| & EBao B 6E PR ATRENEE

[Show root | @ import
| B Projects 1
[impart.azdl 2 |FRCERGE text import_pkg
: — Environment 3 |PUBLIC
4
: 5 |SYSTEM text import
| & |FEATURES
| 7 input : IN DATE PORT struct;
| 2 cutput : OUT DATR PCRT struct:

(Y]

END text_import;

10

11|DATA struct

1Z|END atruct:

[13

[14|END text import pkg;
| 15

3.1.2. Edit menu

The Edit menu provides advanced functions used to perform changes on the input AADL
specification. When possible, the original source text is not modified, and the changes are
applied to an extension of the main system implementation of the project instead.

Edit Tools ?
D Auto format

i, search

E:; Search reset

@ Select root
El Simulation Control Panel

|E| Edit thread properties
@ Edit thread priorities
|E| Edit thread placement

k!
@{ Preferences

3.1.2.1. Auto format

This wizard re-writes the current AADL file into a normalized form. It impacts the case of
identifiers and keywords, the indentation, and the number of blank lines. This feature can also
be used to convert older AADL files into AADL 2.2 syntax, except for some values of v1.0
Property Associations.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 21

1 |package math public 1 |PACEAGE math

2 |data float end float; 2 |FUBLIC

3 |data complex end complex; 3

4 |data inplementation conplex.impl |4 [DATA float

5 |subconmponents 5 |[EHD float:

6 |re:data float: &

T |im:data float: 7 |DATL complex

8 |end complex.impl:; 28 |[EHD complex:

9 |end math; 3
10|DATE TMPLEMENTATICN complex.impl
11 |5UBCCHPCHENTS
12 re : DATAE float:
13 im : DATA float:
14|EHD conmplex.impl;
15

16|END math;

The Auto format wizard runs the AADL parser on the original AADL specification as shown
on the left-hand side of the picture above, performs an « identity » model transformation and
then applies the AADL unparser to get a formatted AADL specification as shown on the right
hand side.

Note that it is possible to customize the format produced by the Auto format wizard thanks to
dedicated AADL properties. These properties can be applied to any AADL entity, but we
recommend inserting them at the Package level. The currently supported AADL unparser
properties control the case of identifiers and keywords, as well as the automatic insertion of a
header.

PROPERTY SET lmp IS

unparser id case : ENUMERATION (AsIs,Upper,Lower) => Lower
APPLIES TO (ALL);

unparser kw case : ENUMERATION (AsIs,Upper,Lower) => Upper
APPLIES TO (ALL);

unparser insert header : ENUMERATION (Yes,No) => No
APPLIES TO (ALL);

debug mode : AADLINTEGER
APPLIES TO (ALL);

END lmp;

The next picture shows an example of use of these formatting properties.

page 22 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

< TT RAETTEs 15/data COMPLEX
3 [-- aadlrevz2.1l(

e . 16|end COMPLEX:
4 [-— (c)Ellidi=s=z Technologie: 17
5 |-- 197an2017 :

18 |data Iirr.plerr.entatir:nn CCHPLEX.IMPL

E ___________________________ 153|(subcomponents

. 20| RE : data FLORT;

- . 21| IM : data FLOAT:

° EECE'?QE METH 22|end CCOMPLEX.IMPL;

10 public 53

i; data FLOAT 24 properties]

15|end FLOAT: fE Imp: iunparser id case =»> upper;

14 26 Imp: iunparser kW case =»> loWer;
27 Ilmp: iunparser insert header => yes;
28|end MATH:
29

3.1.2.2. Search

The Search tool can be used to look for all occurrences of the specified text. The scope of the
search can be the currently displayed file or the complete set of loaded files. Clicking on the +
button opens the list of all the text occurrences that have been found. Select a line in this list to
navigate to the corresponding source text editor.

. Search |package |
[] Case Sensitive [] Reg exp .

[] Current file onky

[E Close -@I Previous

" N | = % Reset
8 : PACEAGE dataflow Pkg -~
Search |package | —
1 83 : PACFAGE HW

[] Case Sensitive [] Reg exp 127 : PACEAGE messages Pkg
[Current file only 212 : PACKRGE shared data Pkg
| 1[320 : PACEAGE client_ server Pkg

[%& Close A Previous 425 : PACKAGE Partitions_Pkg y

an % Reset

3.1.2.3. Search reset

Clean up the Search information in the dialog box and the source text editors.

3.1.2.4. Select root

The Select root wizard shows the AADL System Implementation component that has been
automatically identified by AADL Inspector to be the root of the instance hierarchy and
allows the user to change it if needed.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 23

A

Mame | Line | Selection

Display_Systern:Al_adaptation:display.impl 4442 v
Display_Systemn:COU_Processor_Software. mpl 12336
! Display_Systern:MFD_D_Processor_Software.lmpl 12961
i Display_System:L_Cutboard_MFD_PP_Processor_Software. mpl 13384
I| Display_System:R_Outboard_MFD_PP_Processor_Software.lmpl 13827
| Display_Systemn:Processor_Node_CDU.Impl 15309
Display_Systern:Processor_MNode MFD_D.Impl 15908
Display_Systern:Processor_Mode_ L Outboard_MFD_PP.lmpl 16375
Display_Systern::Processor_Mode_R_Cutboard_MFD_PP.Impl 16656
Display_Systern:Display.lmpl 17416
Apply Cancel [] Extend current model

Note that it is also possible to quickly identify the current root System Implementation by
clicking on the Show root button located on top of the Projects browser:

@ | ai_display_system 2 display_system X

Proje 1 PLCELGE Display System: :AT adaptation
EHre display_systemn.aic 2 PUBLIC
= 3 WITH Di=splay System;
-
o -display_syst 4 [WITH AI:
« display_system.aat 5
Environment & |SYSTEM display
7 EXTENDS Display System: :display
8 END di=zplay:
g

BN (SYSTEM IMPLEMENTATION displav.impl
11 |[EXTENDS Display System::display.impl

Most of the analysis and processing tools require the AADL declarative model to be
instantiated and deployed first. AADL Inspector does not require this instantiation to be done
statically, and the AADL instance model is not stored to avoid the risk of processing an
outdated model. In practice, the instance model is built on the fly together with the proper
model transformation that is required for each processing tool.

However, several instance models can be inferred from a given declarative model. It is thus
mandatory to define which System Implementation represents the root of the instance hierarchy
(System Instance). The Select root wizard provides the list of candidate System
Implementations and selects the one to be the root of the AADL instance hierarchy.

The root system that will be considered by the analysis tools will be (in decreasing priority
order):

- the first found System Implementation containing an AI: :Root System Property
association with the value “SELECTED” ;

- the first found System Implementation containing an AI: :Root System Property
association with any other value;

- the first found System Implementation containing an
Actual Connection Binding Property association;

page 24 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

- the first found System Implementation containing an
Actual Processor Binding Property association.

- the first found System Implementation containing an
Allowed Processor Binding Property association.

- the first found System Implementation that is not instantiated as a Subcomponent in the
scope of the current Project.

If another root is selected in the Select Root System dialog box, two options are possible: either
create an extended root system to avoid altering the existing files or directly modify the current
model. These options are controlled by the tick box Extend current model in the dialog box.

When the Extend current model box is ticked, a new system component is created in memory
only and is located in a new proxy package. The newly created system extends the one in the
existing model and contains an AI::Root System => “SELECTED” property
association so that it becomes the new current root system.

Show root ai_display_systemn X display_systemn X @ Display_Systern_proxy
Projects 12037
12098 |PACEAGE Display System proxy
12099 |PUBLIC

displ + 12100|WITH Display System;
we CISPIY_SYSIEM-8at g 59 09 |WITH AL;

8 Fpsp
Environment 12103 |SYSTEM display
12104 |EXTENDS Display System: :display
12105|END display;

Ehree display_system.aic
« ai_display_system.

12106
12107|5Y5TEM IMPLEMENTATICHN display.impl
12108 |EXTENDS Display System: dis ay.impl

12109|PRCPERTIES

12110 AT::root_ systen
12111 |END display.impl;
12112

12113 |END Display System proxy;
12114

When the Extend current model box is not ticked (default), an AI::Root System =>
“SELECTED” property association is directly added to the chosen system component in the
original model. Note that the formatting of the original file (characters case, line returns and
indentation) may be modified in that case.

3.1.2.5. Simulation Control Panel

The Simulation Control Panel is used to edit the various simulation parameters that can be
controlled by the user. This dialog box can be opened from the main menu or button bar and is
also automatically opened when the Marzhin simulator is started. It is composed of four tabs
that can be used to control the display and behaviour of the time simulators.

The timing analysis tools are using a virtual time scale whose unit is a tick. Correspondence

with the actual time units that are used in the AADL model is given by the reference time unit.
The reference time unit is the smallest time unit found in all the Peri od property associations.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 25

General Marzhin Cheddar Help

Zoom factorn:

(O x00 O x05 @ x1 (O x2 () xd

Filters
() Show processes (® Show threads/data (_) Show features
! () Minirmize Custom filter |N|:| synchronisation W

The General tab controls the appearance of the timelines frame. The horizontal axis (time) can
be squeezed of extended with the Zoom factor. Note that the zoom factors can be customized in
the ATConfig.ini configuration file. The vertical axis (model entities) can be selectively
deployed thanks to the display Filters. The effect of these filters is described below:

- Minimize: only displays the Processors and the Buses.

- Show processes: adds a time line for each Process.

- Show threads/data: adds a time line for each Thread and shared Data subcomponent.

- Show features: adds a time line for each port, data access and subprogram access
feature.

- Custom filter: this option is selected when the display filters are directly controlled
from within the simulation display area.

The selected filter applies to both the Cheddar schedule table and the Marzhin simulation
trace. However, when a custom filter is set, it is possible to decide if the changes done on one
simulation frame will not be mirrored on the other one (No synchronization), or it will be
propagated to the other one (Sync on Marzhin or Sync on Cheddar ST).

General Marzhin Cheddar Help
> O & m o F

| Simulation frame:
Computation range: 0.. 200 | Batch only

Speed facton

| @ x1 O x2 O x5 O x10

|| Thread PERIOD ERROR at tick 49 on thread ::root.my platform.cpu.my pr A
Thread PERIOD ERROR at tick 48 on thread ::root.my platform.cpu.my pr
Thread PERICD EERCR at tick 47 on thread ::root.my platform.cpu.my pr v

£ >

The Marzhin tab is used to interact with the Marzhin simulator. It contains a remote panel of
the simulator main commands (start/pause/resume, stop, refresh, go to last tick and optimize)
that are described in section 3.5.1, a save as V'CD... command to store the current simulation

page 26 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

trace in a file, a Speed factor selector and a display area where message issued by the simulator
are shown. The Computation range box can be used to limit the simulation duration to the
specified number of ticks. Its default value can be specified in the ATConfig.ini file. By
default, this limitation only applies when the simulator is run in batch mode (e.g., for assurance
cases depending on simulation outputs or document generation). If this limitation must also
apply to interactive simulations, the Batch only box must not be ticked.

General Marzhin Cheddar Help

E1

| Cheddar Schedule Table:
Computation range: 0.. 200

The Cheddar tab can be used to define the time window for computing the Cheddar static
simulation (Cheddar Schedule Table). Minimizing the Computation range can significantly
reduce the computation time on large models. Its default value can be specified in the
AIConfig.ini file. This tab also contains a save as VCD... command to store the current
simulation trace in a file.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 27

General Marzhin Cheddar Help

Processors:
Occupied
Available

Partitions:
Suspended
Running

Threads:
Unknown state
State ready

— State suspended

B State running

| Awaiting resource

I Aowaiting return

Dispatch jitter
| Getresource

Release resource
Send event
Call
Current deadline
Period

Data:
Ocoupied
Available W

The Help tab provides a caption for the colour code that is associated with the various states of
the modelling entities that are observed during the simulation. The default values are explained
in section 3.4.2. Note that this colour code can be customized in the AIConfig.ini
configuration file.

3.1.2.6. Edit thread properties

This wizard opens a spreadsheet to edit usual real-time Properties and apply them to the current
model. The current Property values that are found in the selected AADL files are shown.

Others Priorities Processor Placement
Mame Dispatch_Protocol | Period | Compute_Execution_Time | Deadline | Dispatch_Offset | First_Dispatch_Time | Dispatch_litter
my_process.tl periedic 20ms 3Ims.3ms 20 ms 0ms 0ms 0 ms
|| my_process.t2 periodic 20ms 3Ims.3ms 20 ms 0ms 0ms 0ms
|| my_processit3 periodic 20ms 3Ims.3ms 20 ms 0ms 0ms 0ms
|| my_process.td periodic 15ms 3Ims.3ms 15 ms 0ms Oms 0ms
Apply Cancel [Extend current model

When these values have been modified, the corresponding AADL Property associations are
either directly changed inside the current model or declared as contained Properties of an
extension of the current root System Implementation. The extended root System is created in
memory only and is located in a new proxy Package. The newly created System contains an

page 28 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

AI::Root System Property association so that it becomes the new current root System to
ensure that the new Property values are used.

The Extend current model tick box is used to control whether the current model is modified
(default case) or an extended root System is created. Note that the formatting of the original file
(characters case, line returns and indentation) may be modified in the former case.

|Base_T3.fpes Xlr‘nath XlHW Xlsynchroncrus X|@ dataflow_Pkg_prowxy
542 |PRCKAGE dataflow Pkg proxy

S43(PUBLIC

544 WITH dataflow Fkg;

S45(WITH AI;

S48

S47T[SYSTEM dataflow

548 EXTENDS dataflow Pkg::dataflow

249 |END dataflow;

S50

SS1(SYSTEM IMPLEMEWNTATICHN dataflow.others

552 EXTENDS dataflow Pkg::dataflow.others
SS3|PROPERTIES

oS54 Tiroot system => "SELECTED";

255 ispatch Offset =»> Sms APPLIES TC my process.T3;
SSE(END data] =3

557

SS2END dataflow Pkg proxy:

558

3.1.2.7. Edit thread priorities

This wizard opens a spreadsheet to manually specify or automatically compute the Threads
priority according to rate monotonic (RM) or deadline monotonic (DM) algorithms.

Others Priorities Processor Placement

{1]
MNarme | Pricrity
| ry_process.tl 1
|| my_process.t2 2
ry_process.t3 3
my_process.td 4

Apply Cancel [Extend current maodel

When priorities have been modified, the corresponding AADL Property associations are either
directly changed inside the current model or declared as contained Properties of an extension of
the current root System Implementation. The extended root System is created in memory only
and is located in a new proxy Package. The newly created System contains an
AI::Root System Property association so that it becomes the new current root System to
ensure that the new Property values are used.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 29

The Extend current model tick box is used to control whether the current model is modified
(default case) or an extended root System is created. Note that the formatting of the original file
(characters case, line returns and indentation) may be modified in the former case.

3.1.2.8.

Edit thread placement

This wizard opens a spreadsheet to automatically compute the Threads placement onto the
available Processors according to various placement algorithms. Typical use of this tool is to
statically allocate Threads on a multi-core architecture.

Note that global schedulers implying dynamic Thread migration between Processors (cores) are
not supported yet.

574 |5Y5TEM IMPLEMENTATICON product.impl

575
576
577
578
579
280
281
282
283
284
283
286

SUBCOMPONENT S

hard : SYSTEM soc leon4::=socC.
soft FROCESS edgeDetection.
FEROPERTIES

allowed processor binding =>

REFERENCE (hard.Proc_S5ystem.
REFERENCE (hard.Proc_S5ystem.

allowed processor binding =>

REFERENCE (hard.Proc_S5ystem.

allowed processor binding =>

REFERENCE (hard.Proc_S5ystem.

END product.impl;

asic_leon4;

impl ;

i

Corel),

Core2)) ALPPLIES TO =soft.getlLine;
i

Corel)) ALPPLIES TO =soft.sharp;

i
Corel)) PPPZIES TO =zoft.edge;

As shown above, the original model must contain a set of Threads located in a global Process
that is bound to a group of Processors with Allowed Processor Binding Property
associations. This initial situation is reflected in the Processor Placement wizard. As follows:

Others Priorities Processor Placement

FF

EF 'HF 'sT GI

Mame MActual Processor(s) Allowed Processor(s)

soft.getline M/ hard.proc_system.corel, hard.proc_system.cored
soft.sharp MN/A hard.proc_system.corel

soft.edge NS hard.proc_system.cored

Apply

Cancel

[] Extend current model

Then, it is possible either to allocate an actual processor to each thread manually, or to apply
one of the placement algorithms that are proposed by Cheddar: first fit (FF); best fit (BF);
next fit (NF); small task (ST) or general task (GT).

page 30 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

Others Pricrities Processor Placement

FF 'EF 'HF ‘5T 'Gr

Mame Actual Proceszor(s) Allowed Proceszor(s)
. soft.getline hard.proc_system.cored hard.proc_system.corel, hard.proc_system.cored
| | soft.sharp hard.proc_system.corel hard.proc_system.corel
soft.edge hard.proc_system.cored hard.proc_system.cored
Apply Cancel [] Extend current model

When the proposed placement is accepted (Apply button), the wizard generates corresponding
AADL Actual Processor Binding Property associations. These Properties are either
directly inserted inside the current model, or declared as contained Properties of an extension
of the current root System Implementation. The extended root System is created in memory
only and is located in a new proxy Package. The newly created System contains an
AI::Root System Property association so that it becomes the new current root System to
ensure that the new Property values are used.

The Extend current model tick box is used to control whether the current model is modified
(default case) or an extended root System is created. Note that the formatting of the original file
(characters case, line returns and indentation) may be modified in the former case.

Note that the current wizard does not check that the actual binding matches the allowed
bindings list.

app X@EPP_PVUXY x

16483

16484 PACKAGE app proxy

16485 |PUBLIC

16486 WITH app:

16487 WITH AI;

16488

16489 |5YSTEM product

16490 |EXTENDS app: :product

16491 |END product:

16482

16493 |5YSTEM IMPLEMENTATICN product.impl
16494 |EXTENDS app::product.impl

16495 |PROPERTIES

16496| AI::root_system => "SELECTED";
164897 Aorual Processor Binding =>

16498 (reference (hard.proc system.corel))
16499 APPLIES TO soft.getline;

16500 Aorual Processor Binding =>

16501 (reference (hard.proc system.corel}))
16502 APPLIES TC soft.sharp:

16503 Aorual Processor Binding =>

16504 (reference (hard.proc system.corel))
16505 IZC'.PPZIES TC soft.edge;

16506 END product.impl;

16507

16508 END app proxy:

3.1.2.9. Preferences

The Preferences menu opens a dialog box to change the fonts used by the application. Two
fonts are used by the tool. The Ul Font applies to all menu items, tab names and the project

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 31

explorer elements. The Viewer Font is used to display text in the editing area as well as in the
analysis report areas. The latter one is intended to be a monospaced font.

Ul Font |Helvetica, || change
Viewer Font |Cuuri&r,9 | Change
Update config file Apphy Cloze

Note that the default values are defined in the ATConfig.ini file. It is possible to update
these values using the Update config file button.

3.1.3. Tools menu

Tools 7
Static Analysis »
LAMP Lab »
Timing Anakysis r
Safety & Security Analysis #
Code Generation r

The Tools menu provides access to the processing tools and services that are defined in the
.ais files located in the config directory. Six tools are available with the standard
distribution: Static Analysis, LAMP Lab, Timing Analysis, Safety &Security Analysis, Code
Generation, and Utilities. Each menu item opens a submenu that gives access to the services
offered by the corresponding tool.

Except for Utilities, each item of the Tools menu corresponds to a tab in the Processing tools
area in the left-hand side part of the main window, and each submenu is associated with a
button of the corresponding tab (cf. 3.4).

3.1.3.1. Static Analysis

The static analysis services make use of two different and complementary technologies. One is
based on the Logic Model Processing (LMP) toolbox and the other one is provided by calls to
the Ocarina tool.

Tools 7
pE Parse and Instantiate (LMP)
LAMP Lab - b Parse (Ocarina)
Timing Analysis g o) Instantiate (Ocarina)
EEIIEWG& SECEFM RTTEE : cc “heck Consistency Rules (LMP)
ode Generation

tr Check Legality Rules (LMP)
pt Check Maming Rules (LMP)
g5 Check ARINC 6533 Rules (LMP)

page 32 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

- Parse and Instantiate (LMP): parse the selected AADL files, instantiate the model from
the root System instance (cf. 3.1.2.3), perform quick consistency analysis and provide
statistics about both the instance and the declarative AADL models.

- Parse (Ocarina): parse the selected AADL files and check the consistency, legality and
naming rules defined by the standard, with a call to Ocarina —p.

- Instantiate (Ocarina): instantiate the AADL model with a call to Ocarina —i.

- Check Consistency Rules (LMP): verify the consistency rules defined by the standard.

- Check Legality Rules (LMP): verify the legality rules defined by the standard.

- Check Naming Rules (LMP): verify the naming rules defined by the standard.

- Check ARINC 653 Rules (LMP): verify rules for partitioned systems.

3.1.3.2. LAMP Lab

LAMP stands for Logic AADL Model Processing. It is an online processing language that can
be directly included within AADL Packages and Components as Annex sub-clauses. This
language is the same as the one that is used for the definition of the predefined plug-ins and
wizards (LMP). LMP consists of a set of parsers, a Prolog engine and libraries to access and
process model elements. These features are available to create customized assurance cases
functions that can be modified interactively. The LAMP services are organized in three groups
as shown below:

Tools 7
Static Analysis k
LAMP Lab 4 & Run LAMP
Timing Analysis r ﬁ LAMP query
Safety & Security Analysis * .
Code Generation b | wme Add raw XMLZEMI facts

. Add SysML facts

i Add FACE facts

e Add simulation events facts
+HT Add response time facts

¥ Add native prolog code

=¥ Clean up all add-ons

ﬁ Show LAMP console

[6] Show AADL declarative model facts
|:| Show AADL instance model facts
[%] Show imported XML/XMI facts

|:| Show imported SysML facts

[£| Show imported FACE facts

|:| Show simulation event facts

[&| Show response time facts

|:| Show Imported proleg facts or rules

The first group of services control the execution of the LAMP engine:

- Run LAMP: load the contents of all the LAMP annexes that are found in the selected
AADL user files and environment libraries and run the included queries (goals).

- LAMP query: same as above but ignore the goals that are included inside the LAMP
annexes and ask for a query in a dialog box instead.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 33

The second group of services enables addition of information that are not present within the
LAMP annexes. All these additions are inclusive. This is especially useful to perform cross-
model processing.

- Add raw XML/XMI facts: parse specified XML file and load corresponding Prolog
facts before next execution of the LAMP queries.

- Add SysML facts: parse specified XMI file, interpret it according to the UML and
SysML metamodels and load corresponding Prolog facts before next execution of the
LAMP queries.

- Add FACE facts: parse specified XML file, interpret it according to the FACE
metamodel and load corresponding Prolog facts before next execution of the LAMP
queries.

- Add simulation events facts: run Marzhin simulator and load corresponding Prolog
facts before next execution of the LAMP queries.

- Add response time facts: run the AADL Threads response time computation wizard and
load corresponding Prolog facts before next execution of the LAMP queries.

- Add native prolog code: load selected Prolog code before next execution of the LAMP
queries.

- Clean up all add-ons: remove all previously added Prolog extensions before next
execution of the LAMP queries.

The third group of services show the various available sources of information in the display
area. Only one source of information is shown at a time.

- Show LAMP console: display output produced by the last execution of LAMP.

- Show AADL declarative model facts: show the list of Prolog predicates that represent
the current AADL declarative model.

- Show AADL instance model facts: show the list of Prolog predicates that represent the
current AADL instance model.

- Show imported XML/XMI facts: show the list of Prolog predicates generated from
previously added raw XML or XMl file.

- Show imported SysML facts: show the list of Prolog predicates generated from
previously added SysML file.

- Show imported FACE facts: show the list of Prolog predicates generated from
previously added FACE file.

- Show simulation events facts: show the list of Prolog predicates that represent the
logged Marzhin simulation events.

- Show response time facts: show the list of Prolog predicates that represent the
computed Thread response time by Cheddar and Marzhin.

- Show imported prolog facts or rules: show the list of Prolog predicates that were
previously added.

3.1.3.3. Timing Analysis

The timing analysis services make use of two different and complementary tools. One is based
on the Cheddar scheduling analysis tool and the other one is provided by the Marzhin
simulator. These services make use of standard AADL real-time Properties as well as a subset
of the AADL Behavior Annex.

page 34 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

Tools

?

Static Analysis »
LAMP Lab »

[T7] Processor Load & Thread Respense Time Analysis

Safety & Security Analysis ¥

Code Generation L

Simulation Timelines (Cheddar)
qie Theoretical Tests (Cheddar)
sify Simulation Tests (Cheddar)

ﬁ Scheduling Aware Flows Latency Analysis (SAFLA) with LAMP

Processor Load & Thread Response Time Analysis: compute statistics for processor
load and thread response time from the various outputs given by Cheddar and
Marzhin, and show them in a spreadsheet for comparison.

Simulation Timelines (Cheddar): static simulation computed by Cheddar.

Theroritical Tests (Cheddar): set of feasibility tests checked by Cheddar.

Simulation Tests (Cheddar): set of tests based on the static simulation computed by
Cheddar.

Scheduling Aware Flows Latency Analysis (SAFLA) with LAMP: associate response
time computation done by Cheddar and Marzhin with AADL Flows analysis done by
LAMP to provide an estimate of End-to-End Flows latency.

3.1.3.4. Safety & Security Analysis

This plugin groups both safety and security analysis services.

Tools 7
Static Analysis L4
LAKMP Lab ¥
Timing Analysis k
SRR PUE VR 5 Open PSA export file
Code Generation r # Fault Tree Analysis (Arbre Analyst)

ﬁ Check security rules with LAMP

The safety analysis services aim at interfacing external tools that support model driven safety
analysis. These model transformations make use of the AADL Error Model Annex (EMV2)
and are currently focusing on Fault Tree Analysis (FTA).

Open PSA export file: generate a file complying with the Open PSA model exchange
format to export fault trees from EMV2 declarations.

Fault Tree Analysis (Arbre Analyst): generate an Open PSA file as above and launch
the Arbre Analyst tool to display a graphical fault tree. Note that the Arbre Analyst
tool is not included into the AADL Inspector distribution. This tool can be found at the
following address: https://www.arbre-analyste.fr/en.html

Note that once installed onto your computer and checked the terms of the license, you need to
update the corresponding file pathname in the ATConfig.ini file before being able to use

this service, for instance:

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 35

https://www.arbre-analyste.fr/en.html

variable userConstants { \
"FTAToolPath" "{C:/Projets/AADLInspector/Safety/arbre analyste-
2.3.2-win32/Arbre Analyst.exe}" \

The security analysis service makes use of customizable LAMP rules:

- Check security rules with LAMP: execute the LAMP query checkSecurityRules
that is defined in LAMPLib. It is based on a simplistic user defined security model with
a single AADL Property defining the security level associated with a Data classifier.

Note that these security model and rules can be customized to fit specific security policies. As
the rules defined in LAMPLib are read-only, it is necessary to either move the file
LAMPSecurity to a writable workspace before editing it. An alternate solution is to edit it
with another text editor, however AADL Inspector will need to be restarted to take changes
into account in that case.

3.1.3.5. Code Generation

The code generation services are provided by Ocarina back-ends. Please refer to the Ocarina
documentation for detailed explanations about the use of these features.

Tools 7
Static Analysis r
LAMP Lab »
Timing Analysis »

Safety & Security Analysis *
dds PolyORE HI Ada
€' PolyORB HI C
=+l Other Ocarina backends

- PolyORB HI Ada: generate Ada source code files for the PolyORB-HI-Ada
middleware. A dialog box asks about the location of the generated code. A default
location is proposed in the AADL Inspector temporary directory.

- PolyORB HI C: static generate C source code files for the PolyORB-HI-C middleware.
A dialog box asks about the location of the generated code. A default location is
proposed in the AADL Inspector temporary directory.

- Other Ocarina backends: gives access to the other available Ocarina back-ends. The
actual back-end to use can be selected in a dialog box.

Note that Ocarina generates the source code architecture and glue code with the Operating
System. However, it requires the applicative functional code to be made available for a
complete build of the software. Access to the functional code can be specified by
Source Text AADL Properties.

page 36 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

3.1.4. Help menu

The ? menu provides information about AADL Inspector.

?

Help r
About

License info

Open install dir
Open config dir
Open tmp dir
Open doc dir
Open code dir

Help: open the help files. Note that the name of the help file directory and the
application that is used to open it can be customized in the AIConfig.ini file. By
default, this application will be the default one for . pdf files on Windows and xpdf
on Linux.

About: display the version of the software.

License info: provide information about the license.

Open install dir: open the installation directory.

Open config dir: open the configuration directory.

Open tmp dir: open the temporary directory.

Open doc dir: open the default documentation directory.

Open code dir: open the default code generation directory.

3.1.5. Button bar

The Main Button Bar provides another entry point for menu actions.

File

Edit Tools 7

EcoR BB RN S e @R R R K 0]

The effect of these actions is described in the corresponding menu section. Button association
with menu bar items is given below from left to right:

File/New Aadl

File/New Project

File/Load

File/Load from Github

File/Reload

File/Save All

File/Utilities/Load all the AADL Inspector examples
File/Utilities/Split AADL packages for OSATE
File/Import/Import SysML model (.sysml, .xmi, .model)
File/Import/Import FACE model (.face)
File/Import/Import UML MARTE model (.uml)
File/Import/Import CAPELLA PA model (.melodymodeller)
File/Import/Import Textual facts (.pro)

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 37

- File/Import/Import Binary facts (.sbp)
- Edit/Auto format

- Edit/Select root

- Edit/Simulation Control Panel

- Edit/Edit thread properties

- Edit/Edit thread priorities

- Edit/Edit thread placement

- Edit preferences

- File/Quit

3.2 Project browser

The Project Browser offers advanced structuring and navigation features to manage AADL
projects. AADL Inspector projects are organized hierarchically and can contain several kinds
of files. AADL Inspector projects contents are defined in . aic files.

The Project Browser has two main sections: Projects, where user defined AADL Packages and
Property Sets can be loaded or created, and Environment, where standard or tool dependent
AADL Packages and Property Sets are stored. Contents of the latter cannot be modified from
the AADL Inspector user interface.

f_]EIi—D Projects
o dataflow.aic
Image

—["| Description
—e synchroncus.aadl

o hw.aadl
-3 dataflow.asc

] s

Eh+» canbus.aic

Image

—["| Description

¢

—%&" ecosolar_types.aad|

— % bus_properties.aad|

Environment
Standard.aic
Ocarina.aic

o Ellidisz.aic

Terminal items in the AADL Inspector project hierarchy can be:

- AADL files: containing standard textual AADL declarations (.aadl).
- Scenarios files: defining inputs values and time for the simulator (. asc).
- Description files: allowing for a textual documentation of the project (. txt).
- Image files: read-only illustration associated with the project
(.Jpg; .jpeg: .xbm; .bmp; .png; .gif).

Note that a single description file and a single image file can be inserted within a project.

The items of the Project Browser may be in different non-exclusive states that are indicated by
a change of the corresponding icon or colour of the text label:

page 38 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

- loaded project file (icon)

- selected project file (icon)

- modified project file (label)

- loaded AADL file (icon)

- read-only AADL file loaded from a remote git repository (icon)
- e selected AADL file for processing (icon)
- EEEEEEED currently displayed AADL file (label)

- ecosolaraadl modified AADL file (label)

- W loaded scenarios file (icon)

- selected scenarios file (icon)

- dataflow.asc modified scenarios file (label)

Note that the scenarios files are not terminal nodes in the browser tree. Indeed, individual
scenarios are shown as sub-items in the hierarchy although they are all included in the same
file. They can be selected individually if needed.

A contextual menu is associated with each kind of item and is updated according to its states to
only offer the valid actions in each case.

3.2.1. Project file contextual menu

When a project is selected in the browser, the following contextual menu options are available:

Mew Project
MNew Aadl MNew Project
% Mew Scenario Mew Aadl
[| Mew Description % New Scenario
@ Mew Image [| Mew Description
& Load @ Mew Image
(73 Load from Github [5 Load
£ Reload £ Load from Github
471 Save [& Rename
@ Save layout @ Save
[¥] Duplicate [¥] Duplicate
¥ Unload ¥ Remove

- New Project: create a new sub-project slot in memory.

- New Aadl: create a new AADL model slot in memory.

- New Scenario: create a new scenario template in memory. Note that scenarios can be
created on instance models only. If not done yet, select the project (green tick) and use
the Show root button on top of the Project Browser.

- New Description: create a new textual description in memory.

- New Image: create a new image slot in memory.

- Load: open a file navigator to load any of the accepted file types.

- Load from Github: open a dialog to load an AADL file from a registered server.

- Reload: reload the project.

- Rename: if newly created project has not been saved yet, rename it.

- Save: save the project file and its contents.

- Save layout: save the selected and opened status of each file contained in the project.

- Duplicate: create a copy of the project in memory.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 39

- Unload: remove the project and its contents from memory.

3.2.2. AADL file contextual menu

When an AADL file is selected in the browser, the following contextual menu options are
available (right mouse button click):

@ Reload @ Reload | #f Rename [Rename
@ Save «: Cave @ Save @ Save

@ Duplicate E“ﬂ Duplicate @ Duplicate @ Duplicate
= Hide By Show 4By Show 2 Hide

¥ Unload ¥ Unload ¥ Remove ¥ Remove

- Reload: reload the AADL file.

- Rename: if newly created AADL file has not been saved yet, rename it.
- Save: save the AADL file.

- Duplicate: create a copy of the AADL file in memory.

- Show/Hide: open or close a corresponding editor in the Source File Area.
- Unload/Remove: remove the AADL loaded/new file from memory.

3.2.3. Scenario file contextual menu

When a scenario is selected in the browser, the following contextual menu options are
available:

@ Reload @ Reload

£ Update Scenario List £ Update Scenario List
@ Save < Save

@ Duplicate @ Duplicate

4B Show - Hide

¥ Unload » Unload

- Reload: reload the scenario file.
- Update Scenario List: update the scenario contents after editing in the Source File Area.

- Save: save the scenario file.

- Duplicate: create a copy of the scenario file in memory.

- Show/Hide: open or close a corresponding editor in the Source File Area.
- Unload/Remove: remove the loaded/new scenario file from memory.

3.2.4. Description file contextual menu

When a description file is selected in the browser, the following contextual menu options are
available:

page 40 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

[Load description [=} Load description

(3] save
#r Hide #r Hide
¥ Unload ¥ Unload

- Load description: open a file navigator to load a . txt file.

- Save: save the description file.

- Show/Hide: open or close a corresponding editor in the Source File Area.
- Unload/Remove: remove the load/new description file from memory.

3.2.5. Image file contextual menu

When an image file is selected in the browser, the following contextual menu options are
available:

E.—_| Load image
BBy Show
» Unload

- Load image: open a file navigator to load a .jpg .jpeg .xbm .bmp .png oOr
.gif file.

- Show/Hide: open or close a corresponding viewer in the Source File Area.

- Unload: remove the image file from memory.

3.3 Source files area

After having been loaded in the Project browser, the files can be opened in the Source file
area. Closing an editor in the Source file area does not unload the corresponding file from the
browser. The source file area is composed of:

- aset of file selector tabs
- afile editing area
- aline number area

© |memories lemcessors leus_pmperties ¥ | deployment > 2
858 property se gployment is -
259
260 Lllowed Transport R

" File selector tabs

Bel (BED Sockets,

262 Spacelire) ;

863 —— Supported transport APT

2e4 File editing area

2865 Transport APT : Deployment::Allowed Transpor
266 Transport API of a bus E
267
868 Location : t Combined files line number area =
Rl g =] —_— Twrmrooom -

T ETEmm————

To load a file in the editing area a drag and drop action is possible instead of using the
File/Load menu: open the appropriate directory, select the desired file, depress and hold the left
mouse button then drag the mouse until the AADL Inspector window is reached.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 41

To find all the occurrences of a word in the displayed file, select the desired word and press the
Ctrl-F key to open the search dialog box. Note that the Next button must be pressed to start

the search.

o

879 |PACKAGE AirConditioner Pkg
B80|PUBLIC

B1|WITH Ellidiss::Math::Int;
82 RENAMES FEllidiss::M&8EH: : Int: :ALL;

B3WITH Ellidiss: :Gui;

84 |RENAMES Ellidiss::Gui: :ALL

B5|WITH AI;

ge Search | Math
B8T7|SYSTEM AirConditioner
B|IEND AirConditioner;

il

[£5]
[45]

[£5]
[45]

[Case Sensitive [Reg exp

5]

[Current file anly
SYSTEM IMFLEMEWNTATION Air(

o
4]
T3]

T A
(=)
(=)
i

]

Q
2891 |SUBCOMPONENTS 5 Close < Previous | B> Next |
8892 Sectings : DEVICE IntSels
8853| Temperature : DEVICE Intl = E:}' Reset
£e94) Heaterstatus : DEVILE L1gesc : WITH Ellidiss::Math::Int; A
8995 HeatRegulator : SYSTEM Hf|)ggse : REMAMES Ellidiss::Math::Int::ALL;
;;;f‘ CaﬂiCEI?NEDRT Settings.val loce L T Ellidis e :.'11;,:

T — i) 18 : REHAMES Ellidiss::Math::Int::ALL;

5| enx 1 : PORT HeatRegulatiboqoe™. WITH Ellidiss::Math::Int;
598 cnx 2 @ FORL HeatRegulabllsno7 o Integer RENAMES DATA Ellidiss::Math::l
5900) cnx 3 : FORT HeatRegulatil, ,co . wITH Ellidiss::Math::Int:
8501 PROPERTIES 20059 = REMAMES Fllidi=zs::Math: :Tnt: = ATT.: b
8902 |-- required by Ccarina = =
8903 ATl::root system => "IELE{
8904 |END RAirConditioner.others;

A contextual menu (right mouse button click) is associated with the current file selector tab.

» Hide

2 Hide All

¥ Hide Others
@ Reload

@ Save

- Hide: closes the currently selected tab.

- Hide All: closes all the opened tabs.

- Hide Others: closes all the opened tabs but the current one.
- Reload: reload last saved version of the file.

- Save: update the file with current contents of the editor.

When a file has been modified, an icon appears on the tab to indicate that the changes have not
been saved. Clicking on the save icon of the tab will save the file.

|HW X@ synchronous X|_

Note that clicking on the grey cross at the right-hand side of a tab also closes the tab.

Files that can be edited in the Source files area are:

- textual AADL files: .aadl.

page 42 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

- simulator scenario files: . asc.
- textual description files: . txt.
- image files (read-only):. jpg .Jjpeg .xbm .bmp .png Or .gif

Note that images cannot be edited in the Source files area. No specific action is proposed for
image files that can only be loaded and displayed.

3.3.1. Editing AADL files

The textual contents of a file editor associated with an AADL file must comply with the syntax
defined by the standard. No verification is done on text input before an analysis tool is
launched.

AADL Inspector accepts AADL files that encompass several packages and property sets.
However, the user must be aware that other AADL tools may have a more restrictive policy,
such as enforcing the single package or property set per file rule.

When an AADL model is edited, line numbering is activated. Line numbers correspond to
those of a virtual file that would be the concatenation of all the actual AADL files that are
selected in the Project browser.

Note that a cross-reference contextual menu opens the search dialog box on the identifier
pointed by the mouse. This is especially useful when editing Prolog code inside LAMP
AADL annex subclauses:

satellite. aic 20078 |ANNEX LAME [*¥
code_generation.aic 20078 /% comments in Prolog code use a C style &/
end_to_end_flow.ai 20080 WritE{'ﬁfllD!'J. nl, /% uses standard Prolog I/0 */

' 20081| checkR =™ - 1 rule defined below at packe
(I:Ilﬂrgp_ex.a:?ples_am 20082 (isTy'w4 search checkReflnit | if the simulator was run be
el y 20083 { wr{}, search checkRefUnit - te id: '), write(X)):

- 20084 Writer-mo-srmrrecrorr-rrace—evailabkle')), nl,
LAMPExample2.az |50055] printHeader. /* calls a rule defined in LAMPLib/LA}

3.3.2. Editing Simulator Scenario files

The textual contents of a file editor associated with a scenario file must comply with a specific
XML syntax. No verification is done on text input before the scenario is saved.

The structure of a scenario file is as follows:

<scenarii>
<interface>
<feature type="data" id="input"
aadlID="my platform.cpu.my process.tl.input"/>
<feature type="data" id="output"
aadlID="my platform.cpu.my process.tl.output"/>

</interface>
<scenario name="sl" description="">
<probes>
<probe ref="output"/>

</probes>

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 43

<tick value="0" next="tick+10”>
<action ref="input" value="1"/>

</tick>

</scenario>
</scenarii>

When a new scenario file is created from the Project browser (project contextual menu), its
contents is initialized with the list of ports that can be triggered within the scenarios. This list is
provided in the <interface> section and corresponds to all the input ports of the threads
that are found in the current set of selected AADL files. A short name is given for each port so
that it can be easily reused in the scenario specification.

A list of independent scenarios can then be added. Each scenario can be selected individually
in the Project Browser. A scenario is defined by an optional <probes> section and a list of
<tick> sections.

The <probes> section can be used to open a visualisation probe on the specified port when
the scenario starts. Probes can also be opened at any time while the simulation is running.
Probes may be attached to input or output ports.

The <ticks> sections indicated what value that is inserted automatically into an input port
variable at the instant denoted by the tick value. In case of an input event port, no value is
needed. It is also possible to specify a sequence of ticks thanks to the next attribute which
may contain an arithmetic formula to define the value of the next tick. For instance, a periodic
activation of an event port will be obtained by the following statement:

<tick value="0" next="tick+10”>
<action ref="input"/>
</tick>

3.4 Processing tools area

The Processing Tools Area allows for selecting the processing tool to be applied to the set of
AADL files that are selected in the Project Browser and display the corresponding execution
result. This area is composed of:

- aset of tool selector tabs

- one or several service control buttons
- aread-only result display area

page 44 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

Static Analysis |LAMP Lab Tirning A sis Safety & Security Analysis Code Generation Doc Generation

HE “ofP o OC L B53

Tools selector tabs

aadlrevz.l4 (c)Ellidiss Tect
AADL-2.2 + BA-2.0

ologies 16Apr2021

the reference time unit is: ms Services control buttons

"""""""_""""f"_"f—f"ﬂ' Result display area
Root System Instance: AirConditiomer Pkg: iR IETS

18890 (system)..... root
18917 (processor)... root.heatregulator.heatd: . . .
o i : 5 Navigate to instance in code
13916 (pProcesS3) ... rDDt.neatregalatDr.neﬂt
13939 (thread)......... Eegulator (PERICDIC)
13940 (thread) ..o HeaterCooler (PERICDIC)
13941 (thread) ..o Sensor (PERICDIC)
150la

(subprogram) err (25748 . .
__________________________ -~ —— Navigate to classifier in code

- Tools selector tabs can be configured by adding or removing tool description files
(.ais files) in the config subdirectories of the installation directory

If one of the analysed files is modified, the background colour of the result display area
becomes gray to indicate that the information is potentially out of date.

When the selected analysis tool can not be executed normally for the current AADL
specification or if the AADL syntax is not correct, the corresponding error message will appear
in an additional temporary Report tab.

When line numbers are shown in the generated report, clicking on them will highlight the
corresponding lines in the Source Files Area.

Note that while working on large AADL projects, processing actions may take a significant
time (up to a few minutes). Depending on the processing tool that is running, other user actions
may not be allowed, and the display may not be refreshed during that time.

3.4.1. Static Analysis

The Static Analysis tool encompasses a set of independent rules checkers that verify various
facets of the semantic correctness of the source AADL specification. Each rules checker is
implemented as a service of the static analysis tool and can be activated by pressing the
correspondent button:

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

HE “opP o CC “IC 'HC BH

tE call the AADL parse and instantiate LMP service.
or call the AADL parse and verify Ocarina service.
ol call the AADL instantiate Ocarina service

ot call the AADL Consistency rules LMP checker.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 45

-z call the AADL Legality rules LMP checker.
- ‘wc call the AADL Naming rules LMP checker.
- 51 call the ARINC 653 rules LMP checker.

When an error, warning or information message is displayed by a processing tool, the line
number of the corresponding AADL code is shown in the Processing Tools Area. Clicking on
a line number updates the display of the Source Files Area to make the relevant line visible.

More detailed explanations about the scope of each of these checkers can be found in separate
documentation.

3.4.2. LAMP Lab

The LAMP Lab tool can be used to experiment the use of LAMP and create customized
assurance cases that may be modified interactively and can take heterogenous inputs including
SysML, FACE and any other XML based models. LAMP stands for Logic AADL Model
Processing. It is an online processing language that can be directly included within AADL
Packages and Components as Annex sub-clauses. This language is the same as the one that is
used for the definition of the predefined plug-ins and wizards (LMP). LMP consists of a set of
parsers, a Prolog engine and libraries to access and process model elements.

An overview of the LAMP Lab tool is provided by the picture below:

g LAMP Lab . LAMP
/ \ Console
LAMP Rules LAMP Facts
LAMP Goals AADL Facts
in AADL Components ~ SysML e
LAMP Rules -
in AADI Packanes Fict FACE Facts
LAMP Lib W XML Facts
in Environment
v *« Resp.Time Facts
LMP Libraries ** Sjmulation Facts
v

The LAMP services are organized as follows:

page 46 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

80 WE MWk 80EFEEEES R E

ﬁ: load the contents of all the LAMP annexes that are found in the selected AADL
user files and environment libraries and run the corresponding queries (goals).

£2: do the same as above but ignore the goal definitions found in the LAMP annexes
and ask for a query in a dialog box instead.

. parse specified XML file and load corresponding Prolog facts for next executions
of the LAMP queries.
e

+: parse specified XMI file, interpret it according to the UML and SysML
metamodels and load corresponding Prolog facts for next executions of the LAMP
queries.

i parse specified XML file, interpret it according to the FACE metamodel and load
corresponding Prolog facts for next executions of the LAMP queries.

an run Marzhin simulator and load corresponding Prolog facts for next executions of
the LAMP queries.

“ run the AADL Threads response time computation wizard and load corresponding
Prolog facts for next executions of the LAMP queries.

| Joad selected Prolog code for next executions of the LAMP queries.

=¥ remove all previously added Prolog extensions for next executions of the LAMP
queries.

i} display output produced by the last execution of LAMP.

2] show the list of Prolog predicates that represent the current AADL declarative
model. The definition of these predicates can be found on the Ellidiss wiki:
https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

= show the list of Prolog predicates that represent the current AADL instance model.

=] show the list of Prolog predicates generated from previously added raw XML or
XMl file.

= show the list of Prolog predicates generated from previously added SysML file.
£ show the list of Prolog predicates generated from previously added FACE file.

=] show the list of Prolog predicates that represent the logged Marzhin simulation
events.

[&] show the list of Prolog predicates that represent the computed Thread response time
by Cheddar and Marzhin.

=] show the list of Prolog predicates that were previously added.

LAMP annex sub-clauses that are defined at an AADL Package level specify processing rules
libraries. Predefined LAMP libraries are provided in the Environment section of the Project
Browser. Predefined libraries provide a complete access to all the AADL modelling elements
(declarative and instance model, Behavior annex and Error Model V2 annex), as well as
various utility and processing rules (AADL generator, security and flow analysis, SysML to
AADL and FACE to AADL transformations). User defined LAMP libraries can be added
inside standard AADL files belonging to the project. Predefined libraries are always implicitly
selected whereas user defined libraries must be explicitly selected to be usable.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 47

https://www.ellidiss.fr/public/wiki/aadlDeclarativeModel

Environment
Standard.aic
Ccarina.aic
Cheddar.aic
Ellidiss.aic

= ai.aadl

4\'

gui.aadl

4\

Imp.aadl

4\

math.aadl

stood.aadl /< LAMP predefined libraries
LAMPLib.aic

LAMPDeclarative.aadl
LAMPInstance.aadl
LAMPEehavior.aadl
LAMPError.aadl

LAMPFlows.aadl /< Flow latency analysis

LAMPResponseTime.aadl

LAMPSirnulation.aad| .)
LAMPSecurit_-,.r.aadl/< Security analysis
LAMPPrinting.aad|

LAMPLexical.aadl /{ AADL generator

LAMPAADLGen.aadl
SysMLZAADL.2 adl\(SysML to AADL transformation
FACE2AADL.aic

FAC EE.ﬂADL.aaEH\{ FACE to AADL transformation
FACE2AADLcdm.aadl

FACE2AADLIdm.aadl
FACE2AADL pdm.aadl
FACEZAADLuop.aadl
FACE2AADLint.aadl

FACE2AADLsim.aadl

XY

o

d\

‘\

‘\

‘\

d\

‘\

‘\

‘\

d\

‘\

| %252 %

I

N N N N T T

LAMP annex sub-clauses that are inserted at an AADL Component level specify goals that
control the execution of the LAMP processing engine. All the goals found within the selected
set of AADL files will be executed in sequence, except if the LAMP query is explicitly
defined in a predefined menu or a dialog box.

Both rules and goals use the same standard Prolog language syntax and semantics with a few
SB-Prolog specific features and behaviors. However, other restrictions apply while being used
inside a LAMP annex:

- If it exists, a LAMP annex within an AADL Component (goal) cannot be empty and
must not end with a dot.

- The size of a LAMP annex subclause cannot exceed 4096 characters. However, it is
possible to add several annexes within the same Component or Package.

An example of use of a user-defined LAMP program using pre-defined LAMPLib rules is
shown below:

page 48 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

FPACKAGE lamp pkyg
PFUBLIC

SYSTEM lamp
END lamp;

SYSTEM IMPLEMENTATICN lamp.i
SUBCOMPOMENTS
hw : PROCESSOR hw;
zw : PROCESS sw:
11|PROPERTIES
12 SCHEDULING PROTOCOL => (Rate Monotonic Protocol) AFFLIES TO hw:
13| ACTUAL PROCESSOR BINDING =»> (REFERENCE (hw))} APPLIES TO sw:
14 [ANNEX LAMP {*#*
15| /* goal */ i LAMP goal definition in an AADL Component
le printProperties
17(**};
182 END lamp.i:
19

(¥ e ST I Iy BT S L T S B

[
=}

25

26 |BNNEX LAMP {#*
27| /* user defined rules */ /{ LAMP rule definition in an AADL Package

28 printProperties -

29 getClassProperties('',P,V,0), printPropercty (P, V,0) .,

30 fail.

31 printProperties.

g3 |awy . LAMP rule references in predefined LAMP libraries
33

34(END lamp pkg;

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

ﬁ ﬂ| ML :l.r'.: +nr Fio m& | ﬁ @ E
] 8 *\

| LAMP console |
| (c) Ellidiss Technologies, 2021 |

AADL. facts base loaded.

no XML facts base loaded.

no SysHML facts base loaded.

no FACE facts base loaded.

no Simulation facts base loaded.

no Response Time facts base loaded.

no Hative Prolog facts base loaded.

LAMP rules kase loaded.

[®] LEMP gqueries loaded. Result of LAMP execution

LAMP> execution started.

(Rate Monotonic Protocol) => SCHEDULING PROTOCOL APPLIES TO hw
(REFERENCE (hw)) => ACTUAL PROCESSOE BINDING APFLIES TO sw

LAMP> execution completed.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 49

The following sub-sections provide more details about some of the proposed processing rules
in LAMPL1ib. Note that corresponding source code is read-only when accessed from within the
AADL Inspector text editor. To customize these rules, apply one of the three possible
solutions:

- Create a copy of the relevant LAMPL1b files into a writable workspace and take care to
rename all the declared rules not to interfere with LAMPLib ones. There is no need to
restart AADL Inspector to execute the modified rules. This is the recommended
solution.

- Move the relevant LAMPLiDb files to a writable workspace, restart AADL Inspector,
do your changes, test them interactively and then replace the modified files in the
LAMPL1ib area.

- Edit the relevant LAMPLib files with a separate text editor and restart AADL
Inspector each time you need to execute the modified rules.

3.4.2.1. Flow latency analysis

The getFlowsLatency query performs Scheduling Aware Flow Latency Analysis
(SAFLA). This rule finds all the End-to-End flows in the current root system, compute their
maximum latency using Marzhin simulation, and prints the result in the LAMP console. The
source code is available in file:
Environment/El1l1idiss/LAMPLib/LAMPResponseTime.aadl.

There are three ways to activate this analysis tool. The first one consists in adding a LAMP
goal within the AADL specification to be processed and then to press the Run LAMP button of
the LAMP Lab button bar. This solution is used in the examples end to _end flow.aic
and safety security.aic.

abstract lamp goal
annex lamp {** getFlowsLatency **};

end lamp goal;

The second way to launch this service is to use the LAMP query button:

i Gn:nallgetFIn:nwsLatenc:,r |3

Cancel

The last one fully hides the LAMP machinery and is available via a dedicated button in the
Timing Analysis tab:

Static Analysis LAMP Lap_Timing Analysis !
m THE SIHM

3.4.2.2. Security analysis

The checkSecurityRules query performs security analysis. As the AADL Security
Annex has not been published yet at the time this feature was developed, it uses a simplistic

page 50 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

user defined security model with a single property defining the security level associated with
Data classifiers and a few examples of possible corresponding verifications. The source code is
available in file:

Environment/Ellidiss/LAMPLib/LAMPSecurity.aadl

There are three ways to activate this analysis tool. The first one consists in adding a LAMP
goal within the AADL specification to be processed and then to press the Run LAMP button of
the LAMP Lab button bar. This solution is used in the example safety security.aic.

abstract lamp goal
annex lamp {** checkSecurityRules **};

end lamp goal;

The second way to launch this service is to use the LAMP query button:

Guallcheckiecurit}rﬂules |

- Cancel

The last one fully hides the LAMP machinery and is available via a dedicated button in the
Safety & Security Analysis tab:

Static Analysisl AMP Lab Timing Analysis Safety & Security Analysis
o
ﬁ

3.4.23. SysML to AADL

The sysml2aadl query performs a model transformation between an input SysML Prolog
facts base and an output AADL Prolog facts base. The input facts must be imported at first.
The output facts must be post-processed with the runAADLgen LAMP query to generate a
proper AADL file. The source code of the mapping rules between the two languages is

available in file:
Environment/Ellidiss/LAMPLib/SysML2AADL.aadl

There are two ways to activate this transformation tool. The first one consists in adding a
LAMP goal within an AADL specification, manually load the SysML model thanks to the
Add SysML facts button of the LAMP Lab button bar and then to press the Run LAMP button of
the same LAMP Lab button bar.

abstract lamp goal
annex lamp {** sysmlZ2aadl, runAADLGen **};
end lamp goal;

The second way fully hides the LAMP machinery and is available via a dedicated button in the

File/Import/Import SysML model (.sysml, .xmi, .model) menu, or corresponding button of the
main button bar:

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 51

File Edit Tools

&;@@@ Ei:i T ESBP El

34.24. FACE to AADL

The face2aadl query performs a model transformation between an input FACE Prolog
facts base and an output AADL Prolog facts base. The input facts must be imported at first.
The output facts must be post-processed with the runAADLgen LAMP query to generate a
proper AADL file. The source code of the mapping rules between the two languages is
available in directory:

Environment/Ellidiss/LAMPLib/FACE2AADL/

There are two ways to activate this transformation tool. The first one consists in adding a
LAMP goal within an AADL specification, manually load the FACE model thanks to the Add
FACE facts button of the LAMP Lab button bar and then to press the Run LAMP button of the
same LAMP Lab button bar.

abstract lamp goal

annex lamp {** faceZaadl, runAADLGen **};
end lamp goal;

The second way fully hides the LAMP machinery and is available via a dedicated button in the
File/Import/Import FACE model (.face) menu, or corresponding button of the main button bar:

File Edit Tools

3.4.3. Timing Analysis

When the Timing Analysis tab is selected, five buttons are presented to activate timing analysis
services.

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

D THE 5IH ﬁ

] compute statistics for processor load and thread response time from the various
outputs given by Cheddar and Marzhin, and show them in a spreadsheet for
comparison.

- static simulation computed by Cheddar.

- 1 set of feasibility tests checked by Cheddar.

- sin set of tests based on the static simulation computed by Cheddar.

- & Scheduling Aware Flows Latency Analysis (SAFLA): associate response time
computation done by Cheddar and Marzhin with AADL Flows analysis done by
LAMP to provide an estimate of End-to-End Flows latency.

These features are detailed in the next sub-sections:

page 52 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

3.4.3.1. Processor load and Thread response time

This service shows a summary of the Timing Analysis in a single table. For each Processor, the
maximum load rates that are computed by Cheddar, and estimated by the Marzhin simulator
are provided. For each Thread, the minimum, average and maximum response time computed
by Cheddar and estimated by the Marzhin simulator are also provided and can be compared
with the deadline.

Static Analysis Timing Analysis Code Generation Doc Generation LMP Scripts

D THE $IH
Deadline Computed Max Cheddar Max Marzhin Avg Cheddar Avg Marzhin =~ Min Cheddar Min Marzhin
= [Jmy_platform.cpu 65.00 % 66.99 %5
= fmy_process

il 20 1200000 12 12 11.00 10,80 9 9
i 20 9.00000 9 9 8.00 1.80]]
s 20 6.00000 b b 4.00 4.00 3 3
Jtd 13 3.00000 3 3 3.00 3.00 3 3

Note that this table may contain empty cell if the corresponding tool or service has not been
launched or cannot provide relevant data. The table is dynamically updated when the Marzhin
simulator is running.

3.4.3.2. Cheddar simulation timelines

Cheddar can produce a graphical representation of the timing behaviour of the real-time
system being analysed. This graphical schedule table is a result of the static simulation and
may not be available on every kind of system.

Static Analysis Timing Analysis Code Generation Doc Generation LMP Scripts

D THE 5IH

EH{_1l my_platform.cpu

B~ my_process

R — m,— — — m—
LR L - u B L -

L8 - L L - L

G | L L L L L L

Timelines are displayed for each Processor, Process, Thread, shared Data and Bus
subcomponent in the current root System. The time scale and meaning of each used colour is
shared with the dynamic simulator which is described below.

3.4.3.3. Scheduling Theoretical Tests

Theoretical tests compute the processor utilization factor and threads response time when the
corresponding conditions are met. This service is provided by Cheddar.

Static Analysis Timing Analysis Code Generation Doc Generation LMP Scripts

L] THE STH
test entity result
= @ processor utilization factor my_platform.cpu the task set is schedulable because the processer utilization factor 0.65000 is equal or less than 0.75683
base period my_platform.cpu 60.00000
processor utilization factor with deadline my_platferm.cpu 0.65000
processor utilization factor with period my_platform.cpu 0.65000
= @ worst case task response time my_platform.cpu Alltask deadlines will be met : the task set is schedulable,
respense time my_platferm.cpu.my_process.t 12.00000
respense time my_platferm.cpu.my_process.t2 9.00000
response time my_platform.cpu.my_process.t3 600000
response time my_platform.cpu.my_process.t4 3.00000

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 53

3.4.3.4. Scheduling Simulation Tests

Simulation tests provide information about the number of pre-emption and context switches as
well as threads response time. This static simulation can only be run for periodic systems. This
service is provided by Cheddar.

Static Analysis Timing Analysis Code Generation Doc Generation LMP Scripts

D THE SIH

test entity result
= @Task response time computed from simulatic my_platform.cpu Mo deadline missed in the computed scheduling : the task set is schedulable if you computed the scheduling ¢
Mumber of preemptions my_platform.cpu 1
Mumber of context switches my_platferm.cpu 13
Task response time computed from simulatio my_platform.cpu.my_processd worst = 12, best = 9 and average = 11.00000
Task response time computed from simulatio my_platform.cpu.my_processd warst = 9, best = 6 and average = 8.00000
Task response time computed from simulatio my_platform.cpu.my_processdi worst = 6, best = 3 and average = 4.00000

Task response time computed from simulatio my_platform.cpu.my_processd worst= 3, best = 3 and average = 3.00000

More detailed explanations about the scope of each of these tests can be found in a separate
user document.

3.4.3.5. Scheduling Aware Flows Latency Analysis (SAFLA) with LAMP

Ask for the duration of the Marzhin simulation and run it, then apply the
getFlowsLatency LAMP query. The source code of this Prolog rule is available in file:
Environment/El11idiss/LAMPLib/LAMPResponseTime.aadl.

3.4.4. Safety & Security Analysis

The Safety & Security Analysis tool aims at interfacing external programs that support model
driven safety analysis as well as checking security rules. The safety related model
transformation makes use of the AADL Error Model Annex (EMV?2). The security related
model processing is based on LAMPLib.

The safety analysis tool that is currently supported is Arbre Analyst. This tool is not included
within the AADL Inspector distribution. It can be found at the following address:
https://www.arbre-analyste.fr/en.html

Note that once installed onto your computer and checked the terms of the license, you need to
update the corresponding file pathname in the ATConfig.ini file before being able to use
this service, for instance:

variable userConstants { \
"FTAToolPath" "{C:/Projets/AADLInspector/Safety/arbre analyste-
2.3.1-win32/Arbre Analyst.exel}" \

Arbre Analyste can load models that are expressed with the Open PSA format. The Safety &
Security Analysis tool thus provides the following services:

Static Analysis LAMP Lab Timing Analysis 5afety & Security Analysis Code Generation Doc Generation

e &
- generate a file complying with the Open PSA model exchange format.

page 54 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

https://www.arbre-analyste.fr/en.html

- generate an Open PSA file as above and launch the Arbre Analyste tool to display
a graphical fault tree.

- & apply the checkSecurityRules LAMP query. The source code of this Prolog
rule is available in file:

An example of use of the Safety & Security Analysis tool can be found
safety security.aic example. Use of Arbre Analyste is presented below

Environment/El11idiss/LAMPLib/LAMPSecurity.aadl.

in the
.t first

shows a fragment of the AADL model and then the graphical representation of the

corresponding Fault Tree that is generated by Arbre Analyste.

21620 (annex EMVZ {*%
21621 use types error library;
21622 use behavior error library: :whs;
21623 composite error behawvior

2le24
21625
2le26
21627
21623
21le29
21630
21631
21632
21633
21634
21635
21636
21637
21633

21e3%9 end

21640 |(**};

states
[becu.Failed

and accumalator.Failed

and annmunciation.Failed]-> AnmunciatedBrakingLoss:;

blue pump.

Failed

and green pump.Failed
and accumalator.Failed

and annmunciation.Failed]-> AnmunciatedBrakingLoss:;

becu.Failed
and accumalator.Failed

and annmunciation.Failed]-> UnanmunciatedBrakinglLoss;

blue pump.

Failed

and green pump.Failed
and accumalator.Failed

and annmunciation.Failed]-> UnanmunciatedBrakinglLoss;

composite;

b

nunciatedBrakinglLo

a gate

T

a gate

==

53 annunciation.Failed 55 annunciation.Failed
a gate a bagic event a gate a basic event
[]
y=Mone

y=Haone
5

bzcu.Failed accumulator. Failed 3 accumulator Failed
a basic event a basic event a gate a bagic event
L]
y=hans y=hione

[J L]
y=Mone

blue_pump.Failed

green_pump.Failed

a basic event

a basic event

y=Maone

y=hMaons

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 55

Similar connection to other safety analysis tools can be added to AADL Inspector if required.
Please contact the technical support if you wish to add another connector.

3.4.5. Code Generation

The code generation services are provided by Ocarina back-ends. Please refer to the Ocarina
documentation or the OpenAADL web site www.openaadl.org for detailed explanations about
the use of these features.

Static Analysis LAMP Lab Timing Analysis Safety & Security Analysis Code Generation Doc Generation

faa C

- M- generate Ada source code files for the PolyORB-HI-Ada middleware. A dialog
box asks about the location of the generated code. A default location is proposed in the
AADL Inspector temporary directory.

- & generate C source code files for the PolyORB-HI-C middleware. A dialog box
asks about the location of the generated code. A default location is proposed in the
AADL Inspector temporary directory.

- ™ gives access to the other available Ocarina back-ends. The actual back-end to use
can be selected in a dialog box.

Note that Ocarina generates the source code architecture and glue code with the Operating
System. However, it requires the applicative functional code to be made available for a
complete build of the software. Access to the functional code can be specified by
Source Text AADL Properties.

3.4.6. Doc Generation

A standard analysis report can be automatically generated thanks to the documentation
generator.

Static Analysis LAMP Analysis Timing Analysis Safety Analysis Code Generation Doc Generation Scripts

=i

- =1 The documentation generator can also be activated from the File/Print menu and applies
to the current AADL system instance. It produces a pre-formatted report that contains the
following sections:

- The output of the Metrics static analysis tool that recalls the AADL scope of the report.
- The description of the scenarios that are selected.

- A snapshot of the simulation time lines from tick 0 to tick 100.

- The timing analysis summary table.

Note that the graphical sections that are inserted into the documentation depend on the actual
layout of the tool window on the screen. Take care to properly resize the window before
starting the documentation generator, so that the corresponding elements are sufficiently
visible.

page 56 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

http://www.openaadl.org/

To open the generated document, use the ?/Open doc dir menu and select the most recent
.pdf file that has been generated.

To customize the contents of the generated report, for instance to modify the size of the printed
time lines, it is necessary to edit the plugin configuration file: use the ?/Open config dir and
edit the file plugins/DocGeneration.ais.

3.5 Simulation area

The Simulation Area is dedicated to controlling and displaying the output of the Marzhin
dynamic simulator. This simulator complements the static simulator provided by Cheddar but
is event-driven and can analyse a wider variety of real-time systems. The counter part is that
the obtained timelines are not the result of mathematical computations and are thus less
dependable.

Time scale
. /_L Control buttons
B O & o 7w . m ® O wmw i oo

2U 30 33 ay 50 &0 70 20 a0 100104 110

EH{_] my_platform.cp |
my_process Instance model tree 463538 63630 63630
. — - - -
16 16 16 16
Process 1/0 Somh - -]
button
| 256 256 256
T
= — Thread activity L L .-
button
| 65536 65536 (5536
65336 - - - - - -
o input
» output { — .. .
Movable Remaining time
Port probe time index until deadline

33

The simulation area is composed of:

- aset of control buttons (same as in the Simulation Control Panel).

- atime scale (shared with the Cheddar Schedule Table).

- adeployable tree showing the AADL instance hierarchy.

- {2/ an external 1/O button on each Process that has connected ports.

- “*an activity button on each Thread to open a tachymeter.

- probes on input and output ports.

- a simulator output area showing timelines for each Processor, Process, Thread, shared
Data and Bus subcomponent in the current root System.

In addition, the Simulation Control Panel dialog can be used to set up the time scale and filter

the entities displayed for the simulation. This feature can be activated from the Edit menu or
the corresponding button in the Main buttons Bar. Refer to section 3.1.2.4 for more details.

3.5.1. Simulator action buttons

The simulator toolbar is composed of the following buttons:

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 57

start the simulator

pause the simulator

stop the simulator

refresh the simulation input

go to the current tick

22 @Pos v

toggle optimized mode (see below)

Since version 1.7, AADL Inspector includes an optimized mode for Marzhin. When this
mode is set (default case), the simulator automatically jumps to the next significant event. Note
that this mode is automatically unset when a scenario has been selected.

3.5.2. External I/O

When a Process has ports that are connected downstream in the instance hierarchy, they can be
displayed in a specific dialog box to allow the user to send in data and events and to show the
result of out data and events. This dialog box can be opened by pressing the 1/0 button 2/
.Note that the value that is displayed for an out event port is the time of its last update.

489 PROCESS my process

490 |FEATURES

491 input : IN DATZA PORT int:
452 output : OUT DATE PORT int;
4593 (END my process;

root.my_platform.cpu.my_process infout ports X

In data port: Out data port:
input|4{ | 0utput|65536

[ok || sendan |

3.5.3. Thread activity
A graphical tachymeter can be associated with each running Thread thanks to the activity

button - in the instance tree. Each indicator shows the instant response time of the Thread and
is updated at each period.

1in my_process on m...
a2 @ 5 @)
10 10 10
5 15 \ 18 a/r 15
02 0 2 0 20
J| |2 2 (2 ‘a)

3.5.4. Port probe

A probe can be attached to in and out ports to show the current value that is stored in the port
variable. For event and event data ports, a table shows the contents of the port FIFO, according
to the specified Queue_Size property (default value is 1).

page 58 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

receive ot

45
79
68
39
95

A probe can be opened by clicking on a port while the simulator is running, or preset in a
scenario file (for input ports only)

<scenarii>
<interface>
<feature type="eventdata" id="FIFO"
aadlID="my platform.cpu.my process.receiver.receive"/>
</interface>
<scenario name="default" description="">
<probes>
<probe ref="FIFO"/>
</probes>
</scenario>
</scenarii>

3.5.5. Simulation timelines

A separate timeline is shown for each Processor, each partition (Process), each Thread, each
shared Data component, as well as for each Bus, each Bus channel and each Bus message. The
colour code that is used for the timelines can be configured in the ATConfig.ini file and

displayed in the help tab of the Simulation control panel. Timelines can be saved in VCD
format (cf. 3.1.2.5).

Note that the same representation is used for respectively Processors and Buses, Processes and
Bus channels and Threads and Bus messages.

Default time lines colour mapping is as follows:

Processors: Partiticns: Threads: Data
Ocecupied Suspended Unknown state Occupied
Available Running State ready Available

— State suspended
B State running

Awaiting resource

B Awaiting return
Dispatch jitter

| Getresource

Release resource
Send event
Call
Current deadline
Period

3.5.6. Navigation to the AADL source code
There is a contextual menu (right mouse button) associated with the entities of the instance

model tree. It allows direct access to the corresponding classifier and instance declarations in
the AADL source text.

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 59

o4
B8 THREAD a thread
66 |FEATURES

a7 input : IN DATE PORT int; S my_platfor
a8 output : OUOT DATZ PCORT int; -
69|BNNEX Behavior Specification {** 2 my_proce h
70| STATES s : INITIAL COMPLETE FINAL STATE; AL = _
71| TRANSITIONS t : = —[ON DISBARTCH]-» = :;»'-‘tz
T2 { sguare! (input,output) : N D (o to instance
TE[**}:

T4|END a_ thread;

31|PROCESS TMPLEMENTATICON my process.others
32 |5UBCOMPCHENTS

33 T1 : THREAD a_ thread
. { Dispatch Protocol => PeriodIcs

/7 my_proce E —

it | —
F;, Go to classifier

35 Compute Execution Time => 3 ms .. 3 ms; _ lf_:mm instance
36 Period => 20 ms; -
37 Deadline => 20 ms; }; ot .

3.6 Status bar and Error Report

The status bar located in the lower part of the window shows various informational or error
messages generated by AADL Inspector:

See report Details

When relevant, detailed error messages are displayed in the Report tab.

|S:i_1:|1111a1.:::rr stopped by third party.

page 60 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

4 Used Key Words and Acronyms

AADL Architecture Analysis and Design Language: SAE AS-5506 (more)
AADL Inspector An AADL centric model analysis framework (more)
AADL.Ib Repository of AADL resources (more)

AMP Asymmetric Multi Processor

ARINC 653 Avionics application software standard interface (more)
Ada A programming language (more)

Arbre Analyst A Fault Tree Analysis tool (more)

BMP Bound Multi Processor

C A programming Language (more)

Capella A Model Based System Engineering tool (more)
Cheddar A timing analysis tool (more)

DM Deadline Monotonic

EMOF Essential Meta-Object Facility (more)

EMV2 Error Modeling AADL annex v2 (more)

ETFL Ellidiss Technologies Floating License

Ecore Eclipse Modeling Framework metamodel language (more)

Ellidiss Technologies

A company editing AADL and HOOD tools (more) (again more)

ESA

European Space Agency (more)

FACE™ Future Airborne Capability Environment (more)

FIFO First In First Out

FTA Fault Tree Analysis

HOOD Hierarchical Object Oriented Design (more)

ISAE Institut supérieur de I'aéronautique et de I'espace (more)

JRE Java Runtime Environment

Java A programming language (more)

LAMP Logical AADL Model Processing (more)

LMP Logic Model Processing (more)

Linux An Operating System

MARTE Modeling and Analysis of Real-Time Embedded systems (more)
Magic Draw A SysML modeling tool (more)

Marzhin An AADL runtime simulator

OMG Object Management Group (more)

OSATE Open Source AADL Tool Environment (more)

Ocarina A stand-alone AADL model processor (more)

OpenAADL AADL resourses web site (more)

OpenPSA Open initiative for Probabilistic Safety Assessment (more)
PDF Portable Document Format (more)

PolyORB-HI-Ada High-integrity middleware for Ocarina Ada code generator (more)
PolyORB-HI-C High-integrity middleware for Ocarina C code generator (more)
Prolog A programming language (more)

RM Rate Monotonic

RTOS Real Time Operating System

RTS Real Time System

SAE AS-5506 A SAE International standard: AADL (more)

SAFLA Scheduling Aware Flow Latency Analysis

SB-Prolog A prolog engine (more)

Stood A HOOD and AADL software design tool (more)

SysML Systems Modeling Language (more)

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 61

https://www.sae.org/standards/content/as5506c/
https://www.ellidiss.fr/public/wiki/inspector
https://github.com/OpenAADL/AADLib
https://www.aviation-ia.com/sae-search/content/ARINC%20653
https://www.iso.org/standard/61507.html
https://www.arbre-analyste.fr/en.html
https://www.iso.org/standard/74528.html
https://www.eclipse.org/capella/
http://beru.univ-brest.fr/cheddar/
https://www.omg.org/spec/MOF/2.4.1/PDF
https://www.sae.org/standards/content/as5506/1a/
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html#details
https://www.ellidiss.com/
https://www.ellidiss.fr/
https://www.esa.int/
https://www.opengroup.org/face
https://www.ellidiss.fr/public/wiki/hood
https://www.isae-supaero.fr/en/
https://www.oracle.com/java/
https://www.ellidiss.fr/public/wiki/lamp
https://www.ellidiss.fr/public/wiki/LMP
https://www.omg.org/spec/MARTE/
https://www.nomagic.com/product-addons/magicdraw-addons/sysml-plugin
https://www.omg.org/
https://osate.org/
http://www.openaadl.org/ocarina.html
http://www.openaadl.org/
http://www.open-psa.org/
https://www.iso.org/standard/75839.html
https://github.com/OpenAADL/polyorb-hi-ada
https://github.com/OpenAADL/polyorb-hi-c
https://www.iso.org/standard/21413.html
https://www.sae.org/standards/content/as5506c/
https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/prolog/sbprolog/0.html
https://www.ellidiss.fr/public/wiki/stood
https://www.omgsysml.org/

TSP Time and Space Partitioning

Telecom ParisTech An engineering school (more)

UML Unified Modeling Language (more)

VCD Value Change Dump format (more)

Virtualys An Ellidiss Technologies partner company (more)
Windows An Operating System (more)

XMI XML Metadata Interchange (more)

XML Extensible Markup Language (more)

page 62 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

https://www.telecom-paris.fr/
https://www.omg.org/spec/UML/
https://web.archive.org/web/20120323132708/http:/www.beyondttl.com/vcd.php
https://www.virtualys.fr/
https://www.microsoft.com/en-us/windows/
https://www.omg.org/spec/XMI
https://www.w3.org/TR/xml/

AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021 — page 63

Y Ellidiss

Ellidiss Technologies
24 quai de la douane
29200 Brest
Brittany
France

http://www.ellidiss.com

aadl@ellidiss.com
+33 298 451 870

page 64 - AADL Inspector 1.8 User Manual © Ellidiss Technologies — May 2021

