
TASTE
6.01.2025

Jérôme Legrand

Contents
Introduction
TASTE Overview
Model
Tools
Demonstration
Conclusion

Contents
Introduction
TASTE Overview
Model
Tools
Demonstration
Conclusion

1 Introduction

Ellidiss Technologies
• Ellidiss Technologies propose des méthodes et outils pour le développement des

systèmes critiques à forte concentration de logiciel.

• Les trois activités de la société sont :
‣ La maintenance au long cours et le support technique de ses outils en opération

dans des programmes industriels majeurs tels que les A340, A380 et A350 et
l’Eurofighter Typhoon.

‣ Le développement de nouveaux outils de modélisation et d’analyse supportant
des standards industriels tels que HOOD, AADL ou SysML.

‣ La participation à des projets collaboratifs de recherche ou industriels.

Objectives of this course
• Present an industrial/Research software design methodology :

‣ Interesting concepts
‣ Implementation not up to these concepts

• Prepare the tutorial/practical work

Contents
Introduction
TASTE Overview
Model
Tools
Demonstration
Conclusion

2 TASTE Overview

What is TASTE
• A tool-chain targeting heterogeneous systems, using model-based development.
• A process supporting the creation of systems, using formal models and automatic

code generation.
• A laboratory platform experimenting with safety-critical SW technologies, based

on open-source, freely accessible solutions.
• https://taste.tools and https://gitrepos.estec.esa.int/taste/
• TASTE’s lineage can be traced back to the EU/FP6 ASSERT project : an effort led by

the European Space Agency back in 2005, whose purpose was to bring true, formal
models-based Engineering into the way we develop space SW.

https://taste.tools
https://gitrepos.estec.esa.int/taste/

ERGO Project
• European Robotic Goal-Oriented Autonomous Controller.
• Objective : deliver an advanced yet flexible space autonomous software framework/

system suitable for single and/or collaborative space robotic means/missions (orbital
and surface rovers).

• https://www.h2020-ergo.eu/

https://www.h2020-ergo.eu/
videos/ERGO.mp4

MOSAR Project
• Modular and Re-Configurable Spacecraft
• Existing commercial satellites and space platforms are traditionally the result of a highly

customized monolithic design with very limited or no capability of servicing and maintenance.
• Number of ageing satellites is growing rapidly. There is currently no available technology, and as

a result typically no plan for maintenance and the ageing satellites are simply dismissed and left
in orbit as a space debris.

• Objective : developing a ground demonstrator for on-orbit modular and reconfigurable satellites.
• https://www.h2020-mosar.eu/

https://www.h2020-mosar.eu/
videos/MOSAR.mp4

Taste Workflow
It is an iterative process :
1. Describe the system logical architecture and interfaces with ASN.1 and AADL
2. Generate code skeletons and write the applicative code or models
3. Capture the system hardware and deployment
4. Verify models
5. Build the system and download it on target
6. Monitor and interact with the system at run-time

Taste Workflow (2)

Contents
Introduction
TASTE Overview
Model
Tools
Demonstration
Conclusion

3 Model

ASN.1
Abstract Syntax Notation One (ISO and ITU-T)
• Simple text notation to describe data types and constraints International standard

(ISO and ITU-T).
• An ASN.1 definition can be readily mapped (by a pre-run-time processor) into a C

or C++ or Java data structure that can be used by application code, and supported
by run-time libraries providing encoding and decoding of representations.

• Separate the encoding rules from the types specification
• e.g. My-Integer::= INTEGER (0..255)
• https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx

https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx

ASN.1 : Vol 501 d’Ariane 5

Figure 4: Video INA

• Aucune victime.
• Autour de 500 million de dollars de pertes : fusée, 4 satellites de la mission cluster.
• Rapport de l’incident : http://www.capcomespace.net/dossiers/espace_europeen/

ariane/ariane5/AR501/AR501_rapport_denquete.htm

videos/ExplosionAriane5INA.mp4
http://www.capcomespace.net/dossiers/espace_europeen/ariane/ariane5/AR501/AR501_rapport_denquete.htm
http://www.capcomespace.net/dossiers/espace_europeen/ariane/ariane5/AR501/AR501_rapport_denquete.htm

ASN.1 : Vol 501 d’Ariane 5 rapport
• La chaîne de pilotage d’Ariane 5 repose sur un concept standard :

‣ l’attitude du lanceur et ses mouvements dans l’espace sont mesurés par un système de référence inertielle
(SRI) : calcule les angles et les vitesses.

‣ Les données du SRI sont transmises au calculateur embarqué (OBC) qui exécute le programme de vol et
qui commande les tuyères des étages d’accélération à poudre et du moteur cryotechnique Vulcain.

• Redondance au niveau des équipements :
‣ 2 SRI travaillant en parallèle : ces systèmes sont identiques tant sur le plan du matériel que sur celui du

logiciel. L’un est actif et l’autre est en mode “veille active” ; si l’OBC détecte que le SRI actif est en panne,
il passe immédiatement sur l’autre SRI à condition que ce dernier fonctionne correctement.

• La conception des SRI d’Ariane 5 est pratiquement la même que celle d’un SRI qui est actuellement utilisé
à bord d’Ariane 4, notamment pour ce qui est du logiciel.

• L’exception logiciel interne du SRI s’est produite pendant une conversion de données de représentation
flottante à 64 bits en valeurs entières à 16 bits (sur le biais horizontal). Le nombre en représentation flottante
qui a été converti avait une valeur qui était supérieure à ce que pouvait exprimer un nombre entier à 16 bits.
Il en est résulté une erreur d’opérande. Les instructions de conversion de données (en code Ada) n’étaient
pas protégées contre le déclenchement d’une erreur d’opérande

ASN.1 : Basic Types

Type Examples
INTEGER

My-int ::= INTEGER (0..7)
value My-int ::= 5

REAL
My-real ::= REAL (10.0 .. 42.0)

BOOLEAN
ENUMERATED

My-enum ::= ENUMERATED { hello, world }

OCTET STRING
My-string ::= OCTET STRING (SIZE (0..255))
value My-string::= 'DEADBEEF'H

BIT STRING
My-bitstring ::= BIT STRING (SIZE (10..12))*
value My-bitstring ::= '00111000110'B

ASN.1 : complex types

Type Examples
SEQUENCE

My-seq ::= SEQUENCE {
 x My-int,
 y My-enum OPTIONAL
}
value My-seq::= { x 5 }

CHOICE
My-choice ::= CHOICE {
 choiceA My-real,
 choiceB My-bitstring
}
value My-choice ::= choiceA : 42.0

SEQUENCE OF
My-seq ::= SEQUENCE (SIZE (0..5)) OF BOOLEAN
value My-seq:= { 1, 2 ,3 }

SET / SET OF

ASN.1 : Encoding Rules
• Several standardized encoding rules :

‣ BER (Basic Encoding Rules)
‣ PER (Packed Encoding Rules) : more recent, most compact encoding rules
‣ …

• Describe how the values defined in ASN.1 should be encoded for transmission (i.e.,
how they can be translated into the bytes ‘over the wire’ and reverse).

ASN.1 : ACN
ACN was created as a simple ASN.1 companion language allowing to describe custom
binary encodings for complex data structures. It is useful in the following case:
• you need to implement a binary packet encoder/decoder for a legacy protocol
• no standard ASN.1 encoding rules (PER, DER, XER, OER, JER…) fits
• ECN, the Encoding Control Notation is too complicated or you have no tool

available
• the targeted encoding is not too complex
• https://taste.tuxfamily.org/wiki/index.php?title=Technical_topic:_ASN.1_-_An_

introduction_to_ACN

ACN works in pair with ASN.1 and provides various ways to customize the memory
layout of data structures.

https://taste.tuxfamily.org/wiki/index.php?title=Technical_topic:_ASN.1_-_An_introduction_to_ACN
https://taste.tuxfamily.org/wiki/index.php?title=Technical_topic:_ASN.1_-_An_introduction_to_ACN

ASN.1 : ACN Examples
Here is a simple example, starting from a basic integer type:

MyInteger ::= INTEGER (0..7)

If you choose to represent a data of this type using the ASN.1 PER, the encoding will
be optimal: 3 bits. However, your protocol may say that this has to be encoded using
32 bits with a little endian representation. ACN offers the syntax for this:

MyInteger [size 32, endianness little, encoding pos-int]

AADL
• Architecture Analysis and Design Language, a standard from SAE (https://www.

sae.org/)
• Used to model the logical and the physical architecture of the system
• Textual and graphical representations
• Used in TASTE to capture the system structure, interfaces, hardware and deploy-

ment.

https://www.sae.org/
https://www.sae.org/

Interface View
• The interface view in TASTE captures the model of the system logical architecture,

independently from a software implementation.
• In the most abstract way, a system modeled with TASTE contains functions that

exchange messages with other functions through interfaces.
• The semantics of the interface view is largely derived from the Specification and

Description Language (SDL) communication view.
• The AADL language (AADL v2.2) is used as an intermediate textual format for the

Interface View.

IV Functions
There are several forms of functions in TASTE :
• functions that represent an active component of the system (e.g. a state machine or a

control law), something that can communicate with surrounding functions through
interfaces.

• nesting functions, that allow to structure the system in a hierarchical way (grouping
by context, or for better readability). Nesting is recursive.

• function types, which contain a generic behavior and that can be instantiated
• function instances

IV Functions View

IV Functions Properties
Attribute Description

Label Graphical label
Language Source code langage (c, …)
Source Text Path to the source code
Fill Color Choose the color of the graphical element
is_Instance_of For function instance only: reference to the

function type
…

IV Functions Context Parameters
The «Context Parameters» tab offers a space for flexibility :
• Context parameters allow defining constants at model level and make them acces-

sible from user code
‣ Support for C, Ada and Simulink (instructs code generator to generate « tuneable

parameters », which are global variables)
‣ Value can be generated from an external source

• TASTE directives are used to fine-tune the build process with additional properties
(e.g. compilation or link flags that are specific to a piece of code)
‣ Used to integrate Simulink code when it requires special defines (-DRT,

-DUSE_RTMODEL)
‣ When a property proves usefulness, it gains a dedicated entry in the GUI

IV Provided and Required interfaces
A provided/required interface is a service offered/required by a function. It can be
• Cyclic: only PI, execution of the cyclic activities of the system, it does not take any

parameter.
• Sporadic: asynchronous execution and optionally carry one parameter at most.
• Protected: synchronous execution, mutual exclusion execution (any number of in

and out parameters).
• Unprotected: synchronous execution, no mutual exclusion execution (any number

of in and out parameters)
• Any: only RI, can be connected to any interfaces.

IV PI and RI View

IV Cyclic PI Attributes
Attribute Description

Operation Name Graphical label
Kind Type of the PI (cyclic here)
Period (ms) Period value of the cycle
Deadline (ms) Deadline of the execution
WCET (ms) Duration of the execution

IV Sporadic PI Attributes
Attribute Description

Operation Name Graphical label
Kind Type of the PI (sporadic here)
Min inter-arrival Time (ms) Minimum delay between 2 executions
Deadline (ms) Deadline of the execution
WCET (ms) Duration of the execution
Queue Size

IV (un)Protected PI Attributes
Attribute Description

Operation Name Graphical label
Kind Type of the PI (protected here)
Deadline (ms) Deadline of the execution
WCET (ms) Duration of the execution

IV RI Attributes
Attribute Description

Label Graphical label
Inherits from PI Inherits the label, parameters, … from

the connected PI (true or false)
Kind Type of the PI (protected here)

IV PI and RI Parameters
Each parameter has a type (from the ASN.1 model), a direction (in or out), and an
encoding protocol :
• Native : means memory dump, no special treatment
• UPER : compact binary encoding
• ACN : user-defined encoding

IV AADL Mapping
IV AADL

Interface View Package + System composition
Function,
Function Type,
Function Instance

Package + System comp. + System subcomp.

Provided Interface Subprogram + Provides Spg Access feature
Required Interface Subprogram + Requires Spg Access feature
Context Parameter Data subcomponent
Connection Subprogram Access Connection
Textual description Comment at the feature or subcomp. level
Graphical note Comment at the Package level

Deployment View
• Map functions on hardware
• Centralized and distributed systems
• Can add buses, drivers.. Extensible (every component is described in an AADL file)

DV elements
• Node: hardware support of a one processor (only monoprocessor) and devices.
• Processor: Processor.
• Partition: adress space of a processor.
• Device: communication element between nodes through bus.
• Bus: communication element between devices.
• Interfaces (Devices and Bus) : used to make the connection between devices and

buses.
• Connections between interfaces.

DV AADL Mapping
DV AADL

Deployment View Package + System
Node Package + System
Processor Processor
Partition Partition
Device Device
Bus Bus
Bus Connection Bus Access Connection
Textual description Comment at the feature or subcomp. level
Graphical note Comment at the Package level

Contents
Introduction
TASTE Overview
Model
Tools
Demonstration
Conclusion

4 Tools

Tools list
Here are the tools used in the taste toolchain:
• ASN1SCC (taste toolchain): ASN.1 Compiler
• Ocarina: AADL model processor, written in Ada.
• Kazoo (taste toolchain): it generates code skeletons, concurrency view, build scripts,

…
• Taste Editors (taste toolchain): UI editors/analysis for the different models (IV, DV,

…)
• Cheddar: real time scheduling analysis tool.
• Marzhin: AADL simulator.
• …

ASN1SCC
• Overview:

‣ The ASN1SCC ASN.1 compiler parses an ASN.1 grammar.
‣ The ASN.1 glue generators parse an ASN.1 grammar types and create run-time data translation “bridges”.

• Features:
‣ The ASN.1 compiler:

- supports NATIVE, Unaligned PER (uPER) and ACN (user-controlled) encodings
- creates both C and Ada type declarations and encoders/decoders

‣ The ASN.1 glue generators:
- Perform type mapping of ASN.1 grammars to declarations in SCADE, Simulink, Pragmadev Studio, C

and Ada.
- Create run-time translation bridges between the C types generated by SCADE, Simulink, OpenGEODE,

Pragmadev Studio and the C types generated by the ASN1SCC ASN.1 compiler.
- The combination of the two, allows ASN.1 to be used as a “universal translator” between modelling

tools - and forms the “heart” of TASTE’s data modelling.

Ocarina
• Overview:

‣ Ocarina is used to analyze and build applications from AADL descriptions.
‣ Thanks to its modular architecture, Ocarina can also be used to add AADL functions to existing

applications.
‣ http://www.openaadl.org/ocarina.html

• Features:
‣ Parser : support both AADL1.0 and AADLv2 syntaxes;
‣ Code generation : targeting C real-time operating systems: RT-POSIX, Xenomai, RTEMS; and

Ada using GNAT for native and Ravenscar targets;
‣ Model checking : mapping of AADL models onto Petri Nets, timed (TINA) or colored (CPN-

AMI);
‣ Schedulability analysis : mapping of AADL models onto Cheddar or MAST models
‣ Model Analysis : using the REAL language, one can analyze an AADL model for particular

patterns or compute metrics.

http://www.openaadl.org/ocarina.html

Kazoo
• Kazoo is a command line tool which processes input AADL models and produces

derived models, code and scripts used to build complete system.
• It uses Ocarina for AADL parsing and templates-parser for templates processing

and files generation.
• Standard library of components used by templates is defined by TASTE common

models from ocarina_components.aadl file, which includes supported processors,
devices, drivers etc.

• Generated build scripts apart from calling code compilers also run other tools like
ocarina and aadl2glueC to create rest of the source code.

• https://taste.tuxfamily.org/wiki/index.php?title=Kazoo

https://taste.tuxfamily.org/wiki/index.php?title=Kazoo

Taste Editors
The TASTE editor is a graphical editor that provides the following functionalities for
the TASTE modelling activities:
• Full integration of the Dataview-IV-DV activities within a single tool.
• Enhanced support for reuse of IV models and components.
• Updated real-time analysis tools for the CV, including the most recent version of

the Cheddar scheduling analysis framework and of the Marzhin AADL simulator.
• https://taste.tuxfamily.org/wiki/index.php?title=TASTE_DataView/IV/DV/CV_

Graphical_Editor

https://taste.tuxfamily.org/wiki/index.php?title=TASTE_DataView/IV/DV/CV_Graphical_Editor
https://taste.tuxfamily.org/wiki/index.php?title=TASTE_DataView/IV/DV/CV_Graphical_Editor

Taste Editors Technologies
The TASTE editors uses various background technologies:
• GMP (Graphic Model Processing): generic graphical framework developed by

Ellidiss Technologies.
• LMP (Logic Model Processing): generic model transformation and AADL toolbox

developed by Ellidiss Technologies.
• Cheddar: real-time scheduling analysis tool developed by the University of Brest

and Ellidiss Technologies.
• Marzhin: AADL run-time simulator developed by Virtualys and Ellidiss Technolo-

gies.
• Ocarina: AADL compiler and code generator developed by ISAE.

Taste Editors Overview (1)
The TASTE graphical editor consists of a single window that encompasses several elements:
• main menu and button bar. The button bar is updated upon the current modelling or verification activity,

as defined by the selection tab.
• models browser where the overall project hierarchy and organization is displayed in a deployable tree

structure.
• set of selection tabs to enable one of the proposed TASTE modelling or verification activity, and update

the content of the working area.
• working area, showing either:

‣ A textual editor where the ASN.1 and ACN representations of a TASTE DataView model can be
edited, or

‣ A box-arrow editor where a graphical representation of a TASTE Interface View or Deployment
View model can be edited, or

‣ The timing analysis results of a TASTE Concurrency View model, or
‣ A textual viewer that displays the generated textual AADL code

• log view where main editing operations are logged.
• status bar showing system information, warning and error messages.

Taste Editors Overview (2)

Taste Editors: Main Menu
• File → New: reset the editors.
• File → Load: load a data view, an interface view, a deployment view, a concurrency

view or a hardware library.
• File → Reload: reload a view (data, interface, deployment or concurrency).
• File → Save: save all views (interface, deployment or concurrency).
• File → Load HW Library Directory: load a hardware library located in a direc-

tory (it can be split in multiple files).
• New→«elements»: create elements for the differents editors.
• Tools → «external tools»: this section contains configurable external tools thanks

to a plugin mechanism.

Taste Editors: Main Toolbar
• Common buttons

‣ New: same as main menu.
‣ Load: same as main menu.
‣ Reload: same as main menu.
‣ Save: same as main menu.

• Specific to IV/DV:
‣ “New section”: same as menu. All the add buttons (plus group/ungroup connec-

tion for iv).
• Specific to CV:

‣ Simulation Control Panel: launch the Cheddar and Marzhin simulation control
panel.

‣ Real Time Properties: edit the real time properties of the concurrency view.

Taste Editors: Data View
The data view tab contains a text editor which allows to display/edit the content of
the acn/asn files selected in the DataView part of the browser.

Taste Editors: IV/DV
• The interface view and deployment view tabs contain a diagram editor which allows to

construct graphically an IV/DV.
• The graphical objects can be create through the main menu (New), the main toolbar or the

diagram contextual menu. Furthermore, copy of existing object can be done with a drag & drop
mechanism with the IV or DV browser.

• Function Type/instance: the user can create local or use shared function types. These types can
be instantiated. A modification of a local type will be automatically applied to its instances.

• IV import: interface view aadl files can be imported and theirs functions copied in the local
interface view through the drag & drop mechanism of the browser.

• Hardware Library: several deployment view objects have to be created with a hardware library.
When the user load one, its objects (processors, devices and buses) appear in the deployment view
browser. Theses objects can be copied to the local deployment view through the browser drag &
drop mechanism.

Cheddar
• GNU GPL real-time scheduling simulator and schedulability tool.
• Only the framework part is used (Cheddar Kernel).
• Cheddar allows you to model software architectures of real-time systems and to

check their schedulability or other performance criteria.
• Analysis Tools:

‣ Scheduling simulations
‣ Apply feasibility tests on tasks
‣ Algorithms to assign priorities to tasks
‣ Partitionning tools for periodic task set
‣ …

• http://beru.univ-brest.fr/cheddar/

http://beru.univ-brest.fr/cheddar/

Marzhin
• Marzhin is an AADL multi-agent simulator.
• Uses the standard AADL Behavior Annex to express threads and subprograms

pseudo-code focused on timing analysis purpose.
• Develop by Virtualys (https://www.virtualys.fr/) and Ellidiss Technologies.

https://www.virtualys.fr/

Taste Editors: CV
• The concurrency view tab contains a horizontal paned window. Its upper part displays the Cheddar

analysis tools and the lower part displays the Marzhin analysis tools.
• The Cheddar analysis tool widget is composed of a toolbar and each button activate a different analysis

tool widget :
‣ a synthesis table which displays the theoretical and simulation result of cheddar and the results of

Marzhin for comparison.
‣ a simulation chronogram produced by Cheddar.
‣ a more complete theoretical results from Cheddar.
‣ a more complete simulation results from Cheddar.

• The Marzhin analysis tool widget is composed of a tree representing the real time components hierarchy
(processor, partition, threads, input/output data, …) and a simulation chronogram. The chronogram
horizontal scrollbar is attached to Marzhin and Cheddar in order to make comparison between them.

• Furthermore, two other widgets can be used to modify the tool’s configuration:
‣ Simulation Control Panel.
‣ Real Time Properties Editor.

CV: Simulation Control Panel
• The general tab:

‣ Zoom Factor: the value can be chosen among given values (0.1, 0.5, 1, 2 or 4) and is used to zoom the
simulation timeline.

‣ Filters : the value is used to filters the components in the hierarchy tree
• The Marzhin tab:

‣ Simulation Control: the tool buttons can be used to launch, pause, stop, refresh, go to the last tick and
set the optimization of the Marzhin simulation. The current simulation result can be saved in a vcd file.

‣ Computation range: this value represents the time interval of the simulation.
‣ Selected scenario: set the selected scenario (among the ones found in the given scenario asc file in the

command line).
‣ Speed factor: the user can choose the simulation speed between several values (x1, x2, x5 or x10).

• The Cheddar tab:
‣ Computation range: this value represents the time interval of the simulation.

• The Help tab displays all the color code used in the simulation chronogram.

CV: Real Time Properties Editor
• This editor is used to modify the real time properties of the concurrency view

threads (dispatch protocol, period, priority, …).
• The new values are taken into account by the analysis tools and can be saved in

a file.

Taste Editors: AADL Viewer
• In the upper part: some aadl analysis tools

‣ Parsing the model
‣ Instantiate the model
‣ Metrics on the model

• In the lower part:
‣ textual viewer to display the content of the aadl file of the IV, DV or CV selected

in the browser.

Taste Editors: AADL Models
• The TASTE models that can be loaded into and saved from the TASTE editors are serialized in AADL

format.
• For the purpose of TASTE models serialisation, only a subset of the AADL language is used, and the

TASTE entities are associated with specific AADL constructs that have been defined to ensure a correct
semantic mapping. A TASTE project makes use of several kinds of models. Each of them is associated with
a dedicated AADL subset. These models are:
‣ DataView: automatically generated from ASN.1 source code.
‣ Interface View: automatically generated from the Interface View diagram.
‣ Hardware Library: provided by the Ocarina environment.
‣ Deployment View: automatically generated from the Deployment View diagram.
‣ Concurrency View: automatically generated by the TASTE Build Support utility.
‣ Customised Properties: specified by the TASTE_IV_Properties and TASTE_DV_Properties files

located in the config directory of the TASTE editor distribution.
• WARNING: all the AADL files that are involved in a TASTE project are either provided or automatically

generated. It is thus not necessary - and even not recommended - for a TASTE end-user to edit the AADL
models. Directly editing the provided or generated AADL files may lead to load errors and model corruption.

Contents
Introduction
TASTE Overview
Model
Tools
Demonstration
Conclusion

5 Demonstration

Calculator Exemple
Make a calculator:
• Create a function named «calculator»: provides the calculator services.
• Create Pis:

‣ «Add» with 3 parameters: in a, in b, out result
‣ «sub» with 3 parameters: in a, in b, out result
‣ …

• Create a function named «UI»: interaction with a user, requires the calculator
services.

• Create Ris
• Connect the Pis and the RIs

Contents
Introduction
TASTE Overview
Model
Tools
Demonstration
Conclusion

6 Conclusion

	Introduction
	Ellidiss Technologies
	Objectives of this course

	TASTE Overview
	What is TASTE
	ERGO Project
	MOSAR Project
	Taste Workflow
	Taste Workflow (2)

	Model
	ASN.1
	ASN.1 : Vol 501 d'Ariane 5
	ASN.1 : Vol 501 d'Ariane 5 rapport
	ASN.1 : Basic Types
	ASN.1 : complex types
	ASN.1 : Encoding Rules
	ASN.1 : ACN
	ASN.1 : ACN Examples
	AADL
	Interface View
	IV Functions
	IV Functions View
	IV Functions Properties
	IV Functions Context Parameters
	IV Provided and Required interfaces
	IV PI and RI View
	IV Cyclic PI Attributes
	IV Sporadic PI Attributes
	IV (un)Protected PI Attributes
	IV RI Attributes
	IV PI and RI Parameters
	IV AADL Mapping
	Deployment View
	DV elements
	DV AADL Mapping

	Tools
	Tools list
	ASN1SCC
	Ocarina
	Kazoo
	Taste Editors
	Taste Editors Technologies
	Taste Editors Overview (1)
	Taste Editors Overview (2)
	Taste Editors: Main Menu
	Taste Editors: Main Toolbar
	Taste Editors: Data View
	Taste Editors: IV/DV
	Cheddar
	Marzhin
	Taste Editors: CV
	CV: Simulation Control Panel
	CV: Real Time Properties Editor
	Taste Editors: AADL Viewer
	Taste Editors: AADL Models

	Demonstration
	Calculator Exemple

	Conclusion

