
Bare-C Cross-Compiler

BCC

BCC User's Manual

U
S

E
R

 M
A

N
U

A
L

R
E

L
E

A
S

E
D

 O
C

T
O

B
E

R
 2

02
4

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 2

Table of Contents
1. Introduction .. 7

1.1. Scope .. 7
1.2. Installation ... 7

1.2.1. Host requirements ... 7
1.2.2. Linux .. 7
1.2.3. Windows ... 7

1.3. Contents of /opt/bcc-2.3.1-gcc .. 8
1.4. BCC tools .. 8
1.5. Documentation .. 9
1.6. Toolchain source code distribution ... 9

1.6.1. BCC source code installation .. 9
1.6.2. Building .. 9

1.7. Support .. 10
2. Using BCC ... 11

2.1. General development flow ... 11
2.2. Compiler options ... 11

2.2.1. sparc-gaisler-elf-gcc options ... 11
2.2.2. sparc-gaisler-elf-clang options .. 12

2.3. Compiling BCC applications .. 12
2.4. Floating-point considerations ... 12
2.5. LEON SPARC V8 instructions ... 12
2.6. Multiply and accumulate instructions ... 13
2.7. Single register window model (flat) .. 13
2.8. Register usage ... 13
2.9. Single vector trapping ... 13
2.10. Memory organization .. 13
2.11. BCC Board Support Packages .. 14
2.12. Peripheral driver library .. 14
2.13. Multiprocessing ... 14
2.14. Debugging with GDB ... 15

2.14.1. Debug information considerations ... 15
2.15. Examples .. 15

2.15.1. Target specific examples ... 16
2.16. Creating a bootable ROM images ... 16

3. LLVM based toolchain .. 17
3.1. Introduction .. 17
3.2. BCC LLVM/Clang tools ... 17

4. C standard library ... 18
4.1. File I/O .. 18
4.2. Time functions .. 18
4.3. Dynamic memory allocation .. 18
4.4. Atomic types and operations .. 18
4.5. Newlib nano ... 18

5. BCC library .. 19
5.1. Usage .. 19
5.2. Console API ... 19
5.3. Timer API .. 19

5.3.1. Interrupt based timer service ... 19
5.4. Cache control API ... 20
5.5. Bus access API ... 20
5.6. IU control/status register access API ... 21

5.6.1. Processor State Register ... 21
5.6.2. Trap Base Register .. 22
5.6.3. Processor power-down ... 22

5.7. FPU context API ... 23
5.8. Trap API .. 23

5.8.1. Single vector trapping (SVT) ... 24

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 3

5.9. Interrupt API ... 25
5.9.1. Interrupt disable and enable .. 25
5.9.2. Interrupt source masking .. 26
5.9.3. Clear and force interrupt ... 27
5.9.4. Interrupt remap ... 28
5.9.5. Interrupt service routines .. 28
5.9.6. Interrupt nesting .. 32
5.9.7. Low-level interrupt handlers .. 33
5.9.8. Interrupt timestamping ... 34

5.10. Asymmetric Multiprocessing API .. 36
5.10.1. Processor identification ... 36
5.10.2. Inter-processor control .. 36

5.11. Default trap handlers .. 37
5.12. API reference .. 37

6. AMBA Plug&Play library .. 40
6.1. Introduction .. 40

6.1.1. AMBA Plug&Play terms and names ... 40
6.1.2. Availability .. 40

6.2. Device scanning .. 40
6.3. User callback .. 42

6.3.1. Criteria matching ... 42
6.3.2. Device information .. 42

6.4. Example ... 43
6.5. API reference .. 44

7. Board Support Packages .. 45
7.1. Overview .. 45
7.2. LEON3 .. 45
7.3. LEON5 .. 45
7.4. GR712RC ... 45
7.5. GR740 ... 46
7.6. GR716 ... 46

7.6.1. Supported features ... 46
7.6.2. Boot ROM ... 47
7.6.3. APBUART initialization ... 49
7.6.4. Chip specific API .. 49

7.7. LEON2 .. 53
7.8. AGGA4 ... 53

8. Customizing BCC .. 54
8.1. Introduction .. 54
8.2. Console driver ... 54

8.2.1. Initialization ... 54
8.2.2. Input and output functions .. 54
8.2.3. Customization ... 55
8.2.4. C library I/O .. 55

8.3. Timer driver ... 55
8.3.1. Initialization ... 55
8.3.2. Time access functions .. 56
8.3.3. Customization ... 56

8.4. Interrupt controller driver .. 56
8.4.1. Initialization ... 56
8.4.2. Access functions ... 56
8.4.3. Customization ... 56

8.5. Initialization override example ... 57
8.6. Initialization hooks ... 57
8.7. Disable .bss section initialization ... 58

8.7.1. Example .. 59
8.8. Heap memory configuration ... 59
8.9. Parameters to main() ... 59
8.10. API reference .. 60

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 4

9. Support ... 61
A. Recommended GCC options for LEON systems .. 62
B. Recommended Clang options for LEON systems ... 64
C. Moving applications from BCC 1.0 to BCC 2.3.1 .. 65
I. Device drivers reference .. 66

10. Driver registration ... 72
10.1. Automatic registration ... 72
10.2. Manual registration ... 72
10.3. System specific device registration tables ... 73

11. GRSPW Packet driver ... 74
11.1. Introduction ... 74
11.2. Software design overview .. 74
11.3. Device Interface ... 79
11.4. DMA interface ... 87
11.5. API reference ... 100
11.6. Restrictions ... 102

12. GRCAN CAN driver ... 103
12.1. Introduction ... 103
12.2. Opening and closing device .. 103
12.3. Operation mode .. 105
12.4. Configuration ... 106
12.5. Receive filters .. 108
12.6. Driver statistics .. 108
12.7. Device status ... 109
12.8. CAN bus transfers .. 109
12.9. Interrupt API ... 113

13. UART driver .. 115
13.1. Introduction ... 115
13.2. Driver registration .. 115
13.3. Opening and closing device .. 115
13.4. Status interface .. 116
13.5. Configuration interface .. 116
13.6. Non-interrupt interface .. 118
13.7. Interrupt interface ... 119
13.8. Restrictions ... 120

14. SPI driver .. 122
14.1. Introduction ... 122
14.2. Driver registration .. 122
14.3. Opening and closing device .. 122
14.4. Status service ... 123
14.5. Transfer Configuration .. 123
14.6. Transfer Interface ... 125
14.7. Synchronous TX/RX mode ... 127
14.8. Slave select ... 128
14.9. Restrictions ... 128

15. I2C master driver .. 129
15.1. Introduction ... 129
15.2. Driver registration .. 129
15.3. Examples .. 129
15.4. Opening and closing device .. 129
15.5. Operation mode .. 130
15.6. Configuration ... 131
15.7. Driver statistics .. 133
15.8. I2C bus transfer ... 134
15.9. Synchronous example .. 136

16. Timer driver ... 138
16.1. Introduction ... 138
16.2. Driver registration .. 138
16.3. Device interface ... 138

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 5

16.4. Subtimer interface .. 140
16.5. Restrictions ... 144

17. GPIO driver ... 145
17.1. Introduction ... 145
17.2. Driver registration .. 145
17.3. Opening and closing device .. 145
17.4. Control interface .. 146
17.5. Interrupt map interface .. 148

18. AHB Status Register driver .. 150
18.1. Introduction ... 150
18.2. Driver registration .. 150
18.3. Opening and closing device .. 150
18.4. Register interface .. 151
18.5. Interrupt service routine ... 151

19. Clock gating unit driver ... 154
19.1. Introduction ... 154
19.2. Driver registration .. 154
19.3. Opening and closing device .. 154
19.4. Operation .. 155
19.5. Core reset ... 156
19.6. Probe clock gating status ... 156
19.7. CPU override ... 156

20. GR1553B Driver ... 158
20.1. Introduction ... 158

21. GR1553B Bus Controller Driver .. 160
21.1. Introduction ... 160
21.2. BC Device Handling ... 161
21.3. Descriptor List Handling .. 163

22. GR1553B Remote Terminal Driver .. 175
22.1. Introduction ... 175
22.2. User Interface .. 175

23. GR1553B Bus Monitor Driver .. 185
23.1. Introduction ... 185
23.2. User Interface .. 185

24. GR716 memory protection unit driver .. 190
24.1. Introduction ... 190
24.2. Driver registration .. 190
24.3. Examples .. 190
24.4. Opening and closing device .. 190
24.5. Operation mode .. 191
24.6. Reset .. 192
24.7. Segment configuration ... 192

25. Memory scrubber .. 196
25.1. Introduction ... 196
25.2. Software design overview .. 196
25.3. Memory scrubber user interface .. 197
25.4. API reference ... 204

26. SpaceWire Router Driver ... 206
26.1. Introduction ... 206
26.2. Driver sources .. 206
26.3. Routing ... 206
26.4. Register and access driver .. 206
26.5. Setup routing table .. 207
26.6. Link handling .. 210
26.7. Error handling .. 213
26.8. Time codes .. 214
26.9. Interrupt codes ... 215
26.10. Configure timeouts .. 217
26.11. Configure packet max length .. 218

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 6

26.12. Configure Plug-and-Play .. 218
26.13. Read out credit counters ... 218

27. GR716B Real-Time Accelerator (RTA) .. 220
27.1. Introduction ... 220
27.2. Examples .. 220
27.3. Software design considerations ... 220
27.4. Driver sources .. 220
27.5. Driver registration .. 220
27.6. Opening devices ... 221
27.7. Starting the RTAs ... 222
27.8. Mailbox communication .. 223
27.9. API reference ... 224

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 7

1. Introduction

1.1. Scope

BCC is a cross-compiler for LEON2, LEON3 and LEON4 processors. It is based on the GNU compiler tools, the
newlib C library and a support library for programming LEON systems. The cross-compiler allows compilation
of C and C++ applications.

There is also an experimental LLVM/Clang version of BCC based on the LLVM compiler framework. More
information about the LLVM based toolchain can be found in Chapter 3. The GCC and LLVM/Clang versions
of BCC are distributed in separate packages. The libraries in the two provided packages are compiled using the
selected compiler, with the exception of libgcc which is always compiled with GCC.

BCC consists of the following packages:

• GNU GCC 13.2.1 C/C++ compiler with support for atomic operations
• GNU binutils 2.42
• Newlib C library 4.4.0
• libbcc - A user library for programming LEON systems
• libdrv - A user library of GRLIB peripheral drivers
• GNU GDB 14.2 source-level debugger

In the LLVM/Clang version, the GCC package is replaced by:

• Clang 8.0.0 C/C++ compiler with support for atomic operations (LLVM version)

1.2. Installation

1.2.1. Host requirements

BCC is provided for two host platforms: GNU Linux/x86_64 and Microsoft Windows. The following are the
platform system requirements:

 GCC Version:

 Linux: Linux-2.6.x, glibc-2.11 (or higher)

 Windows: -

 LLVM Version:

 Linux: Linux-3.5.x, glibc-2.15 (or higher)

 Windows: -

In order to recompile BCC from sources, automake-1.11.1 and autoconf-2.68 is required. MSYS-DTK-1.0.1 is
needed on Microsoft Windows platforms to build autoconf and automake. Sources for automake and autoconf can
be found on the GNU ftp server:

• ftp://ftp.gnu.org/gnu/autoconf/
• ftp://ftp.gnu.org/gnu/automake/

MSYS and MSYS-DTK can be found at http://www.mingw.org.

1.2.2. Linux

After obtaining the compressed tar file for the binary distribution, uncompress and untar it to a suitable location.
The Linux version of BCC has been prepared to reside in the /opt/bcc-2.3.1-gcc/ directory, but can be
installed in any location. The distribution can be installed with the following commands:

 $ cd /opt
 $ tar -C /opt -xf /opt/bcc-2.3.1-gcc-linux64.tar.xz

After the compiler is installed, add /opt/bcc-2.3.1-gcc/bin to the executables search path (PATH) and /
opt/bcc-2.3.1-gcc/man to the manual page path (MANPATH).

1.2.3. Windows

BCC for Windows does not require any additional packages and can be run from a standard command prompt. The
toolchain installation zip file, /opt/bcc-2.3.1-gcc-mingw64.zip, shall be extracted to C:\opt creating

https://www.frontgrade.com/gaisler
ftp://ftp.gnu.org/gnu/autoconf/
ftp://ftp.gnu.org/gnu/automake/
http://www.mingw.org

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 8

the directory C:\opt\bcc-2.3.1. The toolchain executables can be invoked from the command prompt by
adding the executable directory to the PATH environment variable. The directory C:\opt\bcc-2.3.1\bin
can be added to the PATH variable by selecting "My Computer->Properties->Advanced->Environment Vari-
ables".

Development often requires some basic utilities such as make, but is not required to compile. On Windows plat-
forms the MSYS Base system can be installed to get a basic UNIX like development environment (including
make).

See http://www.mingw.org for more information on MinGW and the optional MSYS environment.

1.3. Contents of /opt/bcc-2.3.1-gcc

The binary installation of BCC contains the following sub-directories:

 bin/ Executables

 doc/ GNU, newlib and BCC documentation

 man/ Manual pages for GNU tools

 sparc-gaisler-elf/ SPARC target libraries, include files and LEON BSP

 sparc-gaisler-elf/bsp/ Board Support Packages for LEON systems

 src/ Various sources, examples and build scripts

 src/examples/ BCC example applications

 src/libbcc/ libbcc source code and build scripts

 src/libdrv/ libdrv source code, examples and build scripts

1.4. BCC tools

The following tools are installed with BCC:

 sparc-gaisler-elf-addr2line Convert address to C/C++ line number

 sparc-gaisler-elf-ar Library archiver

 sparc-gaisler-elf-as Cross-assembler

 sparc-gaisler-elf-c++ C++ cross-compiler

 sparc-gaisler-elf-c++filt Utility to demangle C++ symbols

 sparc-gaisler-elf-cpp The C preprocessor

 sparc-gaisler-elf-g++ Same as sparc-gaisler-elf-c++

 sparc-gaisler-elf-gcc C/C++ cross-compiler

 sparc-gaisler-elf-gcov Coverage testing tool

 sparc-gaisler-elf-gdb GNU GDB C/C++ level Debugger

 sparc-gaisler-elf-gprof Profiling utility

 sparc-gaisler-elf-ld GNU linker

 sparc-gaisler-elf-nm Utility to print symbol table

 sparc-gaisler-elf-objcopy Utility to convert between binary formats

 sparc-gaisler-elf-objdump Utility to dump various parts of executables

 sparc-gaisler-elf-ranlib Library sorter

 sparc-gaisler-elf-readelf ELF file information utility

 sparc-gaisler-elf-size Utility to display segment sizes

 sparc-gaisler-elf-strings Utility to dump strings from executables

 sparc-gaisler-elf-strip Utility to remove symbol table

https://www.frontgrade.com/gaisler
http://www.mingw.org

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 9

1.5. Documentation

The GNU and newlib documentation is distributed together with the toolchain, located in the doc/ directory of
the installation.

GNU tools:

 as.pdf Using as - the GNU assembler

 binutils.pdf The GNU binary utilities

 cpp.pdf The C Preprocessor

 gdb.pdf Debugging with GDB

 ld.pdf The GNU linker

 gcc/gcc.pdf Using and porting GCC

Newlib C library:

 libc.pdf Newlib C Library

 libm.pdf Newlib C Math Library

BCC:

 bcc.pdf BCC User's Manual (this document)

All documents are all provided in PDF format, with searchable indexes.

1.6. Toolchain source code distribution

The BCC toolchain source code distribution can be used to rebuild the toolchain host binaries (compiler, Binutils)
and the target C library.

Installing the toolchain source code is not required for creating a new BSP or to modify an existing one. The
BSP source code (libbcc) is installed together with the binary distribution under src/libbcc/.

1.6.1. BCC source code installation

The source code for the BCC 2.3.1 toolchain is distributed in an archive named bcc-2.3.1-src.tar.bz2,
available on the website frontgrade.com/gaisler. It contains source code for the target C library and the host com-
piler tools (binutils, GCC, GDB).

Installing the source code is optional but recommended when debugging applications using the C standard library.
The target libraries have been built with debug information making it possible for GDB to find the sources files.
It allows for example to step through the target C standard library code.

The BCC source code files are assumed to be located in /opt/bcc-2.3.1-gcc/src/bcc-2.3.1. The
sources can be installed by extraction the source distribution archive bcc-2.3.1-src.tar.bz2 to /opt/
bcc-2.3.1-gcc/src. It can be done as follows for the Linux/GCC version of BCC.

 $ cd /opt/bcc-2.3.1-gcc/src
 $ tar xf bcc-2.3.1-src.tar.bz2

1.6.2. Building

A script named ubuild.sh is included in the source distribution.

To build and install the BCC compiler tools, GDB and the C library in /tmp/bcc-2.3.1-local, the following
steps shall be performed:

 $ cd /opt/bcc-2.3.1-gcc/src/bcc-2.3.1
 $./ubuild.sh --destination /tmp/bcc-2.3.1-local --toolchain --gdb

Either of the parameters --toolchain or --gdb can be omitted. Execute ubuild.sh --help for more
information on how to use the script.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 10

1.7. Support

BCC is provided freely without any warranties. Technical support can be obtained through the purchase of tech-
nical support contract. Please contact sales@gaisler.com for more details.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 11

2. Using BCC

This chapter gives an overview on how to develop applications using BCC 2.3.1

2.1. General development flow

Compilation and debugging of applications is typically done in the following steps:

1. Compile and link the program with GCC
2. Debug program using a simulator (GDB connected to TSIM)
3. Debug program on remote target (GDB connected to GRMON)
4. Create boot-prom for a standalone application with mkprom2

2.2. Compiler options

The GCC front-end, sparc-gaisler-elf-gcc, and the Clang front-end, sparc-gaisler-elf-clang, has been modified
to support the following options specific to BCC and LEON systems:

 -qbsp=bspname Use target libraries, startup files and linker scripts for a specific LEON system. The
parameter bspname corresponds to a Board Support Package (BSP). A description
of the BSPs distributed with BCC is given in Chapter 7. The BSP leon3 is used as
default if the -qbsp= option is not given.

 -qnano Use a version of the newlib C library compiled for reduced foot print. The nano
version implementations of the fprintf()fscanf() family of functions are
not fully C standard compliant. Code size can decrease with up to 30 KiB when
printf() is used.

 -qsvt Use the single-vector trap model described in SPARC-V8 Supplement, SPARC-V8
Embedded (V8E) Architecture Specification.

Useful (standard) options are:

 -g Generate debugging information - should be used when debugging with GDB.

 -msoft-float Emulate floating-point - must be used if no FPU exists in the system.

 -O2 or -Os Optimize for maximum performance or minimal code size.

 -Og Optimize for maximum debugging experience.

 -mcpu=leon3 Generate SPARC V8 code. Includes support for the casa instruction.

 -mflat Enable single register window model (flat). See Section 2.7.

 -mfix-gr712rc Enable workarounds applicable to GR712RC. -mfix-gr712rc enables
workarounds for the following technical notes:

• GRLIB-TN-0009
• GRLIB-TN-0011
• GRLIB-TN-0012
• GRLIB-TN-0013
• GRLIB-TN-0018

 -mfix-ut700 Enable workarounds applicable to UT700 and UT699E. -mfix-ut700 enables
workarounds for the following technical notes:

• GRLIB-TN-0009
• GRLIB-TN-0010
• GRLIB-TN-0013
• GRLIB-TN-0018

 -qfix-tn0018 Enable workarounds for GRLIB technical note GRLIB-TN-0018.

2.2.1. sparc-gaisler-elf-gcc options

The following options are available in the GCC version of BCC.

 -flto Enable link time optimization.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 12

 -mcpu=leon Generate SPARC V8 code.

 -mcpu=leon5 Generate SPARC V8 code.

 -mcpu=leon3v7 Generate SPARC V7 code (no mul/div instructions). Includes support for casa
instruction.

 -mfix-b2bst Enable workarounds for GRLIB technical note GRLIB-TN-0009.

 -mfix-tn0013 Enable workarounds for GRLIB technical note GRLIB-TN-0013.

 -mfix-ut699 Enable the documented workarounds for the floating-point errata and the data cache
nullify errata of the UT699 processor. This option also enables workarounds for
GRLIB-TN-0009, GRLIB-TN-0013 and GRLIB-TN-0018.

Other GNU GCC options are explained in the gcc manual (doc/gcc.pdf), see Section 1.5.

2.2.2. sparc-gaisler-elf-clang options

The following options are available in the LLVM/Clang version of BCC.

 -Oz Aggressively optimize for minimal code size

 -mrex Enables generation of the LEON-REX SPARC instruction set extension.

 -no-integrated-as Use the GNU assembler instead of the LLVM integrated assembler. Note the
GNU assembler does not have support for the LEON-REX extension.

Clang generates SPARC V8 code by default.

2.3. Compiling BCC applications

To compile and link a BCC application with GCC, use sparc-gaisler-elf-gcc:

 $ sparc-gaisler-elf-gcc -O2 -g hello.c -o hello

To compile and link a BCC application with Clang, use sparc-gaisler-elf-clang:

 $ sparc-gaisler-elf-clang -O2 -g hello.c -o hello

BCC creates executables suitable for most LEON3 systems by default. The default load address is start of RAM,
i.e. 0x40000000. Other load addresses can be specified through the use of the -Ttext linker option (see Sec-
tion 7.1).

To generate executables customized for specific components and systems, -qbsp=name and mcpu=name op-
tions should be used during both compile and link stages. A table with recommended compiler options for LEON
systems can be found in Appendix A (GCC), and Appendix B (Clang).

2.4. Floating-point considerations

If the target LEON processor has no floating-point hardware, then all applications must be compiled and linked
with the -msoft-float option to enable floating-point emulation. When running an application compiled and
linked with -msoft-float in the TSIM simulator, the simulator should be started with the -nofpu 1 option
(no floating-point) to disable the FPU.

Floating-point hardware state is not automatically saved and restored when BCC dispatches an interrupt service
routine (ISR). Any ISR code making use of the floating-point hardware should save and restore the context as
described in Section 5.7.

To link an application which uses the C standard library math functions, the linker option -lm should be used.
This links the application with the library file libm.a.

2.5. LEON SPARC V8 instructions

LEON3 processors can be configured to implement the SPARC V8 multiply and divide instructions. The GCC
version of BCC does by default not issue those instructions, but emulates them trough a library. To enable gen-

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 13

eration of mul/div instruction, use the -mcpu=leon or -mcpu=leon3 option during both compilation and
linking. This improves performance on compute-intensive applications and floating-point emulation.

2.6. Multiply and accumulate instructions

LEON2, LEON3 and LEON4 can support multiply and accumulate (umac/smac) instructions. The compiler will
never issue those instructions but can be coded in assembly. The BCC provided assembler and utilities support
this feature.

2.7. Single register window model (flat)

The BCC compilers and run-time uses the standard SPARC V8 ABI by default. GCC and Clang provides an
optional ABI, enabled with the -mflat option, which does not generate any save and restore instructions.
This is known as the single register window model, or flat model. Instead of switching register windows at function
borders, the flat model stores registers on the stack. -mflat sets the preprocessor symbol _FLAT.

An application compiled and linked with the flat model will never generate window_overflow and
window_underflow traps.

Compiling with -mflat affects code size. As an example, the Newlib C library (libc.a) text segment is 8%
larger in the -mcpu=leon3 -mflat multilib compared to the -mcpu=leon3 version.

BCC run-time is compatible with the single register window model when linked with -mflat. The example
below compiles and links an application with the flat model.

 $ sparc-gaisler-elf-gcc -mflat -O2 -c main.c -o main.o
 $ sparc-gaisler-elf-gcc -mflat -O2 -c somecode.c -o somecode.o
 $ sparc-gaisler-elf-gcc -mflat main.o somecode.o -o myapplication.elf

The current GCC 13.2.1 -mflat implementation was introduced with GCC 4.6. It is not binary compatible
with the old GCC -mflat implementation which was deprecated in GCC 3.4.6.

2.8. Register usage

The compiler and run-time uses the SPARC input, local and output registers as specified by the SPARC V8 ABI.
For global registers, the following applies:

 %g1 ... %g4 Used by compiler and BCC run-time.

 %g5 Not used by compiler. Used by BCC run-time only when -mflat is used. Can be
used freely by the application if -mflat is not used.

 %g6 ... %g7 Not used by compiler. Not used by BCC run-time. Can be used by the application
for any purpose.

2.9. Single vector trapping

When the target hardware is configured to support single vector trapping (SVT), the -qsvt switch can be used
with the linker to build an image which uses a two-level trap dispatch table rather than the standard one-level
trap table. The code saving amounts to ~4KiB for the trap table and trap handling is slightly slower with single
vector trapping. The number of extra instructions needed for single vector trapping dispatching is constant. The
application image will try to enable SVT on boot using %asr17.

2.10. Memory organization

The resulting executables are in ELF format and have three main segments; text, data and bss. The text
segment is by default at address 0x40000000 for LEON2/3/4, followed immediately by the data and bss
segments.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 14

Figure 2.1. BCC RAM application memory map

NGMP based LEON4 designs such as GR740 and LEON4-N2X have RAM at 0x00000000. This is supported
by the GR740 BSP.

The SPARC trap table is always located at the start of the text segment. If single vector trapping is not used,
then the trap table is exactly 4 KiB. For single vector trapping, the allocated space is 380 bytes by default. The
exact size depends on the user configuration.

Program stack starts at top-of-ram and extends downwards. The area between the end of bss and the bottom of
the stack is by default used for the heap. BCC auto-detects end-of-ram by inspecting the stack pointer provided
by the boot loader or GRMON at early boot. Hence the heap is sized by the boot loader by default.

Section 8.8 describes how the heap can be configured by the application.

2.11. BCC Board Support Packages

BCC uses a Board Support Package (BSP) mechanism to provide support for LEON system variations.

A BCC BSP includes the following:

• Target linker scripts.
• BCC device mapping and initialization.
• Customization of the libbcc user library.
• C header files with register definitions.
• Custom drivers available to the user.

BSP is selected with the -qbsp=bspname compiler option. This option does however not explicitly specify
what code the compiler outputs. It means that the appropriate -mcpu=cpuname option has to be given to GCC
even when a BSP is selected.

A description of the BSPs distributed with BCC is given in Chapter 7. -qbsp=leon3 is used by default.

2.12. Peripheral driver library

BCC comes with GRLIB peripheral driver library in both object and source code. Include files are available via
the BCC default include paths.

The option -ldrv should be given to the linker to include the library libdrv.a. This link library is built for
each compiler multilib.

The user API is available in Part I and examples can be found in src/libdrv/examples/.

2.13. Multiprocessing

BCC includes support for building Asymmetric Multiprocessing (AMP) applications: The GCC C11 compiler can
generate atomic CPU instructions and the BCC AMP API described in Section 5.10 operates on LEON multipro-
cessor support hardware.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 15

Symmetric Multiprocessing (SMP) is not supported by BCC.

2.14. Debugging with GDB

GDB 14.2 is distributed with BCC in the host executable file sparc-gaisler-elf-gdb. To generate debug information
when compiling object files, the compiler (or assembler) option -g is used. Target libraries distributed with BCC
are built with debug information and the related source code can be installed as described in Section 1.6.

For information on how to connect with GDB to TSIM simulator or the GRMON hardware monitor, see their
respective documentation.

2.14.1. Debug information considerations
• GCC and Clang distributed with BCC 2.3.1 generates debug information in dwarf-4 format by default.
• All prebuilt target libraries distributed with BCC 2.3.1 have dwarf-4 debug information.

GDB-14.2 as distributed with BCC has full support for dwarf-4. However, in modern versions of GDB (including
as GDB-14.2), the semantics of the GDB extended-remote protocol used for communication between a GDB
server and client has changed compared to GDB-6.8. TSIM and GRMON implement the server part of the GDB
remote protocol.

• TSIM2 is compatible with GDB-6.8.
• TSIM3 is compatible with GDB-6.8 and GDB-14.2.
• GRMON2 is compatible with GDB-6.8.
• GRMON3 is compatible with GDB-6.8 and GDB-14.2.

This means that debugging BCC applications in GDB is best supported with GRMON3 and TSIM3.

TSIM2 users who want to use GDB are recommended to use BCC 2.0.x which uses dwarf-2 by default and is
distributed with dwarf-2 target objects. BCC 2.3.1 users who need GDB-6.8 can be provided a GDB-6.8 version
by contacting support@gaisler.com.

2.15. Examples

A collection of benchmarks and examples on how to use the BCC user library can be found in the src/exam-
ples/ directory of the BCC binary distribution. The directory also contains a Makefile which can be used to
build the examples for different configurations (BSP:s).

To build all examples for all BSP:s, issue:

 $ cd src/examples
 $ make
 sparc-gaisler-elf-gcc -g -O3 -qbsp=agga4 -mcpu=leon hello/hello.c -o bin/agga4/./hello.elf
 sparc-gaisler-elf-gcc -g -O3 -qbsp=agga4 -mcpu=leon stanford/stanford.c -o bin/agga4/./stanford.elf
 sparc-gaisler-elf-gcc -g -O3 -qbsp=agga4 -mcpu=leon whetstone/whetstone.c -o bin/agga4/./whetstone.elf -lm
 sparc-gaisler-elf-gcc -g -O3 -qbsp=agga4 -mcpu=leon paranoia/paranoia.c -o bin/agga4/./paranoia.elf -lm
 ...

To build examples for a specific BSP, set the BSPS make variable. For example:

 $ make BSPS="gr712rc gr716"

Output files are generated under src/examples/bin/<BSP>. The different subdirectories reflect the compiler
options used.

It is also possible to build a single example by calling make <example>, for example:

 $ make CFLAGS="-Os -g" ambapp.elf
 sparc-gaisler-elf-gcc -Os -g -std=c99 ambapp/ambapp.c -o ambapp.elf

The executables will be stored in the examples root directory in this case. When building individual examples it
is possible to control the behaviour by setting the following variables.

CFLAGS

Override common compilation flags

For more information on the examples and how to build them, see the file src/examples/README.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 16

2.15.1. Target specific examples

Some of the examples in src/examples/ are adapted for specific target systems or may need customization.
These shall be built from inside the respective example directory, as indicated in src/examples/README.

2.16. Creating a bootable ROM images

The MKPROM2 PROM image generator can be used to create boot-images for applications compiled with BCC
2.3.1. An example is provided in the BCC binary distribution directory src/examples/mkprom-hello.
MKPROM2 is distributed with source code and is available from the website frontgrade.com/gaisler. For more
information on how to use MKPROM2, see the MKPROM2 User's Manual.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 17

3. LLVM based toolchain

3.1. Introduction

With BCC 2 an LLVM based version of the toolchain is provided along side the regular GCC based toolchain.
The LLVM based toolchain is currently experimental.

The LLVM compiler framework is a relatively new and modern compiler framework. It has support for a wide
variety of programming languages and architectures, including SPARC. The C-family front-end of LLVM, is
called Clang. Clang is the main interface to the compiler, and the binary sparc-gaisler-elf-clang is used
to compile C and C++ programs.

The Clang interface is similar to the GCC interface, and in many cases changing the build system to use LLVM/
Clang is a matter of changing the CC variable in a Makefile script from sparc-gaisler-elf-gcc into
sparc-gaisler-elf-clang.

The LLVM toolchain has its own assembler which is used by default. It is also possible to switch to the GNU
assembler by using a command line option. The Clang front-end has been setup to automatically use the GNU
linker in a similar way to the GCC version of BCC.

All the correct libraries and header files will be used by the Clang front-end. These are selected based on the flags
set by the compiler. The libraries include newlib, libbcc and libgcc. A list of recommended command line option
for Clang can be found in Appendix B.

Installation, host requirements and contents of the LLVM based toolchain follows the information presented in
Chapter 1. Usage instructions follows the information presented in Chapter 2.

3.2. BCC LLVM/Clang tools

The following tools are included in the LLVM version of BCC. The tools are a combination of tools from the
LLVM compiler framework, the Clang C-family LLVM compiler, and GNU binutils. The tools from binutils have
names prefixed with sparc-gaisler-elf, except sparc-gaisler-elf-clang, sparc-gaisler-
elf-clang++ and sparc-gaisler-elf-cpp which comes from Clang.

 sparc-gaisler-elf-addr2line Convert address to C/C++ line number

 sparc-gaisler-elf-ar Library archiver

 sparc-gaisler-elf-as GNU Cross-assembler

 sparc-gaisler-elf-c++filt GNU utility to demangle C++ symbols

 sparc-gaisler-elf-clang LLVM C language family cross compiler for SPARC

 sparc-gaisler-elf-clang++ LLVM C++ language family cross compiler for SPARC

 sparc-gaisler-elf-cpp LLVM C preprocessor

 sparc-gaisler-elf-gdb GNU GDB C/C++ level Debugger

 sparc-gaisler-elf-gdb-6.8 GNU GDB C/C++ level Debugger

 sparc-gaisler-elf-gprof GNU profiling utility

 sparc-gaisler-elf-ld GNU linker

 sparc-gaisler-elf-nm GNU utility to print symbol table

 sparc-gaisler-elf-objcopy GNU utility to convert between binary formats

 sparc-gaisler-elf-objdump GNU utility to dump various parts of executables

 sparc-gaisler-elf-ranlib GNU library sorter

 sparc-gaisler-elf-readelf GNU ELF file information utility

 sparc-gaisler-elf-size GNU utility to display segment sizes

 sparc-gaisler-elf-strings GNU utility to dump strings from executables

 sparc-gaisler-elf-strip GNU utility to remove symbol table

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 18

4. C standard library

BCC includes newlib 4.4.0 which is an implementation of the C standard library with full math support. Low-
level functionality required by newlib is implemented in the SPARC LEON specific layer (libbcc).

Documentation for the newlib C library and math library is available as described in Section 1.5 Source code for
newlib can be obtained as described in Section 1.6.

Most of the functionality defined by the C standard library is supported by BCC. This chapter will describe devi-
ations and specific properties of the C library when executing on LEON systems.

4.1. File I/O

BCC newlib supports file I/O on the standard input, standard output and standard error files (stdin/stdout/
stderr). These files are always open and are typically associated with the BCC console device driver (see Sec-
tion 5.2).

There is no support in BCC for operating on disk files. There is no file system support.

4.2. Time functions

LEON timers are used to generate the system time. The C standard library functions time() and clock()
return the time elapsed in seconds and microseconds respectively. times() and gettimeofday(), defined
by POSIX, are also available. The user can control how the time functions use the hardware timers as described
in Section 5.3.

4.3. Dynamic memory allocation

Dynamic memory can be allocated/deallocated using for example malloc(), calloc() and free(). For
information on customizing the memory heap, see Section 8.8.

4.4. Atomic types and operations

BCC is based on GCC version 13.2.1 which includes C11 atomic types and operations. This allows for synchro-
nization between applications in AMP environments. Synchronization instructions such as ldstub, swap casa,
etc. are generated by the compiler.

The C11 atomic interface is defined by stdatomic.h. Some of the atomic operations defined by
stdatomic.h require hardware support not available on all LEON systems. The ldstub and swap instruc-
tions are available in all LEON processors, while casa is optional. All multi-core LEON based components have
casa. The GCC option -mcpu=leon3 is required for full stdatomic.h support.

See ISO/IEC 9899:2011 for more information on the C11 standard.

While atomic instructions are useful for sharing memory between processors and tasks, the atomic instructions
shall never be used for manipulating peripheral control registers.

4.5. Newlib nano

The nano version of newlib, selected with -qnano, is a compiled with options to reduce code foot print. -qnano
has the following limitations:

• Formatted I/O lacks floating-point support. It can however be enabled as described in newlib/newlib/
README.

• Formatted I/O lacks support for long long.
• Formatted I/O does not support features from the outside of C89 standard.
• Multi-byte characters are not supported.

The option -qnano shall be specified both when compiling and linking.

If floating point formatted I/O is needed when using -qnano, then the option -u _printf_float can be
added to the linker command line. For example via the front-end option -Wl,-u,_printf_float.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 19

5. BCC library

BCC is delivered with a library, libbcc, containing functions for programming LEON systems. This chapter is
the user documentation for the API. Later chapters will describe how the BCC run-time can be configured and
customized at link time.

The library is available in the target library file libbcc.a. There are multiple versions of libbcc.a, cus-
tomized for specific BSPs and compiler options (GCC multilibs). The exact versions of the library is selected
based on compiler command line parameters. This also reflects that different low-level drivers are implemented
for different hardware.

5.1. Usage

Functions described in this chapter have prototypes in the header file bcc/bcc.h. The functions are implemented
in libbcc.a and are available per default when linking with the GCC front-end. The same user API is available
independent of target LEON hardware.

5.2. Console API

The console API does not have any user functions. It can be accessed with the C standard library I/O functions
(Section 4.1).

5.3. Timer API

The function bcc_timer_get_us() can be used to determine system time in microseconds.

Table 5.1. bcc_timer_get_us function declaration

Proto uint32_t bcc_timer_get_us(void)

About Get processor time

Return uint32_t. Number of microseconds since system start.

Other time related functions which depend on the BCC run time, but are not part of the BCC user library, are
available. This includes clock(), time(), times() and gettimeofday().

5.3.1. Interrupt based timer service

By default BCC does not install any timer tick and can result in limited services provided by the C library time
functions and bcc_timer_get_us(). The typical limitation is that time will seem to restart or stop at some
point in time, due to hardware timer expiration. Exact limitations are target hardware dependent, but is typically
manifested as a time wrap 232 microseconds after system reset.

To overcome this limitation, a timer tick service can be enabled by calling
bcc_timer_tick_init_period(). It will install a tick interrupt handler which is triggered periodically to
maintain time integrity, ensuring that time increments. Tick period is 10 milliseconds by default.

bcc_timer_tick_init_period() should be called only once and at the beginning of the program. It is
recommended to call it from the __bcc_init70() initialization hook, described in described in Section 8.6.

Table 5.2. bcc_timer_tick_init_period function declaration

Proto int bcc_timer_tick_init_period(uint32_t usec_per_tick)

About Enable interrupt based timer service.

The function installs a tick interrupt handler which maintains local time using timer hardware. This
makes C library / POSIX time functions not limited to hardware constraints anymore.

The function assumes that the timer (global) scaler is set to 1 MHz.

usec_per_tick [IN] IntegerParam

Requested timer tick period: number of microseconds per tick.

Return int.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 20

Value Description

BCC_OK Success

BCC_FAIL Failed to enable interrupt based timer service, or already enabled

BCC_NOT_AVAILABLE Hardware or resource not available

Notes Epoch changes to the point in time when bcc_timer_tick_init_period() is called.

5.4. Cache control API

The cache control API is used to flush the local LEON processor instruction and data caches.

Functions are also provided for operating directly on the LEON cache control register (CCR). Bit definitions for
CCR are available in bcc/leon.h.

Table 5.3. bcc_flush_cache function declaration

Proto void bcc_flush_cache(void)

About Flush L1 instruction and data cache.

Return None.

Table 5.4. bcc_flush_icache function declaration

Proto void bcc_flush_icache(void)

About Flush L1 instruction cache.

Return None.

Table 5.5. bcc_flush_dcache function declaration

Proto void bcc_flush_dcache(void)

About Flush L1 data cache.

Return None.

Table 5.6. bcc_set_ccr function declaration

Proto void bcc_set_ccr(uint32_t data)

About Set Cache Control Register (CCR).

data [IN] IntegerParam

New CCR value to set.

Return None.

Table 5.7. bcc_get_ccr function declaration

Proto uint32_t bcc_get_ccr(void)

About Get value of Cache Control Register (CCR).

Return uint32_t. CCR.

5.5. Bus access API

Functions are provided for loading data from memory with forced L1 cache miss.

Table 5.8. bcc_loadnocache function declaration

Proto uint32_t bcc_loadnocache(uint32_t *addr)

About Load 32-bit word from addr with forced cache miss.

addr [IN] PointerParam

Address to load from.

Return uint32_t. Data loaded from addr.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 21

Table 5.9. bcc_loadnocache16 function declaration

Proto uint16_t bcc_loadnocache16(uint16_t *addr)

About Load 16-bit word from addr with forced cache miss.

addr [IN] PointerParam

Address to load from.

Return uint16_t. Data loaded from addr.

Table 5.10. bcc_loadnocache8 function declaration

Proto uint8_t bcc_loadnocache8(uint8_t *addr)

About Load 8-bit word from addr with forced cache miss.

addr [IN] PointerParam

Address to load from.

Return uint8_t. Data loaded from addr.

The function bcc_dwzero() can be used to clear a memory region using 64-bit writes with the std instruction.

Table 5.11. bcc_dwzero function declaration

Proto void bcc_dwzero(uint64_t *dst, size_t n)

About Set 64-bit words to zero

This function sets n 64-bit words to zero, starting at address dst. All writes are performed with the
SPARC V8 std instruction.

dst [IN] PointerParam

Start address of area to set to zero. Must be aligned to a 64-bit word.

n [IN] IntegerParam

Number of 64-bit words to set to zero.

Return None.

5.6. IU control/status register access API

This API provides access to low-level SPARC control/status registers and controls power-down mode.

5.6.1. Processor State Register

The Processor State Register (PSR) can be read with bcc_get_psr() and written with bcc_set_psr().
Processor Interrupt Level (PSR.PIL) is read using bcc_get_pil(). PSR.PIL can be set with
bcc_set_pil() which is implemented as a software trap and guarantees atomic update.

Care must be taken when manipulating PSR using read-modify-write sequences, since the operations are
interruptible. See The SPARC Architecture Manual Version 8, section B.29.

It is recommended to use the safe functions described in Section 5.9.1 for manipulating PSR.PIL.

Table 5.12. bcc_get_psr function declaration

Proto uint32_t bcc_get_psr(void)

About Get value of Processor State Register (PSR).

Return uint32_t. PSR.

Table 5.13. bcc_set_psr function declaration

Proto void bcc_set_psr(uint32_t psr)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 22

About Set Processor State Register (PSR).

psr [IN] IntegerParam

New PSR value to set.

Return None.

Table 5.14. bcc_get_pil function declaration

Proto int bcc_get_pil(void)

About Get Processor Interrupt Level (PSR.PIL).

Return int. Value of PSR.PIL (0..15) in bits 3..0.

Table 5.15. bcc_set_pil function declaration

Proto int bcc_set_pil(int newpil)

About Set Processor Interrupt Level atomically.

This function is implemented as a software trap and guarantees atomic update of PSR.PIL.

newpil [IN] IntegerParam

New value for PSR.PIL (0..15) in bits 3..0.

Return int. Old value of PSR.PIL (0..15) in bits 3..0.

5.6.2. Trap Base Register

The Trap Base Register (TBR) can be read with bcc_get_tbr() and written with bcc_set_tbr().

Table 5.16. bcc_get_tbr function declaration

Proto uint32_t bcc_get_tbr(void)

About Get value of Trap Base Register (TBR).

Return uint32_t. TBR.

Table 5.17. bcc_set_tbr function declaration

Proto void bcc_set_tbr(uint32_t tbr)

About Set Trap Base Register (TBR).

tbr [IN] IntegerParam

New TBR value to set.

Return None.

To retrieve only the Trap Base Address (TBR.TBA) of TBR, the function bcc_get_trapbase() can be used.

Table 5.18. bcc_get_trapbase function declaration

Proto uint32_t bcc_get_trapbase(void)

About Get Trap Base Address (TBR.TBA).

Return uint32_t. TBR.TBA in bits (31..12).

5.6.3. Processor power-down

The current processor is powered down by calling bcc_power_down().

Table 5.19. bcc_power_down function declaration

Proto int bcc_power_down(void)

About Power down current processor.

Return int. BCC_OK

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 23

5.7. FPU context API

bcc_fpu_save() is used to save the current state of the floating-point registers %f0 to %f31 and the %fsr
register to a user-specified location. bcc_fpu_restore() restores an FPU context previously saved by the
user. Storage for the FPU context struct bcc_fpu_state shall be allocated by the user and provided to these functions.
The floating-point deferred-trap queue (%fq) is emptied before saving and restoring the FPU context.

These functions can be used in an interrupt service routine which performs floating-point operations.

Table 5.20. bcc_fpu_save function declaration

Proto int bcc_fpu_save(struct bcc_fpu_state *state)

About Save floating-point context

The context shall be restored with bcc_fpu_restore().

state [IN] PointerParam

Location to save FPU context. This shall be a pointer to a preallocated struct bcc_fpu_state, aligned to
8 byte.

Return int. BCC_OK on success

Table 5.21. bcc_fpu_restore function declaration

Proto int bcc_fpu_restore(struct bcc_fpu_state *state)

About Restore floating-point context

The context state is FPU state previously saved with bcc_fpu_save().

state [IN] PointerParam

Location to restore FPU context from. This shall be a pointer to a preallocated struct bcc_fpu_state,
aligned to 8 byte.

Return int. BCC_OK on success

5.8. Trap API

Modifying the SPARC trap table is done using the BCC trap API. An entry can be inserted in the current trap
table with bcc_set_trap() described in Table 5.22. The function supports both the standard SPARC trap
mechanism and SPARC-V8E single vector trapping (SVT as enabled with the -qsvt linker option).

After manipulating a trap table, the instruction cache may need a flush (see Section 5.4).

Below is an example on how the window_overflow (0x05) trap handler can be replaced with the user provided
trap handler called mynewhandler:

#include <bcc/bcc.h>

extern void mynewhandler(void);
const int TT_WINDOW_OVERFLOW = 0x05;

int set_trap_example(void)
{
 int ret

 ret = bcc_set_trap(TT_WINDOW_OVERFLOW, mynewhandler);
 return ret;
}

Table 5.22. bcc_set_trap function declaration

Proto int bcc_set_trap(int tt, void (*handler)(void))

About Install trap table entry.

When this function returns successfully, the current trap table has been updated such that when the
trap occurs:

• Execution jumps to handler.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 24

• %l0 contains %psr.
• %l1 contains trapped %pc.
• %l2 contains trapped %npc.
• %l6 (0..255) contains same value as tt to bcc_set_trap().

The trap handler is typically written in assembly and must preserve any state it changes. It shall end
with the rett instruction.

This function operates on the current table. It supports multi vector trapping (MVT) and single vector
trapping (SVT).

tt [IN] IntegerParam

Trap type (0..255)

handler [IN] PointerParam

Trap handler

int.

Value Description

BCC_OK Success

Return

BCC_FAIL Trap table entry installation failed

Notes bcc_set_trap() does not flush the CPU instruction cache.

5.8.1. Single vector trapping (SVT)

This section describes steps which may be required when installing custom trap handlers under the SVT trap
mechanism available in some LEON systems. For the specification of SVT, see SPARC-V8 Supplement, SPARC-
V8 Embedded (V8E) Architecture Specification. SVT is typically used in systems with small memory footprint.

The BCC approach to SVT is to look up the target trap handler routine in two levels of tables. The level 0 table
contains 16 entries, each pointing to a level 1 table. A level 1 table consists of 16 entries with the location of the
target trap handler routine. At trap time, TBR.TT[7:4] indexes into table level 0 and TBR.TT[3:0] indexes
into table level 1. Most of the level 1 tables entries are bad trap handlers so level 1 tables can be reused to save
storage.

The BCC SVT table lookup routine executes a fixed number of instructions, independent of target trap number
and independent of installed handlers.

BCC run time defines 4 of the maximum 16 level 1 tables per default when the application is linked with -qsvt,
as illustrated in Table 5.23.

Table 5.23. Default SVT level 1 tables

Symbol name Default trap number assignments

__bcc_trap_table_svt_0 0x00..0x0F (system trap handlers and some bad trap handlers)

__bcc_trap_table_svt_1 0x10..0x1F (interrupt traps 1..15)

__bcc_trap_table_svt_8 0x80..0x8F (software trap 0..15)

__bcc_trap_table_svt_allbad all other. This table contains 16 pointers to the symbol
__bcc_trap_table_svt_bad which is a default handler for
unexpected traps.

The single default level 0 table has symbol name __bcc_trap_table_svt_level0
and contains 16 pointers to __bcc_trap_table_svt_[0..f]. Symbols
__bcc_trap_table_svt_{2,3,4,5,6,7,9,a,b,c,d,e,f} all have the same value as
__bcc_trap_table_svt_allbad per default. The level 1 tables with index 0, 1 and 8 have default values
according to Table 5.23.

bcc_set_trap() can be used directly on trap numbers in the ranges 0x00..0x1F and 0x80..0x8F. All
other trap numbers are redirected to the common __bcc_trap_table_svt_allbad table which is never
manipulated by bcc_set_trap().

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 25

It is however possible for the user to construct custom level 1 lookup tables by defining symbols with the
names __bcc_trap_table_svt_x, where x is an integer value between 0 and f. The linker will pick up
any the level 1 table named like this and use it instead of the all bad table. This is possible because all of
__bcc_trap_table_svt_x are defined as weak symbols.

The following example defines a level 1 table containing one trap handler, my_trap_handler92 for
tt=0x92, at link time. At run time, main() installs my_trap_handler93 as handler for tt=0x93 using
bcc_set_trap(). A second call to bcc_set_trap() tries to install a handler for tt=0xa3 which will fail
because the corresponding level 1 table is the default __bcc_trap_table_svt_allbad.

/*
 * Example for defining a custom level 1 SVT table and two trap handlers in the
 * [0x90:0x9F] range.
 *
 * NOTE: This example must linked with the -qsvt option.
 */
#include <stdio.h>
#include <bcc/bcc.h>

/* User trap handlers implemented elsewhere */
extern uint32_t my_trap_handler92;
extern uint32_t my_trap_handler93;

/* Default handler for unexpected traps */
extern uint32_t __bcc_trap_table_svt_bad;

/* Override weak symbol __bcc_trap_table_svt_9 */
uint32_t *__bcc_trap_table_svt_9[16] = {
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &my_trap_handler92,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad
};

int main(void)
{
 int ret;

 ret = bcc_set_trap(0x93, &my_trap_handler93);
 printf("ret=%d (expecting 0)\n", ret);

 ret = bcc_set_trap(0xa3, &my_trap_handler93);
 printf("ret=%d (expecting non-zero)\n", ret);

 return 0;
}

5.9. Interrupt API

The interrupt API allows for enabling and disabling interrupt sources, interrupt remapping, attaching interrupt
service routines and control of interrupt nesting.

5.9.1. Interrupt disable and enable

All maskable interrupts are disabled with bcc_int_disable() and enabled again with
bcc_int_enable(). A nesting mechanism allows multiple disable operations to be performed in sequence
without the corresponding enable operation in between. These functions provide safe manipulation of the SPARC
V8 PSR.PIL registers. The interrupt controller is unmodified by these functions.

An integer variable is associated with every disable/enable pair which records state of the interrupt state to return
to. The state is returned by bcc_int_disable and taken as parameter by bcc_int_enable. In order for the
system to properly restore interrupt enable/disable state, the usage of state variables at interrupt enable operations
must be in opposite order of the disable operation.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 26

Interrupts are in the enabled state when main() is called.

The example below illustrates how interrupt disable operations can nest.

#include <bcc/bcc.h>
int int_nest_example(void)
{
 int lev0, lev1;

 /* Enter critical region 0. */
 lev0 = bcc_int_disable();
 ...
 /* Enter critical region 1A. */
 lev1 = bcc_int_disable();
 ...
 /* Leave critical region 1A.
 bcc_int_enable(lev1);
 ...
 /* Enter critical region 1B. */
 lev1 = bcc_int_disable();
 ...
 /* Leave critical region 1B.
 bcc_int_enable(lev1);
 ...
 /* Leave critical region 0. */
 bcc_int_enable(lev0);

 return 0; /* success */
}

Table 5.24. bcc_int_disable function declaration

Proto int bcc_int_disable(void)

About Disable all maskable interrupts and return the previous interrupt enable/disable state

A matching bcc_int_enable() with the return value as parameter must be called to exit the in-
terrupt disabled state. It is allowed to do nested calls to bcc_int_disable(), and if so the same
number of bcc_int_enable() must be called.

This function modifies the SPARC V8 PSR.PIL field. Interrupt controller is not touched.

Return int. Previous interrupt level (used when calling bcc_int_enable().

Table 5.25. bcc_int_enable function declaration

Proto void bcc_int_enable(int plevel)

About Return to a previous interrupt enable/disable state

The plevel parameter is the return value from a previous call to bcc_int_disable(). At re-
turn, interrupts may be enabled or disabled depending on plevel.

This function modifies the SPARC V8 PSR.PIL field. Interrupt controller is not touched.

plevel [IN] IntegerParam

The interrupt protection level to set. Must be the return value from the most recent call to
bcc_int_disable().

Return None.

5.9.2. Interrupt source masking

An interrupt source can be masked (disabled) with bcc_int_mask() and unmasked (enabled) with
bcc_int_unmask(). Interrupt source masking is local to the issuing processor.

Table 5.26. bcc_int_mask function declaration

Proto int bcc_int_mask(int source)

About Mask (disable) an interrupt source on the current CPU.

Param source [IN] Integer

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 27

SPARC interrupt number 1-15 or extended interrupt number 16-31.

int.

Value Description

BCC_OK Success

Return

BCC_NOT_AVAILABLE Device not available

Table 5.27. bcc_int_unmask function declaration

Proto int bcc_int_unmask(int source)

About Unmask (enable) an interrupt source on the current CPU.

source [IN] IntegerParam

SPARC interrupt number 1-15 or extended interrupt number 16-31.

int.

Value Description

BCC_OK Success

Return

BCC_NOT_AVAILABLE Device not available

5.9.3. Clear and force interrupt

A SPARC interrupt level can be forced on the local processor with bcc_int_force(). An interrupt source
(including extended interrupt) can be globally pended with bcc_int_pend().

It is possible to manually clear (acknowledge) the pending condition for an interrupt in the interrupt controller
by calling the function bcc_int_clear(). Note however that there is in general no need to manually clear an
interrupt from software. This is because the CPU will acknowledge the interrupt automatically in hardware when it
starts interrupt trap processing. Calling bcc_int_clear() for an interrupt source which is unmasked (enabled)
in the interrupt controller may lead to lost interrupts. The BCC run-time never calls bcc_int_clear() on
its own.

Table 5.28. bcc_int_clear function declaration

Proto int bcc_int_clear(int source)

About Clear an interrupt source.

source [IN] IntegerParam

SPARC interrupt number 1-15 or extended interrupt number 16-31.

int.

Value Description

BCC_OK Success

Return

BCC_NOT_AVAILABLE Device not available

Notes Calling bcc_int_clear() for an interrupt source which is unmasked (enabled) in the interrupt
controller may lead to lost interrupts.

Table 5.29. bcc_int_force function declaration

Proto int bcc_int_force(int level)

About Force an interrupt level on the current processor.

level [IN] IntegerParam

SPARC interrupt request level 1..15.

int.

Value Description

Return

BCC_OK Success.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 28

BCC_NOT_AVAILABLE Device not available.

Notes Extended interrupts can not be forced with this function.

Table 5.30. bcc_int_pend function declaration

Proto int bcc_int_pend(int source)

About Make an interrupt source pending.

source [IN] IntegerParam

SPARC interrupt number 1-15 or extended interrupt number 16-31.

int.

Value Description

BCC_OK Success

Return

BCC_NOT_AVAILABLE Device not available

5.9.4. Interrupt remap

The IRQ(A)MP interrupt controller can optionally be implemented with functionality to allow dynamic remapping
between AMBA bus interrupt lines (0..63) and interrupt controller interrupt lines (1..31). This functionality can
be programmed with bcc_int_map_set() and bcc_int_map_get().

Interrupt remapping functionality requires hardware support available in for example GR740 and GR716.

Table 5.31. bcc_int_map_set function declaration

Proto int bcc_int_map_set(int busintline, int irqmpintline)

About Set mapping from bus interrupt line to an interrupt controller interrupt line.

busintline [IN] IntegerParam

Bus interrupt line number

irqmpintline [IN] IntegerParam

Interrupt controller interrupt line

int.

Value Description

BCC_OK Success

Return

BCC_NOT_AVAILABLE Device or functionality not available

Table 5.32. bcc_int_map_get function declaration

Proto int bcc_int_map_get(int busintline)

About Get mapping from bus interrupt line to an interrupt controller interrupt line.

busintline [IN] IntegerParam

Bus interrupt line number

int.

Value Description

1..31 Interrupt controller interrupt line (1..31)

Return

-1 Device or functionality not available

5.9.5. Interrupt service routines

BCC interrupt service routines (ISR) are convenient because they allow the user to specify C functions which are
called in response to an interrupt. The API handles extended interrupts transparently.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 29

This part of the interrupt API is a higher level mechanism compared to the trap API. Section 5.9.7 describes how
the BCC trap API can be used to install low-level interrupt handlers.

Functions are provided for the user to install custom interrupt service routines. SPARC interrupts 1-15 and ex-
tended interrupts 16-31 are supported. It is possible to install multiple interrupt handlers for the same interrupt:
this is referred to as interrupt sharing. All ISR handler dispatching is hidden from the user.

It is not allowed to call the interrupt service routine register/unregister functions from inside an interrupt
handler.

Two sets of functions are available for registering and unregistering interrupt service routines. They differ in
memory allocation responsibility. Some memory is always needed when installing an ISR with the API described
in this section.

5.9.5.1. Automatic memory management

bcc_isr_register() and bcc_isr_unregister() manage memory allocation automatically by using
malloc() and free() internally.

Table 5.33. bcc_isr_register function declaration

Proto void *bcc_isr_register(int source, void (*handler)(void *arg, int
source), void *arg)

About Register interrupt handler

The function in parameter handler is registered as an interrupt handler for the given interrupt
source. The handler is called with arg and source as arguments.

Interrupt source is not enabled by this function. bcc_int_unmask() can be used to enable it.

Multiple interrupt handlers can be registered for the same interrupt number. They are dispatched at in-
terrupt in the same order as registered.

A handler registered with this function should be unregistered with bcc_isr_unregister().

source [IN] IntegerParam

SPARC interrupt number 1-15 or extended interrupt number 16-31.

handler [IN] PointerParam

Pointer to software routine to execute when the interrupt triggers.

arg [IN] PointerParam

Passed as first argument to handler.

Pointer. Status and ISR handler context

Value Description

NULL Indicates failed to install handler.

Return

Pointer Pointer to ISR handler context. Should not be dereferenced by user. Used as input to
bcc_isr_unregister().

Notes This function may call malloc().

Table 5.34. bcc_isr_unregister function declaration

Proto int bcc_isr_unregister(void *isr_ctx)

About Unregister interrupt handler

It is only allowed to unregister an interrupt handler which has previously been registered with
bcc_isr_register().

Interrupt source is not disabled by this function. The function bcc_int_mask() can be used to
disable it.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 30

isr_ctx [IN] PointerParam

ISR handler context returned bcc_isr_register().

int.

Value Description

BCC_OK Handler successfully unregistered.

Return

BCC_FAIL Failed to unregister handler.

Notes This function may call free()

Following is an example on how bcc_isr_register() and bcc_isr_unregister() can be used to
install two interrupt handlers on different interrupt numbers sharing the same function but with different ISR
unique data. malloc() and free() are called by the BCC library.

#include <bcc/bcc.h>

/* User interrupt handler */
extern void myhandler(void *arg, int source);
/* ISR uniuqe data */
extern int arg0, arg1;

static const int INTNUMA = 2;
static const int INTNUMB = 3;

int isr_reg_example(void)
{
 int ret;
 /* ISR handler contexts for using the bcc_isr_ API. */
 void *ictx0, *ictx1;

 ictx0 = bcc_isr_register(INTNUMA, myhandler, &arg0);
 if (NULL == ictx0) {
 return BCC_FAIL;
 }
 ictx1 = bcc_isr_register(INTNUMB, myhandler, &arg1);
 if (NULL == ictx1) {
 bcc_isr_unregister(ictx0);
 return BCC_FAIL;
 }
 bcc_int_unmask(INTNUMA);
 bcc_int_unmask(INTNUMB);

 ...

 bcc_int_mask(INTNUMB);
 bcc_int_mask(INTNUMA);
 ret = bcc_isr_unregister(ictx0);
 if (BCC_OK != ret) {
 return ret; /* Failure */
 }
 ret = bcc_isr_unregister(ictx1);
 if (BCC_OK != ret) {
 return ret; /* Failure */
 }

 return ret;
}

5.9.5.2. User memory management

bcc_isr_register_node() and bcc_isr_unregister_node() are available for cases where the us-
er want to control all memory allocations in the application. Associated with these two functions is a type named
struct bcc_isr_node. An instance of such type (ISR node) should be allocated and initialized by the user and pro-
vided to bcc_isr_register_node(). Node structure data provided to bcc_isr_register_node()
must not be touched or deallocated by the user until bcc_isr_unregister_node() has been called with the
same node. After that, the user is free to reuse or deallocate the node. The ISR node must reside in writable memory.

struct bcc_isr_node {
 void *__private;
 int source;
 void (*handler)(
 void *arg,
 int source
);
 void *arg;

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 31

};

Table 5.35. bcc_isr_node data structure declaration

source Interrupt source number

handler User ISR handler

arg Passed as parameter to handler

Table 5.36. bcc_isr_register_node function declaration

Proto int bcc_isr_register_node(struct bcc_isr_node *isr_node)

About Register interrupt handler, non-allocating

This function is similar to bcc_isr_register() with the difference that the user is responsible
for memory management. It will never call malloc(). Instead the caller has to provide a pointer to a
preallocated and initialized ISR node of type struct bcc_isr_node.

The memory pointed to by isr_node shall be considered owned exclusively by
the run-time between the call to bcc_isr_register_node() and a future
bcc_isr_unregister_node(). It means that the memory must be available for this time and
must not be modified by the application. The memory pointed to by isr_node must be writable.

This function should be used to install interrupt handlers in applications which want full control over
memory allocation.

isr_node [IN] PointerParam

Pointer to User initialized ISR node. The fields source, handler and optionally the arg shall be
initialized by the caller.

int.

Value Description

BCC_OK Handler installed successfully.

Return

BCC_FAIL Failed to install handler.

Table 5.37. bcc_isr_unregister_node function declaration

Proto int bcc_isr_unregister_node(const struct bcc_isr_node *isr_node)

About Unregister interrupt handler, non-allocating

This function is similar to bcc_isr_unregister() with the difference that the user is responsi-
ble for memory management. It is only allowed to unregister an interrupt handler which has previous-
ly been registered with bcc_isr_register_node().

isr_node [IN] PointerParam

Same as input parameter to bcc_isr_register_node().

int.

Value Description

BCC_OK Handler successfully unregistered.

Return

BCC_FAIL Failed to unregister handler.

Following is an example on how bcc_isr_register_node() and bcc_isr_unregister_node() can
be used to install an interrupt handler on interrupt 3. No calls to malloc() or free() are performed.

#include <bcc/bcc.h>

/* User interrupt handler */
extern void myhandler(void *arg, int source);
/* ISR uniuqe data */
extern int arg0;

/* ISR node allocated by user */
struct bcc_isr_node inode0;

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 32

int isr_reg_example(void)
{
 int ret;
 inode0.source = 3;
 inode0.handler = myhandler;
 inode0.arg = &arg0;

 ret = bcc_isr_register_node(&inode0);
 if (BCC_OK != ret) {
 return ret;
 }
 bcc_int_unmask(3);

 ...

 bcc_int_mask(3);
 ret = bcc_isr_unregister_node(&inode0);

 return ret;
}

5.9.6. Interrupt nesting

Interrupt nesting can be enabled, disabled or set to a user custom config with the interrupt nesting API. This API
maintains the SPARC PSR.PIL field. More fine-grained masking can be done by programming the interrupt
controller as described in Section 5.9.2.

Interrupt nesting is disabled by default in BCC, meaning that an interrupt service routine can not be preempted
by any other interrupt. The function bcc_int_enable_nesting() enables nesting such that an ISR can
be preempted by higher level processor interrupts. bcc_int_disable_nesting() can be used to disable
nesting again.

The function bcc_int_nestcount() returns the interrupt nest level, starting at 0 when the function is called
outside of interrupt context.

SPARC interrupt level 15 is non-maskable.

Table 5.38. bcc_int_nestcount function declaration

Proto int bcc_int_nestcount(void)

About Get current interrupt nest count

int.

Value Description

0 Caller is not in interrupt context

1 Caller is in first interrupt context level

Return

n Caller is in n:th interrupt context level

Table 5.39. bcc_int_disable_nesting function declaration

Proto int bcc_int_disable_nesting(void)

About Disable interrupt nesting

After calling this function, PSR.PIL will be raised to 0xf (highest) when an interrupt occurs on any
level.

Return int. BCC_OK

Table 5.40. bcc_int_enable_nesting function declaration

Proto int bcc_int_enable_nesting(void)

About Enable interrupt nesting

After calling this function, PSR.PIL will be raised to the current interrupt level when an interrupt oc-
curs.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 33

Return int. BCC_OK

5.9.6.1. Advanced configuration

This subsection describes custom interrupt nesting configuration. It contains advanced information which is prob-
ably not needed for most application. Standard interrupt nesting control as described in Section 5.9.6 is assumed
to cover most use cases.

When a user ISR which has been registered with bcc_isr_register() is triggered by hardware, the BCC
interrupt dispatcher routine is executed as part oft he interrupt trap handling. The dispatcher sets (raises) the
SPARC register PSR.PIL to a new interrupt request level before reenabling traps and calling the user ISR handler.
The new PSR.PIL level is determined by the BCC interrupt dispatcher executed as part of the interrupt trap
handling. BCC maintains a private table which maps for each interrupt level, a future (raised) interrupt level to
set while the ISR executes.

bcc_int_disable_nesting() sets the mapping from each interrupt level (1..15) to the highest interrupt
level (15). bcc_int_enable_nesting() sets the mapping from each interrupt level (1..15) to the same
interrupt level (1..15).

A custom interrupt nesting mapping can be set with the function bcc_int_set_nesting(). It is for example
possible to program either of interrupt levels 1..7 to always raise PIL to 7, making the corresponding service
routines mutually exclusive, while still allowing interrupts on level 8 and above. For the purpose of the example,
interrupt levels 8..15 could be mapped linearly to enable normal nesting on level 8 and above. This could be
utilized to setup hardware supported task switching, where each task is related to a unique interrupt request level.
The following example illustrates this setup.

#include <bcc/bcc.h>
/*
 * Processor interrupts 1..7 set PIL=7 to lock out interrupt 1..7.
 * Processor interrupts 8..15 nest as normal.
 */
void custom_nesting(void)
{
 bcc_enable_nesting();
 for (int i = 1; i <= 7; i++) {
 bcc_set_nesting(1, 7);
 }
}

Table 5.41. bcc_int_set_nesting function declaration

Proto int bcc_int_set_nesting(int pil, int newpil)

About Configure interrupt nesting

Configures in detail how the SPARC processor interrupt level is set when an interrupt occurs. After
calling this function, PSR.PIL will be raised to newpil when an interrupt occurs on level pil.

pil [IN] IntegerParam

PSR.PIL (0..15) level to configure.

newpil [IN] IntegerParam

New value for PSR.PIL (0..15) during interrupt at level pil. newpil must be equal to or greater
than pil parameter.

int.

Value Description

BCC_OK Success

Return

BCC_FAIL Illegal parameters

5.9.7. Low-level interrupt handlers

The trap API can be used to install low-level interrupt handlers for SPARC interrupts 1-15. It is done by calling
bcc_set_trap() with the tt parameter set to interrupt number plus 0x10. This will disable the normal BCC
ISR management for this interrupt request level. Support for interrupt sharing on the CPU interrupt level is also
on the responsibility of the user when using Low-level interrupt handlers.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 34

It is the implementer's responsibility to ensure that volatile registers are saved and restored by the trap handler.
The handler should set PSR.PIL=0xf to avoid interrupt nesting if traps are being enabled by the handler.

The following example illustrates how a low-level interrupt handler can be installed.

#include <bcc/bcc.h>

/* Function for installing low-level interrupt (trap) handler */
int set_lowlevel_int_handler(int source, void (*handler)(void))
{
 if (source < 1 || 15 < source) {
 return BCC_FAIL;
 }
 return bcc_set_trap(0x10 + source, handler);
}

extern void trap_handler_for_int1(void);
int isr_lowlevel_example(void)
{
 int ret;

 ret = set_lowlevel_int_handler(1, trap_handler_for_int1);
 printf("ret=%d\n", ret);

 return ret;
}

5.9.8. Interrupt timestamping

The IRQ(A)MP interrupt controller can be implemented with interrupt timestamping functionality. GR740 and
GR716 support this. BCC provides an API for programming the timestamping hardware.

The function bcc_timestamp_avail() is used to determine the number of timestamp register sets known to
BCC. The timestamping API described in this section can be used only if this function returns a value of 1 or higher.

Most functions in the timestamping API take a parameter, ts_no, which describes the timestamping regis-
ter set to operate on. This parameter must zero or greater, and must be strictly less than the return value of
bcc_timestamp_avail().

The function bcc_timestamp_restart() is used to start and restart monitoring of an interrupt line.
bcc_timestamp_status() can be used to determine if timestamping registers for assertion and acknowledge
have been latched and the functions bcc_timestamp_get_ass() and bcc_timestamp_get_ack() can
be used to read out the latched values.

bcc_timestamp_get_cnt() is used to read the current value of the free-running timestamping counter. It
can be used by the user interrupt service routine to measure the time from hardware interrupt assertion to program
response.

Table 5.42. bcc_timestamp_avail function declaration

Proto int bcc_timestamp_avail(void)

About Return number of timestamp register sets available

Return int. Number of timestamp register sets available

Table 5.43. bcc_timestamp_restart function declaration

Proto int bcc_timestamp_restart(int ts_no, int source)

About Restart timestamping

ts_no [IN] IntegerParam

Timestamp register set to use for this stamp

source [IN] IntegerParam

Interrupt controller interrupt line to monitor

int.

Value Description

Return

BCC_OK Success

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 35

BCC_NOT_AVAILABLE Device or functionality not available

Table 5.44. bcc_timestamp_status function declaration

Proto uint32_t bcc_timestamp_status(int ts_no)

About Get timestamping status

The function is used to determine whether assertion, acknowledge or both have been stamped for the
timestamp register set.

ts_no [IN] IntegerParam

Timestamp register set

uint32_t. A combination of the masks BCC_TIMESTAMP_ASS and BCC_TIMESTAMP_ACK

Value Description

BCC_TIMESTAMP_ASS Assertion Stamped (S1)

Return

BCC_TIMESTAMP_ACK Acknowledge Stamped (S2)

Table 5.45. bcc_timestamp_get_ass function declaration

Proto uint32_t bcc_timestamp_get_ass(int ts_no)

About Return value of interrupt assertion timestamp register

ts_no [IN] IntegerParam

Timestamp register set

Return uint32_t. Value of interrupt assertion timestamp register

Table 5.46. bcc_timestamp_get_ack function declaration

Proto uint32_t bcc_timestamp_get_ack(int ts_no)

About Return value of interrupt acknowledge timestamp register

ts_no [IN] IntegerParam

Timestamp register set

Return uint32_t. Value of interrupt acknowledge timestamp register

Table 5.47. bcc_timestamp_get_cnt function declaration

Proto uint32_t bcc_timestamp_get_cnt(void)

About Return value of interrupt timestamp counter register

Return uint32_t. Value of interrupt timestamp counter register

Below is a code snippet which demonstrates one way of using the timestamping API. myisr() is an interrupt
service routine registered on the interrupt line which is monitored.

The sequence of events from interrupt assertion to ISR is:

1. Peripheral asserts interrupt line. Assertion timestamp register latches.
2. CPU starts processing the interrupt trap. Acknowledge timestamp register latches.
3. Execution enters myisr(). Program (CPU) reads timestamp counter register.

#include <bcc/timestamp.h>

static volatile uint32_t mycnt;

void myisr(void *arg, int source)
{
 mycnt = bcc_timestamp_get_cnt();
 ...
}

int timestamp_example(int stampnum, int intnum)
{
 uint32_t ass, ack, cnt;
 uint32_t v;

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 36

 assert(stampnum < bcc_timestamp_avail());

 bcc_timestamp_restart(stampnum, intnum);
 /* Wait for timestamp ack to latch */
 do {
 v = bcc_timestamp_status(stampnum);
 } while (0 == (v & BCC_TIMESTAMP_ACK));

 /* Collect the numbers */
 ass = bcc_timestamp_get_ass(stampnum);
 ack = bcc_timestamp_get_ack(stampnum);
 cnt = mycnt;

 /* Do interesting stuff with ass, ack, cnt */
 ...

 return 0;
}

5.10. Asymmetric Multiprocessing API

This API provides basic functionality for programming AMP systems. The communication primitive is inter-pro-
cessor interrupts, which can be used as a basis for shared memories and higher level services. Functions in this
API typically operate using a LEON interrupt controller such as IRQMP or IRQ(A)MP.

The functions in the AMP API are available even when running on a single-processor system. AMP services
are not served in this case, but the function return values are guaranteed to be consistent (typically returning
with status BCC_NOT_AVAILABLE).

5.10.1. Processor identification

The number of processors in the system can be retrieved with the function bcc_get_cpu_count() and the
ID of the current processor is retrieved with bcc_get_cpuid()

Table 5.48. bcc_get_cpu_count function declaration

Proto int bcc_get_cpu_count(void)

About Get number of processor in the system.

Return int.

Number of processors in the system or -1 if unknown.

1 is returned on single-processor systems.

Notes This function will return -1 if the run-time is not aware of the interrupt controller.

Table 5.49. bcc_get_cpuid function declaration

Proto int bcc_get_cpuid(void)

About Get ID of the current processor.

The first processor in the system has ID 0.

Return int.

ID of the current processor.

0 is returned on single-processor systems.

5.10.2. Inter-processor control

Another processor in a multiprocessor LEON system can be started by calling bcc_start_processor().
Inter-processor interrupts (IPI) are sent to other processors with bcc_send_interrupt().

Table 5.50. bcc_start_processor function declaration

Proto int bcc_start_processor(int cpuid)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 37

About Start a processor.

cpuid [IN] IntegerParam

The processor to start.

cpuid must be in the interval from 0 to get_cpu_count()-1.

int.

Value Description

BCC_OK Success.

Return

BCC_NOT_AVAILABLE Processor or device not available.

Table 5.51. bcc_send_interrupt function declaration

Proto int bcc_send_interrupt(int level, int cpuid)

About Force an interrupt level on a processor.

level [IN] IntegerParam

Interrupt request level (1..15).

cpuid [IN] IntegerParam

The processor to interrupt.

cpuid must be in the interval from 0 to get_cpu_count()-1.

int.

Value Description

BCC_OK Success.

Return

BCC_NOT_AVAILABLE Processor or device not available.

5.11. Default trap handlers

Table 5.52 lists the trap handlers linked into the SPARC trap table by default in a BCC application. Individual trap
handlers can be added or replaced with the trap API described in Section 5.8.

See the SPARC V8 specification for trap definitions.

Table 5.52. Default trap handlers for BCC 2.3.1

tt Description

0x00 Reset. Handled by __bcc_trap_reset_mvt or __bcc_trap_reset_svt.

0x05 Window overflow. Handled by __bcc_trap_window_overflow.

0x06 Window underflow. Handled by __bcc_trap_window_underflow.

0x11..0x1f Interrupt. Handled by __bcc_trap_interrupt.

0x83 Flush windows. Handled by __bcc_trap_flush_windows.

0x89 Set PSR.PIL. Handled by __bcc_trap_sw_set_pil.

others Force processor into error mode.

5.12. API reference

This section lists all BCC library user API functions with references to the related section(s). The API is also
documented in the source header files of the library, see Section 5.1.

Table 5.53. BCC library user API structure reference

Type Section

struct bcc_isr_node 5.9.5.2

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 38

Table 5.54. BCC library user API function reference

Prototype Section

uint32_t bcc_timer_get_us(void) 5.3

int bcc_timer_tick_init_period(uint32_t usec_per_tick) 5.3.1

void bcc_flush_cache(void) 5.4

void bcc_flush_icache(void) 5.4

void bcc_flush_dcache(void) 5.4

void bcc_set_ccr(uint32_t data) 5.4

uint32_t bcc_get_ccr(void) 5.4

uint32_t bcc_loadnocache(uint32_t *addr) 5.5

uint16_t bcc_loadnocache16(uint16_t *addr) 5.5

uint8_t bcc_loadnocache8(uint8_t *addr) 5.5

void bcc_dwzero(uint64_t *dst, size_t n) 5.5

uint32_t bcc_get_psr(void) 5.6.1

void bcc_set_psr(uint32_t psr) 5.6.1

int bcc_get_pil(void) 5.6.1

int bcc_set_pil(int newpil) 5.6.1

uint32_t bcc_get_tbr(void) 5.6.2

void bcc_set_tbr(uint32_t tbr) 5.6.2

uint32_t bcc_get_trapbase(void) 5.6.2

int bcc_power_down(void) 5.6.3

int bcc_fpu_save(struct bcc_fpu_state *state) 5.7

int bcc_fpu_restore(struct bcc_fpu_state *state) 5.7

int bcc_set_trap(int tt, void (*handler)(void)) 5.8,
5.9.7

int bcc_int_disable(void) 5.9.1

void bcc_int_enable(int plevel) 5.9.1

int bcc_int_mask(int source) 5.9.2

int bcc_int_unmask(int source) 5.9.2

int bcc_int_clear(int source) 5.9.3

int bcc_int_force(int level) 5.9.3

int bcc_int_pend(int source) 5.9.3

int bcc_int_map_set(int busintline, int irqmpintline) 5.9.4

int bcc_int_map_get(int busintline) 5.9.4

void *bcc_isr_register(int source, void (*handler)(void *arg, int
source), void *arg)

5.9.5.1

int bcc_isr_unregister(void *isr_ctx) 5.9.5.1

int bcc_isr_register_node(struct bcc_isr_node *isr_node) 5.9.5.2

int bcc_isr_unregister_node(const struct bcc_isr_node *isr_node) 5.9.5.2

int bcc_int_nestcount(void) 5.9.6

int bcc_int_disable_nesting(void) 5.9.6

int bcc_int_enable_nesting(void) 5.9.6

int bcc_int_set_nesting(int pil, int newpil) 5.9.6.1

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 39

Prototype Section

int bcc_timestamp_avail(void) 5.9.8

int bcc_timestamp_restart(int ts_no, int source) 5.9.8

uint32_t bcc_timestamp_status(int ts_no) 5.9.8

uint32_t bcc_timestamp_get_ass(int ts_no) 5.9.8

uint32_t bcc_timestamp_get_ack(int ts_no) 5.9.8

uint32_t bcc_timestamp_get_cnt(void) 5.9.8

int bcc_get_cpu_count(void) 5.10.1

int bcc_get_cpuid(void) 5.10.1

int bcc_start_processor(int cpuid) 5.10.2

int bcc_send_interrupt(int level, int cpuid) 5.10.2

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 40

6. AMBA Plug&Play library

6.1. Introduction

This chapter describes a user library used to probe devices on systems with an on-chip GRLIB AMBA Plug&Play
bus. AMBA Plug&Play is generally available on LEON3 and LEON4 systems. For more information on the
AMBA Plug&Play concept, see the GRLIB IP Library User's Manual.

The library is used by the BCC run-time to find the console device, timer devices and the interrupt controller.
Application programmers can also use the library to probe for hardware devices to pair with device drivers.

6.1.1. AMBA Plug&Play terms and names

Throughout this chapter some software terms and names are frequently used. Below is a table which summarizes
some of them.

Table 6.1. AMBA Layer terms and names

Term Description

AMBAPP, AMBA PnP AMBA Plug&Play bus. See AHBCTRL and APBCTRL in GRLIB GRIP docu-
mentation.

device AMBA AHB Master, AHB Slave or APB Slave interface. The amba_ahb_info
and amba_apb_info structures describe any of the interfaces.

core A AMBA IP core often consists of multiple AMBA interfaces but not more than
one interface of the same type.

bus An AMBA AHB or APB bus.

Vendor ID A unique number assigned to a device vendor. See include/bcc/
ambapp_ids.h

Device ID A unique number assigned to a device by a device vendor. See include/bcc/
ambapp_ids.h

IO area Address to a read-only table containing Plug&Play information for all attached de-
vices on the bus. It is typically located at address 0xFFFFF000 on LEON sys-
tems.

scanning Process where the AMBA PnP bus is searched for all or some AMBA interfaces.

depth Number of levels of AHB-AHB bridges from topmost AHB bus.

6.1.2. Availability

Functions described in this chapter have structure definitions and prototypes in the C header file bcc/ambapp.h.
The functions are compiled in libbcc.a and are available per default when linking with the GCC front-end.

6.2. Device scanning

BCC AMBA Plug&Play API is based around a device scanning routine in the function ambapp_visit(). It
performs recursive, depth first, scanning for devices.

The ambapp_visit() routine can visit devices during the scanning, based on a user defined device match
criteria. A visit is performed by the routine calling a user supplied function with information on the current device
as function parameters. After the user function has inspected the device information, it can decide to terminate the
scanning process altogether or let the scanning routine continue with the next match. The ambapp_visit()
function does not allocate dynamic or static memory and does not build a device tree. It stores temporary infor-
mation on the stack as needed.

Example use cases for the scanning routine include:

• Count number of AMBA Plug&Play devices/buses in the system.
• Build a device tree in memory.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 41

• Find a specific device on a user criteria.

The main scanning function ambapp_visit() is defined in Table 6.2 and the callback interface is described in
Table 6.3.

Table 6.2. ambapp_visit function declaration

Proto uint32_t ambapp_visit(uint32_t ioarea, uint32_t vendor, uint32_t
device, uint32_t flags, uint32_t maxdepth, uint32_t (*fn)(void *in-
fo, uint32_t vendor, uint32_t device, uint32_t type, uint32_t depth,
void *arg), void *arg)

About Visit AMBA Plug&Play devices

A recursive AMBA Plug&Play device scanning is performed, depth first. Information records are
filled in and supplied to a user function on a user match criteria. The user match criteria is defined by
the parameters vendor, device and flags.

When the user function (fn) returns non-zero, the device scanning is terminated and
ambapp_visit() returns the return value of the user function.

The ambapp_visit() function does not allocate dynamic or static memory: all state is on the
stack.

ioarea [IN] AddressParam

IO area of bus to start device scanning.

vendor [IN] IntegerParam

Vendor ID to visit, or 0 for all vendor IDs.

device [IN] IntegerParam

Device ID to visit, or 0 for all device IDs.

flags [IN] IntegerParam

Mask of device types to visit (AMBAPP_VISIT_AHBMASTER, AMBAPP_VISIT_AHBSLAVE,
AMBAPP_VISIT_APBSLAVE).

maxdepth [IN] IntegerParam

Maximum bridge depth to visit.

fn [IN] PointerParam

User function called when a device is matched. See separate description on how the function is called.

fn_arg [IN] PointerParam

User argument provided with each call to fn(). ambapp_visit() never dereferences fn_arg.

uint32_t.

Value Description

0 fn() did never return non-zero.

Return

non-zero fn() returned this value.

Table 6.3. ambapp_visit_user_fn function declaration

Proto uint32_t fn(void *info, uint32_t vendor, uint32_t device, uint32_t
type, uint32_t depth, void *arg)

About User callback called by ambapp_visit() when a device is matched.

info [IN] PointerParam

Pointer to struct amba_apb_info or struct amba_ahb_info as determined by the parameter type.

vendor [IN] IntegerParam

Vendor ID for matched device

Param device [IN] Integer

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 42

Device ID for matched device

type [IN] IntegerParam

Type of matched device (AMBAPP_VISIT_AHBMASTER, AMBAPP_VISIT_AHBSLAVE,
AMBAPP_VISIT_APBSLAVE).

depth [IN] IntegerParam

Bridge depth of matched device. First depth is 0. The depth decrements with one for each recursed
bridge.

arg [IN] PointerParam

User argument which was given to ambapp_visit() as parameter fn_arg.

uint32_t.

Value Description

0 Continue scanning

Return

non-zero Abort scanning and propagate return value to ambapp_visit() for return.

6.3. User callback

6.3.1. Criteria matching

User criteria for calling the user callback function for a device is defined by the ambapp_visit() function pa-
rameters vendor, device and flags. To scan for a specific device type (AHB master, AHB slave, APB slave),
the bitmasks AMBAPP_VISIT_AHBMASTER, AMBAPP_VISIT_AHBSLAVE, AMBAPP_VISIT_APBSLAVE
shall be used. A value of 0 for vendor or device matches all vendor IDs and device IDs respectively.

Visiting all devices can thus be accomplished by the following parameter values:

#include <bcc/ambapp.h>
vendor = 0;
device = 0;
flags = AMBAPP_VISIT_AHBMASTER | AMBAPP_VISIT_AHBSLAVE | AMBA_VISIT_APBSLAVE;

6.3.2. Device information

Parameters to the user callback (Table 6.3) provides information to the user about the current device. To derefer-
ence the info parameter, it must first be cast to the appropriate type, based on the type parameter as of table
Table 6.4.

Table 6.4. Data structures for device information

Value of type Type of info

AMBAPP_VISIT_AHBMASTER struct amba_ahb_info *

AMBAPP_VISIT_AHBSLAVE struct amba_ahb_info *

AMBAPP_VISIT_APBSLAVE struct amba_apb_info *

The device information structures contain data decoded from the AMBA AHB and APB Plug&Play records as
defined in Table 6.5, Table 6.6 and Table 6.7. The raw configuration record entry is also available via the entry
field. See the GRLIB IP Library User's Manual for more details on the record fields.

struct amba_apb_info {
 uint8_t ver;
 uint8_t irq;
 uint32_t start;
 uint32_t mask;
 const struct ambapp_apb_entry *entry;
};

Table 6.5. amba_apb_info data structure declaration

ver Device version

irq Device interrupt number

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 43

start Device address space start

mask Device address space mask

entry APB Plug&Play configuration record

struct amba_ahb_bar {
 uint32_t start;
 uint32_t mask;
 uint8_t type;
};

Table 6.6. amba_ahb_bar data structure declaration

start Device address space start

mask Device address space mask

Bank type

2 AHB memory space

type

3 AHB I/O space

struct amba_ahb_info {
 uint8_t ver;
 uint8_t irq;
 struct amba_ahb_bar bar[AMBA_AHB_NBARS];
 const struct ambapp_ahb_entry *entry;
};

Table 6.7. amba_ahb_info data structure declaration

ver Device version

irq Device interrupt number

bar Bank Address Register

entry AHB Plug&Play configuration record

6.4. Example

The following example extracts the base address and interrupt number of the first APBUART device in the system
and then aborts the scanning by returning non-zero.

#include <stdio.h>
#include <bcc/ambapp.h>
#include <bcc/ambapp_ids.h>

uint32_t myarg = 0;

/* User callback which is called on devices matched with ambapp_visit(). */
uint32_t myfn(void *info, uint32_t vendor, uint32_t device, uint32_t type, uint32_t depth, void *arg)
{
 struct amba_apb_info *apbi = info;
 if (type != AMBAPP_VISIT_APBSLAVE) {
 printf("Unexpected type=%u\n", type);
 return 0;
 }

 printf("vendor=%x, device=%x, type=%x, depth=%u, arg=%p\n",
 vendor, device, type, depth, arg);
 printf("ver=%u, irq=%u, start=%08x, mask=%08x\n",
 info->ver, info->irq, info->start, info->mask);
 return apbi->start;
}

/* This function returns address of first APBUART, or 0. */
uint32_t ex0(void) {
 const uint32_t ioarea = 0xFFFFF000;
 const uint32_t maxdepth = 4;
 uint32_t ret;

 ret = ambapp_visit(
 ioarea,
 VENDOR_GAISLER,
 GAISLER_APBUART,
 AMBAPP_VISIT_APBSLAVE,
 maxdepth,

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 44

 myfn,
 &myarg
);
 return ret;
}

More examples are provided with the BCC distribution.

6.5. API reference

This section lists all AMBA Plug&Play API functions with references to the related section(s). The API is also
documented in the source header files of the library, bcc/ambapp.h.

Table 6.8. AMBA Plug&Play library data structure reference

Type Section

struct amba_apb_info 6.3.2

struct amba_ahb_bar 6.3.2

struct amba_ahb_info 6.3.2

Table 6.9. AMBA Plug&Play library function reference

Prototype Section

uint32_t ambapp_visit(uint32_t ioarea, uint32_t vendor, uint32_t
device, uint32_t flags, uint32_t maxdepth, uint32_t (*fn)(void
*info, uint32_t vendor, uint32_t device, uint32_t type, uint32_t
depth, void *arg), void *arg)

6.2

uint32_t ambapp_visit_user_fn(void *info, uint32_t vendor, uint32_t
device, uint32_t type, uint32_t depth, void *arg)

6.2, 6.3

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 45

7. Board Support Packages

This chapter describes the Board Support Packages (BSP) distributed with BCC. Information on how to override
the BSP behavior is available in Chapter 8. The default BSP, named LEON3, is compatible with most systems.

7.1. Overview

BSPs provide an interface between BCC and target hardware through initialization code specific to target processor
and a number of device drivers. Console, timer and interrupt controller drivers are supported in all BSPs.

A BSP is selected with the GCC option -qbsp=bspname, where bspname specifies any of the BSPs described
in this chapter. The option is typically combined with -mcpu=cpuname and optionally -msoft-float and
-qnano.

If option -qbsp= is not given explicitly, then -qbsp=leon3 is implied.

It is important that the -qbsp=, -mcpu=, -mfix and -msoft-float options are given to GCC both at the
compile and link steps. -qsvt is only applicable to linking.

Selecting a BSP with -qbsp=, does not automatically infer any of the -mcpu=, -mfix- or -msoft-
float options. See Appendix A and Appendix B for recommended compiler options.

Applications are by default linked to RAM address 0x40000000 by most BSPs. This can be changed with the
GCC option -Wl,-Ttext,addr to link anywhere in the range 0x40000000 to 0x7ffffff0. Some BSPs
have other default link addresses which is noted in the corresponding section in this chapter.

Each BSP provides memory definitions for the linker scripts to use, suitable for the target device. In some situations
there is a need to link applications to non-standard locations. A special linker script named linkcmds-any is
provided for this purpose. linkcmds-any is available for all BSPs. The following example links an application
to address 0xABCDE000:

 $ sparc-gaisler-elf-gcc -T linkcmds-any -Wl,-Ttext,0xABCDE000 hello.c -o hello.elf

All BSPs except the LEON3 BSP have link time configuration of device base addresses needed by the BCC drivers.
The LEON3 BSP uses AMBA Plug&Play to probe devices. A BCC console driver is attached to APBUART0 by
default, timer driver is attached to GPTIMER0 and the interrupt controller driver is attached to IRQMP/IRQ(A)MP.
Chapter 8 describes how device base addresses can be customized by the user.

7.2. LEON3

The LEON3 BSP is a general BSP compatible with most LEON3 based systems. This is the only BSP which uses
AMBA Plug&Play to discover peripheral devices at startup.

Linking with -qsvt is possible if SVT is supported by the target system.

7.3. LEON5

The LEON5 BSP is a general BSP compatible with most LEON5 based systems.

Linking with -qsvt is possible if SVT is supported by the target system.

7.4. GR712RC

The GR712RC BSP is customized for the GR712RC component.

The following linker scripts are available, selectable with the GCC -T option.

 linkcmds (default) Application is linked to RAM address 0x40000000.

 linkcmds-ahbram Application is linked to on-chip RAM with BCH error-correction at address
0xa0000000.

Memory map descriptions and a linker script template for creating custom linker scripts are available in bsp/
gr712rc/linkcmds.memory and bsp/gr712rc/linkcmds.base.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 46

Linking with -qsvt is supported.

7.5. GR740

The GR740 BSP is customized for the GR740 component.

The following linker scripts are available, selectable with the GCC -T option.

 linkcmds (default) Application is linked to RAM address 0x00000000.

Memory map descriptions and a linker script template for creating custom linker scripts are available in bsp/
gr740/linkcmds.memory and bsp/gr740/linkcmds.base.

Linking with -qsvt is supported.

Interrupt remap functions are available (Section 5.9.4) as well as the interrupt timestamp API (Section 5.9.8).

The BSP selects the interrupt controller to use by probing the IRQAMP Interrupt Controller Select Registers. For
AMP applications, the assignment could be programmed by an earlier boot loading stage.

7.6. GR716

The GR716 BSP is customized for the GR716 component.

Partial WRPSR as described in SPARC-V8 Supplement, SPARC-V8 Embedded (V8E) Architecture Specification
is used by BCC when possible. The interrupt remap functions described in Section 5.9.4 are available. Linking
with -qsvt and -qnano is recommended to reduce code size.

Memory map descriptions and a linker script template for creating custom linker scripts are available in bsp/
gr716/linkcmds.memory and bsp/gr716/linkcmds.base.

7.6.1. Supported features

Table 7.1. GR716 BSP feature support in BCC

Hardware functionality Reference Comments

FPU (LEON) 2.4 Supported

I/O switch matrix 7.6.4.1 Support for setting pin functionality and LVDS configura-
tion.

Brownout N/A No driver support

PLL 7.6.4.3 Supported

UART 4.1, 5.3,
8.2

BCC console driver in polling mode with FIFO support.
Used for C standard library stdin, stdout and stderr.
By default uses APBUART0 which can be redirected. Sup-
ported by the BCC timer API.

UART 13 Dedicated raw data communication driver. Supports interrupt
and polling mode.

On-chip Dual-port Memory with
EDAC Protection

N/A No driver support. Initialized by on-chip boot loader and
GRMON.

Fault Tolerant PROM/SRAM Mem-
ory Interface

N/A No specific support. See example in [GR716-MINI-QSG].

1553B Bus Controller 21 Supported

1553B Bus Monitor 23 Supported

1553B Remote Terminal 22 Supported

ADC N/A No driver support. See example in [GR716-MINI-QSG].

DAC N/A No driver support

CAN 2.0B 12 Supported

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 47

Hardware functionality Reference Comments

Clock gating unit 19 Supported

GRDMAC N/A No driver support

General Purpose I/O Port 17 Basic functionality supported. Pulse sequencer and sampler
is not supported.

Pulse Width Modulation Generator N/A No driver support

PacketWire N/A No driver support

SpaceWire Interface and RMAP
target

11 Supported

SpaceWire TDP N/A No driver support

General Purpose Timer Units 4.2, 8.3 BCC timer driver. Used for C standard library time related
functions. Typically dedicated to GPTIMER0 subtimer0.

General Purpose Timer Units 16 Low-level driver for operating on GPTIMER. Supports all
timer cores. Latch/set functionality not supported. One timer
instance is used by the C library time functions. Watchdog
API

I2C to AHB bridge N/A No driver support

I2C Master 15 Supported

I2C slave N/A No driver support

Interrupt Controller 5.9 Supported by the BCC Interrupt API

LEON3 Statistics Unit N/A No driver support. Typically accessed with dedicated GR-
MON command.

Memory Scrubber 25 Supported

SPI to AHB bridge N/A No driver support

SPI Controller 14 SPI master mode is supported. SPI slave mode is not sup-
ported.

SPI for Space Slave Controller N/A No driver support

SPI Memory Controller N/A No driver support

AMBA Protection Unit 24 Supported

AHB Status Registers 18 Supported User can install hook to handle errors.

Boot ROM N/A No driver support. See example in [GR716-MINI-QSG].

Table 7.2. Resources

GR716-MINI-QSG GR716-MINI Quick Start Guide [https://www.gaisler.com/index.php/products/compo-
nents/gr716]

7.6.2. Boot ROM

A BCC 2 application is ready to be used with the GR716 embedded boot loader (BOOTROM). There are two
main cases:

• Application is copied from persistent memory or network to RAM by the BOOTPROM. Executes from
volatile RAM.

• Application executes from persistent memory (external ROM or SPI). This is also called direct boot or ROM
resident execution.

It is also possible to disable the GR716 embedded boot loader by configuring GR716 strap signals. In this case,
the application should contain its own boot loader. See Section 2.16.

The following subsections describe how to link a BCC application for use with the GR716 BOOTPROM. Infor-
mation on how to load the application and configure the GR716 for image boot from persistent memory, network
boot or direct boot from persistent memory is available in the GR716 Data Sheet and User's Manual.

https://www.frontgrade.com/gaisler
https://www.gaisler.com/index.php/products/components/gr716
https://www.gaisler.com/index.php/products/components/gr716
https://www.gaisler.com/index.php/products/components/gr716

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 48

7.6.2.1. Executing from volatile RAM

To link an application for executing from local instruction RAM, the default linker script shall be used:

 linkcmds (default) Application is linked to CPU local RAM: instruction RAM at address
0x31000000 and data RAM at address 0x30000000.

The following example links an application for storage and execution in internal RAM:

 $ sparc-gaisler-elf-gcc -qbsp=gr716 -mcpu=leon3 -qsvt -qnano main.o -o main.elf

The linker option -T linkcmds is not required since the linker script is selected by default.

7.6.2.2. Executing from persistent memory

To link an application for executing from persistent memory such as an external ROM or SPI, use one of the
following linker scripts:

 linkcmds-extprom Application is linked to external ROM starting at address 0x01000000.
.data is copied from PROM to on-chip data RAM at BCC run-time initial-
ization. .bss is also put in on-chip data RAM.

 linkcmds-spi0 Same as linkcmds-extprom, but for first SPI controller memory mapped
at address 0x02000000.

 linkcmds-spi1 Same as linkcmds-extprom, but for second SPI controller memory
mapped at address 0x04000000.

The following example links an application for storage and execution in external ROM:

 $ sparc-gaisler-elf-gcc -qbsp=gr716 -mcpu=leon3 -qsvt -qnano -T linkcmds-extprom main.o -o main.elf

Investigation of the link output shows that .data is in ROM space at load time, but referenced in local data RAM
at execution time. Copying of .data from ROM to RAM is done automatically by the BCC initialization.

 $ sparc-gaisler-elf-objdump -h main.elf

main.elf: file format elf32-sparc

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 000021d0 01000000 01000000 00010000 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .rodata 00000090 010021d0 010021d0 000121d0 2**3
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 2 .ext.data 00000000 40000000 40000000 000201e8 2**0
 CONTENTS
 3 .data 000001e8 30000000 01002260 00020000 2**3
 CONTENTS, ALLOC, LOAD, DATA
 4 .bss 000001c8 300001e8 01002448 000201e8 2**2
 ALLOC
...

An example on how to build an application as described in this subsection is included with the BCC distribution
in the directory examples/gr716_romres.

7.6.2.3. System clock

The GR716 BSP supports the full frequency operating range of GR716. A time base has to be set by the user
for the BCC time functions to operate correctly when the application is started from the GR716 embedded boot
loader. The supported way to do this is to define a global constant variable named __bsp_sysfreq initialized
with the system clock frequency in MHz. This ensures a known time base for the BCC timer driver and sets the
BCC console driver baud to 38400.

On a GR716 clocked at 20 MHz, the following example configures the system clock.

/* GR716 clocked at 20 MHz */
 const unsigned int __bsp_sysfreq = 20*1000*1000;

The definition can be put in any C file which is linked with the application. Note that __bsp_sysfreq must
not be declared static.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 49

BSP initialization related to the system clock are implemented by the custom timer and console initialization
functions and can be overridden. For more details, see Section 8.2.1 and Section 8.3.1.

7.6.3. APBUART initialization

The BCC GR716 BSP default run-time initialization has support for initializing up to one APBUART controller.
The purpose of this is to make the C standard library stdin, stdout and stderr available. This initialization,
if performed, happens just before main() is called.

APBUART initialization in the GR716 BSP will be performed depending on the values of the application variable
__bsp_sysfreq AND the run-time state of the control register, according to the following:

__bcc_con_init:
 IF (__bsp_sysfreq != 0) AND (APBUART debug forwarding is disabled) THEN
 Configure APBUART scaler
 Enable APBUART transmitter and receiver
 Disable debug forwarding
 ELSE
 Do not touch APBUART registers
 ENDIF

APBUART debug forwarding is disabled by hardware on GR716 power-on. APBUART debug forwarding is
enabled by GRMON when the startup-option -u is used, or when enabled via the forward enable command.

This means that:

• When application is started from GRMON with debug forwarding enabled, then BCC will not re-initialize
the APBUART.

• When application is started from embedded boot ROM or power-on reset, then BCC will initialize APBUART
if __bsp_sysfreq is set in the application.

The APBUART in question above is APBUART0 by default. It is possible to redirect to another APBUART by
defining __bcc_con_handle as described in Section 8.2. It is also possible to override the default behavior
described above defining an application-specific version of __bcc_con_init() as described in Table 8.1.

Source code for the default GR716 console initialization logic is available in the file src/libbcc/bsp/
gr716/bsp_con_init.c installed with BCC 2.3.1.

7.6.4. Chip specific API

A set of functions are provided by the BCC GR716 BSP for controlling chip specific functionality. The are in-
cluded in the BSP rather than as separate peripheral drivers since the functionality is tied to the GR716 and do
not generalize to other components.

7.6.4.1. Pin configuration

gr716_set_pinfunc() configures the GR716 I/O switch matrix. The function is available via bcc/gr716/
pin.h

Table 7.3. gr716_set_pinfunc function declaration

Proto int gr716_set_pinfunc(unsigned int pin, unsigned int mode)

About Configure one IO switch matrix entry

This function updates one field in SYS.CFG.GPx to configure the specified pin with the functionali-
ty requested by mode.

Parameters pin and mode are range checked before registers are written.

pin [IN] IntegerParam

GPIO pin number (0..63)

mode [IN] IntegerParam

Any of IO_MODE_* (0..0xe)

int.Return

Value Description

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 50

0 Success

nonzero Range check failure

A set of defines for IO_MODE_* is available:

Table 7.4. IO modes

Symbol Description

IO_MODE_GPIO GPIO

IO_MODE_APBUART APBUART

IO_MODE_MEM Memory controller (FTMCTRL)

IO_MODE_PW PacketWire

IO_MODE_1553 MIL-STD-1553B

IO_MODE_CAN GRCAN

IO_MODE_I2C I2C

IO_MODE_SPI SPI

IO_MODE_ADC ADC

IO_MODE_DAC DAC

IO_MODE_PWM GRPWM

IO_MODE_SPW SpaceWire (redundant interface on second port)

IO_MODE_SPI4S SPI for Space master and slave

IO_MODE_AHBUART AHBUART for DMA bus

IO_MODE_TDP SpaceWire TDP (GRSPWTDP)

Example 7.1. Configure GPIO63 for CAN with gr716_set_pinfunc()

 #include <bcc/gr716/pin.h>

 gr716_set_pinfunc(63, IO_MODE_CAN);

7.6.4.2. LVDS configuration

gr716_set_lvdsfunc() configures the on-chip LVDS transceivers. Available via bcc/gr716/pin.h

Table 7.5. gr716_set_lvdsfunc function declaration

Proto int gr716_set_lvdsfunc(unsigned int mode)

About Configure LVDS transceivers

This function updates SYS.CFG.LVDS to configure the on-chip LVDS transceivers with the func-
tionality requested by mode.

The mode parameter is range checked before registers are written.

mode [IN] IntegerParam

Any of LVDS_MODE_* (0..3 or 8)

int.

Value Description

0 Success

Return

nonzero Range check failure

Table 7.6. LVDS modes

Symbol Description

LVDS_MODE_SPW SpaceWire (primary interface on first port)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 51

Symbol Description

LVDS_MODE_SPI4S SPI for Space master and slave

LVDS_MODE_SPIM SPI master controller (not the SPI memory controller)

LVDS_MODE_SPIS SPI slave controller

LVDS_DISABLE Disable LVDS transceiver

Example 7.2. Configure LVDS for SpaceWire with gr716_set_lvdsfunc()

 #include <bcc/gr716/pin.h>

 gr716_set_lvdsfunc(LVDS_MODE_SPW);

7.6.4.3. PLL configuration

gr716_pll_config() configures the PLL. PLL lock can be proved with the function
gr716_pll_islocked. gr716_sysclk() and gr716_spwclk() configures the clocks.

These functions are available via bcc/gr716/pll.h

Table 7.7. gr716_pll_config function declaration

Proto int gr716_pll_config(int ref, int cfg, int pd)

About Configure PLL

Mode #1: (pd = 1)

• This mode powers down the PLL

Mode #2: (pd = 0, ref = X and cfg = Y)

• This mode powers on the PLL
• Select the external input pin with ref
• The PLL must be configure the correct input frequency with cfg.

ref [IN] Integer

Select external input pin as PLL input. Can be any of the following values;

Value Description

PLL_REF_SYS_CLK External System clock

Param

PLL_REF_SPW_CLK External SpaceWire clock

cfg [IN] Integer

Input frequency for PLL input. Can be any of the following values;

Value Description

PLL_FREQ_50MHZ 50 MHz

PLL_FREQ_25MHZ 25 MHz

PLL_FREQ_20MHZ 20 MHz

PLL_FREQ_12MHZ 12 MHz

PLL_FREQ_10MHZ 10 MHz

Param

PLL_FREQ_5MHZ 5 MHz

pd [IN] Integer

PLL power down. Can be any of the following values;

Value Description

PLL_POWER_DOWN Power down PLL (1)

Param

PLL_POWER_ENABLE Enable PLL (0)

int.Return

Value Description

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 52

0 Success

nonzero Failure

Table 7.8. gr716_sysclk function declaration

Proto int gr716_sysclk(int source, int div, int duty)

About Configure system clock

Mode #1: (source = 0, div = 0 and duty = 0)

• This mode bypasses the divider and uses the external clock pin as input

Mode #2: (source = X, div = Y and duty = 0)

• This mode divides the clock source with 2^Y and selects as system clock
• Y can be in the range from 1 to 31

Mode #3: (source = X, div = Y and duty = Z)

• This mode divides the clock source with Y and selects as system clock.
• Clock duty cycle is set by duty in number of system clocks
• Y can be in the range from 2 to 31 and must be at least 1 greater than X
• Z can be in the range from 1 to 30

source [IN] Integer

Clock source. Can be any of the following values;

Value Description

CLK_SOURCE_CLK External System clock

CLK_SOURCE_SPW PLL input

Param

CLK_SOURCE_PLL PLL output

div [IN] IntegerParam

Clock divisor

duty [IN] IntegerParam

Clock duty cycle

int.

Value Description

0 Success

Return

nonzero Failure

Table 7.9. gr716_spwclk function declaration

Proto int gr716_spwclk(int source, int div, int duty)

About Configure SpaceWire clock

Mode #1: (source = 0, div = 0 and duty = 0)

• This mode bypasses the divider and uses the external clock pin as input

Mode #2: (source = X, div = Y and duty = 0)

• This mode divides the clock source with 2^Y and selects as SpaceWire clock
• Y can be in the range from 1 to 31

Mode #3: (source = X, div = Y and duty = Z)

• This mode divides the clock source with Y and selects as SpaceWire clock.
• Clock duty cycle is set by duty in number of clocks
• Y can be in the range from 2 to 31 and must be at least 1 greater than X
• Z can be in the range from 1 to 30

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 53

source [IN] Integer

Clock source. Can be any of the following values;

Value Description

SPWCLK_SOURCE_CLK PLL input

Param

SPWCLK_SOURCE_PLL PLL output

div [IN] IntegerParam

Clock divisor

duty [IN] IntegerParam

Clock duty cycle

int.

Value Description

0 Success

Return

nonzero Failure

Table 7.10. gr716_pll_islocked function declaration

Proto int gr716_pll_islocked(void)

About Determine if PLL is currently locked

This function returns the current value of the PLL lock output.

int.

Value Description

1 PLL is locked

Return

0 PLL is not locked

7.7. LEON2

The LEON2 BSP is compatible with LEON2 systems such as AT697, AT697E and AT697F.

AMBA Plug&Play configuration records are not implemented in most LEON2 systems, so the BCC AMBA
Plug&Play library described in Chapter 6 may not be used. But since the hardware information is resolved by the
BSP, and can be overridden as described in Chapter 8, this does not affect normal operation of BCC on LEON2
systems

-qsvt is not supported on LEON2.

7.8. AGGA4

The AGGA4 BSP is similar to the LEON2 BSP. It has a different console driver which is transparent to the user.
Recommended compiler options for AGGA4 can be found in Appendix A.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 54

8. Customizing BCC

The BCC run time environment is designed to fit a wide range systems and to require little user intervention to
get an application up and running. In some situations however, the default behavior may need customization to
fulfill specific application requirements on device discovery, console drivers, size optimization, etc. This chapter
describes how the BCC run time environment can be customized.

8.1. Introduction

Three types of hardware devices are managed by the BCC run time: console, timer and interrupt controller. The
management consists of software drivers which are embedded in the application when needed. Some of the C
library functionality and the BCC user library depend on these drivers.

For most BSPs, the run time relies on hardware devices residing in predefined address spaces. For the general
LEON3 BSP, the device hardware address space locations are probed with help of the AMBA Plug&Play scanning
routines described in Section 6.2. Device initialization and possible probing takes place before entry to main()
and can be overridden by the application as described later in this chapter.

Functions and variables used for user run time customization are declared in the header file bcc/bcc_param.h.
This header file should be included in any application which overrides the default BCC behavior.

To override the default implementation of a BCC function or variable, an object file containing the same symbol
name as the overridden function or variable should be linked with the application. The prototypes in bcc/bcc.h
and bcc/bcc_param.h can be used for type checking. An example is provided in Section 8.5.

8.2. Console driver

The BCC console driver is used for C library input and output on stdin, stdout and stderr.

8.2.1. Initialization

A variable named __bcc_con_handle is reserved for the console driver to use. The content of this variable is
console driver specific, and will typically contain an address to some hardware register space. A BSP is responsible
for initializing this variable, which can be done either at compile time or run time. The function (hook) named
__bcc_con_init() is called before main() as part of the BCC run time initialization. A BSP can use the
hook function to initialize __bcc_con_handle, for example by using the AMBA Plug&Play library. Table 8.2
describes how BSPs initialize the handle.

Table 8.1. __bcc_con_init function declaration

Proto int __bcc_con_init(void)

About Probe and initialize the console

A default implementation of this function is provided by the BSP. It can be overridden by the user.

Return int. BCC_OK on success

Table 8.2. Implementation of __bcc_con_init()

BSP Description of __bcc_con_init()

leon3 The AMBA Plug&Play library (Chapter 6) is used to scan for APBUART devices.
__bcc_con_handle is assigned with the address of the register area of the first AP-
BUART device.

others __bcc_con_init() is empty.

__bcc_con_handle is an initialized variable with value determined at link time.

8.2.2. Input and output functions

Character input is handled by the function __bcc_con_inbyte() and output by __bcc_con_outbyte().

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 55

Table 8.3. __bcc_con_inbyte function declaration

Proto char __bcc_con_inbyte(void)

About Read the next character from console

Return char. The read character

Table 8.4. __bcc_con_outbyte function declaration

Proto int __bcc_con_outbyte(char c)

About Write a character on the console

c [IN] CharacterParam

Character to output

Return int. 0 on success

8.2.3. Customization

• Console redirection is performed by redefining __bcc_con_handle, for example in a custom,
__bcc_con_init() hook. See Section 8.5.

• The I/O functions __bcc_con_inbyte() and __bcc_con_outbyte() can also be overridden. They
shall typically make use of __bcc_con_handle.

8.2.4. C library I/O

All console input fed to the C library goes via read() and the output goes out with write(). An application
can override these functions to get even more control on the console I/O (for example to implement terminal
specific handling). See the newlib C library documentation for more information on how read() and write()
are defined. The function call flow is illustrated below.

• [terminal] -> __bcc_con_inbyte() -> read() -> [C library stdio]
• [C library stdio] -> write() -> __bcc_con_outbyte() -> [terminal]

Both stdout and stderr are output via write() and __bcc_con_outbyte().

8.3. Timer driver

The BCC timer driver is used for C library time related functions such as clock() and time() (time.h). It
is also used for gettimeofday() and times().

8.3.1. Initialization

Initialization is similar to the console driver (Section 8.2.1). The timer handle is named __bcc_timer_handle
and the initialization hook is named __bcc_timer_init(). Table 8.6 describes how BSPs initialize the han-
dle.

Table 8.5. __bcc_timer_init function declaration

Proto int __bcc_timer_init(void)

About Probe timer hardware and initialize timer driver

A default implementation of this function is provided by the BSP. It can be overridden by the user.

Return int. BCC_OK on success

Table 8.6. Implementation of __bcc_timer_init()

BSP Description of __bcc_timer_init()

leon3 The AMBA Plug&Play library (Chapter 6) is used to scan for GPTIMER devices.
__bcc_timer_handle is assigned with the address of the register area of the first
GPTIMER device and __bcc_timer_interrupt is assigned to the timers interrupt
number.

others __bcc_timer_init() is empty.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 56

BSP Description of __bcc_timer_init()

__bcc_timer_handle and __bcc_timer_interrupt are initialized variables
with values determined at link time.

8.3.2. Time access functions

Current time in microseconds is returned by the function bcc_timer_get_us() as described in Section 5.3.
This function is used by the C library for time related functions (time.h).

8.3.3. Customization

The BCC timer driver initialization can be overridden by redefining the functions __bcc_timer_init() and
bcc_timer_get_us().

8.4. Interrupt controller driver

The BCC interrupt controller driver is managing the BCC interrupt and AMP user API described in Section 5.9
and Section 5.10.

8.4.1. Initialization

Initialization is similar to the console driver (Section 8.2.1). The interrupt controller driver handle is named
__bcc_int_handle and the initialization hook is __bcc_int_init(). Table 8.8 describes how BSPs ini-
tialize the handle.

Table 8.7. __bcc_int_init function declaration

Proto int __bcc_int_init(void)

About Probe interrupt controller hardware and initialize interrupt controller driver

A default implementation of this function is provided by the BSP. It can be overridden by the user.

Return int. BCC_OK on success

Table 8.8. Implementation of __bcc_int_init()

BSP Description of __bcc_int_init()

leon3 The AMBA Plug&Play library (Chapter 6) is used to scan for IRQMP/IRQ(A)MP de-
vices. __bcc_int_handle is assigned with the address of the register area of the first
interrupt controller device.

If the interrupt controller has support for multiple internal interrupt controllers
(IRQ(A)MP), then __bcc_int_handle will be adjusted to match the IRQ(A)MP In-
terrupt Controller Select Registers for the executing CPU.

Extended interrupt number is probed and assigned to the global variable
__bcc_int_irqmp_eirq.

others __bcc_int_init() is empty.

__bcc_int_handle is an initialized variable with value determined at link time.

__bcc_int_irqmp_eirq depends on if the target system supports extended interrupt.

8.4.2. Access functions

Most of the functionality of the BCC interrupt and AMP API is implemented by the interrupt controller driver
in the corresponding BSP.

8.4.3. Customization

The BCC interrupt controller driver initialization can be overridden by redefining the __bcc_int_init()
hook or __bcc_int_handle.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 57

On systems which support extended interrupts (most LEON3 and LEON4 systems) the variable
__bcc_int_irqmp_eirq can also be redefined. (Its value can be determined by reading an interrupt controller
register.)

BCC interrupt and AMP services are tightly connected with the interrupt controller driver. There is no interface
specified for overriding these services. Customization would typically require a re-implementation of all BCC
interrupt and AMP API routines. (For details, see the source code in libbcc/shared/interrupt/ directory
of the BCC source distribution).

8.5. Initialization override example

The following example illustrates how the console, timer and interrupt controller initialization can be overridden
on a GR740 system.

#include <stdio.h>
#include <bcc/bcc.h>
#include <bcc/bcc_param.h>

/* Forced initialization for GR740. */
int __bcc_con_init(void) {
 __bcc_con_handle = 0xff900000;
 return 0;
}

int __bcc_timer_init(void) {
 __bcc_timer_handle = 0xff908000;
 __bcc_timer_interrupt = 1;
 return 0;
}

int __bcc_int_init(void) {
 __bcc_int_handle = 0xff904000;
 __bcc_int_irqmp_eirq = 10;
 return 0;
}

int main(void) {
 puts("hello world");
 return 0;
}

The example can be compiled and linked by issuing the following command.

 $ sparc-gaisler-elf-gcc -qbsp=gr740 -mcpu=leon3 example.c -o example

8.6. Initialization hooks

An additional set of user hooks are called during BCC initialization. They are named with numbers corresponding
with execution order. A higher number means closer to main(). Default implementations of these hooks are
empty and they can be overridden by the user.

Table 8.9. __bcc_init40 function declaration

Proto void __bcc_init40(void)

About Called at start of reset trap before CPU initializations

• Trap handling is not available.
• %sp and %fp are not valid (do not save/restore)
• save and restore instructions are not allowed
• svt/mvt is not configured.
• .bss section is not initialized.
• This user hook should be written in assembly.

Return None.

Table 8.10. __bcc_init50 function declaration

Proto void __bcc_init50(void)

About Called at start of C run time initialization (crt0)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 58

• Trap handling is not available.
• %sp and %fp are not valid (do not save/restore)
• save and restore instructions are not allowed
• .bss section is not initialized.
• BCC drivers are not initialized.
• This user hook should be written in assembly.

Return None.

Table 8.11. __bcc_init60 function declaration

Proto void __bcc_init60(void)

About Called prior to BCC driver initialization

• C runtime is available.
• BCC drivers are not initialized.
• This user hook can be written in C.
• Console API, timer API and interrupt API are not available.

Return None.

Table 8.12. __bcc_init70 function declaration

Proto void __bcc_init70(void)

About Called as the last step before main() is called.

• C runtime is available.
• Full BCC API is available.

Return None.

The following example illustrates how the interrupt based timer service is activated by calling
bcc_timer_tick_init_period() in __bcc_init70() before entry to main(). The timer
tick is configured for 100 tick interrupts per second. See Section 5.3.1 for more information on
bcc_timer_tick_init_period().

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <bcc/bcc.h>
#include <bcc/bcc_param.h>

void __bcc_init70(void) {
 int ret;

 /* 100 tick interrupts per second. */
 ret = bcc_timer_tick_init_period(10 * 1000);
 if (BCC_OK != ret) {
 exit(EXIT_FAILURE);
 }
}

int main(void) {
 clock_t now;
 while(1) {
 now = clock();
 printf("clock() => %09u\n", now);
 }
 return EXIT_SUCCESS;
}

8.7. Disable .bss section initialization

As part of its startup code, the BCC C run time initializes the .bss segment with zeroes. This initial-
ization is disabled by defining a global variable named __bcc_cfg_skip_clear_bss. The value of
__bcc_cfg_skip_clear_bss does not matter as long as the symbol address is not 0.

Disabling .bss initialization can be useful when executing an application on a simulated system where execution
is slow and memory is already cleared.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 59

If the .bss section is not preinitialized, then disabling the initialization will result in a non-functional pro-
gram.

8.7.1. Example

The following example illustrates how initialization of the .bss section can be disabled.

#include <bcc/bcc_param.h>

int __bcc_cfg_skip_clear_bss;

int main(void)
{
 ...
 return 0;
}

8.8. Heap memory configuration

By default, the application heap starts at the end of bss, and ends at the stack pointer. The heap can be relocated by
the user by assigning initialization values to the variables __bcc_heap_min and __bcc_heap_max, declared
in the header file bcc/bcc_param.h.

The following example configures a heap of 16 MiB starting at address 0x60000000:

#include <stdlib.h>
#include <stdio.h>
#include <bcc/bcc_param.h>

#define MYHEAPSIZE (16 * 1024 * 1024)
uint8_t *__bcc_heap_min = (uint8_t *) 0x60000000;
uint8_t *__bcc_heap_max = (uint8_t *) 0x60000000 + MYHEAPSIZE;

int main(void)
{
 void *p;
 p = malloc(MYHEAPSIZE / 2);
 printf("malloc(%d KiB) => %p\n", MYHEAPSIZE / 1024, p);
 free(p);
 return 0;
}

__bcc_heap_min and __bcc_heap_max can optionally be assigned by the application at run-time, but only
before any dynamic memory functions have been called. The initialization hook __bcc_init70() is a suitable
location.

To gain full control over heap allocation, the function sbrk() can be redefined by the user: see the Newlib C
library documentation, chapter System Calls for more information.

8.9. Parameters to main()

BCC by defaults sets argc to 0 and argv[argc] to NULL given the main() function prototype:

 int main(int argc, char *argv[]);

The user can override this by defining the variables __bcc_argc and __bcc_argvp, declared in the header
file bcc/bcc_param.h.

Before the BCC run-time initialization calls main(), the following is performed:

• argc is assigned to the value of __bcc_argc
• argv is loaded from __bcc_argvp

Below is an example on how the interface can be used.

#include <bcc/bcc_param.h>

char *myargs[] = { "zero", "one", "two", "three", NULL };
int __bcc_argc = 4;
char *((*__bcc_argvp)[]) = &myargs;

The indirection of argv allows for overriding the main() parameters after the application is loaded to memory
but before it starts. See the program and script in src/examples/mainarg/.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 60

8.10. API reference

This section lists API functions related to BCC customization with references to the related section(s). The API
is also documented in the source header file bcc/bcc_param.h.

Table 8.13. BCC customization functions reference

Prototype Section

int __bcc_con_init(void) 8.2.1

char __bcc_con_inbyte(void) 8.2.2

int __bcc_con_outbyte(char c) 8.2.2

int __bcc_timer_init(void) 8.3.1

uint32_t bcc_timer_get_us(void) 8.3.2,
5.3

int __bcc_int_init(void) 8.4.1

void __bcc_init40(void) 8.6

void __bcc_init50(void) 8.6

void __bcc_init60(void) 8.6

void __bcc_init70(void) 8.6

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 61

9. Support

For support contact the support team at support@gaisler.com.

When contacting support, please identify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 62

Appendix A. Recommended GCC
options for LEON systems
This appendix contains recommended GCC options for LEON systems related to code generation and linking.

The recommendations apply to BCC version 2.3.1. Other LEON toolchains and other versions of BCC may
have other recommendations.

Table A.1. Recommended GCC options for BCC 2.3.1

System Recommended GCC options

GR740 -qbsp=gr740 -mcpu=leon3

GR712RC -qbsp=gr712rc -mcpu=leon3 -mfix-gr712rc

GR716A -qbsp=gr716 -mcpu=leon3 -qnano -qsvt

GR716B -qbsp=gr716b -mcpu=leon3 -qnano -qsvt

UT699E, UT700 -mcpu=leon3 -mfix-ut700

UT699/EPICA-NEXT, SCOC3 -mcpu=leon -mfix-ut699

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB versions
up to and including build 4174.

-mcpu=leon3 -mfix-b2bst -mfix-tn0013 -
qfix-tn0018

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB version
4175 to 4206

-mcpu=leon3 -mfix-tn0013 -qfix-tn0018

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB version
4207 to 4248.

-mcpu=leon3 -qfix-tn0018

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB version
4249 and later.

-mcpu=leon3

LEON5 -qbsp=leon5 -mcpu=leon5

LEON3 systems with SPARC V8 mul/div im-
plemented without cache parity protection.

-mcpu=leon3

For GRLIB version up to and including 4206, also add

• -mfix-tn0013

LEON3/LEON3FT systems without SPARC V8
mul/div.

Same as above but change -mcpu=leon3 to -
mcpu=leon3v7.

AGGA4 -qbsp=agga4 -mcpu=leon -mfix-at697f

AT697 -qbsp=leon2 -mcpu=leon -mfix-at697f

Other LEON2 systems -qbsp=leon2 -mcpu=leon

In addition to Table A.1:

• -qnano can always be used.
• -msoft-float can always be used.
• Systems which support SVT (single vector trapping) can use -qsvt.
• If no -mcpu= option is given explicitly, then SPARC V7 code will be generated.
• The BCC 2.3.1 run-time supports the GCC option -mflat.

The recommendations in Table A.1 apply to both compilation and linking.

Table A.2 describes the GCC -mcpu= options applicable to BCC 2.3.1. If no -mcpu= option is used, then -
mcpu=v7 is implied.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 63

Table A.2. GCC -mcpu= options for BCC 2.3.1

Option Description

-mcpu=v7 (or no -mcpu= option) no mul/div, no casa

-mcpu=leon mul/div, no casa

-mcpu=leon3 mul/div, casa

-mcpu=leon3v7 no mul/div, casa

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 64

Appendix B. Recommended Clang
options for LEON systems
This appendix contains recommended Clang options for LEON systems related to code generation and linking.

The recommendations apply to BCC version 2.3.1. Other LEON toolchains and other versions of BCC may
have other recommendations.

Table B.1. Recommended Clang options for BCC 2.3.1

System Recommended Clang options

GR740 -qbsp=gr740 -mcpu=gr740

GR712RC -qbsp=gr712rc -mcpu=gr712rc -mfix=gr712rc

GR716 -qbsp=gr716 -mcpu=leon3 -qnano -qsvt

UT699E, UT700 -qbsp=leon3 -mcpu=leon3 -mfix=ut700

UT699/EPICA-NEXT, SCOC3 Unsupported

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB versions
up to and including build 4206.

Contact support@gaisler.com.

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB version
4207 to 4248.

-qbsp=leon3 -mcpu=leon3 -qfix-tn0018

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB version
4249 and later.

-qbsp=leon3 -mcpu=leon3

LEON3/LEON3FT systems without SPARC V8
mul/div.

Unsupported

AGGA4 Unsupported

AT697 Unsupported

Other LEON2 systems Unsupported

In addition to Table B.1:

• -qnano can always be used.
• -msoft-float can always be used.
• Systems which support SVT (single vector trapping) can use -qsvt.
• If no -mcpu= option is given explicitly, then SPARC V8 code will be generated.
• Systems supporting the LEON-REX extension can use -mrex.
• The BCC 2.3.1 run-time supports the option -mflat.

The recommendations in Table B.1 apply to both compilation and linking.

Table B.2 describes the Clang -mcpu= options applicable to BCC 2.3.1. If no -mcpu= option is used, then
SPARC V8 with mul/div is generated.

Table B.2. Clang -mcpu= options for BCC 2.3.1

Option Description

no -mcpu= option specified mul/div, no casa

-mcpu=leon3, -mcpu=gr712rc, -
mcpu=gr740

mul/div, casa

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 65

Appendix C. Moving applications
from BCC 1.0 to BCC 2.3.1
This appendix contains notes and considerations for moving an existing BCC 1.0 application to BCC 2.3.1.

The main consideration is that the application interface to the BCC 2.3.1 run time library libbcc is not source
code compatible with the BCC 1.0 library libleonbare. A consequence for the application is that it may need
to change its LEON run time library calls to match the new application interface. It also means that the application
source code should not use the BCC 1.0 header files named asm-leon/*.h.

An approach for moving an application to BCC 2.3.1 is outlined below:

1. In the application build system, change all references of sparc-elf-gcc to sparc-gaisler-elf-gcc. Do the
same thing for other tools such as sparc-gaisler-elf-objdump and sparc-gaisler-elf-nm. Possibly also
remove BCC 1.0 from the PATH environment variable.

2. Eliminate compiler and linker options starting with -mcpu=, -mv8, -mfix-, -qfix- and -mtune=
from the application build commands.

3. Select compiler and linker options for the target LEON processor as described in Appendix A. Add these
options to the application build commands.

4. Remove any occurrence of #include <asm-leon/leon.h> from the application source code.
5. Build the application.
6. Resolve compilation errors as they appear by updating the source code. Refer to Table C.1 and Chapter 5.

Iterate steps 5 and 6 until the application compiles and links.

Table C.1. Run time library

BCC 1 functionality BCC 2 functionality Section

leonbare_init_ticks(),
ticker_callback

bcc_timer_tick_init_period() 5.3.1

addtimer() libdrv timer driver 16.1

catch_interrupt(),
chained_catch_interrupt()

bcc_isr_register(), 5.9.5.1,
5.9.5.2

Extended IrqCtrl Handled automatically 5.9.5

Interrupt nesting, nestedirq bcc_enable_nesting(), bcc_set_nesting() 5.9.6

traptable_genjmp() bcc_set_trap() 5.8

Link option -lsmall Link option -qnano 4.5

Link option -qnoambapp Only the BSP named leon3 probes devices by default.
Probing can be customized as described in Chapter 8.

8

Link option -Wl,-msparcleon0 An arbitrary link address can be selected using -T
linkcmds-any -Wl,-Ttext,addr.

The GR740 BSP (-qbsp=gr740) links to address 0 by
default.

7.1

No specific considerations are needed for the C standard library, newlib. The current BCC version includes newlib
4.4.0 while BCC 1.0 ships with an older version.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 66

Part I. Device drivers reference
The following sections describe the LEON4, LEON3 and LEON2 device drivers included in BCC 2.3.1. Each
driver is described in a separate chapter.

Driver samples can be found under src/libdrv/examples and src/examples in the distribution.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 67

Table of Contents
10. Driver registration ... 72

10.1. Automatic registration ... 72
10.2. Manual registration ... 72
10.3. System specific device registration tables ... 73

11. GRSPW Packet driver ... 74
11.1. Introduction ... 74

11.1.1. Hardware Support .. 74
11.1.2. Driver sources ... 74
11.1.3. Driver registration .. 74
11.1.4. Examples ... 74
11.1.5. Known driver limitations .. 74

11.2. Software design overview .. 74
11.2.1. Overview ... 74
11.2.2. Initialization .. 75
11.2.3. Link control .. 75
11.2.4. Time Code support .. 75
11.2.5. RMAP support .. 75
11.2.6. Port support .. 76
11.2.7. SpaceWire node address configuration ... 76
11.2.8. User DMA buffer handling .. 76
11.2.9. Driver DMA buffer handling ... 77
11.2.10. Polling mode and interrupts ... 78
11.2.11. Starting and stopping DMA ... 78

11.3. Device Interface ... 79
11.3.1. Opening and closing device ... 79
11.3.2. Hardware capabilities ... 80
11.3.3. Link Control ... 81
11.3.4. Node address configuration ... 83
11.3.5. Time-control codes .. 84
11.3.6. Port Control .. 85
11.3.7. RMAP Control .. 86
11.3.8. Interrupt handling .. 87

11.4. DMA interface ... 87
11.4.1. Opening and closing DMA channels ... 87
11.4.2. Starting and stopping DMA operation ... 90
11.4.3. Packet buffer description ... 91
11.4.4. Packet buffer lists .. 92
11.4.5. Sending packets ... 93
11.4.6. Receiving packets .. 94
11.4.7. Transmission queue status ... 96
11.4.8. Queue flushing .. 97
11.4.9. Statistics ... 97
11.4.10. DMA channel configuration ... 98
11.4.11. DMA channel status ... 100

11.5. API reference ... 100
11.5.1. Data structures ... 101
11.5.2. Device functions .. 101
11.5.3. DMA functions .. 101

11.6. Restrictions ... 102
12. GRCAN CAN driver ... 103

12.1. Introduction ... 103
12.1.1. User Interface .. 103
12.1.2. Driver registration .. 103
12.1.3. Examples .. 103
12.1.4. Known driver limitations ... 103

12.2. Opening and closing device .. 103
12.2.1. Static buffer allocation .. 104

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 68

12.3. Operation mode .. 105
12.3.1. Starting and stopping .. 105

12.4. Configuration ... 106
12.4.1. Channel selection ... 106
12.4.2. GRCAN Timing parameters ... 107
12.4.3. GRCANFD Timing parameters ... 107

12.5. Receive filters .. 108
12.5.1. Data structures ... 108
12.5.2. Acceptance filter .. 108
12.5.3. Sync filter ... 108

12.6. Driver statistics .. 108
12.7. Device status ... 109
12.8. CAN bus transfers .. 109

12.8.1. Data structures ... 109
12.8.2. Transmission ... 110
12.8.3. Reception ... 111
12.8.4. Bus-off recovery .. 113
12.8.5. AHB error recovery .. 113

12.9. Interrupt API ... 113
12.9.1. Interrupt generation .. 113

13. UART driver .. 115
13.1. Introduction ... 115
13.2. Driver registration .. 115
13.3. Opening and closing device .. 115
13.4. Status interface .. 116
13.5. Configuration interface .. 116
13.6. Non-interrupt interface .. 118
13.7. Interrupt interface ... 119
13.8. Restrictions ... 120

14. SPI driver .. 122
14.1. Introduction ... 122
14.2. Driver registration .. 122
14.3. Opening and closing device .. 122
14.4. Status service ... 123
14.5. Transfer Configuration .. 123
14.6. Transfer Interface ... 125
14.7. Synchronous TX/RX mode ... 127
14.8. Slave select ... 128
14.9. Restrictions ... 128

15. I2C master driver .. 129
15.1. Introduction ... 129

15.1.1. User Interface .. 129
15.1.2. Features .. 129

15.2. Driver registration .. 129
15.3. Examples .. 129
15.4. Opening and closing device .. 129
15.5. Operation mode .. 130

15.5.1. Starting and stopping .. 130
15.6. Configuration ... 131

15.6.1. Transaction retries .. 131
15.6.2. Speed ... 132
15.6.3. Interrupt driven operation .. 132
15.6.4. I2C address width .. 133

15.7. Driver statistics .. 133
15.8. I2C bus transfer ... 134

15.8.1. Data structures ... 134
15.8.2. Request .. 135
15.8.3. Reclaim .. 136

15.9. Synchronous example .. 136

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 69

16. Timer driver ... 138
16.1. Introduction ... 138
16.2. Driver registration .. 138
16.3. Device interface ... 138

16.3.1. Opening and closing device ... 138
16.3.2. Device control ... 139

16.4. Subtimer interface .. 140
16.4.1. Opening and closing subtimer .. 140
16.4.2. Subtimer control .. 141
16.4.3. Watchdog support .. 142

16.5. Restrictions ... 144
17. GPIO driver ... 145

17.1. Introduction ... 145
17.2. Driver registration .. 145
17.3. Opening and closing device .. 145
17.4. Control interface .. 146

17.4.1. Logical bit operations ... 147
17.5. Interrupt map interface .. 148

18. AHB Status Register driver .. 150
18.1. Introduction ... 150
18.2. Driver registration .. 150
18.3. Opening and closing device .. 150
18.4. Register interface .. 151
18.5. Interrupt service routine ... 151

19. Clock gating unit driver ... 154
19.1. Introduction ... 154
19.2. Driver registration .. 154
19.3. Opening and closing device .. 154
19.4. Operation .. 155
19.5. Core reset ... 156
19.6. Probe clock gating status ... 156
19.7. CPU override ... 156

20. GR1553B Driver ... 158
20.1. Introduction ... 158

20.1.1. Considerations and limitations .. 158
20.1.2. GR1553B Hardware ... 158
20.1.3. Software driver .. 158
20.1.4. Driver Registration ... 158

21. GR1553B Bus Controller Driver .. 160
21.1. Introduction ... 160

21.1.1. GR1553B Bus Controller Hardware .. 160
21.1.2. Software driver .. 160
21.1.3. Driver registration .. 160

21.2. BC Device Handling ... 161
21.2.1. Device API ... 161

21.3. Descriptor List Handling .. 163
21.3.1. Overview .. 163
21.3.2. Example: steps for creating a list .. 164
21.3.3. Major Frame ... 165
21.3.4. Minor Frame ... 165
21.3.5. Slot (Descriptor) .. 165
21.3.6. Changing a scheduled BC list (during BC-runtime) .. 166
21.3.7. Custom Memory Setup ... 166
21.3.8. Interrupt handling ... 166
21.3.9. List API ... 167

22. GR1553B Remote Terminal Driver .. 175
22.1. Introduction ... 175

22.1.1. GR1553B Remote Terminal Hardware ... 175
22.1.2. Driver registration .. 175

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 70

22.2. User Interface .. 175
22.2.1. Overview .. 175
22.2.2. Application Programming Interface ... 178

23. GR1553B Bus Monitor Driver .. 185
23.1. Introduction ... 185

23.1.1. GR1553B Remote Terminal Hardware ... 185
23.1.2. Driver registration .. 185

23.2. User Interface .. 185
23.2.1. Overview .. 185
23.2.2. Application Programming Interface ... 186

24. GR716 memory protection unit driver .. 190
24.1. Introduction ... 190

24.1.1. User Interface .. 190
24.1.2. Features .. 190
24.1.3. Limitations .. 190

24.2. Driver registration .. 190
24.3. Examples .. 190
24.4. Opening and closing device .. 190
24.5. Operation mode .. 191

24.5.1. Starting and stopping .. 191
24.6. Reset .. 192
24.7. Segment configuration ... 192

24.7.1. Number of segments ... 192
24.7.2. Data structures ... 193
24.7.3. Set ... 193
24.7.4. Get .. 194

25. Memory scrubber .. 196
25.1. Introduction ... 196

25.1.1. Hardware Support .. 196
25.1.2. Driver sources ... 196
25.1.3. Examples .. 196

25.2. Software design overview .. 196
25.2.1. Driver usage .. 196

25.3. Memory scrubber user interface .. 197
25.3.1. Return values .. 197
25.3.2. Opening and closing device ... 197
25.3.3. Configuring the memory range ... 198
25.3.4. Starting/stopping different modes. ... 199
25.3.5. Setting up error thresholds ... 202
25.3.6. Registering an ISR ... 203
25.3.7. Polling the error status .. 203

25.4. API reference ... 204
26. SpaceWire Router Driver ... 206

26.1. Introduction ... 206
26.2. Driver sources .. 206
26.3. Routing ... 206
26.4. Register and access driver .. 206
26.5. Setup routing table ... 207

26.5.1. GR716B ... 210
26.6. Link handling .. 210
26.7. Error handling .. 213
26.8. Time codes .. 214
26.9. Interrupt codes ... 215
26.10. Configure timeouts .. 217
26.11. Configure packet max length .. 218
26.12. Configure Plug-and-Play .. 218
26.13. Read out credit counters ... 218

27. GR716B Real-Time Accelerator (RTA) .. 220
27.1. Introduction ... 220

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 71

27.1.1. User Interface .. 220
27.1.2. Features .. 220
27.1.3. Hardware support ... 220

27.2. Examples .. 220
27.3. Software design considerations ... 220
27.4. Driver sources .. 220
27.5. Driver registration .. 220
27.6. Opening devices ... 221
27.7. Starting the RTAs ... 222
27.8. Mailbox communication .. 223
27.9. API reference ... 224

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 72

10. Driver registration

Device drivers in this library can operate on any number of peripherals (cores) of a specific type. Before operation
starts, the drivers must have knowledge of the available peripheral devices. This knowledge is transferred at run-
time in a process named driver registration.

Drivers in this library rely on static memory allocation and will never call malloc() and related functions. This
means that memory required by the drivers need to be allocated by the user and communicated to the drivers. This
is also performed in the driver registration step.

Two main methods are available for registering a peripheral to a device driver:

• Automatic
• Manual

In the rest of this chapter, the APBUART driver will be used as an example on peripheral registration. The same
procedures is used for the other drivers.

10.1. Automatic registration

Automatic registration is straight forward and covers many use cases. To use this method with the APBUART
driver, all the user has to do is to call the function apbuart_autoinit():

 #include <drv/apbuart.h>

 int main(void)
 {
 struct apbuart_priv *dev;

 apbuart_autoinit();
 dev = apbuart_open(0);
 [...]
 }

The user should be aware of the following behavior of automatic registration:

• Device private data is allocated with malloc().
• AMBA Plug&Play bus scanning is performed.

In case the above behavior is not compatible with the target application, then the method described in Section 10.2
can be used instead.

10.2. Manual registration

Manual registration does not require dynamic memory allocation or AMBA Plug&Play bus scanning. It can be
useful for resource constrained systems.

Registration of a peripheral can be performed with the function

 int apbuart_register(struct apbuart_devcfg *devcfg);

which takes a device configuration record as its parameter. For example:

 #include <drv/apbuart.h>

 struct apbuart_devcfg MYDEVCFG0 = {
 .regs = {
 .addr = 0x80000100,
 .interrupt = 2,
 },
 };

 int main(void) {
 struct apbuart_priv *dev;

 apbuart_register(&MYDEVCFG0);
 dev = apbuart_open(0);
 [...]
 }

It is also possible to register multiple peripherals at once using the function

 int apbuart_init(struct apbuart_devcfg *devcfgs[]);

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 73

which takes a NULL terminated array as parameter:

 #include <drv/apbuart.h>

 struct apbuart_devcfg MYDEVCFG[] = {
 { .regs = { .addr = 0x80000100, .interrupt = 2, }, },
 { .regs = { .addr = 0x80000200, .interrupt = 3, }, },
 };

 struct apbuart_devcfg *MYDEVCFGS[] = {
 &MYDEVCFG[0],
 &MYDEVCFG[1],
 NULL,
 };

 int main(void) {
 struct apbuart_priv *dev;

 apbuart_init(MYDEVCFGS);
 dev = apbuart_open(1);
 [...]
 }

In addition to specifying register base addresses and interrupt numbers, the above examples also allocate (static)
device private data. For more details, see the definition of the different struct [driver]_devcfg types.

10.3. System specific device registration tables

Device configuration tables have been prepared for the following systems:

Table 10.1. Device registration tables for manual registration

System Header files

GR716 gr716/

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 74

11. GRSPW Packet driver

11.1. Introduction

This section describes the GRSPW packet driver for BCC.

It is an advantage to understand the SpaceWire bus/protocols, GRSPW hardware and software driver design when
developing using the user interface in Section 11.3 and Section 11.4. The Section 11.2.1 describes the overall
software design of the driver.

The driver uses linked lists of packet buffers to receive and transmit SpaceWire packets. The packet driver imple-
ments an API which allows efficient custom data buffer handling providing zero-copy ability and multiple DMA
channel support. The link control handling has been separated from the DMA handling.

11.1.1. Hardware Support

The GRSPW cores user interface are documented in the GRIP Core User's manual. Below is a list of the major
hardware features it supports:

• GRSPW, GRSPW2 and GRSPW2_DMA (router AMBA port)
• Multiple DMA channels
• Link Control
• Port Control
• RMAP Control

11.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the BCC source tree
src/libdrv/src/.

Table 11.1. Source Location

Filename Description

include/drv/grspw_pkt.h GRSPW user interface definition

src/grspw/*.c GRSPW driver implementation

11.1.3. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 11.2. Driver registration functions

Registration method Function

Automatic registration grspw_autoinit()

Register one device grspw_register()

Register many devices grspw_init()

11.1.4. Examples

Examples are available in the src/libdrv/examples/ directory in the BCC distribution.

11.1.5. Known driver limitations

The known limitations in the GRSPW Packet driver exists listed below:

• The statistics counters are not atomic, clearing at the same the interrupt handler is called could cause invalid
statistics, one must disable interrupt when reading/clearing.

11.2. Software design overview

11.2.1. Overview

The driver API has been split up in two major parts listed below:

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 75

• Device interface, see Section 11.3.
• DMA channel interface, see Section 11.4.

GRSPW device parameters that affects the GRSPW core and all DMA channels are accessed over the device API
whereas DMA specific settings and buffer handling are accessed over the per DMA channel API. A GRSPW2
device may implement up to four DMA channels.

In order to access the driver the first thing is to open a GRSPW device using the device interface.

For controlling the device one must open a GRSPW device using 'id = grspw_open(dev_index)' and
call appropriate device control functions. Device operations naturally affects all DMA channels, for example when
the link is disabled all DMA activity pause. However there is no connection software wise between the device
functions and DMA function, except from that the grspw_close requires that all of its DMA channels have
been closed. Closing a device fails if DMA channels are still open.

Packets are transferred using DMA channels. To open a DMA channel one calls 'dma_id =
grspw_dma_open(id, dmachan_index)' and use the appropriate transmission function with the
dma_id to identify which DMA channel used.

11.2.2. Initialization

During early initialization when the operating system boots the driver performs some basic GRSPW device and
software initialization. The following steps are performed or not performed:

• GRSPW device and DMA channels I/O registers are initialized to a state where most are zero.
• DMA is stopped on all channels
• Link state and settings are not changed (RMAP may be active).
• RMAP settings untouched (RMAP may be active).
• Port select untouched (RMAP may be active).
• Time Codes are disabled and TC register cleared.
• IRQ generation disabled.
• Status Register cleared.
• Node address / DMA channels node address is untouched (RMAP may be active).
• Hardware capabilities are read.
• Device index determined.

11.2.3. Link control

The GRSPW link interface handles the communication on the SpaceWire network. It consists of a transmitter,
receiver, a FSM and FIFO interfaces. The current link state, status indicating past failures, parameters that affect
the link interface such as transmitter frequency for example is controlled using the GRSPW register interface.

The SpaceWire link is controlled using the software device interface. The driver initialization sequence during
boot does not affect the link parameters or state. The link is controlled separately from the DMA channels, even
though the link goes out from run-mode this does not affect the DMA interface. The DMA activity of all channels
are of course paused.

Function names prefix: grspw_link_*().

11.2.4. Time Code support

The GRSPW supports sending and receiving SpaceWire Time Codes. An interrupt can optionally be generated on
Time Code reception and the last Time Code can be read out from a GRSPW register.

Function names prefix: grspw_tc_*()

11.2.5. RMAP support

The GRSPW device has optional support for an RMAP target implemented in hardware. The target interface is
able to interpret RMAP protocol (protid=1) requests, take the necessary actions on the AMBA bus and generate

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 76

a RMAP response without the software's knowledge or interaction. The RMAP target can be disabled in order
to implement the RMAP protocol in software instead using the DMA operations. The RMAP CRC algorithm
optionally present in hardware can also be used for check summing the data payload.

The device interface is used to get the RMAP features supported by the hardware and configuring the below
RMAP parameters:

• Probe if RMAP and RMAP CRC is supported by hardware
• RMAP enable/disable
• SpaceWire DESTKEY of RMAP packets

The SpaceWire node address, which also affects the RMAP target, is controlled from the address configuration
routines, see Section 11.2.7.

Function names prefix: grspw_rmap_*()

11.2.6. Port support

The GRSPW device has optional support for two ports (two connectors), where only one port can be active at a
time. The active SpaceWire port is either forced by the user or auto selected by the hardware depending on the
link state of the SpaceWire ports at a certain condition.

The device interface is used to get information about the GRSPW hardware port support, current set up and to
control how the active port is selected.

Function names prefix: grspw_port_*()

11.2.7. SpaceWire node address configuration

The GRSPW core supports assigning a SpaceWire node address or a range of addresses. The address affects the
received SpaceWire Packets, both to the RMAP target and to the DMA receiver. If a received packet does not
match the node address it is dropped and the GRSPW status indicates that one or more packets with invalid address
was received.

The GRSPW2 and GRSPW2_DMA cores that implements multiple DMA channels use the node address as a
way to determine which DMA channel a received packet shall appear at. A unique node address or range of node
addresses per DMA channel must be configured in this case.

It is also possible to enable promiscuous mode to enable all node addresses to be accepted into the first DMA
channel, this option does not affect the RMAP target node address decoding.

The GRSPW SpaceWire node address configuration is controlled using the device interface. A specific DMA
channel's node address is thus affected by the "global" device API and not controllable using the DMA channel
interface.

If supported by hardware the node address can be removed before DMA writes the packet to memory. This is a
configuration option per DMA channel using the DMA channel API.

Function names prefix: grspw_addr_*()

11.2.8. User DMA buffer handling

The driver is designed with zero-copy in mind. The user is responsible for setting up data buffers on its own . The
driver uses linked lists of packet buffers as input and output from/to the user. It makes it possible to handle multiple
packets on a single driver entry, which typically has a positive impact when transmitting small sized packets.

The API supports header and data buffers for every packet, and other packet specific transmission parameters such
as generate RMAP CRC and reception indicators such as if packet was truncated.

Since the driver never reads or writes to the header or data buffers the driver does not affect the CPU cache of the
DMA buffers, it is the user's responsibility to handle potential cache effects.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 77

Note that the UT699 does not have D-cache snooping, this means that when reading received buffers D-cache
should either be invalidated or the load instructions should force cache miss when accessing DMA buffers
(LEON LDA instruction) .

Function names prefix: grspw_dma_*()

11.2.8.1. Buffer List help routines

The GRSPW packet driver internally uses linked lists routines. The linked list operations are found in the header
file and can be used by the user as well. The user application typically defines its own packet structures having
the same layout as struct grspw_pkt in the top and adding custom fields for the application buffer handling as
needed. For small implementations however the pkt_id field may be enough to implement application buffer
handling. The pkt_id field is never accessed by the driver, instead is an optional application data storage intended
for identifying a specific packet, which packet pool the packet buffer belongs to, or a higher level protocol id
information for example.

Function names prefix: grspw_list_*()

11.2.9. Driver DMA buffer handling

The driver represents packets with the struct grspw_pkt packet structure, see Table 11.32. They are arranged in
linked lists that are called queues by the driver. The order of the linked lists are always maintained to ensure that
the packet transmission order is represented correctly.

head = &p0

tail = &p2

next = &p1

flags

hlen

dlen

data

hdr

next = NULL

flags

hlen

dlen

data

hdr

count = 3

next = &p2

flags

hlen

dlen

data

hdr

Figure 11.1. Queue example - linked list of three grspw_pkt packets

11.2.9.1. DMA Queues

The driver uses one queue per DMA channel transfer direction, thus two queues per DMA channel. The number
of packets within a queue is maintained to optimize moving packets internally between queues and to the user
which also needs this information. The different queues are listed below.

• RX SCHED queue - packets that have been assigned a RX DMA descriptor.
• TX SCHED queue - packets that have been assigned a TX DMA descriptor.

Packet in the SCHED queues always are assigned to a DMA descriptor waiting for hardware to perform RX or
TX DMA operations.

The DMA descriptor table has a size limitation imposed by hardware. 64 TX or 128 RX descriptors can be defined
for one hardware descriptor table in memory. Naturally this also limits the number of packets that the SCHED
queues may contain at any single point in time. It is up to the user to control the input and output to them by
queuing and dequeueing from and to private queues.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 78

The current number of packets in respective queue can be read by doing function calls using the DMA API, see
Section 11.4.7. The user can for example use this to determine to wait or continue with packet processing.

11.2.9.2. DMA Queue operations

The user can control how the RX SCHED and TX SCHED queues are populated, by providing and removing
packet buffers. The user can control how and when packets are moved from RX SCHED and TX SCHED queues
into user provided queues by manually trigger the move by calling reception and transmission routines as described
in Section 11.4.6 and Section 11.4.5.

For RX, the packets always flow in one direction from USER RX READY -> RX SCHED -> USER RX RECV.
Likewise the TX packets flow USER TX SEND -> TX SCHED -> USER TX SENT. The procedures triggering
queue packet moves are listed below and in Figure 11.2 and Figure 11.3. The interface of theses procedures are
described in the DMA channel API.

• USER -> RX SCHED – grspw_dma_rx_prepare, Section 11.4.6.
• RX SCHED -> USER – grspw_dma_rx_recv, Section 11.4.6.
• USER -> TX SCHED queue – grspw_dma_tx_send, Section 11.4.5.
• TX SCHED -> USER – grspw_dma_tx_reclaim, Section 11.4.5.

"RX PREPARE"
User input empty

packet buffers

RX SCHED
Queue

&p7

&p8

&p9

"RX RECV"
User receive

packet buffers

Figure 11.2. RX queue packet flow and operations

"TX SEND"
User input

packet buffers

TX SCHED
Queue

&p7

&p8

&p9

"TX RECLAIM"
User retake

packet buffers

Figure 11.3. TX queue packet flow and operations

Packets which the user has provided to the driver shall be considered owned by the driver until the user takes the
packets back again. In particular, the struct grspw_pkt fields should not be accessed by the user while the packet
buffers are assigned to the driver.

11.2.10. Polling mode and interrupts

All user DMA operations are non-blocking and the user is thus responsible for processing the DMA descriptor
tables at a user defined interval by calling reception and transmit routines of the driver. DMA interrupt generation
is controlled individually per packet. It is configured in the packet data structure.

The driver does not contain an interrupt service routine. The user can install an ISR by using the operating system.

11.2.11. Starting and stopping DMA

The driver has been designed to make it clear which functionality belongs to the device and DMA channel APIs.
The DMA API is affected by started and stopped mode, where in stopped mode means that DMA is not possible
and used to configure the DMA part of the driver. During started mode a DMA channel can accept incoming and
send packets. Each DMA channel controls its own state. Parts of the DMA API is not available in during stopped
mode and some during stopped mode to simplify the design. The device API is not affected by this.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 79

Typically the DMA configuration is set and user buffers are initialized before DMA is started. The user can control
the link interface separately from the DMA channel before and during DMA starts.

When the DMA channel is stopped by calling grspw_dma_stop() the driver will:

• Stop DMA transfers and DMA interrupts.
• Stop accepting new packets for transmission and reception. However the DMA functions will still be open for

the user to retrieve sent and unsent TX packet buffers and to retrieve received and unused RX packet buffers.

The DMA close routines requires that the DMA channel is stopped. Similarly, the device close routine makes sure
that all DMA channels are closed to be successful. This is to make sure that all user tasks has return and hardware
is in a good state. It is the user's responsibility to stop the DMA channel before closing.

DMA operational function names: grspw_dma_{start,stop}()

11.3. Device Interface

This section covers how the driver can be interfaced to an application to control the GRSPW hardware on device
level, such as link state and node addresses.

11.3.1. Opening and closing device

A GRSPW device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using grspw_dev_count. A particular device can be opened
using grspw_open and closed grspw_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. This procedure is thread-safe by protecting from other threads by using the GRSPW
driver's semaphore lock. The semaphore is used by all GRSPW devices on device opening, closing and DMA
channel opening and closing.

During opening of a GRSPW device the following steps are taken:

• GRSPW device I/O registers are initialized to a state where most are zero.
• Descriptor tables memory for all DMA channels are allocated from the heap or from a user assigned address

and cleared. The descriptor table length is always the maximum 0x400 Bytes for RX and TX.
• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the same device.

The example below prints the number of GRSPW devices to standard output. It then opens, prints the current link
settings and closes the first GRSPW device present in the system.

int print_spw_link_properties(void)
{
 void *device;
 int count;
 uint32_t linkcfg, clkdiv;

 count = grspw_dev_count();
 printf("%d GRSPW devices present\n", count);

 device = grspw_open(0);
 if (!device)
 return -1; /* Failure */

 linkcfg = grspw_get_linkcfg(device);
 if (linkcfg & LINKOPTS_AUTOSTART) {
 printf("GRSPW0: Link is in auto-start after start-up\n");
 }
 clkdiv = grspw_get_clkdiv(device);
 printf("GRSPW0: Clock divisor reset value is %d\n", clkdiv);

 grspw_close(device);
 return 0; /* success */
}

Table 11.3. grspw_dev_count function declaration

Proto int grspw_dev_count(void)

About Retrieve number of GRSPW devices registered to the driver.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 80

Return int. Number of GRSPW devices registered to driver, zero if none.

Notes The number of GRSPW devices registered to the driver may or may not be equal to the number of de-
vices in the system

Table 11.4. grspw_open function declaration

Proto void *grspw_open(int dev_no)

About Open a GRSPW device

The GRSPW device is identified by index. Index value (dev_no) must be equal to or greater than ze-
ro, and smaller than value returned by grspw_dev_count. The returned value is used as input ar-
gument to all functions operating on the device. It is not possible to open an already opened device in-
dex.

dev_no [IN] IntegerParam

Device identification number.

Pointer. Status and driver's internal device identification.

NULL Failed to open device. Fails if device is already open, if dev_no is out of range, or if
driver failed to install its ISR.

Return

Pointer GRSPW device handle to use as input parameter to all device API functions for the
opened device.

Table 11.5. grspw_close function declaration

Proto int grspw_close(void *d)

About Close a GRSPW device

All DMA channels are also stopped and closed automatically, similar to calling grspw_dma_stop
and grspw_dma_close for all channels.

d [IN] pointerParam

Device handle returned by grspw_open.

int.

Value Description

DRV_OK Successfully closed device.

Return

others Device closed, but failed to unregister interrupt handler.

11.3.2. Hardware capabilities

The features and capabilities present in hardware might not be symmetric in a system with several GRSPW devices.
For example the two first GRSPW devices on the GR712RC implements RMAP whereas the others does not. The
driver can read out the hardware capabilities and present it to the user. The set of functionality are determined
at design time. In some system where two or more systems are connected together it is likely to have different
capabilities.

The capabilities are read out from the GRSPW I/O registers and written to the user in an easier accessible way.
See below function declarations for details.

Depending on device capabilities, parts of the driver API may be inactivated due to missing hardware support.
See respective section for details.

The function grspw_rmap_support and grspw_port_count retrieves a subset of the hardware ca-
pabilities. They are described in respective section.

Table 11.6. grspw_hw_support function declaration

Proto void grspw_hw_support(void *d, struct grspw_hw_sup *hw)

About Get GRSPW hardware capabilities

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 81

Write hardware capabilities of GRSPW device to user parameter hw.

d [IN] pointerParam

Device handle returned by grspw_open.

hw [OUT] pointerParam

Address to where the driver will write the hardware capabilities. Pointer must to memory and be valid.

Return None.

The grspw_hw_sup data structure is described by the declaration and table below. It is used to describe the GRSPW
hardware capabilities.

/* Hardware support in GRSPW core */
struct grspw_hw_sup {
 int8_t rmap; /* If RMAP in HW is available */
 int8_t rmap_crc; /* If RMAP CRC is available */
 int8_t rx_unalign; /* RX unaligned (byte boundary) access allowed*/
 int8_t nports; /* Number of Ports (1 or 2) */
 int8_t ndma_chans; /* Number of DMA Channels (1..4) */
 int hw_version; /* GRSPW Hardware Version */
 int8_t irq; /* SpW Distributed Interrupt available if 1 */
};

Table 11.7. grspw_hw_sup data structure declaration

0 RMAP target functionality is not implemented in hardware.rmap

1 RMAP target functionality is implemented in hardware.

rmap_crc Non-zero if RMAP CRC is available in hardware.

rx_unalign Non-zero if hardware can perform RX unalibned (byte boundary) DMA accesses.

nports Number of SpaceWire ports in hardware. Values: 1 or 2.

ndma_chans Number of DMA channels in hardware. Values: 1, 2, 3 or 4.

27..16 The 12-bits indicates GRLIB AMBA Plug & Play device ID of APB device. Indicates
if GRSPW, GRSPW2 or GRSPW2_DMA.

hw_version

4..0 The 5 LSB bits indicates GRLIB AMBA Plug & Play device version of APB device.
Indicates subversion of GRSPW or GRSPW2.

irq Non-zero if SpaceWire distributed interrupt functionality is implemented in hardware.

11.3.3. Link Control

The SpaceWire link is controlled and configured using the device API functions described below. The link control
functionality is described in Section 11.2.3.

In system where the GRSPW controller is connected directly to a GRSPW SpaceWire router, the link interface
is configured in the corresponding router driver.

Table 11.8. grspw_get_linkcfg function declaration

Proto uint32_t grspw_get_linkcfg(void *d)

About Get link configuration

The function returns the link configuration, which can be masked with the LINKOPTS_* defines.

d [IN] pointerParam

Device handle returned by grspw_open.

uint32_t. Link configuration read from I/O registers

Bits Description

0 Link is enabled. Mask: LINKOPTS_ENABLE/LINKOPTS_DISABLE

Return

1 Link is started. Mask: LINKOPTS_START

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 82

2 Link is in autostart mode. Mask: LINKOPTS_AUTOSTART

9 Interrupt generation on link error is enabled. Mask: LINKOPTS_ERRIRQ

Table 11.9. grspw_set_linkcfg function declaration

Proto int grspw_set_linkcfg(void *d, uint32_t cfg)

About Set link configuration

The function sets the link configuration using the with the LINKOPTS_* defines.

d [IN] pointerParam

Device handle returned by grspw_open.

cfg [IN] uint32_t

Link configuration to set from I/O registers

Bits Description

0 Link enable. Mask: LINKOPTS_ENABLE/LINKOPTS_DISABLE

1 Link started. Mask: LINKOPTS_START

2 Link in autostart mode. Mask: LINKOPTS_AUTOSTART

Param

9 Enable interrupt generation on link error. Mask: LINKOPTS_ERRIRQ

Return int. The function always returns DRV_OK.

Table 11.10. grspw_get_clkdiv function declaration

Proto uint32_t grspw_get_clkdiv(void *d)

About Get clock divisor

The function reads and returns the clock divisor register, masked with GRSPW_CLKDIV_MASK.
Start clock and run clock can be masked individually by using GRSPW_CLKDIV_START and
GRSPW_CLKDIV_RUN. The referred defines are available in the file include/regs/gr-
spw-regs.h.

d [IN] pointerParam

Device handle returned by grspw_open.

uint32_t. Clock divisor read from I/O registers

Bits Description

15..8 Clock divisor used during startup

Return

7..0 Clock divisor used in RUN state

Table 11.11. grspw_set_clkdiv function declaration

Proto int grspw_set_clkdiv(void *d, uint32_t cfg)

About Set clock divisor

The function sets the clock divisor register with value cfg masked with GRSPW_CLKDIV_MASK in
include/regs/grspw-regs.h.

d [IN] pointerParam

Device handle returned by grspw_open.

clkdiv [IN] uint32_t

Clock devisor value to write to I/O registers.

Bits Description

15..8 Clock divisor used during startup

Param

7..0 Clock divisor used in RUN state

Return int. The function always returns DRV_OK.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 83

Table 11.12. grspw_link_state function declaration

Proto spw_link_state_t grspw_link_state(void *d)

About Get current SpaceWire link state.

d [IN] pointerParam

Device identifier returned by grspw_open.

enum spw_link_state_t. SpaceWire link state according to SpaceWire standard FSM state ma-
chine numbering. The possible return values are listed below. The values are defined by enum
spw_link_state_t and shall be prefixed with SPW_LS_.

Value Description.

ERRRST Error reset.

ERRWAIT Error Wait state.

READY Error Wait state.

CONNECTING Connecting state.

STARTED Stated state.

Return

RUN Run state - link and DMA is fully operational.

Table 11.13. grspw_get_status function declaration

Proto uint32_t grspw_get_status(void *d)

About Get status register value

d [IN] pointerParam

Device handle returned by grspw_open.

Return uint32_t.

Current value of the GRSPW Status Register.

Register definitions for the GRSPW Status Register are available in the file include/regs/gr-
spw-regs.h. The relevant defines are prefixed with GRSPW_STS_.

Table 11.14. grspw_clear_status function declaration

Proto void grspw_clear_status(void *d, uint32_t status)

About Clear bits in the status register

d [IN] pointerParam

Device handle returned by grspw_open.

status [IN] uint32_tParam

Mask of bits to clear in the GRSPW Status Register.

Register definitions for the GRSPW Status Register are available in the file include/regs/gr-
spw-regs.h. The relevant defines are prefixed with GRSPW_STS_.

Return None.

11.3.4. Node address configuration

This part for the device API controls the node address configuration of the RMAP target and DMA channels. The
node address configuration functionality is described in Section 11.2.7. The data structures and functions involved
in controlling the node address configuration are listed below.

struct grspw_addr_config {
 /* Ignore address field and put all received packets to first
 * DMA channel.
 */
 int8_t promiscuous;

 /* Default Node Address and Mask */

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 84

 uint8_t def_addr;
 uint8_t def_mask;
 /* DMA Channel custom Node Address and Mask */
 struct {
 int8_t node_en; /* Enable Separate Addr */
 uint8_t node_addr; /* Node address */
 uint8_t node_mask; /* Node address mask */
 } dma_nacfg[4];
};

Table 11.15. grspw_addr_config data structure declaration

promiscu-
ous

Enable (1) or disable (0) promiscous mode. The GRSPW will ignore the address field and put all
received packets to first DMA channel. See hardware manual for. This field is also used to by the
driver indicate if the settings should be written and read, or only read. See function description.

def_addr GRSPW default node address.

def_mask GRSPW default node address mask.

DMA channel node address array configuration, see below field description. DMA channel N is
described by dma_nacfg[N].

Field Description

node_en Enable (1) or disable (1) separate node address for DMA channel N (determined by
array index).

node_addr Node address for DMA channel N (determined by array index).

dma_nacfg

node_mask Node address mask for DMA channel N (determined by array index).

Table 11.16. grspw_addr_ctrl function declaration

Proto void grspw_addr_ctrl(void *d, const struct grspw_addr_config *cfg)

About Set node address configuration

The GRSPW device is either configured to have one single node address or a range of address-
es by masking. The cfg input memory layout is described by the grspw_addr_config data struc-
ture in Table 11.15. When using multiple DMA channels one must assign each DMA channel a
unique node address or a unique range by masking. Each DMA channel is represented by the input
dma_nacfg[N].

d [IN] pointerParam

Device handle returned by grspw_open.

cfg [IN] pointerParam

Address configuration to set.

Return None.

11.3.5. Time-control codes

SpaceWire Time Code handling is controlled and configured using the device API functions described below. The
Time Code functionality is described in Section 11.2.4.

Table 11.17. grspw_get_tccfg function declaration

Proto uint32_t grspw_get_tccfg(void *d)

About Get time-code configuration

The function reads and returns the time-code configration from GRSPW control register.

d [IN] pointerParam

Device handle returned by grspw_open.

uint32_t. Time-code configuration read from I/O registers. The return value can be evaluated against
the following masks:

Return

Mask Description

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 85

TCOPTS_EN_RX Enable time-code receptions

TCOPTS_EN_TX Enable time-code transmissions

TCOPTS_EN_RXIRQ Generate interrupt when a valid time-code is received.

Table 11.18. grspw_set_tccfg function declaration

Proto void grspw_set_tccfg(void *d, uint32_t cfg)

About Set time-code configuration

The function sets the time-code configuration in GRSPW control register.

d [IN] pointerParam

Device handle returned by grspw_open.

cfg [IN] uint32_t

Time-code configuration to write in I/O registers. The following masks can be used at configuration:

Mask Description

TCOPTS_EN_RX Enable time-code receptions

TCOPTS_EN_TX Enable time-code transmissions

Param

TCOPTS_EN_RXIRQ Generate interrupt when a valid time-code is received.

Return None.

Table 11.19. grspw_get_tc function declaration

Proto uint32_t grspw_get_tc(void *d)

About Get time register value

The function reads and returns the GRSPW time register value.

d [IN] pointerParam

Device handle returned by grspw_open.

uint32_t. Time register read from I/O registers. The return value can be evaluated against the follow-
ing masks:

Mask Description

TCTRL_MASK Time control flags of time register

Return

TIMECNT_MASK Time counter of time register

11.3.6. Port Control

The SpaceWire port selection configuration, hardware support and current hardware status can be accessed using
the device API functions described below. The SpaceWire port support functionality is described in Section 11.2.3.

In cases where only one SpaceWire port is implemented this part of the API can safely be ignored. The functions
still deliver consistent information and error code failures when forcing Port1, however provides no real function-
ality.

Table 11.20. grspw_port_ctrl function declaration

Proto int grspw_port_ctrl(void *d, int *port)

About Always read and optionally set port control settings of GRSPW device. The configuration determines
how the hardware selects which SpaceWire port that is used. This is an optional feature in hardware to
support one or two SpaceWire ports. An error is returned if operation not supported by hardware.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Param port [IO] pointer to bit-mask

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 86

The port configuration is first written if port does not point to -1. The port configuration is always
read from the I/O registers and stored in the port address.

Value Description

-1 The current port configuration is read and stored into the port address.

0 Force to use Port0.

1 Force to use Port1.

> 1 Hardware auto select between Port0 or Port1.

Value. Description

0 Request successful.

Return

-1 Request failed. Port1 is not implemented in hardware.

Table 11.21. grspw_port_count function declaration

Proto int grspw_port_count(void *d)

About Reads and returns number of ports that hardware supports.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

int. Number of ports implemented in hardware.

Value Description

1 One SpaceWire port is implemented in hardware. In this case grspw_port_ctrl function
has no effect and grspw_port_active always returns 0.

Return

2 Two SpaceWire ports are implemented in hardware.

Table 11.22. grspw_port_active function declaration

Proto int grspw_port_active(void *d)

About Reads and returns the currently actively used SpaceWire port.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

int. Currently active SpaceWire port

Value Description

0 SpaceWire port0 is active.

Return

1 SpaceWire port1 is active.

11.3.7. RMAP Control

The device API described below is used to configure the hardware supported RMAP target. The RMAP support
is described in Section 11.2.5.

Availability of RMAP support can be determined by using the function grspw_hw_support.

When RMAP CRC is implemented in hardware it can be used to generate and append a CRC on a per packet
basis. It is controlled by the DMA packet flags. Header and data CRC can be generated individually. See
Table 11.32 for more information.

Table 11.23. grspw_rmap_set_ctrl function declaration

Proto int grspw_rmap_set_ctrl(void *d, uint32_t options)

About Set RMAP configuration

d [IN] pointerParam

Device handle returned by grspw_open.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 87

options [IN] uint32_t

RMAP control options to set in I/O registers. The following bit masks, prefixed with RMAPOPTS_
shall be used.

Bit Description

EN_RMAP Enable (1) or Disable (0) RMAP target handling in hardware.

Param

EN_BUF Enable (0) or Disable (1) RMAP buffer. Disabling ensures that all RMAP requests are
processed in the order they arrive.

Return int. The function always returns DRV_OK.

Table 11.24. grspw_rmap_set_destkey function declaration

Proto int grspw_rmap_set_destkey(void *d, uint32_t destkey)

About Set RMAP destination key

d [IN] pointerParam

Device handle returned by grspw_open.

destkey [IN] uint32_tParam

Destination key to set. The value shall be AND:ed with the define GRSPW_DK_DESTKEY available
in the file include/regs/grspw-regs.h.

Return int. The function always returns DRV_OK.

11.3.8. Interrupt handling

No interrupt service routine is installed by the GRSPW driver. The user can install and uninstall an ISR by using
the Operating System Abstraction Layer functions osal_isr_register and osal_isr_unregister. At
least one GRSPW interrupt source must be enabled in the driver for interrupts to be generated. Possible interrupt
sources are time-code tick-out, link-error, and DMA interrupts.

The functions grspw_dma_tx_count and grspw_dma_rx_count can be used from interrupt context to
determine how many TX/RX packets are (at least) available to the user. grspw_get_status can be used to
determine whether a new time count value (Tick Out) is available. Section 11.6 lists the API functions allowed
to be called from ISR context.

11.4. DMA interface

This section covers how the driver can be interfaced to an application to send and transmit SpaceWire packets
using the GRSPW hardware.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel. The device channel zero is always
present.

11.4.1. Opening and closing DMA channels

The first step before any SpaceWire packets can be transferred is to open a DMA channel to be used for transmis-
sion. As described in the device API Section 11.3.1 the GRSPW device the DMA channel belongs to must be
opened and passed onto the DMA channel open routines.

The number of DMA channels of a GRSPW device can obtained by calling grspw_hw_support.

An opened DMA channel can not be reopened unless the channel is closed first. When opening a channel the
channel is marked opened by the driver. This procedure is thread-safe by protecting from other threads by using
the operating system abstraction layer. Protection is used by all GRSPW devices on device opening, closing and
DMA channel opening and closing.

During opening of a GRSPW DMA channel the following steps are taken:

• DMA channel I/O registers are initialized to a state where most are zero. The channel state is set to stopped.
• Resources used for the DMA channel implementation itself are allocated and initialized.
• The channel is marked opened to protect the caller from other users of the DMA channel.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 88

Below is a partial example of how the first GRSPW device's first DMA channel is opened, link is started and a
packet can be received.

int spw_receive_one_packet(void)
{
 void *device;
 void *dma0;
 int count;
 uint32_t linkcfg, clkdiv;
 spw_link_state_t state;
 struct grspw_list lst;

 device = grspw_open(0);
 if (!device)
 return -1; /* Failure */

 /* Start Link */
 linkcfg = LINKOPTS_ENABLE | LINKOPTS_START; /* Start Link */
 grspw_set_linkcfg(device, linkcfg);
 clkdiv = (9 << 8) | 9; /* Clock Divisor factor of 10 */
 grspw_set_clkdiv(device, clkdiv);

 /* wait until link is in run-state */
 do {
 state = grspw_link_state(device);
 } while (state != SPW_LS_RUN);

 /* Open DMA channel */
 dma0 = grspw_dma_open(device, 0);
 if (!dma0) {
 grspw_close(device);
 return -2;
 }

 /* Initialize and activate DMA */
 if (DRV_OK != grspw_dma_start(dma0)) {
 grspw_dma_close(dma0);
 grspw_close(device);
 return -3;
 }

 /* ... */

 /* Prepare driver with RX buffers */
 grspw_dma_rx_prepare(dma0, 1, &preinited_rx_unused_buf_list0);

 /* Start sending a number of SpaceWire packets */
 grspw_dma_tx_send(dma0, 1, &preinited_tx_send_buf_list);

 /* Receive at least one packet */
 do {
 /* Try to receive as many packets as possible */
 count = grspw_dma_rx_recv(dma0, &lst);
 } while (0 == count);

 if (-1 == count) {
 printf("GRSPW0.DMA0: Receive error\n");
 } else {
 printf("GRSPW0.DMA0: Received %d packets\n", count);
 }

 /* ... */

 grspw_dma_close(dma0);
 grspw_close(device);
 return 0; /* success */
}

Table 11.25. grspw_dma_open function declaration

Proto void *grspw_dma_open(void *d, int chan_no)

About Opens a DMA channel of a previously opened GRSPW device. The GRSPW device is identified by
its device handle d and the DMA channel is identified by index chan_no.

The function allocates buffers as necessary using dynamic memory allocation (malloc().

The returned value is used as input argument to all functions operating on the DMA channel.

d [IN] pointerParam

Device handle returned by grspw_open.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 89

chan_no [IN] IntegerParam

DMA channel identification number. DMA channels are indexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero.

Pointer. Status and driver's internal device identification.

Value Description

NULL Indicates failure to DMA channel. Fails if DMA channel does not exists, DMA channel al-
ready has been opened or that DMA channel resource allocation or initialization failes.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, identifies which DMA channel.

Notes May block until other GRSPW device operations complete.

Table 11.26. grspw_dma_close function declaration

Proto int grspw_dma_close(void *c)

About Closes a previously opened DMA channel. The specificed DMA channel is stopped and closed. This
will result in the same functionality as calling grspw_dma_stop to stop on-going DMA transfers
and then free DMA channel resources.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

int. Return code as indicated below.

Value Description

DRV_OK Success.

Return

DRV_NOTOPEN DMA channel c was not open.

11.4.1.1. Static buffer allocation

The function grspw_dma_open uses dynamic memory for allocating DMA buffers. An alternative is to use
grspw_dma_open_userbuf, which allows the user to provide the buffers instead. Note that the corresponding
function for closing the DMA channel is grspw_dma_close_userbuf in this case.

Table 11.27. grspw_dma_open_userbuf function declaration

Proto void *grspw_dma_open_userbuf(void *d, int chan_no, struct grspw_ring
*rx_ring, struct grspw_ring *tx_ring, struct grspw_rxbd *rx_bds,
struct grspw_txbd *tx_bds)

About Opens a DMA channel of a previously opened GRSPW device. The GRSPW device is identified by
its device handle d and the DMA channel is identified by index chan_no.

The function requires the caller to provide buffers for the driver to use (rx_ring tx_ring
rx_bds tx_bds). These memory areas shall not be referenced by the user as long as the
DMA channel is opened. The areas can be reused when the channel has been closed with
grspw_dma_close_userbuf.

The returned value is used as input argument to all functions operating on the DMA channel.

d [IN] pointerParam

Device handle returned by grspw_open.

chan_no [IN] IntegerParam

DMA channel identification number. DMA channels are indexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero.

rx_ring [IN] PointerParam

RX buffer ring area. Size shall be GRSPW_RXBD_NR * sizeof (struct grspw_ring),
aligned to 32-bit word.

Param tx_ring [IN] Pointer

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 90

TX buffer ring area. Size shall be GRSPW_TXBD_NR * sizeof (struct grspw_ring),
aligned to 32-bit word.

rx_bds [IN] PointerParam

RX DMA buffer descriptor table area. Must be 1 KiB, and aligned to 1 KiB address boundary.

tx_bds [IN] PointerParam

TX DMA buffer descriptor table area. Must be 1 KiB, and aligned to 1 KiB address boundary.

Pointer. Status and driver's internal device identification.

Value Description

NULL Indicates failure to DMA channel. Fails if DMA channel does not exists, DMA channel al-
ready has been opened or that DMA channel resource allocation or initialization failes.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, identifies which DMA channel.

Notes May block until other GRSPW device operations complete.

Table 11.28. grspw_dma_close_userbuf function declaration

Proto int grspw_dma_close_userbuf(void *c)

About Closes a previously opened DMA channel. The specificed DMA channel is stopped and closed. This
will result in the same functionality as calling grspw_dma_stop to stop on-going DMA transfers
and then free DMA channel resources.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open_userbuf.

int. Return code as indicated below.

Value Description

DRV_OK Success.

Return

DRV_NOTOPEN DMA channel c was not open.

11.4.2. Starting and stopping DMA operation

The start and stop operational modes are described in Section 11.2.11. The functions described below are used
to change the operational mode of a DMA channels. A summary of which DMA API functions are affected are
listed in Table 11.29, see function description for details on limitations.

Table 11.29. functions available in the two operational modes

Function Stopped Started

grspw_dma_open N/A N/A

grspw_dma_close Yes Yes

grspw_dma_start Yes No

grspw_dma_stop No Yes

grspw_dma_rx_recv Yes, with limitations, see
Section 11.4.6

Yes

grspw_dma_rx_prepare Yes, with limitations, see
Section 11.4.6

Yes

grspw_dma_rx_flush Yes No

grspw_dma_tx_send Yes, with limitations, see
Section 11.4.5

Yes

grspw_dma_tx_reclaim Yes, with limitations, see
Section 11.4.5

Yes

grspw_dma_tx_flush Yes No

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 91

Function Stopped Started

grspw_dma_config Yes No

grspw_dma_config_read Yes Yes

grspw_dma_stats_read Yes Yes

grspw_dma_stats_clr Yes Yes

Table 11.30. grspw_dma_start function declaration

Proto int grspw_dma_start(void *c)

About Starts DMA operational mode for the DMA channel indicated by the argument. After this step it is
possible to send and receive SpaceWire packets. If the DMA channel is already in started mode, no
action will be taken.

The start routine clears and initializes the following:

• DMA descriptor rings.
• DMA queues.
• Statistic counters.
• I/O registers to match DMA configuration previously set with grspw_dma_config
• Interrupt
• DMA Status
• Enables the receiver

Even though the receiver is enabled the user is required to prepare empty receive buffers after this
point, see grspw_dma_rx_prepare. The transmitter is enabled when the user provides send
buffers that ends up in the TX SCHED queue, see grspw_dma_tx_send.

d [IN] pointerParam

Device handle returned by grspw_open.

Return int. DRV_STARTED if channel was already started, else DRV_OK.

Table 11.31. grspw_dma_stop function declaration

Proto void grspw_dma_stop(void *c)

About Stops DMA operational mode for the DMA channel indicated by the argument. The transmitter will
abort ongoing transfers and the receiver disabled. Packets in the RX SCHED queue will remain in this
queue. The RXPKT_FLAG_RX packet flag is used to signal if the packet contains received data or
not. Similarly, the TXPKT_FLAG_TX packet flag marks if the packet was actually transferred or not.

d [IN] pointerParam

Device identifier returned by grspw_open.

Return None.

Notes The user may want to flush the RX/TX SCHED queues with functions grspw_dma_rx_flush and
grspw_dma_tx_flush after stopping to get unprocessed packets back.

11.4.3. Packet buffer description

The GRSPW packet driver describes packets for both RX and TX using a common memory layout defined by the
data structure grspw_pkt. It is described in detail below.

There are differences in which fields and bits are used between RX and TX operations. The bits used in the flags
field are defined different. When sending packets the user can optionally provide two different buffers, the header
and data. The header can maximally be 256Bytes due to hardware limitations and the data supports 24-bit length
fields. For RX operations hdr and hlen are not used. Instead all data received is put into the data area.

On some systems, the data buffer pointer must be 32-bit word aligned for reception.

struct grspw_pkt {

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 92

 struct grspw_pkt *next; /* Next packet in list. NULL if last packet */
 uintptr_t pkt_id; /* User assigned ID (not touched by driver) */
 void *data; /* 4-byte or byte aligned depends on HW */
 void *hdr; /* 4-byte or byte aligned depends on HW (only TX) */
 uint32_t dlen; /* Length of Data Buffer */
 uint16_t flags; /* RX/TX Options and status */
 uint8_t hlen; /* Length of Header Buffer (only TX) */
};

Table 11.32. grspw_pkt data structure declaration

next The packet structure can be part of a linked list. This field is used to point out the next packet in the
list. Set to NULL if this packet is the last in the list or a single packet.

pkt_id User assigned ID. This field is never touched by the driver. It can be used to store a pointer or other
data to help implement the user buffer handling.

data Data Buffer Address. DMA will read from this. The address must be 4-byte or byte aligned depending
on hardware.

hdr Header Buffer Address. DMA will read hlen bytes from this. The address must be 4-byte or byte
aligned depending on hardware. This field is not used by RX operation.

dlen Data payload lenght. The number of bytes hardware DMA read or written from/to the address indicat-
ed by the data pointer. On RX this is the complete packet data received.

RX/TX transmission options and flags indicating resulting status. The bits described below is to be
prefixed with TXPKT_FLAG_ or RXPKT_FLAG_ in order to match the TX or RX options defini-
tionas declared by the driver's header file.

Bits TX Description (prefixed TXPKT_FLAG_)

NOCRC_MASK Indicates to driver how many bytes shuld not be part of the header CRC calcula-
tion. 0 to 15 bytes can be omitted. Use NOCRC_LENN to select a specific lenght.

IE Enable (1) or Disable (0) IRQ generation on packet transmission completed.

HCRC Enable (1) or disable (0) Header CRC generation (if CRC is available in hard-
ware). Header CRC will be appended (one byte at end of header).

DCRC Enable (1) or disable (0) Data CRC generation (if CRC is available in hardware).
Data CRC will be appended (one byte at end of packet).

TX Is set by the driver to indicate that the packet was transmitted. This does no signal
a successful transmission, but that transmission was attempted, the LINKERR bit
needs to be checked for error indication.

LINKERR Set if a link error was exibited during transmission of this packet.

Bits RX Description (prefixed RXPKT_FLAG_)

IE Enable (1) or Disable (0) IRQ generation on packet reception completed.

TRUNK Set if packet was truncated.

DCRC Set if data CRC error detected (only valid if RMAP CRC is enabled).

HCRC Set if header CRC error detected (only valid if RMAP CRC is enabled).

EEOP Set if an End-of-Packet error occured during reception of this packet.

flags

RX Marks if packet was recevied or not.

hlen Header length. The number of bytes hardware will transfer using DMA from the address indicated by
the hdr pointer. This field is not used by RX operation.

11.4.4. Packet buffer lists

The DMA transfer operations take packet lists as input parameters. A packet list is a linked list with elements of
type struct grspw_pkt. The public driver interface header file includes functions for manipulating lists, prefixed
with grspw_list_*().

The following list is a summary of some of the available list manipulation functions.

• grspw_list_clr initializes a list.
• grspw_list_is_empty determines if a list is empty.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 93

• grspw_list_append appends a packet to the end of a list.
• grspw_list_append_list appends packets from one list to the end of another list.

11.4.5. Sending packets

Packets are sent by adding packets to the TX SCHED queue where they will be assigned a DMA descriptor and
scheduled for transmission. After transmission has completed the packet buffers can be retrieved to view the
transmission status and to be able to reuse the packet buffers for new transfers. During the time the packet is in
the driver it must not be accessed by the user.

Transmission of SpaceWire packets are described in Section 11.2.1.

In the below example Figure 11.4 three SpaceWire packets are scheduled for transmission. The count should
be set to three. The second packet is programmed to generate an interrupt when transmission finished, GRSPW
hardware will also generate a header CRC using the RMAP CRC algorithm resulting in a 16 bytes long SpaceWire
packet.

pkts (input)

head = &p0

tail = &p2 next = &p1

flags = 0

hlen = 0

dlen = 5

data = &d0

hdr = NULL

next = NULL

flags = 0

hlen = 0

dlen = 4

data = &d2

hdr = NULL

next = &p2

flags =
FLAG_IE |

FLAG_HCRC

hlen = 7

dlen = 8

data = &d1

hdr = &h1

DATA0 PAYLOAD

a b c d e

HEADER1 (without CRC)

a b c d e f g

DATA1 PAYLOAD

a b c d e f g h

DATA2 PAYLOAD

a b c d

Figure 11.4. TX packet description pkts input to grspw_tx_dma_send

The below tables describe the functions involved in initiating and completing transmissions.

Table 11.33. grspw_dma_tx_send function declaration

Proto int grspw_dma_tx_send(void *c, struct grspw_list *pkts)

About Schedule list of packets for transmission at some point in future.

The GRSPW transmitter is enabled when packets are added to the TX SCHED queue. (US-
ER->SCHED)

The fastest solution in retrieving sent TX packets and sending new frames is to call:

1. grspw_dma_tx_reclaim(opts=0)
2. grspw_dma_tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag must not be set in the packet structure.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [IN] pointerParam

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head points to the first packet and tail points to the last.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 11.32. Note that TXPKT_FLAG_TX of the flags field must not be set.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 94

int. See return codes below

Value Description

-1 Error: DMA channel is not in started mode.

Return

>=0 Successfully added pkts to TX SCHED list.

Notes This function performs no operation when the DMA channel is stopped.

Table 11.34. grspw_dma_tx_reclaim function declaration

Proto int grspw_dma_tx_reclaim(void *c, struct grspw_list *pkts)

About Reclaim TX packet buffers that has previously been scheduled for transmission with
grspw_dma_tx_send.

The packets in the SCHED queue which have been transmitted are moved to the pkts packet list.
The user pkts list is not cleared by the function. When the move has been completed the packet can
safely be reused again by the user. The packet structures have been updated with transmission status
to indicate transfer failures of individual packets.

The typical solution for retrieving sent TX packets and sending new frames is to call:

1. grspw_dma_tx_reclaim()
2. grspw_dma_tx_send()

NOTE: the TXPKT_FLAG_TX flag indicates if the packet was transmitted.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [OUT] pointerParam

Sent TX packets will be taken from the SCHED queue and added to the pkts queue. The user queue
pkts is not cleared.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 11.32. Note that TXPKT_FLAG_TX of the flags field indicates if the packet was sent of not.
In case of DMA being stopped one can use this flag to see if the packet was transmitted or not. The
TXPKT_FLAG_LINKERR indicates if a link error occurred during transmission of the packet, re-
gardless the TXPKT_FLAG_TX is set to indicate packet transmission attempt.

int. See return codes below

Value Description

-1 Error: DMA channel is not in started mode.

0 No packet reclaimed (SCHED list contains no sent packets).

Return

>0 Number of packets successfully reclaimed to user list.

Notes This function can operate in stopped mode. This is useful when a link goes down and the DMA activi-
ty is stopped by user or by driver automatically.

11.4.6. Receiving packets

Packets are received by adding empty/free packets to the RX SCHED queue where they will be assigned a DMA
descriptor and scheduled for reception. After a packet is received into the buffer(s) the packet buffer(s) can be
retrieved to view the reception status and to be able to reuse the packet buffers for new transfers. During the time
the packet is in the driver it must not be accessed by the user.

Reception of SpaceWire packets are described in Section 11.2.1.

In the Figure 11.5 example three SpaceWire packets are received. The count parameters is set to three by the
driver to reflect the number of packets. The first packet exhibited an early end-of-packet during reception which
also resulted in header and data CRC error. All header pointers and header lengths have been set to zero by the
user since they are no used, however the values in those fields does not affect the RX operations. The RX flag is
set to indicate that DMA transfer was performed.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 95

pkts (input)

head = &p0

tail = &p2 next = &p1

flags =
FLAG_RX |

FLAG_EEOP |
FLAG_DCRC |
FLAG_HCRC

hlen = 0

dlen = 5

data = &d0

hdr = NULL

next = NULL

flags =
FLAG_RX

hlen = 0

dlen = 4

data = &d2

hdr = NULL

next = &p2

flags =
FLAG_RX

hlen = 0

dlen = 8

data = &d1

hdr = NULL

DATA0 PAYLOAD

a b c d e

DATA1 PAYLOAD

a b c d e f g h

DATA2 PAYLOAD

a b c d

Figure 11.5. RX packet output from grspw_dma_rx_recv

The below tables describe the functions involved in initiating and completing transmissions.

Table 11.35. grspw_dma_rx_prepare function declaration

Proto int grspw_dma_rx_prepare(void *c, struct grspw_list *pkts)

About Add RX packet buffers for future reception.

The received packets can later be read out with grspw_dma_rx_recv. The packets in pkts list
are put to the SCHED queue of the driver (USER->SCHED).

The typical solution for retreiving received RX packets and preparing new packet buffers for future
receive, is to call:

1. grspw_dma_rx_recv(&recvlist)
2. grspw_dma_rx_prepare(&freelist)

NOTE: the RXPKT_FLAG_RX flag must not be set in the packet structure.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [IN] pointerParam

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head points to the first packet and tail points to the last.

The layout and content of the packet is defined by the grspw_pkt data structure described in Ta-
ble 11.32. Note that RXPKT_FLAG_RX of the flags field must not be set.

int. See return codes below

Value Description

-1 Error: DMA channel is not in started mode.

0 No packets added (SCHED list is full).

Return

>0 Number of packets successfully added to RX SCHED queue.

Notes This function performs no operation when the DMA channel is stopped.

Table 11.36. grspw_dma_rx_recv function declaration

Proto int grspw_dma_rx_recv(void *c, struct grspw_list *pkts)

About Get received RX packet buffers which have previously been scheduled for reception with
grspw_dma_rx_prepare.

The packets in the RX SCHED queue which have been received are moved to the pkts packet list
(SCHED->USER). When the move has been completed the packet(s) can safely be reused again by
the user. The packet structures have been updated with reception status to indicate transfer failures of

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 96

individual packets and received packet length. The header pointer and length fields are not touched by
the driver, all data ends up in the data area.

NOTE: the RXPKT_FLAG_RX flag indicates if a packet was received, thus if the data field contains
new valid data or not.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [OUT] pointerParam

Received RX packets will be taken from the SCHED queue and added to the pkts queue. The user
queue pkts is not cleared.

The layout and content of the packet is defined by the grspw_pkt data structure described in Ta-
ble 11.32. Note that RXPKT_FLAG_RX of the flags field indicates if the packet was received
or not. In case of DMA being stopped one can use this flag to see if the packet was received or not.
The TRUNK, DCRC, HCRC and EEOP flags indicates if an error occured during transmission of the
packet, regardless the RXPKT_FLAG_RX is set to indicate packet reception attempt.

int. See return codes below

Value Description

-1 Error: DMA channel is not in started mode.

0 No packet received (SCHED list contains no received packets).

Return

>0 Number of received packets added to user list.

Notes This function can be called when the DMA channel is in stopped mode. This is useful when a link
goes down and the DMA activity is stopped by user or by driver automatically.

11.4.7. Transmission queue status

The current number of packets processed by hardware but not yet reclaimed/received by the driver can be queried
using the functions described below. These numbers give a hint on how many packets will be reclaimed by a call
to grspw_dma_tx_reclaim or received by grspw_dma_rx_recv.

Table 11.37. grspw_dma_tx_count function declaration

Proto int grspw_dma_tx_count(void *c)

About Get number of packets transmitted by hardware but not yet reclaimed by the driver.
This is determined by looking at the TX descriptor pointer register. The number represents how many
of the send packets that actually have been transmitted by hardware but not reclaimed by the driver
yet.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

Return int. The number of packets transmitted by hardware but not yet reclaimed by the driver.

Notes This function can be called from interrupt context.

Table 11.38. grspw_dma_rx_count function declaration

Proto int grspw_dma_rx_count(void *c)

About Get number of packets received by hardware but not yet retrieved by the driver.
This is determined by looking at the RX descriptor pointer register. The number represents how many
of the prepared packets that actually have been received by hardware but not handled by the driver
yet.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

Return int. The number of packets received by hardware but not yet retrieved by the driver.

Notes This function can be called from interrupt context.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 97

11.4.8. Queue flushing

When a DMA channel is stopped after being in started state, it may contain scheduled unsent TX pack-
ets and scheduled unreceived RX packets. These packets can be given back to the user with the functions
grspw_dma_tx_flush and grspw_dma_rx_flush.

Table 11.39. grspw_dma_tx_flush function declaration

Proto int grspw_dma_tx_flush(void *c, struct grspw_list *pkts)

About Flush TX packets from driver

Like grspw_dma_tx_reclaim, but also move scheduled unsent packets to user list. This func-
tion can only be called when DMA channel is in stopped mode. Return value is the sum of sent pack-
ets and unsent packets. The TXPKT_FLAG_TX packet flag indicates, for each packet, if it was sent or
not.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [OUT] pointerParam

The list will be initialized to contain the SpaceWire packets moved from the SCHED queue to the
packet list. The grspw_list structure will be initialized so that head points to the first packet, tail
points to the last and the last packet (tail) next pointer is NULL.

Number of packets. See return codes below

Value Description

-1 Error: DMA channel is in started mode.

Return

others Number of sent and unsent packets added to user list.

Notes This function can only be called in DMA channel stopped mode.

Table 11.40. grspw_dma_rx_flush function declaration

Proto int grspw_dma_rx_flush(void *c, struct grspw_list *pkts)

About Flush RX packets from driver

Like grspw_dma_rx_recv, but also move scheduled unreceived packets to user list. This function
can only be called when DMA channel is in stopped mode. Returns sum of recevied packets and unre-
ceived packets. The RXPKT_FLAG_RX packet flag indicates if the packet was received or not.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [OUT] pointerParam

The list will be initialized to contain the SpaceWire packets moved from the SCHED queue to the
packet list. The grspw_list structure will be initialized so that head points to the first packet, tail
points to the last and the last packet (tail) next pointer is NULL.

Number of packts. See return codes below

Value Description

-1 Error: DMA channel is in started mode.

Return

others Number of received and unreceived packets added to user list.

Notes This function can only be called in DMA channel stopped mode.

11.4.9. Statistics

The driver counts statistics at certain events. The driver's DMA channel counters can be read out using the DMA
API. Packet transmission statistics, packet transmission errors and packet queue statistics can be obtained.

struct grspw_dma_stats {
 /* Descriptor Statistics */

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 98

 int tx_pkts; /* Number of Transmitted packets */
 int tx_err_link; /* Number of Transmitted packets with Link Error*/
 int rx_pkts; /* Number of Received packets */
 int rx_err_trunk; /* Number of Received Truncated packets */
 int rx_err_endpkt; /* Number of Received packets with bad ending */
};

Table 11.41. grspw_dma_stats data structure declaration

tx_pkts Number of transmitted packets with link errors.

tx_err_link Number of transmitted packets with link errors.

rx_pkts Number of received packets.

rx_err_trunk Number of received Truncated packets.

rx_err_endpkt Number of received packets with bad ending.

Table 11.42. grspw_dma_stats_read function declaration

Proto void grspw_dma_stats_read(void *c, struct grspw_dma_stats *sts)

About Reads the current driver statistics collected from earlier events by a DMA channel and DMA channel
usage. The statistics are stored to the address given by the second argument. The layout and content of
the statistics are defined by the grspw_dma_stats data structure is described in Table 11.41.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chonized with each other. This could be caused if the function is interrupted by a the GRSPW inter-
rupt or other tasks performing driver operations on the same DMA channel.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

sts [OUT] pointerParam

A snapshot of the current driver statistics are copied to this user provided buffer.

The layout and content of the statistics are defined by the grspw_dma_stats data structure is described
in Table 11.41.

Return None.

Table 11.43. grspw_dma_stats_clr function declaration

Proto void grspw_dma_stats_clr(void *c)

About Resets a DMA channel's statistic counters. The channel counters are set to zero.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

Return None.

11.4.10. DMA channel configuration

Various aspects of DMA transfers can be configured using the functions described in this section. The configu-
ration affects:

• DMA transfer options, no-spill, strip address/PID.
• Receive max packet length.

struct grspw_dma_config {
 int flags; /* DMA config flags, see DMAFLAG_* options */
 int rxmaxlen; /* RX Max Packet Length */
};

Table 11.44. grspw_dma_config data structure declaration

RX/TX DMA transmission options See below.flags

Bits Description (prefixed DMAFLAG_)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 99

NO_SPILL Enable (1) or Disable (0) packet spilling, flow control.

STRIP_ADR Enable (1) or Disable (0) stripping node address byte from DMA write
transfers (packet reception). See hardware support to determine if present in
hardware. See hardware documenation about DMA CTRL SA bit.

STRIP_PID Enable (1) or disable (0) stripping PID byte from DMA write transfers
(packet reception).(if CRC is available in hardware). See hardware sup-
port to determine if present in hardware. See hardware documenation about
DMA CTRL SP bit.

rxmaxlen Max packet reception length. Longer packets with will be truncated see
RXPKT_FLAG_TRUNK flag in packet structure.

If the function grspw_dma_config is not called after the user has opened the DMA channel with
grspw_dma_open, then the configuration will have default values:

• Packet spilling is enabled (NO_SPILL=0).
• Node address byte stripping is disabled (STRIP_ADR=0).
• PID byte stripping is disabled (STRIP_PID=0).
• Maximum packet reception length is 4096 bytes (rxmaxlen=4096).

If the DMA channel is stopped the last configuration set with grspw_dma_config is used the next time the
channel is started with grspw_dma_start.

Table 11.45. grspw_dma_config function declaration

Proto int grspw_dma_config(void *c, struct grspw_dma_config *cfg)

About Set the DMA channel configuration options as described by the input arguments.

It is only possible the change the configuration on stopped DMA channels, otherwise an error code is
returned.

The hardware registers are not written directly. The settings take effect when the DMA channel is
started calling grspw_dma_start.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

cfg [IN] pointerParam

Address to where the driver will read the DMA channel configuration from. The configuration options
are described in Table 11.44.

int. Return code as indicated below.

Value Description

DRV_OK Success.

Return

DRV_FAIL Failure due to invalid input arguments or DMA has already been start-
ed.

Table 11.46. grspw_dma_config_read function declaration

Proto void grspw_dma_config_read(void *c, struct grspw_dma_config *cfg)

About Copies the DMA channel configuration to user defined memory area.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

sts [OUT] pointerParam

The driver DMA channel configuration options are copied to this user provided buffer.

The layout and content of the statistics are defined by the grpsw_dma_config data structure is de-
scribed in Table 11.44.

Return int. Return code as indicated below.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 100

Value Description

DRV_OK Success.

DRV_FAIL Failure due to invalid input argument.

11.4.11. DMA channel status

Status information unique to a DMA channel is exported by the drivers DMA channel status interface. It reads
and manipulates status bits available in the GRSPW DMA control register.

The following status information is available:

• Bus errors caused by the receive DMA channel (GRSPW_DMA_STATUS_RA).
• Bus errors caused by the transmit DMA channel (GRSPW_DMA_STATUS_TA).
• A packets has been received (GRSPW_DMA_STATUS_PR).
• A packets has been sent (GRSPW_DMA_STATUS_PS).

Table 11.47. grspw_dma_get_status function declaration

Proto uint32_t grspw_dma_get_status(void *c)

About Get DMA channel status

The function reads and returns status from the GRSPW DMA control register. Status bits in the regis-
ter are not cleared. Use function grspw_dma_clear_status to clear the status bits.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

uint32_t.

Mask of DMA channel status bits read from GRSPW DMA control register.

The return value shall be evaluated against the following bit masks:

Mask Description

GRSPW_DMA_STATUS_RA RX AHB Error

GRSPW_DMA_STATUS_TA TX AHB Error

GRSPW_DMA_STATUS_PR Packet received

Return

GRSPW_DMA_STATUS_PS Packet sent

Table 11.48. grspw_dma_clear_status function declaration

Proto void grspw_dma_clear_status(void *c, uint32_t status)

About Clear DMA channel status

The function clears the status bits in GRSPW DMA control register corresponding to
the bits set in the status parameter. Current status can be retrieved with the function
grspw_dma_get_status.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

status [IN] uint32_tParam

Mask of DMA channel status bits to clear in GRSPW DMA control register.

The bit masks are the same as the masks for grspw_dma_get_status return value.

Return None.

11.5. API reference

This section lists all functions and data structures of the GRSPW driver API, and in which section(s) they are
described.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 101

11.5.1. Data structures

The data structures used together with the Device and/or DMA API are summarized in the table below.

Table 11.49. Data structures reference

Data structure name Section

struct grspw_pkt 11.4.3

struct grspw_addr_config 11.3.4

struct grspw_hw_sup 11.3.2

struct grspw_dma_stats 11.4.9

struct grspw_dma_config 11.4.10

11.5.2. Device functions

The GRSPW device API. The functions listed in the table below operates on the GRSPW common registers and
driver set up. Changes here typically affects all DMA channels and link properties .

Table 11.50. Device function reference

Prototype Section

int grspw_dev_count(void) 11.3.1

void *grspw_open(int dev_no) 11.3.1

int grspw_close(void *d) 11.3.1

void grspw_addr_ctrl(void *d, struct grspw_addr_config *cfg) 11.3.4,

spw_link_state_t grspw_link_state(void *d) 11.3.3,

uint32_t grspw_get_linkcfg(void *d) 11.3.3,

int grspw_set_linkcfg(void *d, uint32_t cfg) 11.3.3,

uint32_t grspw_get_clkdiv(void *d) 11.3.3,

int grspw_set_clkdiv(void *d, uint32_t clkdiv) 11.3.3,

uint32_t grspw_get_status(void *d) 11.3.3,

void grspw_clear_status(void *d, uint32_t status) 11.3.3,

uint32_t grspw_get_tccfg(void *d) 11.3.5,

void grspw_set_tccfg(void *d, uint32_t cfg) 11.3.5,

uint32_t grspw_get_tc(void *d) 11.3.5,

11.5.3. DMA functions

The GRSPW DMA channel API. The functions listed in the table below operates on one GRSPW DMA channel
and its driver set up. This interface is used to send and receive SpaceWire packets.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel.

Table 11.51. DMA channel function reference

Prototype Section

void *grspw_dma_open(void *d, int chan_no) 11.4.1,
11.3.1

void grspw_dma_close(void *c) 11.4.1,
11.3.1

void *grspw_dma_open_userbuf(void *d, int chan_no, struct
grspw_ring *rx_ring, struct grspw_ring *tx_ring, struct grspw_rxbd
*rx_bds, struct grspw_txbd *tx_bds)

11.4.1,
11.3.1

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 102

Prototype Section

void grspw_dma_close_userbuf(void *c) 11.4.1,
11.3.1

int grspw_dma_start(void *c) 11.4.2,

void grspw_dma_stop(void *c) 11.4.2,

int grspw_dma_rx_recv(void *c, struct grspw_list *pkts) 11.4.6,

int grspw_dma_rx_prepare(void *c, struct grspw_list *pkts) 11.4.6,

int grspw_dma_rx_flush(void *c, struct grspw_list *pkts) 11.4.8,

int grspw_dma_tx_send(void *c, struct grspw_list *pkts) 11.4.5,

int grspw_dma_tx_reclaim(void *c, struct grspw_list *pkts) 11.4.5,

int grspw_dma_tx_flush(void *c, struct grspw_list *pkts) 11.4.8,

void grspw_dma_stats_read(void *c, struct grspw_dma_stats *sts) 11.4.9

void grspw_dma_stats_clear(void *c) 11.4.9

int grspw_dma_config(void *c, struct grspw_dma_config *cfg) 11.4.10

int grspw_dma_config_read(void *c, struct grspw_dma_config *cfg) 11.4.10

uint32_t grspw_dma_get_status(void *c) 11.4.11

void grspw_dma_clear_status(void *c, uint32_t status) 11.4.11

11.6. Restrictions

To process interrupt events, the user ISR should typically wake up a task which performs the driver API functions
necessary. The following GRSPW Packet driver functions are allowed to be called from an ISR:

• grspw_get_status
• grspw_link_state
• grspw_dma_rx_count
• grspw_dma_tx_count
• grspw_dev_count
• grspw_clear_status
• grspw_get_clkdiv
• grspw_get_linkcfg
• grspw_get_tc
• grspw_get_tccfg
• grspw_dma_get_status
• grspw_dma_clear_status

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 103

12. GRCAN CAN driver

12.1. Introduction

This section describes the driver used to control the GRLIB GRCAN and GRCANFD devices for CAN DMA
operation.

12.1.1. User Interface

This section covers how the driver can be interfaced to an application to control both the GRCAN and GRCANFD
hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with grcan_. GR-
CANFD specific functions are prefixed with grcanfd_. All driver functions take a device handle returned by
grcan_open as the first parameter. All supported commands and their data structures are defined in the CAN
driver's header file drv/grcan.h.

All driver functions are non-blocking.

12.1.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 12.1. Driver registration functions

Registration method Function

Automatic registration grcan_autoinit()

Register one device grcan_register()

Register many devices grcan_init()

12.1.3. Examples

Examples are available in the src/libdrv/examples/ directory in the BCC distribution.

12.1.4. Known driver limitations

• The DMA buffers must be CPU accessible and within the same address space. No address translation is
performed by the driver.

12.2. Opening and closing device

A GRCAN device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using grcan_dev_count. A particular device can be opened
using grcan_open and closed grcan_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all GRCAN devices on opening and closing.

During opening of a GRCAN device the following steps are taken:

• GRCAN device I/O registers are initialized, including masking all interrupts.
• The core is disabled (to allow configuration).
• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the same device.

The example below prints the number of GRCAN devices to screen then opens and closes the first GRCAN device
present in the system.

int print_grcan_devices(void)
{
 struct grcan_priv *device;

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 104

 int count;

 count = grcan_dev_count();
 printf("%d GRCAN device(s) present\n", count);

 device = grcan_open(0);
 if (!device) {
 return -1; /* Failure */
 }
 if (grcan_canfd_capable(device)) {
 printf("Device is CANFD capable!\n");
 }
 grcan_close(device);
 return 0; /* success */
}

Table 12.2. grcan_dev_count function declaration

Proto int grcan_dev_count(void)

About Retrieve number of GRCAN devices registered to the driver.

Return int. Number of GRCAN devices registered in system, zero if none.

Table 12.3. grcan_open function declaration

Proto struct grcan_priv *grcan_open(int dev_no)

About Opens a GRCAN device. The GRCAN device is identified by index. The returned value is used as in-
put argument to all functions operating on the device.

The function allocates DMA buffers as necessary using dynamic memory allocation (malloc()).

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by grcan_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Table 12.4. grcan_close function declaration

Proto int grcan_close(struct grcan_priv *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from grcan_open.

Return int. This function always returns 0 (success)

Table 12.5. grcan_canfd_capable function declaration

Proto int grcan_canfd_capable(struct grcan_priv *priv);

About Checks if the given device is CANFD capable.

priv [IN] PointerParam

Device identifier. Returned by grcan_open.

Return int. Non-zer is device is CANFD capable, zero if not.

12.2.1. Static buffer allocation

The function grcan_open uses dynamic memory for allocating DMA buffers. An alternative is to use
grcan_open_userbuf, which allows the user to provide the buffers instead. Note that the corresponding
function for closing the DMA channel is grcan_close_userbuf in this case.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 105

Table 12.6. grcan_open_userbuf function declaration

Proto struct grcan_priv *grcan_open_userbuf(int dev_no, void *rxbuf, int
rxbuf_size, void *txbuf, int txbuf_size)

About Opens a GRCAN device. The GRCAN device is identified by index. The returned value is used as in-
put argument to all functions operating on the device.

The function requires the caller to provide DMA buffers for the driver to use (rxbuf and txbuf).
These memory areas shall not be referenced by the user as long as the driver channel is opened. The
areas can be reused when the driver has been closed with grcan_close_userbuf.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by grcan_dev_count.

rxbuf [IN] PointerParam

RX DMA buffer address. Must be aligned to 1 KiB address boundary.

rxbuf_size [IN] IntegerParam

RX DMA buffer size in bytes. Must be a multiple of 64.

txbuf [IN] PointerParam

TX DMA buffer address. Must be aligned to 1 KiB address boundary.

txbuf_size [IN] IntegerParam

TX DMA buffer size in bytes. Must be a multiple of 64.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Table 12.7. grcan_close_userbuf function declaration

Proto int grcan_close_userbuf(struct grcan_priv *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from grcan_open_userbuf.

Return int. This function always returns 0 (success)

12.3. Operation mode

The driver always operates in one of four modes: STATE_STARTED, STATE_STOPPED, STATE_BUSOFF or
STATE_AHBERR. In STATE_STOPPED mode, the DMA is disabled and the user is allowed to configure the
device and driver. In STATE_STARTED mode, the receive and transmit DMA can be active and only a limited
number of configuration operations are possible.

The driver enters STATE_BUSOFF mode if a bus-off condition is detected and STATE_AHBERR if an AHB error
is caused by the GRCAN DMA. When any of these two modes are entered, the user should call grcan_stop()
followed by grcan_start() to put the driver in STATE_STARTED again.

Transitions between started and stopped mode are normally caused by the users interaction with the driver API
functions. In some situations, such CAN bus-off or DMA AHB error condition, the driver itself makes the transition
from started to stopped.

12.3.1. Starting and stopping

The grcan_start() function places the CAN core in STATE_STARTED mode. Configuration set by previous
driver function calls are committed to hardware before started mode enters. It is necessary to enter started mode to

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 106

be able to receive and transmit messages on the CAN bus. The grcan_start() function call will fail if receive
or transmit buffers are not correctly allocated or if the CAN core is already is in started mode.

The function grcan_stop() makes the CAN core leave the previous mode and enter STATE_STOPPED
mode. After calling this function, further calls to grcan_read()/ grcanfd_read() or grcan_write()
/grcanfd_write() will fail. It is necessary to enter stopped mode to change operating parameters of the CAN
core such as the baud rate and for the driver to safely change configuration such as FIFO buffer lengths. The
function will fail if the CAN core already is in stopped mode.

Function grcan_get_state() is used to determine the driver operation mode.

Table 12.8. grcan_get_state function declaration

Proto int grcan_get_state(struct grcan_priv *d)

About Get current GRCAN software state

If STATE_BUSOFF or STATE_AHBERR is returned then the function grcan_stop() shall be
called before continue using the driver.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

int. Status

Value Description

STATE_STOPPED Stopped

STATE_STARTED Started

STATE_BUSOFF Bus-off has been detected

STATE_AHBERR AHB error has been detected

Return

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

12.4. Configuration

The CAN core and driver are configured using function calls. Return values for most functions are 0 for success
and non-zero on failure.

The function grcan_set_silent() sets the SILENT bit in the configuration register of the CAN hardware
the next time the driver is started. If the SILENT bit is set the CAN core operates in listen only mode where
grcan_write()/ grcanfd_write() calls fail and grcan_read()/grcanfd_read() calls proceed.
This function fails and returns nonzero if called in started mode.

grcan_set_abort() sets the ABORT bit in the configuration register of the CAN hardware. The ABORT bit is
used to cause the hardware to stop the receiver and transmitter when an AMBA AHB error is detected by hardware.
This function fails and returns nonzero if called in started mode.

12.4.1. Channel selection

grcan_set_selection() selects active channel used during communication. The function takes a second
argument, a pointer to a grcan_selection data structure described below. This function fails and returns nonzero
if called in started mode.

The grcan_selection data structure is used to select active channel. Each channel has one transceiver that can be
activated or deactivated using this data structure. The hardware can however be configured active low or active
high making it impossible for the driver to know how to set the configuration register in order to select a predefined
channel.

struct grcan_selection {
 int selection;
 int enable0;
 int enable1;
};

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 107

Table 12.9. grcan_selection member description

Member Description

selection Select receiver input and transmitter output.

enable0 Set value of output 1 enable

enable1 Set value of output 1 enable

12.4.2. GRCAN Timing parameters

grcan_set_btrs() sets the timing registers manually. See the CAN hardware documentation for a detailed
description of the timing parameters. The function takes a pointer to a grcan_timing data structure containing all
available timing parameters. The grcan_timing data structure is described below. This function fails and returns
nonzero if called in started mode.

The grcan_timing data structure is used when setting GRCAN timing configuration registers manually. The pa-
rameters are used when hardware generates the baud rate and sampling points.

struct grcan_timing {
 unsigned char scaler;
 unsigned char ps1;
 unsigned char ps2;
 unsigned int rsj;
 unsigned char bpr;
};

Table 12.10. grcan_timing member description

Member Description

scaler Prescaler

ps1 Phase segment 1

ps2 Phase segment 2

rsj Resynchronization jumps, 1..4

bpr
Value Baud rate

0 system clock / (scaler+1) / 1

1 system clock / (scaler+1) / 2

2 system clock / (scaler+1) / 4

3 system clock / (scaler+1) / 8

The function grcan_set_speed() can be used to set the CAN bus frequency. It takes a parameter in Hertz
and calculates the appropriate timing register parameters. If the timing register values could not be calculated,
then a non-zero value is returned.

12.4.3. GRCANFD Timing parameters

grcanfd_set_btrs() sets the timing registers manually. See the CAN hardware documentation for a detailed
description of the timing parameters. The function takes a pointer to two grcanfd_timing data structure containing
all available timing parameters. One for nominal bit-rate and one for fd bitrate. The grcanfd_timing data structure
is described below. This function fails and returns nonzero if called in started mode.

The grcanfd_timing data structure is used when setting GRCAN timing configuration registers manually. The
parameters are used when hardware generates the baud rate and sampling points.

struct grcanfd_timing {
 unsigned char scaler;
 unsigned char ps1;
 unsigned char ps2;
 unsigned char sjw;
 unsigned char resv_zero;
};

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 108

Table 12.11. grcanfd_timing member description

Member Description

scaler Prescaler

ps1 Phase segment 1

ps2 Phase segment 2

rsw Synchronization Jump Width

resv_zero Reserved.

The function grcanfd_set_speed() can be used to set the CAN bus frequency. It takes two parameters in
Hertz, nominal and FD, and calculates the appropriate timing register parameters. If the timing register values
could not be calculated, then a non-zero value is returned.

12.5. Receive filters

12.5.1. Data structures

The grcan_filter structure is used when changing acceptance filter of the CAN receiver and the SYNC Rx/Tx Filter
using the functions grcan_set_afilter and grcan_set_sfilter. This data structure is used differently
for different driver functions.

struct grcan_filter {
 unsigned long long mask;
 unsigned long long code;
};

Table 12.12. grcan_filter member description

Member Description

mask Selects what bits in code will be used or not. A set bit is interpreted as don't care.

code Specifies the pattern to match, only the unmasked bits are used in the filter.

12.5.2. Acceptance filter

grcan_set_afilter() sets acceptance filter which is matched for each message received. Let the second
argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass the filter.
Messages matching the condition below are passed and possible to read from user space:

(id XOR code) AND mask = 0

grcan_set_afilter() can be called in any mode and never fails.

12.5.3. Sync filter

grcan_set_sfilter() sets Rx/Tx SYNC filter which is matched by receiver for each message received. Let
the second argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass
the filter. Messages matching the condition below are treated as SYNC messages:

(id XOR code) AND mask = 0

grcan_set_sfilter() can be called in any mode and never fails.

12.6. Driver statistics

grcan_get_stats() copies the driver's internal counters to a user provided data area. The format of the data
written is described below (grcan_stats). The function will fail if the user pointer is NULL.

grcan_clr_stats() clears the driver's collected statistics. This function never fails.

The grcan_stats data structure contains various statistics gathered by the CAN hardware.

struct grcan_stats {
 unsigned int rxsync_cnt;

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 109

 unsigned int txsync_cnt;
 unsigned int ahberr_cnt;
 unsigned int ints;
 unsigned int busoff_cnt;
};

Table 12.13. grcan_stats member description

Member Description

rxsync_cnt Number of received SYNC messages (matching SYNC filter)

txsync_cnt Number of transmitted SYNC messages (matching SYNC filter)

ahberr_cnt Number of DMA AHB errors

ints Number of times the interrupt handler has been invoked.

busoff_cnt Number of bus-off conditions

12.7. Device status

grcan_get_status() stores the current status of the CAN core to the location pointed to by the second
argument. This function is typically used to determine the error state of the CAN core. The 32-bit status word can
be matched against the bit masks in the table below.

Table 12.14. Device status word bit masks

Mask Description

GRCAN_STAT_PASS Error-passive condition

GRCAN_STAT_OFF Bus-off condition

GRCAN_STAT_OR Overrun during reception

GRCAN_STAT_AHBERR AMBA AHB error

GRCAN_STAT_ACTIVE Transmission ongoing

GRCAN_STAT_RXERRCNT Reception error counter, 8-bit

GRCAN_STAT_TXERRCNT Transmission error counter, 8-bit

grcan_get_status() fails if the user pointer is NULL.

12.8. CAN bus transfers

12.8.1. Data structures

The struct grcan_canmsg type is used for GRCAN when transmitting and receiving CAN messages. For GR-
CANFD the struct grcan_canfdmsg type is used instead. The structure describes the drivers view of a CAN mes-
sage. See the transmission and reception section for more information.

struct grcan_canmsg {
 char extended;
 char rtr;
 char unused;
 unsigned char len;
 unsigned char data[8];
 unsigned int id;
};

Table 12.15. struct grcan_canfdmsg member description

Member Description

extended Indicates whether the CAN message has 29 or 11 bits ID tag. Extended or Stan-
dard frame.

rtr Remote Transmission Request bit.

len Length of data.

data CAN message data, data[0] is the most significant byte – the first byte.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 110

Member Description

id The ID field of the CAN message. An extended frame has 29 bits whereas a stan-
dard frame has only 11-bits. The most significant bits are not used.

struct grcan_canfdmsg {
 uint8_t extended;
 uint8_t rtr;
 uint8_t fdopts;
 uint8_t len;
 uint32_t id;
 union {
 uint64_t dwords[8];
 uint8_t bytes[64];
 } data;
};

Table 12.16. struct grcan_canmsg member description

Member Description

extended Indicates whether the CAN message has 29 or 11 bits ID tag. Extended or Stan-
dard frame.

rtr Remote Transmission Request bit.

fdopts FD options. Bit1: 1=Switch bit rate. bit2: 1=FD frame.

len Length of data.

id The ID field of the CAN message. An extended frame has 29 bits whereas a stan-
dard frame has only 11-bits. The most significant bits are not used.

data CAN message data, data[0] is the most significant byte/word – the first byte

12.8.2. Transmission

Messages are transmitted using the grcan_write() function for GRCAN cores and grcanfd_write()
for GRCANFD cores. It is possible to transmit multiple CAN messages in one call. An example transmission is
shown below:

result = grcan_write(d, &tx_msgs[0], msgcnt);

On success the number of CAN messages transmitted is returned and on failure a GRCAN_RET_ value is returned.
The parameter tx_msgs points to the beginning of a struct grcan_canmsg structure which includes data, length
and transmission parameters. The last function parameter specifies the total number of CAN messages to be trans-
mitted. For grcanfd_write() the parameter tx_msgs points to the beginning of a struct grcan_canfdmsg
instead.

The transmit operation is non-blocking: grcan_write()/grcanfd_write() will return immediately with
a return value indicating the number CAN messages scheduled.

Each message has an individual set of parameters controlled by the struct grcan_canmsg or struct grcan_canfdmsg
type.

The user is responsible for checking the number of messages actually sent when in non-blocking mode. A 3
message transmission requests may end up in only 2 transmitted messages for example.

Table 12.17. grcan_write function declaration

Proto int grcan_write(struct grcan_priv *d, struct grcan_canmsg *msg,
size_t count)

About Transmit CAN messages

Multiple CAN messages can be transmitted in one call.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 111

msg [IN] PointerParam

First CAN messages to transmit

count [IN] IntegerParam

Total number of CAN messages to transmit.

int. Status

Value Description

>=0 Number of CAN messages transmitted. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter is less than one or the msg pa-
rameter is NULL.

GRCAN_RET_NOTSTARTED Driver is not in started mode or device is configured as silent. Noth-
ing done.

GRCAN_RET_BUSOFF A write was interrupted by a bus-off error. Device has left started
mode.

Return

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

Table 12.18. grcanfd_write function declaration

Proto int grcanfd_write(struct grcan_priv *d, struct grcan_canfdmsg *msg,
size_t count)

About Transmit CAN-FD messages

Multiple CAN messages can be transmitted in one call.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

msg [IN] PointerParam

First CAN messages to transmit

count [IN] IntegerParam

Total number of CAN messages to transmit.

int. Status

Value Description

>=0 Number of CAN messages transmitted. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter is less than one or the msg pa-
rameter is NULL.

GRCAN_RET_NOTSTARTED Driver is not in started mode or device is configured as silent. Noth-
ing done.

GRCAN_RET_BUSOFF A write was interrupted by a bus-off error. Device has left started
mode.

Return

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

12.8.3. Reception

CAN messages are received using the grcan_read() function for GRCAN and grcanfd_read() for GR-
CANFD. An example is shown below:

 enum { NUM_MSG = 5 };
 struct grcan_canmsg rx_msgs[NUM_MSG];

 len = grcan_read(d, &rx_msgs[0], NUM_MSG);

The requested number of CAN messages to be read is given in the third argument and messages are stored in
rx_msgs.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 112

The actual number of CAN messages received is returned by the function on success. The function will fail and
return a GRCAN_RET_ value if a NULL buffer pointer is passed, buffer length is invalid or if the CAN core is
not started.

The receive operation is non-blocking: the function will return immediately with the number of messages received.
If no message was available then 0 is returned.

Table 12.19. grcan_read function declaration

Proto int grcan_read(struct grcan_priv *d, struct grcan_canmsg *msg,
size_t count)

About Receive CAN messages

Multiple CAN messages can be received in one call.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

msg [IN] PointerParam

Buffer for received messages

count [IN] IntegerParam

Number of CAN messages to receive.

int. Status

Value Description

>=0 Number of CAN messages received. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter is less than one or the msg pa-
rameter is NULL.

GRCAN_RET_NOTSTARTED Driver is not in started mode. Nothing done.

GRCAN_RET_BUSOFF A read was interrupted by a bus-off error. Device has left started
mode.

Return

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB Error.

Table 12.20. grcanfd_read function declaration

Proto int grcanfd_read(struct grcan_priv *d, struct grcan_canfdmsg *msg,
size_t count)

About Receive CAN-FD messages

Multiple CAN messages can be received in one call.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

msg [IN] PointerParam

Buffer for received messages

count [IN] IntegerParam

Number of CAN messages to receive.

int. Status

Value Description

>=0 Number of CAN messages received. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter is less than one or the msg pa-
rameter is NULL.

Return

GRCAN_RET_NOTSTARTED Driver is not in started mode. Nothing done.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 113

GRCAN_RET_BUSOFF A read was interrupted by a bus-off error. Device has left started
mode.

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB Error.

12.8.4. Bus-off recovery

If either grcan_write()/grcanfd_write() or grcan_read()/grcanfd_read() returns
GRCAN_RET_BUSOFF, then a bus-off condition was detected and the driver has entered STATE_BUSOFF mode.
To continue using the driver, the user shall call grcan_stop() followed by grcan_start() to re-enter
started mode.

12.8.5. AHB error recovery

Similar to the bus-off condition, an AHB error condition can be caused by the GRCAN DMA. The driver will
enter STATE_AHBERR and the recovery procedure is the same as for bus-off.

12.9. Interrupt API

The GRCAN driver has its own interrupt service routine which may be engaged when the driver is in the started
state. The main purpose of this ISR is to perform error-handling and to make sure the driver has an up-to-date view
of bus errors. It also handles error conditions, statistics and sometimes transitions the driver out from the started
the state. Actual CAN message RX and TX is done with DMA and is not controlled by the ISR.

The function grcan_set_isr() can be used to install a custom function which is called from the GRCAN driver ISR.
A call to the callback will be done from the ISR context. Note that GRCAN driver functions should not be called
from this callback since it may conflict with concurrent calls in non-interrupt context.

Table 12.21. grcan_set_isr function declaration

Proto void grcan_set_isr(struct grcan_priv *d, int (*isr)(struct
grcan_priv *priv, void *data), void *data)

About Set user Interrupt Service Routine (ISR) callback function

The isr parameter is the user callback function to be called from the GRCAN ISR.

Only one callback can be registered at a time. A second call to grcan_set_isr replaces the previ-
ously registered callback.

If isr is NULL, then no user callback will be called from the driver ISR.

Parameter priv of the callback is the driver device handle.

The data parameter is passed to the user callback isr. It may be NULL.

d [IN] pointerParam

Device handle returned by grcan_open.

isr [IN] pointerParam

User callback function as described above. If isr is NULL then the callback is uninstalled, but the
GRCAN ISR is still active.

data [IN] pointerParam

Data to pass to the user callback. It may be NULL.

Return None.

The GRCAN driver functions are in general not re-entrant for the same device context (struct grcan_priv). That is
a driver design choice to avoid extensive locking to protect driver software state.

12.9.1. Interrupt generation

CAN RX and TX interrupts are not generated by default. The user can control generation of RX and TX interrupts
using the functions grcan_txint and grcan_rxint.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 114

Table 12.22. grcan_txint function declaration

Proto int grcan_txint(struct grcan_priv *d, int n)

About Generate TX interrupt

The parameter n specifies which events generate CAN TX interrupts:

• 0: never (default)
• 1: every CAN message transmitted
• -1: When all messages have been transmitted

d [IN] PointerParam

Device identifier. Returned by grcan_open.

n [IN] IntegerParam

Specifies condition for generating TX interrupt.

Return int. 0

Table 12.23. grcan_rxint function declaration

Proto int grcan_rxint(struct grcan_priv *d, int n)

About Generate RX interrupt

The parameter n specifies which events generate CAN RX interrupts:

• 0: never (default)
• 1: every CAN message transmitted
• -1: When RX buffer is full

d [IN] PointerParam

Device identifier. Returned by grcan_open.

n [IN] IntegerParam

Specifies condition for generating RX interrupt.

Return int. 0

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 115

13. UART driver

13.1. Introduction

This section describes the driver used to control the APBUART devices. The driver supports operation in interrupt
or non-interrupt mode.

All supported commands and their data structures are defined in the UART driver's header file drv/apbuart.h.

13.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 13.1. Driver registration functions

Registration method Function

Automatic registration apbuart_autoinit()

Register one device apbuart_register()

Register many devices apbuart_init()

13.3. Opening and closing device

An APBUART device must first be opened and configured before any operations can be performed using the
driver. The number of devices registered to the driver can be retrieved using apbuart_dev_count. A particular
device can be opened using apbuart_open and closed using apbuart_close. The functions are described
below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all APBUART devices on opening and closing.

During opening of an APBUART device the following steps are taken:

• APBUART device I/O registers are initialized, including disabling interrupts generation and disabling trans-
mitter and receiver.

• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the same device.

Table 13.2. apbuart_dev_count function declaration

Proto int apbuart_dev_count(void)

About Retrieve number of APBUART devices registered to the driver.

Return int. Number of APBUART devices registered in system, zero if none.

Table 13.3. apbuart_open function declaration

Proto struct apbuart_priv *apbuart_open(int dev_no)

About Open an APBUART device

The APBUART device is identified by index. The returned value is used as input argument to all
functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Must be equal to or greater than zero, and smaller than value returned
by apbuart_dev_count.

Pointer. Status and driver's internal device identification.Return

NULL Indicates failure to open device. Fails if device is already open or if dev_no is out of
range.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 116

Pointer APBUART device handle to use as input parameter to all device API functions for the
opened device.

Table 13.4. apbuart_close function declaration

Proto int apbuart_close(struct apbuart_priv *priv)

About Close an APBUART device

The transmitter and receiver are disabled.

d [IN] pointerParam

Device handle returned by apbuart_open.

int.

Value Description

DRV_OK Successfully closed device.

Return

others Device closed, but failed to unregister interrupt handler.

13.4. Status interface

APBUART status can be read by calling the apbuart_get_status function. It returns a copy of the UART
status register. The APBUART status register can be written with the function apbuart_set_status.

Table 13.5. apbuart_get_status function declaration

Proto uint32_t apbuart_get_status(struct apbuart_priv *priv)

About Read APBUART status register

d [IN] pointerParam

Device handler returned by apbuart_open.

Return uint32_t.

Copy of UART status register for device d

Register definitions for the APBUART status register are available in the file include/regs/ap-
buart-regs.h. The relevant defines are prefixed with APBUART_STATUS_.

Table 13.6. apbuart_set_status function declaration

Proto void apbuart_set_status(struct apbuart_priv *priv, uint32_t status)

About Set APBUART status register

Parameter status is written to the APBUART status register.

d [IN] pointerParam

Device handle returned by spi_open.

status [IN] uint32_tParam

Value to write to the status register.

Register definitions for the APBUART status register are available in the file include/regs/ap-
buart-regs.h. The relevant defines are prefixed with APBUART_STATUS_.

Return None.

13.5. Configuration interface

After opening the device, but before performing transfers, the UART device must be configured. The UART driver
supports configuring baud, parity, flow control and interrupt operation mode individually for each device. UART
receiver and transmitter is enabled when the device is configured with apbuart_config.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 117

The baud, and parity and flow control configuration parameters are applicable to both non-interrupt and interrupt
operation mode. Transmit and receive buffer configuration is only applicable when operating in interrupt mode,
as described in Section 13.7.

A device can only be configured once after it is opened. If the UART device needs reconfiguration, the device
must first be closed, and then opened and then configured again. An attempt to reconfigure an already configured
device will result in a defined return value from apbuart_config

struct apbuart_config {
 int baud;
 int parity;
 int mode;
 int flow;
 uint8_t *txfifobuf;
 int txfifobuflen;
 uint8_t *rxfifobuf;
 int rxfifobuflen;
};

Table 13.7. apbuart_config data structure declaration

baud UART baud, bits per second

Selects parity mode. Must be one of the following values:

Value Description

UART_PAR_NONE Disable parity bit generation and checking.

UART_PAR_EVEN Enable even parity bit generation and checking.

parity

UART_PAR_ODD Enable odd parity bit generation and checking.

Selects between interrupt or non-interrupt operation mode. Must be one of the following values:

Value Description

UART_MODE_NONINT Non-interrupt operation mode

mode

UART_MODE_INT Interrupt operation mode

Enables or disabled flow control. Must be one of the following values:

Value Description

0 Flow control disabled

flow

1 Flow control enabled

txfifobuf Buffer area for TX SW FIFO

txfifobuflen Number of bytes allocated for TX SW FIFO

rxfifobuf Buffer area for RX SW FIFO

rxfifobuflen Number of bytes allocated for RX SW FIFO

Table 13.8. apbuart_config function declaration

Proto int apbuart_config(struct apbuart_priv *priv, struct apbuart_config
*cfg)

About Configure APBUART device.

The cfg input layout is described by the apbuart_config data structure in Table 13.7. If interrupt
mode is configured, then the driver will register an ISR with help of OSAL.

If the device has already been configured, this function returns DRV_BUSY and no hardware or soft-
ware state is changed. Operation on the device can continue as if the function was never called.

d [IN] pointerParam

Device handle returned by apbuart_open.

cfg [IN] pointerParam

Pointer to configuration structure. (See Table 13.7.)

Return int.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 118

Value Description

DRV_OK Device configured successfully.

DRV_BUSY Device has already been configured.

others Failed to register UART ISR: device configuration aborted.

Notes A UART device must be configured with apbuart_config before performing transfers using the
device.

13.6. Non-interrupt interface

One receive and one transmit function is available when operating in non-interrupt mode. Both are non-blocking
and operate on one character per function call. apbuart_outbyte is used to transmit one byte of data and
apbuart_inbyte is used to receive one byte. If the hardware transmit or receive FIFO is not ready then no
data is transferred and the user is informed.

As the APBUART implements a hardware transmit FIFO, a successful return from apbuart_outbyte does
not guarantee that the data has been yet been sent on the medium. The apbuart_get_status service can be
used to determine if all scheduled transmit bytes have left the APBUART controller.

For high performance transfers, or large transfers, the UART driver should be operated in interrupt mode.

The example below opens and configures the first APBUART device in non-interrupt mode. Then one data byte
is written and one is read.

int apbuart_nonint_example()
{
 struct apbuart_priv *device;
 int count;
 int i;
 int data;
 struct apbuart_config cfg;

 count = apbuart_dev_count();
 printf("%d APBUART devices present\n", count);

 device = apbuart_open(0);
 if (!device)
 return -1; /* Failure */

 cfg.baud = 38400;
 cfg.parity = UART_PAR_NONE;
 cfg.flow = 0;
 cfg.mode = UART_MODE_NONINT;
 /* SW FIFO parameters are not used in non-interrupt mode. */
 apbuart_config(device, &cfg);

 i = 0;
 do {
 i = apbuart_outbyte(device, 'a');
 } while (1 != i);

 do {
 data = apbuart_inbyte(device);
 } while (data < 0);
 printf("Received 0x%x\n", data);

 apbuart_close(device);
 return 0; /* success */
}

Table 13.9. apbuart_outbyte function declaration

Proto int apbuart_outbyte(struct apbuart_priv *priv, uint8_t data)

About Send one data byte

The function will try to send one data byte on the UART. The operation is non-blocking and returns 0
if the transmit FIFO is full.

d [IN] pointerParam

Device handle returned by apbuart_open.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 119

data [IN] uint8_tParam

Data byte to send

int. Number of bytes copied to transmit FIFO.

0 The data byte was not sent.

Return

1 The data byte was sent.

Notes Transfer properties are set with the function apbuart_config.

Table 13.10. apbuart_inbyte function declaration

Proto int apbuart_inbyte(struct apbuart_priv *priv)

About Receive one data byte

The function tries to receive one byte of data from the UART receive FIFO. The operation is non-
blocking and returns -1 if the transmit FIFO is empty.

d [IN] pointerParam

Device handle returned by apbuart_open.

Return int. The received data byte, as uint8_t casted to an int. If no data byte was available then -1 is re-
turned.

Notes Transfer properties are set with the function apbuart_config.

13.7. Interrupt interface

Multiple bytes can be handled at once when transmitting and receiving with the UART driver in interrupt mode.
An interrupt service routine, provided by the driver, is responsible for maintaining the hardware FIFOs.

Sending data is done by calling apbuart_write with a pointer to the data to be transmitted together with a
count of bytes to send. The number of bytes accepted by the driver is returned by the function. The function does
not block.

Receiving data is done by calling apbuart_read with a pointer to the destination data location and the max-
imum number of bytes to send. The number of bytes written to the destination is returned by the function. The
function does not block.

The function apbuart_drain can be used to wait for the UART hardware to finish it's transmission.

The example below opens and configures the first APBUART device in interrupt mode. Then 4 data bytes are
written and 4 are read.

int apbuart_int_example()
{
 static uint8_t txfifobuf[32];
 static uint8_t rxfifobuf[32];
 uint8_t userdata[4] = {'A', 'B', 'C', 'D'};
 struct apbuart_priv *device;
 int count;
 int i, j;
 struct apbuart_config cfg;

 device = apbuart_open(0);
 if (!device)
 return -1; /* Failure */

 cfg.baud = 38400;
 cfg.parity = UART_PAR_NONE;
 cfg.flow = 0;
 cfg.mode = UART_MODE_INT;
 cfg.txfifobuflen = 32;
 cfg.txfifobuf = txfifobuf;
 cfg.rxfifobuflen = 32;
 cfg.rxfifobuf = rxfifobuf;
 apbuart_config(device, &cfg);

 i = apbuart_write(device, userdata, 4);
 j = apbuart_read(device, userdata, 4);

 printf("Sent %i bytes, received %i bytes\n", i, j);

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 120

 apbuart_close(device);
 return 0; /* success */
}

Table 13.11. apbuart_write function declaration

Proto int apbuart_write(struct apbuart_priv *priv, const uint8_t *buf, int
count)

About Send zero or more data bytes

This function sends up to count data bytes from buf to the UART associated with the device handle
d. Number of bytes actually sent can be less than count if the hardware and software TX FIFOs be-
come full. The operation is non-blocking.

d [IN] pointerParam

Device handle returned by apbuart_open.

buf [IN] pointerParam

Data bytes to send

count [IN] IntegerParam

Number of bytes to send

Return int. Number of bytes actually sent, which may be less than count if FIFOs become full.

Table 13.12. apbuart_read function declaration

Proto int apbuart_read(struct apbuart_priv *priv, uint8_t *buf, int count)

About Receive zero or more data bytes

This function receives up to count bytes from the UARTs associated with the device handle d and
stores the data at location buf. Number of bytes actually received can be less than count. The oper-
ation is non-blocking.

d [IN] pointerParam

Device handle returned by apbuart_open.

buf [IN] pointerParam

Receive buffer

count [IN] IntegerParam

Number of bytes to receive

Return int. Number of bytes actually received, which may be less than count if FIFOs become empty.

Table 13.13. apbuart_drain function declaration

Proto int apbuart_drain(struct apbuart_priv *priv)

About Drain UART transmission

This function waits for UART hardware transmission to finish.

d [IN] pointerParam

Device handle returned by apbuart_open.

Return DRV_OK. Operation was successfull.

13.8. Restrictions

The UART driver is designed to operate each opened device in one task only. One or more APBUART devices
can be opened and operated by one task, but multiple tasks can not operate on the same APBUART device.

The following functions are always allowed to be called from any task:

• apbuart_dev_count

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 121

• apbuart_open

As the UART driver implements its own ISR, it does not support custom user ISR:s.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 122

14. SPI driver

14.1. Introduction

This section describes the driver used to control the GRLIB SPICTRL device for SPI master operation.

14.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 14.1. Driver registration functions

Registration method Function

Automatic registration spi_autoinit()

Register one device spi_register()

Register many devices spi_init()

14.3. Opening and closing device

A SPICTRL device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using spi_dev_count. A particular device can be opened
using spi_open and closed spi_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all SPICTRL devices on opening and closing.

During opening of a SPICTRL device the following steps are taken:

• SPICTRL device I/O registers are initialized, including clearing the event register and masking all interrupts.
• The core is disabled (to allow configuration).
• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the same device.

Table 14.2. spi_dev_count function declaration

Proto int spi_dev_count(void)

About Retrieve number of SPICTRL devices registered to the driver.

Return int. Number of SPICTRL devices registered in system, zero if none.

Table 14.3. spi_open function declaration

Proto struct spi_priv *spi_open(int dev_no)

About Opens a SPICTRL device. The SPICTRL device is identified by index. The returned value is used as
input argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the order registered to the driver. Must be equal
to or greater than zero, and smaller than that returned by spi_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device is already open, or invalid dev_no pa-
rameter.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which SPICTRL device.

Table 14.4. spi_close function declaration

Proto int spi_close(struct spi_priv *priv)

About Closes a previously opened device.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 123

d [IN] pointerParam

Device identifier. Returned from spi_open.

int.

Value Description

Return

DRV_OK Successfully closed device.

14.4. Status service

SPI controller event status can be read by calling the spi_get_event function. It returns a copy of the SPI
controller event register which can be used for determining if a transfer has completed or if more data shall be
written to or read. Bits in the event register can be cleared by calling spi_clear_event.

Table 14.5. spi_get_event function declaration

Proto uint32_t spi_get_event(struct spi_priv *priv)

About Get event register value

Bits in the event register can be cleared by calling spi_clear_event.

d [IN] pointerParam

Device handle returned by spi_open.

Return uint32_t.

Current value of the SPI event register.

Register definitions for the SPICTRL event register are available in the file include/regs/
spictrl-regs.h. The relevant defines are prefixed with SPICTRL_EVENT_.

Table 14.6. spi_clear_event function declaration

Proto void spi_clear_event(struct spi_priv *priv, uint32_t event)

About Clear bits in the event register

d [IN] pointerParam

Device handle returned by spi_open.

event [IN] uint32_tParam

Mask of bits to clear in the SPI event register.

Register definitions for the SPICTRL event register are available in the file include/regs/
spictrl-regs.h. The relevant defines are prefixed with SPICTRL_EVENT_.

Return None.

14.5. Transfer Configuration

The SPI driver allows for configuring the SPI controller settings between transfers. This is useful when multiple
SPI slaves are attached to the same SPICTRL device, and the slaves have different timing and transfer require-
ments. In this case, one configuration record can be associated with each slave device.

Interrupts can be enabled for transfers by configuring the SPI controller event mask register via the configuration
service. This allows for user notification of when the transmit queue is empty or when the receive queue is non-
empty.

The driver supports reconfiguration of the SPI controller at any time between calls to spi_stop and
spi_start.

struct spi_config {
 unsigned int freq; /* SPI clock frequency, Hz */
 int mode; /* SPI mode */
 enum spi_wordlen wordlen; /* SPI Word length */
 int intmask; /* SPI controller interrupt mask */
 int msb_first; /* If true then send MSb first, else LSb. */

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 124

 int sync; /* Synchronous TX/RX mode */
 uint32_t aslave; /* Automatic slave select, active high mask */
 int clock_gap; /* MODE.CG */
 int tac; /* Toggle automatic slave select during clock gap */
 int aseldel; /* Automatic slave select delay */
 int igsel; /* Ignore SPISEL input */
};

Table 14.7. spi_config data structure declaration

freq The SPI clock frequency in Hz. Used to calculate values for the hardware registers controlling
SPICLK.

mode SPI mode 0, 1, 2, or 3

Word length. Must be one of the following values:

Value Description

SPI_WORDLEN_4 4 bit word length

SPI_WORDLEN_5 5 bit word length

SPI_WORDLEN_6 6 bit word length

SPI_WORDLEN_7 7 bit word length

SPI_WORDLEN_8 8 bit word length

SPI_WORDLEN_9 9 bit word length

SPI_WORDLEN_10 10 bit word length

SPI_WORDLEN_11 11 bit word length

SPI_WORDLEN_12 12 bit word length

SPI_WORDLEN_13 13 bit word length

SPI_WORDLEN_14 14 bit word length

SPI_WORDLEN_15 15 bit word length

SPI_WORDLEN_16 16 bit word length

wordlen

SPI_WORDLEN_32 32 bit word length

intmask Interrupt mask.

This field is written to the SPI controller Mask register when spi_config is called.

Register definitions for the SPI controller Mask register are available in the file in-
clude/regs/spictrl-regs.h. The relevant defines are prefixed with SPICTRL_MASK_.

msb_first If true then send MSb first, else LSb. This controls the SPI controller Mode register bit named Re-
verse data (REV).

Synchronous TX/RX mode.

Value Description

0 Allow RX to overrun.

sync

1 Prevent RX from overrunning.

Automatic slave select, active high mask

Value Description

0 Disable automatic slave select.

aslave

mask This value is written, inverted, to the SPI controller automatic slave select
register. In addition, automatic slave select (ASEL) will be enabled in the
SPI controller mode register.

clock_gap Number of SCK clock cycles to insert between consecutive words. A value between 0 and 31.

Toggle automatic slave select during clock gap

Value Description

tac

0 Set MODE.TAC='0'

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 125

1 Set MODE.TAC='1'

aseldel Automatic slave select delay.

A value in the range 0..3 which is written to MODE.ASELDEL.

Ignore SPISEL input

Value Description

0 Set MODE.IGSEL='0'

igsel

1 Set MODE.IGSEL='1'

Table 14.8. spi_config function declaration

Proto int spi_config(struct spi_priv *priv, struct spi_config *cfg)

About Set transfer configuration in hardware.

The cfg input layout is described by the spi_config data structure in Table 14.7.

d [IN] pointerParam

Device identifier. Returned from spi_open.

cfg [IN] pointerParam

Address to where the driver will read the transfer configuration from. (See Table 14.7.)

int.

Value Description

DRV_OK Successfully configured device.

DRV_FAIL Invalid word length or frequency field in cfg. Device not configured.

Return

DRV_STARTED Device is in started mode. Device not configured.

A default configuration is available in the symbol SPI_CONFIG_DEFAULT:

 extern const struct spi_config SPI_CONFIG_DEFAULT;

It can be used to derive default parameters.

14.6. Transfer Interface

Two functions are available for performing SPI transfers. The spi_write32 function writes words to the hard-
ware transmit queue, and spi_read32 reads words from the hardware receive queue. These functions never
block and may return before the requested number of words have been processed. The transfer parameters set by
the last call to spi_config are used.

For the user to determine status of the transfer queues during transfers, the spi_status service can be used to
read out the event register. Transmit queue status is obtained by observing the Not full (NF) and Last character
(LT) flags. Likewise, existence of receive data is determined by testing bits Not empty (NE). In addition, the bit
Transfer in progress (TIP) can be used to determine if a transfer has completed.

For high performance transfers, or large transfers, using a custom interrupt service routine can come in handy. It
can be responsible for supplying the transmit queue with data and for reading out received data to a user receive
buffer. When the transfer is considered complete, the user may be informed by for example unblocking it with a
semaphore or an event. As the driver usage varies heavily with the application and the connected SPI slaves, no
default interrupt service routine is provided by the SPI driver.

If the user has activated interrupts at configuration, the user must install an interrupt handler prior to calling
spi_write32 and spi_read32.

Before the transfer functions can be used, the core must be configured with spi_config and enabled with
spi_start. At end of transfers, the spi_stop function can be called to disabled the SPI core. Disabling the
core is only needed if it shall be reconfigured.

The example below opens, configures and enables the first SPICTRL device. Then 8 words are written and 8
words are read.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 126

 int spi_transfers(void)
 {
 struct spi_priv *device;
 int i;
 int ret;
 struct spi_config cfg;
 uint32_t txbuf[8];
 uint32_t rxbuf[8];

 ret = spi_dev_count();
 printf("%d SPICTRL devices present\n", ret);

 device = spi_open(0);
 if (!device) {
 return -1; /* Failure */
 }

 /* Base config on sane default */
 cfg = SPI_CONFIG_DEFAULT;
 cfg.freq = 125 * 1000;
 cfg.mode = 1;
 cfg.wordlen = SPI_WORDLEN_8;
 ret = spi_config(device, &cfg);
 if (DRV_OK != ret) {
 return -1;
 }

 spi_start();
 i = 0;
 do {
 i += spi_write32(device, &txbuf[i], 8-i);
 } while (i<8);
 i = 0;
 do {
 i += spi_read32(device, &rxbuf[i], 8-i);
 } while (i<8);
 spi_stop();

 spi_close(device);
 return 0; /* success */
 }

Table 14.9. spi_start function declaration

Proto int spi_start(struct spi_priv *priv)

About Start SPI device. The SPICTRL core is enabled.

d [IN] pointerParam

Device handle returned by spi_open.

int.

Value Description

DRV_OK Device was started by the function call.

Return

DRV_STARTED Device already in started mode. Nothing performed.

Table 14.10. spi_stop function declaration

Proto int spi_stop(struct spi_priv *priv)

About Stop SPI device. The SPICTRL core is disabled.

d [IN] pointerParam

Device handle returned by spi_open.

int.

Value Description

Return

DRV_OK Success

Table 14.11. spi_write32 function declaration

Proto int spi_write32(struct spi_priv *priv, const uint32_t *txbuf, int
count)

About Write words to SPICTRL transmit queue.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 127

The function tries to write count words of the configured word length to the transmit queue. Trans-
mission data is indicated by txbuf. Each word is represented by an uint32_t, regardless of config-
ured word length. Words in txbuf shall be represented with its LSB at bit 0.

If txbuf is NULL then zero valued bits will be shifted out on MOSI. The function returns as soon as
the transmit queue is full or the requested number of words have been installed.

This function never blocks.

Transfer properties are set with the the function spi_config.

d [IN] pointerParam

Device handle returned by spi_open.

txbuf [IN] pointerParam

Transmit data. If txbuf is NULL then zero valued words are shifted out.

count [IN] IntegerParam

Number of words to transmit

Return int. Number of words written to transmit queue, zero if none.

Table 14.12. spi_read32 function declaration

Proto int spi_read32(struct spi_priv *priv, uint32_t *rxbuf, int count)

About Read words from SPICTRL receive queue.

The function tries to read count words of the configured word length from the receive queue. Re-
ceived data is written to the location rxbuf. Each word is represented by an uint32_t, regardless of
configured word length. Words stored in rxbuf are represented with its LSB at bit 0.

If rxbuf is NULL then the MISO bits are not stored. The function returns as soon as the receive
queue is empty or the requested number of words have been read.

This function never blocks.

Transfer properties are set with the the function spi_config.

d [IN] pointerParam

Device handle returned by spi_open.

rxbuf [OUT] pointerParam

Received data. Can be NULL to ignore shifted in data.

count [IN] IntegerParam

Number of words to receive

Return int. Number of words read from receive queue, zero if none.

14.7. Synchronous TX/RX mode

The SPI configuration option cfg.sync is used to determine the behaviour when an spi_write32 operation
would cause the SPI receive queue to become full. The sync option is set and remembered when the SPI driver
is configured using spi_config.

When cfg.sync=0, calls to spi_write32 will write words to the SPI transmit queue as long as there is
room in the SPI transmit queue. The receive queue may overrun. It is up to the driver user to empty the SPI
receive queue. Typically this involves user knowledge of how many SPI words are outstanding and restricts calling
spi_write32 to when it will not cause the receive queue to overrun. One scenario is when the SPI slave is an
output device, only capable of receiving commands but never sends anything back to the SPI master.

If cfg.sync=1, then calls to spi_write32 will only write words to the SPI transmit queue when it is guar-
anteed that the receive queue will not overrun. This relaxes the restrictions on how calls to spi_write32 and

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 128

spi_read32 can be combined. It means that the user does not have to maintain the number of outstanding words
and the receive queue will never overrun.

For both settings of the cfg.sync option, the spi_write32 function writes at most count words to the
transmit queue and returns the number of words actually written. The difference is when spi_write32 is al-
lowed to write to the queue.

14.8. Slave select

When performing SPI transfers, the user may want to select and deselect SPI slaves. This can be done with the the
function spi_slave_select. Another option is to use a dedicated GPIO signal.

Table 14.13. spi_slave_select function declaration

Proto int spi_slave_select(struct spi_priv *priv, uint32_t mask)

About Select SPI slave

This function writes the inverted value of slavemask parameter to the SPICTRL SLVSEL register.
This function shall not be called when a transfer is in progress.

d [IN] pointerParam

Device identifier. Returned from spi_open.

mask [IN] uint32_tParam

Slave mask

int.

Value Description

DRV_OK Success

DRV_NOIMPL Slave select not available in SPICTRL or mask out of range.

Return

DRV_WOULDBLOCK Transfer in progress

The driver functions spi_read32() and spi_write32() do not automatically perform slave select.

14.9. Restrictions

The SPI driver is designed to operate each opened device in one task only. One or more SPI devices can be opened
and operated by one task, but multiple tasks can not operate on the same SPI device.

The following functions are always allowed to be called from any task:

• spi_dev_count
• spi_open

The following functions are allowed to be called from an ISR.

• spi_get_event
• spi_clear_event

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 129

15. I2C master driver

15.1. Introduction

This section describes the driver used to control the GRLIB I2CMST device for I2C master operation.

15.1.1. User Interface

This section covers how the driver can be interfaced to an application to control the I2CMST hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with i2cmst_. All driver
functions take a device handle returned by i2cmst_open as the first parameter. All supported commands and
their data structures are defined in the driver's header file drv/i2cmst.h.

15.1.2. Features

• All driver functions are non-blocking.
• Optionally interrupt driven
• User supplies I2C requests to the driver by lists of of packets.
• Automatic retry operation

15.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 15.1. Driver registration functions

Registration method Function

Automatic registration i2cmst_autoinit()

Register one device i2cmst_register()

Register many devices i2cmst_init()

15.3. Examples

Examples are available in the src/libdrv/examples directory in the BCC distribution.

15.4. Opening and closing device

A I2CMST device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using i2cmst_dev_count. A particular device can be opened
using i2cmst_open and closed i2cmst_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all I2CMST devices on opening and closing. It is assumed that at most one
thread operates on one I2CMST device at a time.

During opening of a I2CMST device the following steps are taken:

• The device is marked opened to protect the caller from other users of the same device.
• Internal data structures are initialized.
• The driver is set to stopped operation mode.

The example below prints the number of I2CMST devices to screen then opens and closes the first I2CMST device
present in the system.

int print_i2cmst_devices(void)
{
 struct i2cmst_priv *device;
 int count;

 count = i2cmst_dev_count();
 printf("%d I2CMST device(s) present\n", count);

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 130

 device = i2cmst_open(0);
 if (!device) {
 return -1; /* Failure */
 }

 i2cmst_close(device);
 return 0; /* success */
}

Table 15.2. i2cmst_dev_count function declaration

Proto int i2cmst_dev_count(void)

About Retrieve number of I2CMST devices registered to the driver.

Return int. Number of I2CMST devices registered in system, zero if none.

Table 15.3. i2cmst_open function declaration

Proto struct i2cmst_priv *i2cmst_open(int dev_no)

About Opens a I2CMST device. The I2CMST device is identified by index. The returned value is used as in-
put argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by i2cmst_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which I2CMST device.

Table 15.4. i2cmst_close function declaration

Proto int i2cmst_close(struct i2cmst_priv *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from i2cmst_open.

Return int. DRV_OK

No device I/O registers are modified by the open and close functions.

15.5. Operation mode

The driver always operates in one of two modes: started or stopped,

In stopped mode, bus operation is disabled and the user is allowed to configure the device and driver. Interrupts
are never used in stopped mode.

In started mode, bus operations can be active. Functions for configuring the driver are not available in stopped
mode.

Only the functions i2cmst_start() and i2cmst_stop() changes the operation mode while the device is
open. The driver does not transfer between started and stopped by itself.

15.5.1. Starting and stopping

The i2cmst_start() function places the driver in started mode. Configuration set by previous driver function
calls are committed to hardware and statistics are cleared before started mode enters. It is necessary to enter started
mode to be able to generate transactions on the I2C bus.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 131

The function i2cmst_stop() makes the driver core leave the started mode and enter stopped mode. After
calling this function, further calls to i2cmst_request() will return DRV_BUSY and do not generate any side
effects. It is necessary to enter stopped mode to change operating parameters of the device such as bitrate, retries,
interrupt mode and address length The function will return DRV_BUSY if the driver is already stopped.

Function i2cmst_isstarted() is used to determine the driver operation mode.

Table 15.5. i2cmst_start function declaration

Proto int i2cmst_start(struct i2cmst_priv *priv)

About Start driver.

d [IN] pointerParam

Device handle returned by i2cmst_open.

int.

Value Description

DRV_OK Device was started by the function call.

Return

DRV_BUSY Device already in started mode. Nothing performed.

Table 15.6. i2cmst_stop function declaration

Proto int i2cmst_stop(struct i2cmst_priv *priv)

About Stop driver.

d [IN] pointerParam

Device handle returned by i2cmst_open.

int.

Value Description

DRV_OK Device was stopped by the function call.

Return

DRV_BUSY Device already in stopped mode. Nothing performed.

Table 15.7. i2cmst_isstarted function declaration

Proto int i2cmst_isstarted(struct i2cmst_priv *d)

About Get current I2CMST software running state

d [IN] PointerParam

Device identifier. Returned by i2cmst_open.

int. Status

Value Description

0 Stopped

Return

1 Started

15.6. Configuration

The driver is configured using function calls which are available only when in stopped operation mode. Return
value for most of the functions is DRV_OK for success and non-zero on failure.

15.6.1. Transaction retries

i2cmst_set_retries() configures the number of retries per transaction.

Table 15.8. i2cmst_set_retries function declaration

Proto int i2cmst_set_retries(struct i2cmst_priv *d, int retries)

About Set number of retries per transaction

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 132

The function configures how many retry attempts to perform for each I2C transaction packet. If re-
tries is 0, then only one try is performed and no retries.

A retry is performed if arbitration is lost or on acknowledge error. For example on mult-master con-
gestion.

d [IN] pointerParam

Device handle returned by i2cmst_open.

retries [IN] IntegerParam

Number of retries

int.

Value Description

DRV_OK Success

DRV_BUSY Device in started mode. Nothing performed.

Return

DRV_INVAL Parameter retries is less than 0. Nothing performed.

15.6.2. Speed

The function i2cmst_set_speed() can be used to set the I2C bus bitrate. It takes a parameter in bit/s and
calculates the appropriate scaler register parameters. Commit to registers is performed the next time started mode
is entered.

Two constants are predefined in drv/i2cmst.h:

 enum {
 I2CMST_SPEED_STD = 100000, /* Standard speed (100 kbit/s) */
 I2CMST_SPEED_FAST = 400000, /* Fast speed (400 kbit/s) */
 };

Table 15.9. i2cmst_set_speed function declaration

Proto int i2cmst_set_speed(struct i2cmst_priv *d, int speed)

About Set I2C bus speed

The function configures speed in bit/s for bus accesses.

d [IN] pointerParam

Device handle returned by i2cmst_open.

speed [IN] IntegerParam

speed in bit/s

int.

Value Description

DRV_OK Success

DRV_BUSY Device in started mode. Nothing performed.

Return

DRV_INVAL Parameter speed is less than 0. Nothing performed.

15.6.3. Interrupt driven operation

The driver can operate in interrupt driven or non-interrupt driven mode. Both are non-blocking.

When operating in interrupt driven mode, all I2C transfer operations are triggered by interrupt requests from the
I2CMST device to the processor.

When interrupt driven mode is disabled, then the I2C bus operations are triggered by the user calling
i2cmst_request() or i2cmst_reclaim().

Table 15.10. i2cmst_set_interrupt_mode function declaration

Proto int i2cmst_set_interrupt_mode(struct i2cmst_priv *d, int enable)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 133

About Configure interrupt driven operation

d [IN] pointerParam

Device handle returned by i2cmst_open.

enable [IN] Integer

interrupt mode

Value Description

0 Disable interrupt driven operation

Param

1 Enable interrupt driven operation

int.

Value Description

DRV_OK Success

Return

DRV_BUSY Device in started mode. Nothing performed.

Notes In non-interrupt driven mode, the user needs to call i2cmst_request() or
i2cmst_reclaim() for I2C transactions to progress.

15.6.4. I2C address width

I2C address width of 7 and 10 bits is supported. i2cmst_set_ten_bit_addr() is used to configure address
width.

Table 15.11. i2cmst_set_ten_bit_addr function declaration

Proto int i2cmst_set_ten_bit_addr(struct i2cmst_priv *d, int enable)

About Set I2C address width

The function configures the I2C address width for all transactions.

d [IN] pointerParam

Device handle returned by i2cmst_open.

enable [IN] Integer

10 bit I2C address

Value Description

0 7 bit I2C address

Param

1 10 bit I2C address

int.

Value Description

DRV_OK Success

Return

DRV_BUSY Device in started mode. Nothing performed.

15.7. Driver statistics

The driver maintains driver statistics as described by the data structure struct i2cmst_stats:

struct i2cmst_stats {
 uint32_t packets_sent;
 uint32_t arbitration_lost;
 uint32_t packets_nack;
};

Table 15.12. i2cmst_stats data structure declaration

packets_sent Number of successful I2C transactions

arbitration_lost Number of arbitration lost events

packets_nack Number of acknowledge error events

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 134

i2cmst_get_stats() copies the driver's internal statistics to a user buffer. i2cmst_clr_stats() clears
the driver's collected statistics.

Table 15.13. i2cmst_get_stats function declaration

Proto int i2cmst_get_stats(struct i2cmst_priv *d, struct i2cmst_stats
*stats)

About Reads the current driver statistics collected from earlier events. The statistics are stored to the ad-
dress given by the second argument. The layout and content of the statistics are defined by the
i2cmst_stats data structure.

Note that the snapshot is taken without lock protection. As a consequence the statistics may not be
synchonized with each other. This could be caused if the function is interrupted by a the driver inter-
rupt. Calling this function when the driver is in stopped mode will always give consitent statistics.

d [IN] pointerParam

Device handle returned by i2cmst_open.

stats [OUT] pointerParam

A snapshot of the current driver statistics are copied to this user provided buffer.

Return None.

Table 15.14. i2cmst_clr_stats function declaration

Proto int i2cmst_clr_stats(struct i2cmst_priv *d)

About Resets statistic counters to 0.

d [IN] pointerParam

Device handle returned by i2cmst_open.

Return int. DRV_OK

15.8. I2C bus transfer

15.8.1. Data structures

15.8.1.1. Packet

struct i2cmst_packet is used by the application to describe I2C bus transfers. The structure is available
in drv/i2cmst.h and describes how the drivers shall perform a transfer. See the request and reclaim sections
for more information.

/* Driver representation of an I2C bus transfer */
struct i2cmst_packet {
 struct i2cmst_packet *next; /* Next packet in list */
 /* Options and status */
 uint32_t flags; /* Modifiers and status */
 int slave; /* Slave address */
 uint32_t addr; /* Use with I2CMST_FLAGS_ADDR */
 int length; /* Size of payload */
 uint8_t *payload; /* Read or write data */
};

Table 15.15. i2cmst_packet data structure declaration

next Pointer to the next packet in a list. NULL marks end of chain.

Transfer modifiers and status

Bits Description (prefixed I2CMST_FLAGS)

READ Set by user to perform a read (1) or write (0) transfer.

ADDR Set by user to specify that a I2C device specific location shall be
addressed. This bit qualifies the addr field.

flags

FINISHED Set by driver to indicate that it is done with the transfer packet

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 135

RETRIED Set by driver to indicate that the request was retried at least once
due to acknowledge or arbitration error.

ERR Set by driver to indicate that the maximum number of retries was
reached.

slave I2C address

addr I2C device local address. Qualified by the I2CMST_FLAGS_ADDR flag.

length Number of bytes in payload.

payload Data buffer for read or write transfer.

15.8.1.2. List

Packets are chained together on a single linked list, represented by struct i2cmst_list, when the user and
driver communicates. A packet list has a head and a tail node which points to the first and last packet on the
list respectively. Each packets next field points to the next packet in the list. An empty list is represented by a
struct i2cmst_list where both head and tail is NULL.

 struct i2cmst_list {
 struct i2cmst_packet *head; /* First packet in list */
 struct i2cmst_packet *tail; /* Last packet in list */
 };

15.8.2. Request

Transfers are generated using the i2cmst_request() function. It is possible to schedule multiple I2C transfer
requests in one call. An example is shown below:

 struct i2cmst_list mylist;
 struct i2cmst_packet wpkt = { 0 };
 struct i2cmst_packet rpkt = { 0 };
 uint8_t buf[2];

 /* Write the byte value 0xa to device at I2C address 0x70 */
 buf[0] = 0xa;
 wpkt.slave = 0x70;
 wpkt.payload = &buf[0];
 wpkt.next = &rpkt;

 /* Read a byte from device at I2C address 0x50 */
 rpkt.flags = I2CMST_FLAGS_READ;
 rpkt.slave = 0x50;
 rpkt.payload = &buf[1];

 mylist.head = &wpkt;
 mylist.tail = &rpkt;
 result = i2cmst_request(d, &mylist);

The transmit operation is non-blocking: i2cmst_request() will return immediately.

On success, the transfers are scheduled to the driver. The parameter mylist points to the list header (struct
i2cmst_list) which contains the individual requests.

Each request has an individual set of parameters controlled by the struct i2cmst_packet type.

The driver never copies user data, so the packet nodes and payload must be valid until they have been reclaimed
back from the driver. Packets must not be modified by the user while they are under control of the driver.

Table 15.16. i2cmst_request function declaration

Proto int i2cmst_request(struct i2cmst_priv *d, struct i2cmst_list *chain)

About Request I2C transfer

Multiple transfers can be scheduled in one call.

d [IN] PointerParam

Device identifier. Returned by i2cmst_open.

Param chain [IN] Pointer

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 136

List of struct packet

int. Status

DRV_OK Successfully scheduled requests

DRV_INVAL Invalid list

Return

DRV_BUSY Driver is not in started mode. Nothing done

15.8.3. Reclaim

I2C transfer requests are brought back to the user using the i2cmst_reclaim() function. An example is shown
below:

 int cnt = 0;

 /* Reclaim at least two packets */
 while (cnt < 2) {
 struct i2cmst_list mylist = { 0 };
 struct i2cmsg_packet *pkt;
 int result;

 result = i2cmst_reclaim(d, &mylist);
 if (DRV_OK != result) {
 continue;
]

 pkt = mylist.head;
 while (pkt) {
 /* Do something with the pkt */
 cnt++;
 pkt = pkt->next;
 }
 }

The actual number of transfer requests reclaimed can be calculated by iterating the list.

The reclaim operation is non-blocking: the function will return immediately with either an empty or populated list.

Table 15.17. i2cmst_reclaim function declaration

Proto int i2cmst_reclaim(struct i2cmst_priv *d, struct i2cmst_list *chain)

About Reclam I2C transfer requests back from the driver

Finished requests are put on chain. The user has ownership of the reclaimed packets of these pack-
ets and the driver will no longer reference them, including the payload.

d [IN] PointerParam

Device identifier. Returned by i2cmst_open.

chain [IN] PointerParam

List of struct packet reclaimed by the driver.

int. Status

DRV_OK At least one request was reclaimed

Return

DRV_WOULDBLOCK No request was reclaimed

15.9. Synchronous example

Single synchronous I2C transfers can be performed with the following example functions i2cwrite() and
i2cread().

 /* Write buf on I2C bus and return when done */
 int i2cwrite(
 struct i2cmst_priv *dev,
 int devaddr,
 uint8_t *buf,
 int length
)
 {

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 137

 return dosimple(dev, 0, devaddr, 0, buf, length);
 }

 /* Read from I2C bus to buf and return when done */
 int i2cread(
 struct i2cmst_priv *dev,
 int devaddr,
 uint8_t *buf,
 int length
)
 {
 return dosimple(dev, I2CMST_FLAGS_READ, devaddr, 0, buf, length);
 }

 /* Self-contained synchronous request and reclaim */
 int dosimple(
 struct i2cmst_priv *dev,
 int uflags,
 int devaddr,
 uint16_t memaddr,
 uint8_t *payload,
 int length
)
 {
 struct i2cmst_packet pkt;
 struct i2cmst_list pkts;
 int ret;
 pkt.next = NULL;
 pkt.flags = uflags;
 pkt.slave = devaddr;
 pkt.addr = memaddr;
 pkt.length = length;
 pkt.payload = payload;

 pkts.head = &pkt;
 pkts.tail = &pkt;
 i2cmst_request(dev, &pkts);
 if (ret) {
 return 1;
 }

 struct i2cmst_packet *ptr = NULL;
 while (ptr == NULL) {
 i2cmst_reclaim(dev, &pkts);
 ptr = pkts.head;
 }

 return ptr->flags & I2CMST_FLAGS_ERR;
 }

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 138

16. Timer driver

16.1. Introduction

This section describes the driver used to control the GPTIMER and GRTIMER devices. Each GPTIMER/GR-
TIMER device can host multiple subtimers. The timer driver allows for opening timer devices using the timer
device API. When a timer device is open, its subtimers can be opened using the subtimer API.

16.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 16.1. Driver registration functions

Registration method Function

Automatic registration timer_autoinit()

Register one device timer_register()

Register many devices timer_init()

16.3. Device interface

The device interface handles device level operations such as scaler and latch configuration.

16.3.1. Opening and closing device

A timer must first be opened before any operations can be performed using the driver. The number of timer devices
(GPTIMER/GRTIMER) registered to the driver can be retrieved using timer_dev_count. A particular timer
device can be opened using timer_open and closed using timer_close. The functions are described below.

An opened timer device can not be reopened unless it is closed first. When opening a device the device is marked
opened by the driver. This open and close operations are thread-safe by protecting from other threads by using
osal_ldstub from the OSAL.

During opening of a timer device the following steps are taken:

• Device I/O registers are initialized, including disabling timer latching.
• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the same device.

The timer device open operation does not affect the state of the device subtimers.

Table 16.2. timer_dev_count function declaration

Proto int timer_dev_count(void)

About Retrieve number of timer devices, GPTIMER or GRTIMER, registered to the driver.

Return int. Number of timer devices registered in system, zero if none.

Table 16.3. timer_open function declaration

Proto struct timer_priv *timer_open(int dev_no)

About Open a timer device

The device to open is identified by timer device index (dev_no). The returned value is a device han-
dle used as input argument to all functions operating on the timer device.

Timer device configuration and latch registers are cleared. Subtimers are not touched.

dev_no [IN] IntegerParam

Device identification number. Must be equal or greater than zero, and smaller than that returned by
timer_dev_count.

Return Pointer. Status and driver's internal subtimer identification.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 139

Value Description

NULL Indicates failure to open subtimer. Fails if subtimer is already open of if dev_no is out
of range.

Pointer Device handle used to access the timer device API functions.

Table 16.4. timer_close function declaration

Proto int timer_close(struct timer_priv *priv)

About Close a timer device
If any of the device subtimers are open, then they are closed. Timer device configuration register is
cleared.

priv [IN] pointerParam

Device handle returned by timer_open.

Return int. DRV_OK

16.3.2. Device control

The timer driver exports the timer device global registers to the user. Setter and getter function is defined for these
registers. For information on the registers available, see the component User's Manual.

Table 16.5. timer_set_scaler function declaration

Proto void timer_set_scaler(struct timer_priv *priv, uint32_t value)

About Set scaler value register

priv [IN] pointerParam

Device handle returned by timer_open.

value [IN] uint32_tParam

Value to write to the timer Scaler value register.

Return None.

Table 16.6. timer_set_scaler_reload function declaration

Proto void timer_set_scaler_reload(struct timer_priv *priv, uint32_t val-
ue)

About Set scaler_reload value register

priv [IN] pointerParam

Device handle returned by timer_open.

value [IN] uint32_tParam

Value to write to the timer Scaler reload value register.

Return None.

Table 16.7. timer_get_cfg function declaration

Proto uint32_t timer_get_cfg(struct timer_priv *priv)

About Get configuration register

priv [IN] pointerParam

Device handle returned by timer_open.

Return uint32_t.

Value read from timer Configuration register.

Register definitions for the timer Configuration register are available in the file include/regs/
gptimer-regs.h. The relevant defines are prefixed with GPTIMER_CFG_.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 140

Table 16.8. timer_set_cfg function declaration

Proto void timer_set_cfg(struct timer_priv *priv, uint32_t value)

About Set configuration register

priv [IN] pointerParam

Device handle returned by timer_open.

value [IN] uint32_tParam

Value to write to timer Configuration register.

Register definitions for the timer Configuration register are available in the file include/regs/
gptimer-regs.h. The relevant defines are prefixed with GPTIMER_CFG_.

Return None.

Table 16.9. timer_set_latch_cfg function declaration

Proto void timer_set_latch_cfg(struct timer_priv *priv, uint32_t value)

About Set timer latch configuration register

priv [IN] pointerParam

Device handle returned by timer_open.

value [IN] uint32_tParam

Value to write to the Timer latch configuration register.

Return None.

16.4. Subtimer interface

The subtimer API operates on individual subtimers of a timer device.

16.4.1. Opening and closing subtimer

A subtimer must be opened before any operations can be performed on it using the driver. The number of sub-
timers hosted by a timer device can be read from the timer device configuration register using timer_get_cfg.
A subtimer is opened using timer_sub_open and closed using timer_sub_close. The functions are de-
scribed below.

An opened subtimer can not be reopened unless it is closed first. When opening a subtimer the subtimer is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all subtimers on opening and closing.

During opening of a subtimer with timer_sub_open the following steps are taken:

No register initialization is performed by timer_sub_open.

• The device is marked opened to protect the caller from other users of the same device.

Table 16.10. timer_sub_open function declaration

Proto void *timer_sub_open(struct timer_priv *priv, int sub_no)

About Open a subtimer

Subtimer sub_no on device d is opened. No registers are affected. The returned value is used as in-
put argument to all functions operating on the subtimer.

priv [IN] pointerParam

Device handle returned by timer_open.

sub_no [IN] IntegerParam

Subtimer identification number.

Return Pointer. Status or subtimer handle

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 141

Value Description

NULL Indicates failure to open subtimer. Fails if subtimer is already open or index out of
range.

Others Subtimer handle to be used as input parameter to all other functions of the subtimer API.

Table 16.11. timer_sub_close function declaration

Proto int timer_sub_close(struct timer_priv *priv, int sub_no)

About Close a subtimer

No hardware registers are affected.

priv [IN] pointerParam

Device handle returned by timer_open.

sub_no [IN] IntegerParam

Subtimer identification number. Must be the same number as used in the call to timer_sub_open

int. Return code as indicated below.

Value Description

DRV_OK Success.

Return

DRV_NOTOPEN Subtimer sub_no was not open.

Notes A subtimer is closed by using the device handle and subtimer number. The subtimer handle is not in-
volved

16.4.2. Subtimer control

The timer driver exports the subtimer register space to the user by providing setter and getter functions. Full register
descriptions can be found in the component User's Manual.

The example below opens the second subtimer of the first timer device. Then it is started and then read.

int timer_example()
{
 const int SUBNO = 1;
 struct timer_priv *device;
 void *sub;
 int count;
 uint32_t val;

 count = timer_dev_count();
 printf("%d timer devices present\n", count);

 device = timer_open(0);
 if (NULL == device) {
 return -1; /* Failure */
 }
 sub = timer_sub_open(device, SUBNO);

 timer_set_reload(sub, 0xffff);
 timer_set_ctrl(sub, GPTIMER_CTRL_LD | GPTIMER_CTRL_RS | GPTIMER_CTRL_EN);
 val = timer_get_counter(sub);
 printf("Counter value is %u.\n", val);
 val = timer_get_counter(sub);
 printf("Counter value is %u.\n", val);

 timer_set_ctrl(sub, 0);
 timer_sub_close(device, SUBNO);
 timer_close(device);
 return 0; /* success */
}

Table 16.12. Subtimer getter function declarations

Proto uint32_t timer_get_counter(void *s)

uint32_t timer_get_reload(void *s)

uint32_t timer_get_ctrl(void *s)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 142

uint32_t timer_get_latch(void *s)

About Get subtimer counter value register.

Get subtimer reload value register.

Get subtimer control register.

Gets subtimer latch register.

The functions returns the value of the corresponding subtimer register.

s [IN] pointerParam

Subtimer handle returned by timer_sub_open.

Return uint32_t. Value read from register.

timer_get_counter returns subtimer counter value register.

timer_get_reload returns subtimer reload value register.

timer_get_ctrl returns subtimer control register. Register definitions for the subtimer control
register are available in the file include/regs/gptimer-regs.h. The relevant defines are
prefixed with GPTIMER_CTRL_.

timer_get_latch returns subtimer latch register.

Table 16.13. Subtimer setter function declarations

Proto void timer_set_reload(void *s, uint32_t value)

void timer_set_ctrl(void *s, uint32_t value)

About Set subtimer reload value register.

Set subtimer control register.

The function writes the corresponding subtimer register with value.

s [IN] pointerParam

Subtimer handle returned by timer_sub_open.

value [IN] uint32_tParam

Value to write to the corresponding register, according to the following:

For timer_set_reload, the subtimer reload value register is written.

For timer_set_ctrl, the subtimer control register is written. Register definitions for the sub-
timer control register are available in the file include/regs/gptimer-regs.h. The relevant
defines are prefixed with GPTIMER_CTRL_.

Return None.

16.4.3. Watchdog support

The timer driver has support functionality for operating a watchdog subtimer. A watchdog subtimer is opened and
started as any other subtimer, and should always be programmed to generate interrupt on underflow.

int watchdog_example()
{
 const int WATCHDOG_SUB = 3;
 struct timer_priv *device;
 void *wdsub;

 device = timer_open(0);
 if (NULL == device) {
 return -1; /* Failure */
 }
 wdsub = timer_sub_open(device, WATCHDOG_SUB);

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 143

 /* Set watchdog timeout. */
 timer_set_reload(wdsub, 0xffff);
 timer_set_ctrl(wdsub, GPTIMER_CTRL_IE);
 /* Start watchdog by kicking it */
 timer_kick(wdsub);
 [...]
 /* Kick the watchdog again*/
 timer_kick(wdsub);
 [...]
 /* Temporarily disable watchdog. */
 timer_stop(wdsub);
 /* Start it again by activating interrupt and kick it. */
 timer_set_ctrl(wdsub, GPTIMER_CTRL_IE);
 timer_kick(wdsub);
 [...]

 puts("Restarting system using watchdog.");

 watchdog_system_restart(wdsub);

 /* We never return to here */

 return -1;
}

Table 16.14. timer_stop function declaration

Proto void timer_stop(void *s)

About Stop subtimer

The function stops a subtimer by clearing the control register (setting it to zero value). This function
can be used to temporarily stop the watchdog timer.

s [IN] pointerParam

Subtimer handle returned by timer_sub_open.

Return None.

Table 16.15. timer_kick function declaration

Proto void timer_kick(void *s)

About Restart a subtimer

The function performs the following by updating the subtimer control register:

• Subtimer is loaded with value of the subtimer reload register.
• Subtimer is enabled.
• Interrupt pending state of subtimer is cleared.

The function is typically used to kick a watchdog timer. Note that the interrupt enable (IE) bit is left
unmodified by this function.

s [IN] pointerParam

Subtimer handle returned by timer_sub_open.

Return None.

Table 16.16. watchdog_system_restart function declaration

Proto void watchdog_system_restart(void *s)

About Restart system using watchdog

The system triggers the watchdog and enters an infinite loop.

s [IN] pointerParam

Subtimer handle returned by timer_sub_open. This should be the subtimer handle for the watch-
dog timer.

Return None.

Notes The function never returns.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 144

16.5. Restrictions

The timer driver is designed to operate each opened GPTIMER/GRTIMER device in multiple tasks, with some
restrictions:

• One or more devices can be opened and operated on by one task.
• Any timer device or any subtimer of any device can be operated on by any task, but only the task which

opened the device may close the device and open/close its subtimers.

The following functions are allowed to be called from any task or from an ISR, provided that the associated timer
device or subtimer is open:

• timer_dev_count
• timer_set_scaler
• timer_set_scaler_reload
• timer_get_cfg
• timer_set_cfg
• timer_set_latch_cfg
• timer_get_counter
• timer_get_reload
• timer_set_reload
• timer_get_ctrl
• timer_set_ctrl
• timer_get_latch
• timer_stop
• watchdog_system_restart

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 145

17. GPIO driver

17.1. Introduction

This section describes the driver used to control the GRGPIO devices available on component.

17.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 17.1. Driver registration functions

Registration method Function

Automatic registration gpio_autoinit()

Register one device gpio_register()

Register many devices gpio_init()

17.3. Opening and closing device

The driver operates on GRGPIO devices, which typically consists of multiple GPIO in/out ports. The control
interface, Section 17.4, allows for setting and getting values for multiple ports at a time.

For GRGPIO devices implemented with interrupt map support, the interrupt map interface described in Sec-
tion 17.5 can be used.

A GRGPIO device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using gpio_dev_count. A particular device can be opened
using gpio_open and closed gpio_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. The gpio_open function is thread-safe by protecting from other threads by using
osal_ldstub from the OSAL. Protection is used by all GRGPIO devices on opening.

During opening of a GRGPIO device the following steps are taken:

• All GPIO ports are configured as inputs and interrupts are disabled.
• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the same device.

Table 17.2. gpio_dev_count function declaration

Proto int gpio_dev_count(void)

About Retrieve number of GRGPIO devices registered to the driver.

Return int. Number of GRGPIO devices registered in system, zero if none.

Table 17.3. gpio_open function declaration

Proto struct gpio_priv *gpio_open(int dev_no)

About Opens a GRGPIO device. The GRGPIO device is identified by index. The returned value is used as
input argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Must be equal or greater than zero, and smaller than that returned by
grgpio_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device is already open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRGPIO device.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 146

Table 17.4. gpio_close function declaration

Proto int gpio_close(struct gpio_priv *priv)

About Closes a previously opened device. All ports are configured as inputs and GPIO interrupts are dis-
abled.

priv [IN] pointerParam

Device identifier. Returned from gpio_open.

Return int. DRV_OK

17.4. Control interface

The GPIO driver exports the full GRGPIO register space to the user. One function is defined per GRGPIO register.

Before enabling GPIO interrupt by configuring the interrupt mask register with the function gpio_intmask,
the user must register an interrupt handler on the corresponding interrupt source. This can be done by calling the
function bcc_isr_register().

The example below opens the last GRGPIO device. Its third port signal is configured as output and driven high.

#include <drv/gpio.h>

int gpio_example(void)
{
 struct gpio_priv *device;
 int count;

 count = gpio_dev_count();
 printf("%d GRGPIO devices present\n", count);

 device = gpio_open(count-1);
 if (!device) {
 return -1; /* Failure */
 }

 gpio_direction(device, 1, 1<<2);
 gpio_output(device, 1, 1<<2);

 /* Outputs are disabled when the device is closed. */
 gpio_close(device);
 return 0; /* success */
}

Table 17.5. GPIO control function declarations

Proto uint32_t gpio_data(struct gpio_priv *priv)

uint32_t gpio_output(struct gpio_priv *priv, int set, uint32_t new-
val)

uint32_t gpio_direction(struct gpio_priv *priv, int set, uint32_t
newval)

uint32_t gpio_intmask(struct gpio_priv *priv, int set, uint32_t
newval)

uint32_t gpio_intpol(struct gpio_priv *priv, int set, uint32_t new-
val)

uint32_t gpio_intedge(struct gpio_priv *priv, int set, uint32_t
newval)

uint32_t gpio_intflag(struct gpio_priv *priv, int set, uint32_t
newval)

uint32_t gpio_pulse(struct gpio_priv *priv, int set, uint32_t new-
val)

About Get I/O port data register.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 147

Get/set I/O port output register.

Get/set I/O port direction register.

Get/set interrupt mask register.

Get/set interrupt polarity register.

Get/set interrupt edge register.

Get/set interrupt flag register.

Get/set pulse register.

The functions return and optionally set the value of the corresponding GRGPIO register. If set is 0
then nothing will be written to the register, else the register is set to the value of the newval param-
eter.

priv [IN] pointerParam

Device identifier. Returned from gpio_open.

set [IN] Integer

Determines if register shall be updated.

0 Do not write register.

Param

1 Write value of newval to register.

Return uint32_t. The register content (before newval value is written).

The easiest way to write and read GPIO is to use the gpio_write() and gpio_read() functions.

Table 17.6. gpio_write function declaration

Proto static inline int gpio_write(struct gpio_priv *priv, uint32_t val)

About Write GPIO output register

priv [IN] pointerParam

Device handle returned by gpio_open.

val [OUT] uint32_tParam

Value to write to output register.

Return int. DRV_OK

Table 17.7. gpio_read function declaration

Proto static inline uint32_t gpio_read(struct gpio_priv *priv)

About Read GPIO data register

priv [IN] pointerParam

Device handle returned by gpio_open.

Return uint32_t. Value read from GPIO data register.

17.4.1. Logical bit operations

The functions described in Table 17.8 perform atomic set/get operations on the GPIO registers. It allows different
tasks to independently set and clear individual bits in the output, direction and interrupt mask registers.

Table 17.8. GPIO logical function declarations

Proto int gpio_output_or(struct gpio_priv *priv, uint32_t mask)

int gpio_output_and(struct gpio_priv *priv, uint32_t mask)

int gpio_direction_or(struct gpio_priv *priv, uint32_t mask)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 148

int gpio_direction_and(struct gpio_priv *priv, uint32_t mask)

int gpio_intmask_or(struct gpio_priv *priv, uint32_t mask)

int gpio_intmask_and(struct gpio_priv *priv, uint32_t mask)

About Logical or/and I/O port output/direction/interrupt mask register.

These functions perform a logical operation on the corresponding GRGPIO register.

• The _or functions perform logical OR with the user mask parameter.
• The _and functions perform logical AND with the user mask parameter.

These functions are implemented as static inline functions.

priv [IN] pointerParam

Device identifier. Returned from gpio_open.

mask [IN] uint32_tParam

User mask for the logical operation.

Return int. DRV_OK

17.5. Interrupt map interface

The function gpio_get_interrupt_number() can be used with all versions and configurations of the
GRGPIO.

Table 17.9. gpio_get_interrupt_number function declaration

Proto int gpio_get_interrupt_number(struct gpio_priv *priv, int gpiobit)

About Get absolute interrupt line number for GRGPIO bit. This function can be used with all versions of the
GRGPIO, and takes the following items into consideration:

• GRGPIO version
• IRQGEN capability
• Current GRGPIO interrupt map configuration
• AMBA Plug&Play interrupt number

priv [IN] pointerParam

Device handle returned by gpio_open.

gpiobit [IN] IntegerParam

GRGPIO bit number

Return int. Interrupt line for GRGPIO bit gpiobit.

The following functions can be used if interrupt map is enabled in the GRPGIO.

Table 17.10. gpio_intmap_set function declaration

Proto int gpio_intmap_set(struct gpio_priv *priv, int gpiobit, int intli-
neoffset)

About Configure GRGPIO bit gpiobit to generate interrupt on interrupt line offset intlineoffset.
The absolute interrupt line number is the offset plus the base interrupt line number of the GRGPIO
controller.

priv [IN] pointerParam

Device handle returned by gpio_open.

gpiobit [IN] IntegerParam

GRGPIO bit number

intlineoffset [IN] IntegerParam

Interrupt line offset.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 149

Return int. DRV_OK

Notes This function assumes that the user parameters are valid.

Table 17.11. gpio_intmap_get function declaration

Proto int gpio_intmap_get(struct gpio_priv *priv, int gpiobit)

About Get interrupt line for GRGPIO bit. The absolute interrupt line number is the returned offset plus the
base interrupt line number of the GRGPIO controller.

priv [IN] pointerParam

Device handle returned by gpio_open.

gpiobit [IN] IntegerParam

GRGPIO bit number

Return int. Interrupt line offset for GRGPIO bit gpiobit.

Notes This function assumes that the user parameters are valid.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 150

18. AHB Status Register driver

18.1. Introduction

This section describes the driver used to control the AHBSTAT device, commonly known as the AHB status
register.

18.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 18.1. Driver registration functions

Registration method Function

Automatic registration ahbstat_autoinit()

Register one device ahbstat_register()

Register many devices ahbstat_init()

18.3. Opening and closing device

An AHBSTAT device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using ahbstat_dev_count. A particular device can be
opened using ahbstat_open and closed ahbstat_close. The functions are described below.

When opened, the device can not be reopened unless the device is closed first. When opening the device it is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by the AHBSTAT device on opening and closing.

During opening of an AHBSTAT device the following steps are taken:

• AHB status register is initialized to start monitoring AMBA AHB bus transactions and correctable errors.
• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the device.

Table 18.2. ahbstat_dev_count function declaration

Proto int ahbstat_dev_count(void)

About Retrieve number of AHBSTAT devices registered to the driver.

Return int. Number of AHBSTAT devices registered to driver, zero if none.

Table 18.3. ahbstat_open function declaration

Proto struct ahbstat_priv *ahbstat_open(int dev_no)

About Opens an AHBSTAT device. The AHBSTAT device is identified by index. The returned value is used
as input argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the order registered to the driver. Must be equal
or greater than zero, and smaller than that returned by ahbstat_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device is already open, or invalid dev_no pa-
rameter.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies the AHBSTAT device.

Notes The AHBSTAT ISR is not installed by ahbstat_open.

Table 18.4. ahbstat_close function declaration

Proto int ahbstat_close(struct ahbstat_priv *d)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 151

About Closes a previously opened device.

If the AHB statu register interrupt service routine has been installed, it will be uninstalled by the close
operation.

d [IN] pointerParam

Device handle returned by ahbstat_open.

int.

Value Description

DRV_OK Successfully closed device.

Return

others Device closed, but failed to unregister interrupt handler.

18.4. Register interface

The AHB status registers base address can be retrieved using the ahbstat_get_regs function. Registers and
bit definitions are provided in the C header file drv/regs/ahbstat.h. Individual bits are described in the
GRLIB IP Core User's Manual (GRIP).

Table 18.5. ahbstat_get_regs function declaration

Proto volatile struct ahbstat_regs *ahbstat_get_regs(struct ahbstat_priv
*d)

About Get AHBSTAT registers base address

Register definitions for AHBSTAT are provided by the header file drv/regs/ahbstat.h.

d [IN] pointerParam

Device handle returned by ahbstat_open.

Return Pointer. Address of AHBSTAT register area.

18.5. Interrupt service routine

An interrupt service routine is provided by the driver which is installed by calling the driver function
ahbstat_set_user. The user can provide a callback function which is called by the interrupt routine, using
function. When a user callback is installed, the drivers interrupt routine will re-enable bus monitoring only if
the user callback returns 0. If the user callback returns a value other than 0, then the callback itself should re-
enable AHBSTAT monitoring by clearing the NE bit. The callback is called with a custom argument as selected
by ahbstat_set_user.

The example below defines and enables an ISR callback which rewrites the failing location in case of correctable
error.

#include <drv/ahbstat.h>
#include <drv/regs/ahbstat.h>

volatile int user_ncerr = 0;

int user(
 volatile struct ahbstat_regs *regs,
 uint32_t status,
 uint32_t failing_address,
 void *userdata
)
{
 if (!(status & AHBSTAT_STS_CE)) {
 /* Not correctable so this callback can't handle it. */
 return 0;
 }
 int *ncerr;
 ncerr = (int *) userdata;
 (*ncerr)++;

 volatile uint32_t *data = (volatile uint32_t *) failing_address;
 uint32_t tmp;

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 152

 /* Read and write back */
 tmp = *data;
 *data = tmp;

 /* Reenable AHBSTAT probing */
 regs->status = 0;

 /* Returns 1 to prevent driver ISR to reenable AHBSTAT probing */
 return 1;
}

int user_example(void)
{
 const int DEVNO = 0;
 struct ahbstat_priv *device;
 int ret;

 device = ahbstat_open(DEVNO);
 if (NULL == device) {
 return -1; /* Failure */
 }

 ret = ahbstat_set_user(device, user, (void *) &user_ncerr);
 if (DRV_OK != ret) {
 return -2; /* Failure */
 }

 /* Force correctable errors etc... */
 [...]

 printf("Number of correctable errors detected and corrected: %d\n", user_ncerr);

 ret = ahbstat_close(device);
 if (DRV_OK != ret) {
 return -3; /* Failure */
 }
 return 0; /* success */
}

Table 18.6. ahbstat_set_user function declaration

Proto int ahbstat_set_user(struct ahbstat_priv *d, int (*userhan-
dler)(volatile struct ahbstat_regs *regs, uint32_t status, uint32_t
failing_address, void *userarg), void *userarg)

About Install the AHBSTAT ISR and set ISR user callback function.

The userhandler parameter is the user callback function to be called from the AHBSTAT ISR.
The callback is called by the AHBSTAT ISR only if the has checked that the NE status bit is 1.

Only one callback can be registered at a time. A second call to ahbstat_set_user replaces the
previously registered callback.

If userhandler is NULL, then the AHBSTAT ISR is uninstalled.

Parameter regs of the callback is the register base address of the AHBSTAT core.

Parameter status of the callback is an unmodified copy of the AHBSTAT status register at entry to
drivers interrupt routine.

The failing_address parameter of the callback is a copy of the AHBSTAT failing address regis-
ter at entry to the interrupt routine.

If the callback returns 0, then the driver interrupt routine will reenable AHBSTAT by clearing the sta-
tus register. Otherwise the status register is not touched by the interrupt routine after callback returns.

The userarg parameter is passed to the user callback userhandler. It may be NULL.

d [IN] pointerParam

Device handle returned by ahbstat_open.

userhandler [IN] pointerParam

User callback function as described above. If userhandler is NULL then the callback is unin-
stalled, but the AHBSTAT ISR is still active.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 153

userdata [IN] pointerParam

Data to pass to the user callback. It may be NULL.

Return int. DRV_OK on success, else != DRV_OK if ISR install failed.

Notes The AHBSTAT ISR can not be uninstalled once installed. However, the user handler can be disabled
by calling ahbstat_set_user with userhandler set to NULL.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 154

19. Clock gating unit driver

19.1. Introduction

This section describes the driver used to control the GRLIB clock gating unit, also known as CLKGATE or GR-
CLKGATE.

19.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 19.1. Driver registration functions

Registration method Function

Automatic registration clkgate_autoinit()

Register one device clkgate_register()

Register many devices clkgate_init()

19.3. Opening and closing device

An device must first be opened before any operations can be performed using the driver. The number of devices
registered to the driver can be retrieved using clkgate_dev_count. A particular device can be opened using
clkgate_open and closed clkgate_close. The functions are described below.

When opened, the device can not be reopened unless the device is closed first. When opening the device it is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by the driver on opening and closing.

During opening of a clock gating unit, the following steps are performed:

• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the device.

Table 19.2. clkgate_dev_count function declaration

Proto int clkgate_dev_count(void)

About Retrieve number of clock gating devices registered to the driver.

Return int. Number of devices registered to driver, zero if none.

Table 19.3. clkgate_open function declaration

Proto struct clkgate_priv *clkgate_open(int dev_no)

About Opens an clock gating unit device, identified by index. The returned value is used as input argument
to all functions operating on the device.

This function does not change any device state.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the order registered to the driver. Must be equal
or greater than zero, and smaller than that returned by clkgate_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device is already open, or invalid dev_no pa-
rameter.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies the clock gating unit.

Table 19.4. clkgate_close function declaration

Proto int clkgate_close(struct clkgate_priv *d)

About Closes a previously opened device.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 155

This function does not change any device state.

d [IN] pointerParam

Device handle returned by clkgate_open.

int.

Value Description

DRV_OK Successfully closed device.

Return

others Device closed, but failed to unregister interrupt handler.

19.4. Operation

Each core supported by the clock gating unit can be individually clock gated or enabled by the function
clkgate_gate and clkgate_enable. The sequences performed by these functions are identical to the gate
and enable procedures described in component User's Manual, Clock Gating Unit section.

Core to bit mappings are defined in the C header file drv/regs/clkgate_bits.h with names prefixed by
CLKGATE_<component>_. Any number of the defines can be use (OR:ed) together when calling the driver
functions.

A core which is enabled with clkgate_enable will also be reset.

The driver does not arbitrate for the device. Protecting the driver from concurrent calls can be done on application
level if needed.

The example below, applicable to GR740, gates all cores and then enables the SpaceWire subsystem and the
second GRETH core.

#include <drv/clkgate.h>

int clkgate_example(struct clkgate_priv *d)
{
 int ret;

 /* Gate all cores. */
 ret = clkgate_gate(d, CLKGATE_GR740_ALL);
 if (DRV_OK != ret) {
 return ret;
 }

 /* Enable and reset SpaceWire, GRETH1 */
 ret = clkgate_enable(d, CLKGATE_GR740_GRSPW2 | CLKGATE_GR740_GRETH);
 if (DRV_OK != ret) {
 return ret;
 }

 return 0; /* success */
}

Table 19.5. clkgate_gate function declaration

Proto int clkgate_gate(struct clkgate_priv *d, uint32_t coremask)

About Gate the clock for selected cores.

Cores to gate are selected with the coremask parameter with values CLKGATE_* as de-
fined in the file include/clkgate.h. Multiple cores can be gated at the same time by
OR:ing these values together. To gate all component cores supporting clock gating, the mask
CLKGATE_<component>_ALL can be used.

The cores identified as coremask will be held in reset with its input clock disabled.

d [IN] pointerParam

Device handle returned by clkgate_open.

coremask [IN] uint32_tParam

Bitmask representing the cores to operate on. (Values are CLKGATE_*.)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 156

Return int. DRV_OK

Table 19.6. clkgate_enable function declaration

Proto int clkgate_enable(struct clkgate_priv *d, uint32_t coremask)

About Enable the clock and reset selected cores.

Cores to enable are selected with the coremask parameter with values CLKGATE_* as defined in
the file include/clkgate.h. Multiple cores can be enabled at the same time by OR:ing these
values together.

d [IN] pointerParam

Device handle returned by clkgate_open.

coremask [IN] uint32_tParam

Bitmask representing the cores to operate on. (Values are CLKGATE_*.)

Return int. DRV_OK

19.5. Core reset

A core can be reset by calling clkgate_gate() followed by clkgate_enable() with the same core-
mask parameter. For example:

void clkgate_reset(struct clkgate_priv *priv, uint32_t coremask)
{
 clkgate_gate(priv, coremask);
 clkgate_enable(priv, coremask);
}

19.6. Probe clock gating status

A function is available to read the current state of the clock gating unit registers. It provides the caller with infor-
mation on which cores are gated and which are enabled.

Table 19.7. clkgate_status function declaration

Proto int clkgate_status(struct clkgate_priv *d, uint32_t *enabled,
uint32_t *disabled)

About Get enable status of cores

The function determines enabled and disbled state by reading the clock gating unit registers.

d [IN] pointerParam

Device identifier. Returned from clkgate_open.

enabled [IN] PointerParam

Output mask of cores which are enabled.

disabled [IN] PointerParam

Output mask of cores which are disabled.

Return uint32_t. The register content (before newval value is written).

19.7. CPU override

The driver provides an interface to control the clock gating unit CPU/FPU override register, available in some
implementations.

Table 19.8. clkgate_override function declaration

Proto uint32_t clkgate_override(struct clkgate_priv *d, int set, uint32_t
newval)

About Get/set CPU/FPU override register

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 157

The function returns and optionally sets the value of the register. If set is 0 then nothing will be writ-
ten to the register, else the register is set to the value of the newval parameter.

d [IN] pointerParam

Device identifier. Returned from clkgate_open.

set [IN] Integer

Determines if register shall be updated with newval.

0 Do not write register.

Param

1 Write value of newval to register.

newval [IN] IntegerParam

New value

Return uint32_t. The register content (before newval value is written).

Notes The CPU/FPU override functionality is not available in all implementations. See the component
datasheet for more information.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 158

20. GR1553B Driver

20.1. Introduction

This document describes the device drivers specific to the GRLIB GR1553B core. The Remote Terminal(RT), Bus
Monitor (BM and Bus Controller (BC) functionality are supported by the driver. Device discovery and resource
sharing are commonly controlled by the GR1553B driver described in this chapter. Each 1553 mode is supported
by a separate driver, the drivers are documented in separate chapters.

This section gives an brief introduction to the GRLIB GR1553B device allocation driver used internally by the
BC, BM and RT device drivers. This driver controls the GR1553B device regardless of interfaces supported (BC,
RT and/or BM). The device can be located at an on-chip AMBA or an AMBA-over-PCI bus. The driver provides
an interface for the BC, RT and BM drivers.

Since the different interfaces (BC, BM and RT) are accessed from the same register interface on one core, the
APB device must be shared among the BC, BM and RT drivers. The GR1553B driver provides an easy function
interface that allows the APB device to be shared safely between the BC, BM and RT device drivers.

Any combination of interface functionality is supported, but the RT and BC functionality cannot be used simul-
taneously (limited by hardware).

The interface towards to the BC, BM and RT drivers is used internally by the device drivers and is not documented
here. See respective driver for an interface description.

20.1.1. Considerations and limitations

Note that the following items must be taken into consideration when using the GR1553B drivers:

• The driver uses only Physical addressing, i.e it does not do MMU translation or memory mapping for the
user. The user is responsible for mapping DMA memory buffers provided to the 1553 drivers 1:1.

• Physical buffers addresses (assigned by user) must be located at non-cacheable areas or D-Cache
snooping must be present in hardware. If D-cache snooping is not present the user must edit the
GR1553*_READ_MEM() macros in respective driver.

• SMP locking (spin-locks) has not been implemented, it does however not mean that SMP mode can not be
used. The CPU handling the IRQ (CPU0 unless configured otherwise) must be the CPU and only CPU using
the driver API. Only one CPU can use respective driver API at a time.

The above restrictions should not cause any problems for the AT697 + GR-RASTA-IO (RASTA-101) systems
or similar.

20.1.2. GR1553B Hardware

The GRLIB GR1553B core may support up to three modes depending on configuration, Bus Controller (BC),
Remote Terminal (RT) or Bus Monitor (BM). The BC and RT functionality may not be used simultaneously, but
the BM may be used together with BC or RT or separately. All three modes are supported by the driver.

Interrupts generated from BC, BM and RT result in the same system interrupt, interrupts are shared.

20.1.3. Software driver

The driver provides an interface used internally by the BC, BM and RT device drivers, see respective driver for
an interface declaration. The driver sources and definitions are listed in the table below, the path is given relative
to the toolchains root directory.

Table 20.1. Source Location

Filename Description

src/libdrv/src/gr1553b/gr1553b.c GR1553B Driver source

src/libdrv/src/include/gr1553b.h GR1553B Driver interface declaration

20.1.4. Driver Registration

This driver uses the driver registration mechanism described in Chapter 10.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 159

Table 20.2. Driver registration functions

Registration method Function

Automatic registration gr1553b_autoinit()

Register one device gr1553b_register()

Register many devices gr1553b_init()

The registration of the driver is crucial for the user to be able to access the driver application programming inter-
faces. The drivers use a classic C-language API.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 160

21. GR1553B Bus Controller Driver

21.1. Introduction

This section describes the GRLIB GR1553B Bus Controller (BC) device driver interface. The driver relies on the
GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

21.1.1. GR1553B Bus Controller Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BC functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the BC, interrupts are shared between
the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to share hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see Chapter 20.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

21.1.2. Software driver

The BC driver is split in two parts, one where the driver access the hardware device and one part where the
descriptors are managed. The two parts are described in two separate sections below.

Transfer and conditional descriptors are collected into a descriptor list. A descriptor list consists of a set of Major
Frames, which consist of a set of Minor Frames which in turn consists of up to 32 descriptors (also called Slots).
The composition of Major/Minor Frames and slots is configured by the user, and is highly dependent of application.

The Major/Minor/Slot construction can be seen as a tree, the tree does not have to be symmetrically, i.e. Major
frames may contain different numbers of Minor Frames and Minor Frames may contain different numbers of Slot.

GR1553B BC descriptor lists are generated by the list API available in gr1553bc_list.h.

The driver provides the following services:

• Start, Stop, Pause and Resume descriptor list execution
• Synchronous and asynchronous descriptor list management
• Interrupt handling
• BC status
• Major/Minor Frame and Slot (descriptor) model of communication
• Current Descriptor (Major/Minor/Slot) Execution Indication
• Software External Trigger generation, used mainly for debugging or custom time synchronization
• Major/Minor Frame and Slot/Message ID
• Minor Frame time slot management

The driver sources and definitions are listed in the table below, the path is given relative to the extracted distribution
archive.

Table 21.1. BC driver Source location

Filename Description

src/libdrv/src/gr1553b/gr1553bc.c GR1553B BC Driver source

src/libdrv/src/include/gr1553bc.h GR1553B BC Driver interface declaration

src/libdrv/src/include/gr1553bc_list.h GR1553B BC List handling interface declaration

21.1.3. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 20.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 161

21.2. BC Device Handling

The BC device driver's main purpose is to start, stop, pause and resume the execution of descriptor lists. Lists are
described in the Descriptor List section. In this section services related to direct access of BC hardware registers
and Interrupt are described. The function API is declared in gr1553bc.h.

21.2.1. Device API

The device API consists of the functions in the table below.

Table 21.2. Device API function prototypes

Prototype Description
void *gr1553bc_open(int minor) Open a BC device by minor number. Private handle re-

turned used in all other device API functions.

void gr1553bc_close(void *bc) Close a previous opened BC device.

int gr1553bc_start(void *bc,
 struct gr1553bc_list *list,
 struct gr1553bc_list *list_async)

Schedule a synchronous and/or a asynchronous BC
descriptor Lists for execution. This will unmask BC
interrupts and start executing the first descriptor in
respective List. This function can be called multiple
times.

int gr1553bc_pause(void *bc) Pause the synchronous List execution.

int gr1553bc_restart(void *bc) Restart the synchronous List execution.

int gr1553bc_stop(void *bc, int options) Stop Synchronous and/or asynchronous list.

int gr1553bc_indication(void *bc, int async,
 int *mid)

Get the current BC hardware execution position (MID)
of the synchronous or asynchronous list.

void gr1553bc_status(void *bc,
 struct gr1553bc_status *status)

Get the BC hardware status and time.

void gr1553bc_ext_trig(void *bc, int trig) Trigger an external trigger by writing to the BC action
register.

int gr1553bc_irq_setup(void *bc,
 bcirq_func_t func, void *data)

Generic interrupt handler configuration. Handler will
be called in interrupt context on errors and interrupts
generated by transfer descriptors.

21.2.1.1. Data Structures

The gr1553bc_status data structure contains the BC hardware status sampled by the function
gr1553bc_status().

struct gr1553bc_status {
 unsigned int status;
 unsigned int time;
};

Table 21.3. gr1553bc_status member descriptions

Member Description

status BC status register

time BC Timer register

21.2.1.2. gr1553bc_open

Opens a GR1553B BC device by device instance index. The minor number relates to the order in which a GR1553B
BC device is found in the Plug&Play information. A GR1553B core which lacks BC functionality does not affect
the minor number.

If a BC device is successfully opened a pointer is returned. The pointer is used internally by the GR1553B BC
driver, it is used as the input parameter bc to all other device API functions.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 162

If the driver failed to open the device, NULL is returned.

21.2.1.3. gr1553bc_close

Closes a previously opened BC device. This action will stop the BC hardware from processing descriptors/lists,
disable BC interrupts, and free dynamically memory allocated by the driver.

21.2.1.4. gr1553bc_start

Calling this function starts the BC execution of the synchronous list and/or the asynchronous list. At least one list
pointer must be non-zero to affect BC operation. The BC communication is enabled depends on list, and Interrupts
are enabled.

This function can be called multiple times. If a list (of the same type) is already executing it will be replaced
with the new list.

21.2.1.5. gr1553bc_pause

Pause the synchronous list. It may be resumed by gr1553bc_resume(). See hardware documentation.

21.2.1.6. gr1553bc_resume

Resume the synchronous list, must have been previously paused by gr1553bc_pause(). See hardware doc-
umentation.

21.2.1.7. gr1553bc_stop

Stop synchronous and/or asynchronous list execution. The second argument is a 2-bit bit-mask which determines
the lists to stop, see table below for a description.

Table 21.4. gr1553bc_stop second argument

Member Description

Bit 0 Set to one to stop the synchronous list.

Bit 1 Set to one to stop the asynchronous list.

21.2.1.8. gr1553bc_indication

Retrieves the current Major/Minor/Slot (MID) position executing into the location indicated by mid. The async
argument determines which type of list is queried, the Synchronous (async=0) list or the Asynchronous
(async=1).

Note that since the List API internally adds descriptors the indication may seem to be out of bounds.

21.2.1.9. gr1553bc_status

This function retrieves the current BC hardware status. Second argument determine where the hardware status
is stored, the layout of the data stored follows the gr1553bc_status data structure. The data structure is
described in Table 21.3.

21.2.1.10. gr1553bc_ext_trig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
external trigger is normally generated by some kind of Time Master. A message slot may be programmed to wait for
an external trigger before being executed, this feature allows the user to accurate send time synchronize messages
to RTs. However, during debugging or when software needs to control the time synchronization behaviour the
external trigger pulse can be generated from the BC core itself by writing the BC Action register.

This function sets the external trigger memory to one by writing the BC action register.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 163

21.2.1.11. gr1553bc_irq_setup

Install a generic handler for BC device interrupts. The handler will be called on Errors (DMA errors etc.) resulting
in interrupts or transfer descriptors resulting in interrupts. The handler is not called when an IRQ is generated by
a condition descriptor. Condition descriptors have their own custom handler.

Condition descriptors are inserted into the list by user, each condition may have a custom function and data as-
signed to it, see gr1553bc_slot_irq_prepare(). Interrupts generated by condition descriptors are not
handled by this function.

The third argument is custom data which will be given to the handler on interrupt.

21.3. Descriptor List Handling

The BC device driver can schedule synchronous and asynchronous lists of descriptors. The list contains a descriptor
table and a software description to make certain operations possible, for example translate descriptor address into
descriptor number (MID).

The BC stops execution of a list when a END-OF-LIST (EOL) marker is found. Lists may be configured to jump
to the start of the list (the first descriptor) by inserting an unconditional jump descriptor. Once a descriptor list is
setup the hardware may process the list without the need of software intervention. Time distribution may also be
handled completely in hardware, by setting the "Wait for External Trigger" flag in a transfer descriptor the BC
will wait until the external trigger is received or proceed directly if already received. See hardware manual.

21.3.1. Overview

This section describes the Descriptor List Application Programming Interface (API). It provides functionality to
create and manage BC descriptor lists.

A list is built up by the following building blocks:

• Major Frame (Consists of N Minor Frames)
• Minor Frame (Consists of up to 32 1553 Slots)
• Slot (Transfer/Condition BC descriptor), also called Message Slot

The user can configure lists with different number of Major Frames, Minor Frames and slots within a Minor Frame.
The List manages a strait descriptor table and a Major/Minor/Slot tree in order to easily find it's way through all
descriptor created.

Each Minor frame consist of up to 32 slot and two extra slots for time management and descriptor find operations,
see figure below. In the figure there are three Minor frames with three different number of slots 32, 8 and 4. The
List manage time slot allocation per Minor frame, for example a minor frame may be programmed to take 8ms
and when the user allocate a message slot within that Minor frame the time specified will be subtracted from the
8ms, and when the message slot is freed the time will be returned to the Minor frame again.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 164

Figure 21.1. Three consecutive Minor Frames

A specific Slot [Major, Minor, Slot] is identified using a MID (Message-ID). The MID consist of three numbers
Major Frame number, Minor Frame number and Slot Number. The MID is a way for the user to avoid using
descriptor pointers to talk with the list API. For example a condition Slot that should jump to a message Slot can
be created by knowing "MID and Jump-To-MID". When allocating a Slot (with or without time) in a List the user
may specify a certain Slot or a Minor frame, when a Minor frame is given then the API will find the first free Slot
as early in the Minor Frame as possible and return it to the user.

A MID can also be used to identify a certain Major Frame by setting the Minor Frame and Slot number to 0xff.
A Minor Frame can be identified by setting Slot Number to 0xff.

A MID can be created using the macros in the table below.

Table 21.5. Macros for creating MID

MACRO Name Description

GR1553BC_ID(major,minor,slot) ID of a SLOT

GR1553BC_MINOR_ID(major,minor) ID of a MINOR (Slot=0xff)

GR1553BC_MAJOR_ID(major) ID of a Major (Minor=0xff,Slot=0xff)

21.3.2. Example: steps for creating a list

The typical approach when creating lists and executing it:

• gr1553bc_list_alloc(&list, MAJOR_CNT)
• gr1553bc_list_config(list, &listcfg)
• Create all Major Frames and Minor frame, for each major frame:

1. gr1553bc_major_alloc_skel(&major, &major_minor_cfg)
2. gr1553bc_list_set_major(list, &major, MAJOR_NUM)

• Link last and first Major Frames together:
1. gr1553bc_list_set_major(&major7, &major0)

• gr1553bc_list_table_alloc() (Allocate Descriptor Table)
• gr1553bc_list_table_build() (Build Descriptor Table from Majors/Minors)
• Allocate and initialize Descriptors predefined before starting:

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 165

1. gr1553bc_slot_alloc(list, &MID, TIME_REQUIRED, ..)
2. gr1553bc_slot_transfer(MID, ..)

• START BC HARDWARE BY SCHEDULING ABOVE LIST
• Application operate on executing List

21.3.3. Major Frame

Consists of multiple Minor frames. A Major frame may be connected/linked with another Major frame, this will
result in a Jump Slot from last Minor frame in the first Major to the first Minor in the second Major.

21.3.4. Minor Frame

Consists of up to 32 Message Slots. The services available for Minor Frames are Time-Management and Slot
allocation.

Time-Management is optional and can be enabled per Minor frame. A Minor frame can be assigned a time in
microseconds. The BC will not continue to the next Minor frame until the time specified has passed, the time
includes the 1553 bus transfers. See the BC hardware documentation. Time is managed by adding an extra Dummy
Message Slot with the time assigned to the Minor Frame. Every time a message Slot is allocated (with a certain
time: Slot-Time) the Slot-Time will be subtracted from the assigned time of the Minor Frame's Dummy Message
Slot. Thus, the sum of the Message Slots will always sum up to the assigned time of the Minor Frame, as configured
by the user. When a Message Slot is freed, the Dummy Message Slot's Slot-Time is incremented with the freed
Slot-Time. See figure below for an example where 6 Message Slots has been allocated Slot-Time in a 1 ms Time-
Managed Minor Frame. Note that in the example the Slot-Time for Slot 2 is set to zero in order for Slot 3 to
execute directly after Slot 2.

Figure 21.2. Time-Managed Minor Frame of 1ms

The total time of all Minor Frames in a Major Frame determines how long time the Major Frame is to be executed.

Slot allocation can be performed in two ways. A Message Slot can be allocated by identifying a specific free Slot
(MID identifies a Slot) or by letting the API allocate the first free Slot in the Minor Frame (MID identifies a Minor
Frame by setting Slot-ID to 0xff).

21.3.5. Slot (Descriptor)

The GR1553B BC core supports two Slot (Descriptor) Types:

• Transfer descriptor (also called Message Slot)
• Condition descriptor (Jump, unconditional-IRQ)

See the hardware manual for a detail description of a descriptor (Slot).

The BC Core is unaware of lists, it steps through executing each descriptor as the encountered, in a sequential
order. Conditions resulting in jumps gives the user the ability to create more complex arrangements of buffer
descriptors (BD) which is called lists here.

Transfer Descriptors (TBD) may have a time slot assigned, the BC core will wait until the time has expired before
executing the next descriptor. Time slots are managed by Minor frames in the list. See Minor Frame section. A
Message Slot generating a data transmission on the 1553 bus must have a valid data pointer, pointing to a location
from which the BC will read or write data.

A Slot is allocated using the gr1553bc_slot_alloc() function, and configured by calling one of the function
described in the table below. A Slot may be reconfigured later. Note that a conditional descriptor does not have a
time slot, allocating a time for a conditional times slot will lead to an incorrect total time of the Minor Frame.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 166

Table 21.6. Slot configuration

Function Name Description

gr1553bc_slot_irq_prepare Unconditional IRQ slot

gr1553bc_slot_jump Unconditional jump

gr1553bc_slot_exttrig Dummy transfer, wait for EXTERNAL-TRIGGER

gr1553bc_slot_transfer Transfer descriptor

gr1553bc_slot_empty Create Dummy Transfer descriptor

gr1553bc_slot_raw Custom Descriptor handling

Existing configured Slots can be manipulated with the following functions.

Table 21.7. Slot manipulation

Function Name Description

gr1553bc_slot_dummy Set existing Transfer descriptor to Dummy. No 1553
bus transfer will be performed.

gr1553bc_slot_update Update Data Pointer and/or Status of a TBD

21.3.6. Changing a scheduled BC list (during BC-runtime)

Changing a descriptor that is being executed by the BC may result in a race between hardware and software. One
of the problems is that a descriptor contains multiple words, which can not be written simultaneously by the CPU.
To avoid the problem one can use the INDICATION service to avoid modifying a descriptor currently in use by the
BC core. The indication service tells the user which Major/Minor/ Slot is currently being executed by hardware,
from that information an knowing the list layout and time slots the user may safely select which slot to modify
or wait until hardware is finished.

In most cases one can do descriptor initialization in several steps to avoid race conditions. By initializing (allocating
and configuring) a Slot before starting the execution of the list, one may change parts of the descriptor which
are ignored by the hardware. Below is an example approach that will avoid potential races between software and
hardware:

1. Initialize Descriptor as Dummy and allocated time (often done before starting/ scheduling list)
2. The list is started, as a result descriptors in the list are executed by the BC
3. Modify transfer options and data-pointers, but maintain the Dummy bit.
4. Clear the Dummy bit in one atomic data store.

21.3.7. Custom Memory Setup

For designs where dynamically memory is not an option, or the driver is used on an AMBA-over-PCI bus (where
malloc() does not work), the API allows the user to provide custom addresses for the descriptor table and object
descriptions (lists, major frames, minor frames).

Being able to configure a custom descriptor table may for example be used to save space or put the descriptor table
in on-chip memory. The descriptor table is setup using the function gr1553bc_list_table_alloc(list,
CUSTOM_ADDRESS).

Object descriptions are normally allocated during initialization procedure by providing the API with an object
configuration, for example a Major Frame configuration enables the API to dynamically allocate the software
description of the Major Frame and with all it's Minor frames. Custom object allocation requires internal under-
standing of the List management parts of the driver, it is not described in this document.

21.3.8. Interrupt handling

There are different types of interrupts, Error IRQs, transfer IRQs and conditional IRQs. Error and transfer Interrupts
are handled by the general callback function of the device driver. Conditional descriptors that cause Interrupts
may be associated with a custom interrupt routine and argument.

Transfer Descriptors can be programmed to generate interrupt, and condition descriptors can be programmed to
generate interrupt unconditionally (there exists other conditional types as well). When a Transfer descriptor causes

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 167

interrupt the general ISR callback of the BC driver is called to let the user handle the interrupt. Transfers descriptor
IRQ is enabled by configuring the descriptor.

When a condition descriptor causes an interrupt a custom IRQ handler is called (if assigned) with a custom argu-
ment and the descriptor address. The descriptor address my be used to look up the MID of the descriptor. The
API provides functions for placing unconditional IRQ points anywhere in the list. Below is an pseudo example
of adding an unconditional IRQ point to a list:

void funcSetup()
{
 int MID;

 /* Allocate Slot for IRQ Point */
 gr1553bc_slot_alloc(&MID, TIME=0, ..);

 /* Prepare unconditional IRQ at allocated SLOT */
 gr1553bc_slot_irq_prepare(MID, funcISR, data);

 /* Enabling the IRQ may be done later during list
 * execution */
 gr1553bc_slot_irq_enable(MID);
}
void funcISR(*bd, *data)
{
 /* HANDLE ONE OR MULTIPLE DESCRIPTORS
 *(MULTIPLE IN THIS EXAMPLE): */
 int MID;

 /* Lookup MID from descriptor address */
 gr1553bc_mid_from_bd(bd, &MID, NULL);

 /* Print MID which caused the Interrupt */
 printk("IRQ ON %06x\n", MID);
}

21.3.9. List API

Table 21.8. List API function prototypes

Prototype Description
int gr1553bc_list_init(
 struct gr1553bc_list **list,
 int max_major)

Initialize a List description structure. First step in creating a descrip-
tor list. This functions does not allocate any memory

int gr1553bc_list_alloc(
 struct gr1553bc_list **list,
 int max_major)

Allocate and initialize a List description structure. First step in creat-
ing a descriptor list.

void gr1553bc_list_free(
 struct gr1553bc_list *list)

Free a List previously allocated using
gr1553bc_list_alloc().

int gr1553bc_list_config(
 struct gr1553bc_list *list,
 struct gr1553bc_list_cfg *cfg,
 void *bc)

Configure List parameters and associate it with a BC device that will
execute the list later on. List parameters are used when generating
descriptors.

void gr1553bc_list_link_major(
 struct gr1553bc_major *major,
 struct gr1553bc_major *next)

Links two Major frames together, the Major frame indicated by next
will be executed after the Major frame indicated by major. A uncon-
ditional jump is inserted to implement the linking.

int gr1553bc_list_set_major(
 struct gr1553bc_list *list,
 struct gr1553bc_major *major,
 int no)

Assign a Major Frame a Major Frame number in a list. This will link
Major (no-1) and Major (no+1) with the Major frame, the linking
can be changed by calling gr1553bc_list_link_major() af-
ter all major frames have been assigned a number.

int gr1553bc_minor_table_size(
 struct gr1553bc_minor *minor)

Calculate the size required in the descriptor table by one minor
frame.

int gr1553bc_list_table_size(
 struct gr1553bc_list *list)

Calculate the size required for the complete descriptor list.

int gr1553bc_list_table_init(
 struct gr1553bc_list *list,
 void *bdtab_custom)

Initialize a descriptor list. The bdtab_custom argument can be
used to assign a custom address of the descriptor list. This function
does not allocate any memory.

int gr1553bc_list_table_alloc(
 struct gr1553bc_list *list,
 void *bdtab_custom)

Allocate and initialize a descriptor list. The bdtab_custom argu-
ment can be used to assign a custom address of the descriptor list.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 168

Prototype Description
void gr1553bc_list_table_free(
 struct gr1553bc_list *list)

Free descriptor list memory previously allocated by
gr1553bc_list_table_alloc().

int gr1553bc_list_table_build(
 struct gr1553bc_list *list)

Build all descriptors in a descriptor list. Unused descriptors will be
initialized as empty dummy descriptors. After this call descriptors
can be initialized by user.

int gr1553bc_major_init_skel(
 struct gr1553bc_major **major,
 struct gr1553bc_major_cfg *cfg)

Initialize a software description skeleton of a Major Frame and it's
Minor Frames. This function does not allocate any memory.

int gr1553bc_major_alloc_skel(
 struct gr1553bc_major **major,
 struct gr1553bc_major_cfg *cfg)

Allocate and initialize a software description skeleton of a Major
Frame and it's Minor Frames.

int gr1553bc_list_freetime(
 struct gr1553bc_list *list,
 int mid)

Get total unused slot time of a Minor Frame. Only available if time
management has been enabled for the Minor Frame.

int gr1553bc_slot_alloc(
 struct gr1553bc_list *list,
 int *mid,
 int timeslot,
 union gr1553bc_bd **bd)

Allocate a Slot from a Minor Frame. The Slot location is identified
by MID. If the MID identifies a Minor frame the first free slot is al-
located within the minor frame.

int gr1553bc_slot_free(
 struct gr1553bc_list *list,
 int mid)

Return a previously allocated Slot to a Minor Frame. The slot-time is
also returned.

int gr1553bc_mid_from_bd(
 union gr1553bc_bd *bd,
 int *mid,
 int *async)

Get Slot/Message ID from descriptor address.

union gr1553bc_bd *gr1553bc_slot_bd(
 struct gr1553bc_list *list,
 int mid)

Get descriptor address from MID.

int gr1553bc_slot_irq_prepare(
 struct gr1553bc_list *list,
 int mid,
 bcirq_func_t func,
 void *data)

Prepare a condition Slot for generating interrupt. Interrupt is dis-
abled. A custom callback function and data is assigned to Slot.

int gr1553bc_slot_irq_enable(
 struct gr1553bc_list *list,
 int mid)

Enable interrupt of a previously interrupt-prepared Slot.

int gr1553bc_slot_irq_disable(
 struct gr1553bc_list *list,
 int mid)

Disable interrupt of a previously interrupt-prepared Slot.

int gr1553bc_slot_jump(
 struct gr1553bc_list *list,
 int mid,
 uint32_t condition,
 int to_mid)

Initialize an allocated Slot, the descriptor is initialized as a condi-
tional Jump Slot. The conditional is controlled by the third argu-
ment. The Slot jumped to is determined by the fourth argument.

int gr1553bc_slot_exttrig(
 struct gr1553bc_list *list,
 int mid)

Create a dummy transfer with the "Wait for external trigger" bit set.

int gr1553bc_slot_transfer(
 struct gr1553bc_list *list,
 int mid,
 int options,
 int tt,
 uint16_t *dptr)

Create a transfer descriptor.

int gr1553bc_slot_dummy(
 struct gr1553bc_list *list,
 int mid,
 unsigned int *dummy)

Manipulate the DUMMY bit of a transfer descriptor. Can be used to
enable or disable a transfer descriptor.

int gr1553bc_slot_empty(
 struct gr1553bc_list *list,
 int mid)

Create an empty transfer descriptor, with the DUMMY bit set. The
time- slot previously allocated is preserved.

int gr1553bc_slot_update(
 struct gr1553bc_list *list,
 int mid,
 uint16_t *dptr,
 unsigned int *stat)

Update a transfer descriptors data pointer and/or status field.

int gr1553bc_slot_raw(
 struct gr1553bc_list *list,
 int mid,
 unsigned int flags,
 uint32_t word0,

Custom descriptor initialization. Note that a bad initialization may
break the BC driver.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 169

Prototype Description
 uint32_t word1,
 uint32_t word2,
 uint32_t word3)

void gr1553bc_show_list(
 struct gr1553bc_list *list,
 int options)

Print information about a descriptor list to standard out. Used for de-
bugging.

21.3.9.1. Data structures

The gr1553bc_major_cfg data structure hold the configuration parameters of a Major frame and all it's Minor
frames. The gr1553bc_minor_cfg data structure contain the configuration parameters of one Minor Frame.

struct gr1553bc_minor_cfg {
 int slot_cnt;
 int timeslot;
};

struct gr1553bc_major_cfg {
 int minor_cnt;
 struct gr1553bc_minor_cfg minor_cfgs[1];
};

Table 21.9. gr1553bc_minor_cfg member descriptions.

Member Description

slot_cnt Number of Slots in Minor Frame

timeslot Total time-slot of Minor Frame [us]

Table 21.10. gr1553bc_major_cfg member descriptions.

Member Description

minor_cnt Number of Minor Frames in Major Frame.

minor_cfgs Array of Minor Frame configurations. The length of the array is determined
by minor_cnt.

The gr1553bc_list_cfg data structure hold the configuration parameters of a descriptor List. The Major and
Minor Frames are configured separately. The configuration parameters are used when generating descriptor.

struct gr1553bc_list_cfg {
 unsigned char rt_timeout[31];
 unsigned char bc_timeout;
 int tropt_irq_on_err;
 int tropt_pause_on_err;
 int async_list;
};

Table 21.11. gr1553bc_list_cfg member descriptions.

Member Description

rt_timeout Number of us timeout tolerance per RT address. The BC has a resolution of
4us.

bc_timeout Number of us timeout tolerance of broadcast transfers

tropt_irq_on_err Determines if transfer descriptors should generate IRQ on transfer errors

tropt_pause_on_err Determines if the list should be paused on transfer error

async_list Set to non-zero if asynchronous list

21.3.9.2. gr1553bc_list_init

Initialize a List structure (no descriptors) with a maximum number of Major frames supported. The first argument
is a pointer to where the newly allocated list pointer will be stored. The second argument determines the maximum
number of major frames the List will be able to support.

The list is initialized according to the default configuration.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 170

This function will not allocate any memory. Replace this function call with gr1553bc_list_alloc() if you want the
driver to allocate the memory.

If a NULL pointer is provided, a negative result will be returned.

21.3.9.3. gr1553bc_list_alloc

Dynamically allocate and initialize a List structure (no descriptors) with a maximum number of Major frames
supported. The first argument is a pointer to where the newly allocated list pointer will be stored. The second
argument determines the maximum number of major frames the List will be able to support.

The list is initialized according to the default configuration.

If the list allocation fails, a negative result will be returned.

21.3.9.4. gr1553bc_list_free

Free a List that has been previously allocated with gr1553bc_list_alloc().

21.3.9.5. gr1553bc_list_config

This function configures List parameters and associate the list with a BC device. The BC device may be used to
translate addresses from CPU address to addresses the GR1553B core understand, therefore the list must not be
scheduled on another BC device.

Some of the List parameters are used when generating descriptors, as global descriptor parameters. For example
all transfer descriptors to a specific RT result in the same time out settings.

The first argument points to a list that is configure. The second argument points to the configuration description,
the third argument identifies the BC device that the list will be scheduled on. The layout of the list configuration
is described in Table 21.11.

21.3.9.6. gr1553bc_list_link_major

At the end of a Major Frame a unconditional jump to the next Major Frame is inserted by the List API. The List
API assumes that a Major Frame should jump to the following Major Frame, however for the last Major Frame
the user must tell the API which frame to jump to. The user may also connect Major frames in a more complex
way, for example Major Frame 0 and 1 is executed only once so the last Major frame jumps to Major Frame 2.

The Major frame indicated by next will be executed after the Major frame indicated by major. A unconditional
jump is inserted to implement the linking.

21.3.9.7. gr1553bc_list_set_major

Major Frames are associated with a number, a Major Frame Number. This function creates an association between
a Frame and a Number, all Major Frames must be assigned a number within a List.

The function will link Major[no-1] and Major[no+1] with the Major frame, the linking can be changed by calling
gr1553bc_list_link_major() after all major frames have been assigned a number.

21.3.9.8. gr1553bc_minor_table_size

This function is used internally by the List API, however it can also be used in an application to calculate the space
required by descriptors of a Minor Frame.

The total size of all descriptors in one Minor Frame (in number of bytes) is returned. Descriptors added internally
by the List API are also counted.

21.3.9.9. gr1553bc_list_table_size

This function is used internally by the List API, however it can also be used in an application to calculate the total
space required by all descriptors of a List.

The total descriptor size of all Major/Minor Frames of the list (in number of bytes) is returned.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 171

21.3.9.10. gr1553bc_list_table_init

The List is initialized with the new descriptor table, i.e. the software's internal representation is initialized. The
descriptors themselves are not initialized.

The second argument bdtab_custom is the memory area. If NULL the function will fail, if non-zero the value
will be taken as the base descriptor address. If bit zero is set the address is assumed to be readable by the GR1553B
core, if bit zero is cleared the address is assumed to be readable by the CPU and translated for the GR1553B core.
Bit zero makes sense to use on a GR1553B core located on a AMBA-over-PCI bus.

This function will not allocate any memory. Replace this function call with gr1553bc_list_table_alloc() if you
want the driver to allocate the memory.

21.3.9.11. gr1553bc_list_table_alloc

This function allocates all descriptors needed by a List, either dynamically or by a user provided address. The List
is initialized with the new descriptor table, i.e. the software's internal representation is initialized. The descriptors
themselves are not initialized.

The second argument bdtab_custom determines the allocation method. If NULL the API will allocate memory
using malloc(), if non-zero the value will be taken as the base descriptor address. If bit zero is set the address
is assumed to be readable by the GR1553B core, if bit zero is cleared the address is assumed to be readable by
the CPU and translated for the GR1553B core. Bit zero makes sense to use on a GR1553B core located on a
AMBA-over-PCI bus.

21.3.9.12. gr1553bc_list_table_free

Free previously allocated descriptor table memory.

21.3.9.13. gr1553bc_list_table_build

This function builds all descriptors in a descriptor list. Unused descriptors will be initialized as empty dummy
descriptors. Jumps between Minor and Major Frames will be created according to user configuration.

After this call descriptors can be initialized by user.

21.3.9.14. gr1553bc_major_init_skel

Initialize a Major Frame and it's Minor Frames according to the configuration pointed to by the second argument.

This function will not allocate any memory. Replace this function call with gr155bc_major_alloc_skel() if you
want the driver to allocate the memory.

The configuration of the Major Frame is determined by the gr1553bc_major_cfg structure, described in Ta-
ble 21.10.

On success zero is returned, on failure a negative value is returned.

21.3.9.15. gr1553bc_major_alloc_skel

Allocate and initialize a Major Frame and it's Minor Frames according to the configuration pointed to by the
second argument.

The pointer to the allocated Major Frame is stored into the location pointed to by the major argument.

The configuration of the Major Frame is determined by the gr1553bc_major_cfg structure, described in Ta-
ble 21.10.

On success zero is returned, on failure a negative value is returned.

21.3.9.16. gr1553bc_list_freetime

Minor Frames can be configured to handle time slot allocation. This function returns the number of microseconds
that is left/unused. The second argument mid determines which Minor Frame.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 172

21.3.9.17. gr1553bc_slot_alloc

Allocate a Slot from a Minor Frame. The Slot location is identified by mid. If the MID identifies a Minor frame
the first free slot is allocated within the minor frame.

The resulting MID of the Slot is stored back to mid, the MID can be used in other function call when setting up
the Slot. The mid argument is thus of in and out type.

The third argument, timeslot, determines the time slot that should be allocated to the Slot. If time management
is not configured for the Minor Frame a time can still be assigned to the Slot. If the Slot should step to the next Slot
directly when finished (no assigned time-slot), the argument must be set to zero. If time management is enabled for
the Minor Frame and the requested time-slot is longer than the free time, the call will result in an error (negative
result).

The fourth and last argument can optionally be used to get the address of the descriptor used.

21.3.9.18. gr1553bc_slot_free

Return Slot and timeslot allocated from the Minor Frame.

21.3.9.19. gr1553bc_mid_from_bd

Looks up the Slot/Message ID (MID) from a descriptor address. This function may be useful in the interrupt
handler, where the address of the descriptor is given.

21.3.9.20. gr1553bc_slot_bd

Looks up descriptor address from MID.

21.3.9.21. gr1553bc_slot_irq_prepare

Prepares a condition descriptor to generate interrupt. Interrupt will not be enabled until
gr1553bc_slot_irq_enable() is called. The descriptor will be initialized as an unconditional jump to
the next descriptor. The Slot can be associated with a custom callback function and an argument. The callback
function and argument is stored in the unused fields of the descriptor.

Once enabled and interrupt is generated by the Slot, the callback routine will be called from interrupt context.

The function returns a negative result if failure, otherwise zero is returned.

21.3.9.22. gr1553bc_slot_irq_enable

Enables interrupt of a previously prepared unconditional jump Slot. The Slot is expected to be initialized with
gr1553bc_slot_irq_prepare(). The descriptor is changed to do a unconditional jump with interrupt.

The function returns a negative result if failure, otherwise zero is returned.

21.3.9.23. gr1553bc_slot_irq_disable

Disable unconditional IRQ point, the descriptor is changed to unconditional JUMP to the following descriptor,
without generating interrupt. After disabling the Slot it can be enabled again, or freed.

The function returns a negative result if failure, otherwise zero is returned.

21.3.9.24. gr1553bc_slot_jump

Initialize a Slot with a custom jump condition. The arguments are declared in the table below.

Table 21.12. gr1553bc_list_cfg member descriptions.

Argument Description

list List that the Slot is located at.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 173

Argument Description

mid Slot Identification.

condition Custom condition written to descriptor. See hardware documentation for
options.

to_mid Slot Identification of the Slot that the descriptor will be jumping to.

Returns zero on success.

21.3.9.25. gr1553bc_slot_exttrig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
external trigger is normally generated by some kind of Time Master. A message slot may be programmed to
wait for an external trigger before being executed, this feature allows the user to accurate send time synchronize
messages to RTs.

This function initializes a Slot to a dummy transfer with the "Wait for external trigger" bit set.

Returns zero on success.

21.3.9.26. gr1553bc_slot_transfer

Initializes a descriptor to a transfer descriptor. The descriptor is initialized according to the function arguments an
the global List configuration parameters. The settings that are controlled on a global level (and not by this function):

• IRQ after transfer error
• IRQ after transfer (not supported, insert separate IRQ slot after this)
• Pause schedule after transfer error
• Pause schedule after transfer (not supported)
• Slot time optional (set when MID allocated), otherwise 0
• (OPTIONAL) Dummy Bit, set using slot_empty() or ..._TT_DUMMY
• RT time out tolerance (managed per RT)

The arguments are declared in the table below.

Table 21.13. gr1553bc_slot_transfer argument descriptions.

Argument Description

list List that the Slot is located at

mid Slot Identification

options Options:

• Retry Mode
• Number of retires
• Bus selection (A or B)
• Dummy bit

tt Transfer options, see BC transfer type macros in header file:

• transfer type
• RT src/dst address
• RT subaddress
• word count
• mode code

dptr Descriptor Data Pointer. Used by Hardware to read or write data to the 1553 bus. If bit zero is
set the address is translated by the driver into an address which the hardware can access(may
be the case if BC device is located on an AMBA-over-PCI bus), if cleared it is assumed that
no translation is required(typical case)

Returns zero on success.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 174

21.3.9.27. gr1553bc_slot_dummy

Manipulate the DUMMY bit of a transfer descriptor. Can be used to enable or disable a transfer descriptor.

The dummy argument points to an area used as input and output, as input bit 31 is written to the dummy bit of the
descriptor, as output the old value of the descriptors dummy bit is written.

Returns zero on success.

21.3.9.28. gr1553bc_slot_empty

Create an empty transfer descriptor, with the DUMMY bit set. The time-slot previously allocated is preserved.

Returns zero on success.

21.3.9.29. gr1553bc_slot_update

This function will update a transfer descriptors status and/or update the data pointer.

If the dptr pointer is non-zero the Data Pointer word of the descriptor will be updated with the value of dptr.
If bit zero is set the driver will translate the data pointer address into an address accessible by the BC hardware.
Translation is an option only for AMBA-over-PCI.

If the stat pointer is non-zero the Status word of the descriptor will be updated according to the content of stat.
The old Status will be stored into stat. The lower 24-bits of the current Status word may be cleared, and the
dummy bit may be set:

bd->status = *stat & (bd->status 0xffffff) | (*stat & 0x80000000);

Note that the status word is not written (only read) when value pointed to by stat is zero.

Returns zero on success.

21.3.9.30. gr1553bc_slot_raw

Custom descriptor initialization. Note that a bad initialization may break the BC driver.

The arguments are declared in the table below.

Table 21.14. gr1553bc_slot_transfer argument descriptions.

Argument Description

list List that the Slot is located at

mid Slot Identification

flags Determine which words are updated. If bit N is set wordN is written into descriptor wordN, if
bit N is zero the descriptor wordN is not modified.

word0 32-bit Word written to descriptor address 0x00

word1 32-bit Word written to descriptor address 0x04

word2 32-bit Word written to descriptor address 0x08

word3 32-bit Word written to descriptor address 0x0C

Returns zero on success.

21.3.9.31. gr1553bc_show_list

Print information about a List to standard out. Each Major Frame's first descriptor for example is printed. This
function is used for debugging only.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 175

22. GR1553B Remote Terminal Driver

22.1. Introduction

This section describes the GRLIB GR1553B Remote Terminal (RT) device driver interface. The driver relies on
the GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

22.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and Remote Terminal
(RT) functionality. This driver supports the RT functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the RT interrupts are shared between
the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

22.1.2. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 20.

22.2. User Interface

22.2.1. Overview

The RT software driver provides access to the RT core and help with creating memory structures accessed by the
RT core. The driver provides the services list below,

• Basic RT functionality (RT address, Bus and RT Status, Enabling core, etc.)
• Event logging support
• Interrupt support (Global Errors, Data Transfers, Mode Code Transfer)
• DMA-Memory configuration
• Sub Address configuration
• Support for Mode Codes
• Transfer Descriptor List Management per RT sub address and transfer type (RX/TX)

The driver sources and definitions are listed in the table below, the path is given relative to the extracted distribution
archive.

Table 22.1. RT driver Source location

Filename Description

src/libdrv/src/gr1553b/gr1553rt.c GR1553B RT Driver source

src/libdrv/src/include/gr1553rt.h GR1553B RT Driver interface declaration

22.2.1.1. Accessing an RT device

In order to access an RT core, a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr1553rt_open(), the open function allocates an RT device by calling the lower level
GR1553B driver and initializes the RT by stopping all activity and disabling interrupts. After an RT has been
opened it can be configured gr1553rt_config_init(), SA-table configured, descriptor lists assigned to
SA, interrupt callbacks registered, and finally communication started by calling gr1553rt_start(). Once the
RT is started interrupts may be generated, data may be transferred and the event log filled. The communication
can be stopped by calling gr1553rt_stop().

When the application no longer needs to access the RT core, the RT is closed by calling gr1553rt_close().

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 176

22.2.1.2. Introduction to the RT Memory areas

For the RT there are four different types of memory areas. The access to the areas is much different and involve
different latency requirements. The areas are:

• Sub Address (SA) Table
• Buffer Descriptors (BD)
• Data buffers referenced from descriptors (read or written)
• Event (EV) logging buffer

The memory types are described in separate sections below. Generally three of the areas (controlled by the driver)
can be dynamically allocated by the driver or assigned to a custom location by the user. Assigning a custom address
is typically useful when for example a low-latency memory is required, or the GR1553B core is located on an
AMBA-over- PCI bus where memory accesses over the PCI bus will not satisfy the latency requirements by the
1553 bus, instead a memory local to the RT core can be used to shorten the access time. Note that when providing
custom addresses the alignment requirement of the GR1553B core must be obeyed, which is different for different
areas and sizes. The memory areas are configured using the gr1553rt_config_init() function.

22.2.1.3. Sub Address Table

The RT core provides the user to program different responses per sub address and transfer type through the sub
address table (SA-table) located in memory. The RT core consult the SA-table for every 1553 data transfer com-
mand on the 1553 bus. The table includes options per sub address and transfer type and a pointer to the next
descriptor that let the user control the location of the data buffer used in the transaction. See hardware manual
for a complete description.

The SA-table is fixed size to 512 bytes.

Since the RT is required to respond to BC request within a certain time, it is vital that the RT has enough time
to look up user configuration of a transfer, i.e. read SA-table and descriptor and possibly the data buffer as well.
The driver provides a way to let the user give a custom address to the sub address table or dynamically allocate
it for the user. The default action is to let the driver dynamically allocate the SA-table, the SA-table will then be
located in the main memory of the CPU. For RT core's located on an AMBA-over- PCI bus, the default action is
not acceptable due to the latency requirement mentioned above.

The SA-table can be configured per SA by calling the gr1553rt_sa_setopts() function. The mask argu-
ment makes it possible to change individual bit in the SA configuration. This function must be called to enable
transfers from/to a sub address. See hardware manual for SA configuration options. Descriptor Lists are assigned
to a SA by calling gr1553rt_list_sa().

The indication service can be used to determine the descriptor used in the next transfer, see Section 22.2.1.8.

22.2.1.4. Descriptors

A GR1553B RT descriptor is located in memory and pointed to by the SA-table. The SA-table points out the
next descriptor used for a specific sub address and transfer type. The descriptor contains three input fields: Con-
trol/Status Word determines options for a specific transfer ans status of a completed transfer; Data buffer pointer,
16-bit aligned; Pointer to next descriptor within sub address and transfer type, or end-of-list marker.

All descriptors are located in the same range of memory, which the driver refers to as the BD memory. The
BD memory can by dynamically allocated (located in CPU main memory) by the driver or assigned to a custom
location by the user. From the BD memory descriptors for all sub addresses are allocated by the driver. The driver
works internally with 16-bit descriptor identifiers allowing 65k descriptor in total. A descriptor is allocated for a
specific descriptor List. Each descriptor takes 32 bytes of memory.

The user can build and initialize descriptors using the API function gr1553rt_bd_init() and update the
descriptor and/or view the status and time of a completed transfer.

Descriptors are managed by a data structure named gr1553rt_list. A List is the software representation of
a chain of descriptors for a specific sub address and transfer type. Thus, 60 lists in total (two lists per SA, SA0
and SA31 are for mode codes) per RT. The List simplifies the descriptor handling for the user by introducing
descriptor numbers (entry_no) used when referring to descriptors rather than the descriptor address. Up to 65k
descriptors are supported per List by the driver. A descriptor list is assigned to a SA and transfer type by calling
gr1553rt_list_sa().

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 177

When a List is created and configured a maximal number of descriptors are given, giving the API a possibility to
allocate the descriptors from the descriptor memory area configured.

Circular buffers can be created by a chain of descriptors where each descriptors data buffer is one element in the
circular buffer.

22.2.1.5. Data Buffers

Data buffers are not accessed by the driver at all, the address is only written to descriptor upon user request. It is
up to the user to provide the driver with valid addresses to data buffers of the required length.

Note that addresses given must be accessible by the hardware. If the RT core is located on a AMBA-over-PCI bus
for example, the address of a data buffer from the RT core's point of view is most probably not the same as the
address used by the CPU to access the buffer.

22.2.1.6. Event Logging

Transfer events (Transmission, Reception and Mode Codes) may be logged by the RT core into a memory area
for (later) processing. The events logged can be controlled by the user at a SA transfer type level and per mode
code through the Mode Code Control Register.

The driver API access the eventlog on two occasions, either when the user reads the eventlog buffer using the
gr1553rt_evlog_read() function or from the interrupt handler, see the interrupt section for more informa-
tion. The gr1553rt_evlog_read() function is called by the user to read the eventlog, it simply copies the
current logged entries to a user buffer. The user must empty the driver eventlog in time to avoid entries to be over-
written. A certain descriptor or SA may be logged to help the application implement communication protocols.

The eventlog is typically sized depending the frequency of the log input (logged transfers) and the frequency of the
log output (task reading the log). Every logged transfer is described with a 32-bit word, making it quite compact.

The memory of the eventlog does not require as tight latency requirement as the SA-table and descriptors. However
the user still is provided the ability to put the eventlog at a custom address, or letting the driver dynamically allocate
it. When providing a custom address the start address is given, the area must have room for the configured number
of entries and have the hardware required alignment.

Note that the alignment requirement of the eventlog varies depending on the eventlog length.

22.2.1.7. Interrupt service

The RT core can be programmed to interrupt the CPU on certain events, transfers and errors (SA-table and DMA).
The driver divides transfers into two different types of events, mode codes and data transfers. The three types of
events can be assigned custom callbacks called from the driver's interrupt service routine (ISR), and custom argu-
ment can be given. The callbacks are registered per RT device using the functions gr1553rt_irq_err(),
gr1553rt_irq_mc(), gr1553rt_irq_sa(). Note that the three different callbacks have different argu-
ments.

Error interrupts are discovered in the ISR by looking at the IRQ event register, they are handled first. After the
error interrupt has been handled by the user (user interaction is optional) the RT core is stopped by the driver.

Data transfers and Mode Code transfers are logged in the eventlog. When a transfer-triggered interrupt occurs the
ISR starts processing the event log from the first event that caused the IRQ (determined by hardware register)
calling the mode code or data transfer callback for each event in the log which has generated an IRQ (determined by
the IRQSR bit). Even though both the ISR and the eventlog read function r1553rt_evlog_read() processes
the eventlog, they are completely separate processes - one does not affect the other. It is up to the user to make
sure that events that generated interrupt are not double processed. The callback functions are called in the same
order as the event was generated.

Is is possible to configure different callback routines and/or arguments for different sub addresses (1..30) and
transfer types (RX/TX). Thus, 60 different callback handlers may be registered for data transfers.

22.2.1.8. Indication service

The indication service is typically used by the user to determine how many descriptors have been processed by
the hardware for a certain SA and transfer type. The gr1553rt_indication() function returns the next

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 178

descriptor number which will be used next transfer by the RT core. The indication function takes a sub address
and an RT device as input, By remembering which descriptor was processed last the caller can determine how
many and which descriptors have been accessed by the BC.

22.2.1.9. Mode Code support

The RT core a number of registers to control and interact with mode code commands. See hardware manual which
mode codes are available. Each mode code can be disabled or enabled. Enabled mode codes can be logged and in-
terrupt can be generated upon transmission events. The gr1553rt_config_init() function is used to con-
figure the aforementioned mode code options. Interrupt caused by mode code transmissions can be programmed
to call the user through an callback function, see the interrupt Section 22.2.1.7.

The mode codes "Synchronization with data", "Transmit Bit word" and "Transmit Vector word" can be interacted
with through a register interface. The register interface can be read with the gr1553rt_status() function
and selected (or all) bits of the bit word and vector word can be written using gr1553rt_set_vecword()
function.

Other mode codes can interacted with using the Bus Status Register of the RT core. The register
can be read using the gr1553rt_status() function and written selectable bit can be written using
gr1553rt_set_bussts().

22.2.1.10. RT Time

The RT core has an internal time counter with a configurable time resolution. The finest time resolution of the timer
counter is one microsecond. The resolution is configured using the gr1553rt_config_init() function. The
current time is read by calling the gr1553rt_status() function.

22.2.2. Application Programming Interface

The RT driver API consists of the functions in the table below.

Table 22.2. Data structures

Prototype Description
void *gr1553rt_open(int minor) Open an RT device by instance number. Returns a handle identifying

the specific RT device. The handle is given as input in most func-
tions of the API

void gr1553rt_close(void *rt) Close a previously opened RT device

int gr1553rt_config_init(
 void *rt,
 struct gr1553rt_cfg *cfg)

Configure the RT device driver

Configure the RT device driver and allo-
cate device memory

int gr1553rt_config_free(void *rt) Free allocated device memory

int gr1553rt_start(void *rt) Start RT communication, enables Interrupts

void gr1553rt_stop(void *rt) Stop RT communication, disables interrupts

void gr1553rt_status(
 void *rt,
 struct gr1553rt_status *status)

Get Time, Bus/RT Status and mode code status

int gr1553rt_indication(
 void *rt,
 int subadr,
 int *txeno,
 int *rxeno)

Get the next descriptor that will processed of an RT sub-address and
transfer type

int gr1553rt_evlog_read(
 void *rt,
 unsigned int *dst,
 int max)

Copy contents of event log to a user provided data buffer

void gr1553rt_set_vecword(
 void *rt,
 unsigned int mask,
 unsigned int words)

Set all or a selection of bits in the Vector word and Bit word used by
the "Transmit Bit word" and "Transmit Vector word" mode codes

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 179

Prototype Description
void gr1553rt_set_bussts(
 void *rt,
 unsigned int mask,
 unsigned int sts)

Modify a selection of bits in the RT Bus Status register

void gr1553rt_sa_setopts(
 void *rt,
 int subadr,
 unsigned int mask,
 unsigned int options)

Configures a sub address control word located in the SA-table.

void gr1553rt_list_sa(
 struct gr1553rt_list *list,
 int *subadr,
 int *tx)

Get the Sub address and transfer type of a scheduled list

void gr1553rt_sa_schedule(
 void *rt,
 int subadr,
 int tx,
 struct gr1553rt_list *list)

Schedule a RX or TX descriptor list on a sub address of a certain
transfer type

int gr1553rt_irq_err(
 void *rt,
 gr1553rt_irqerr_t func,
 void *data)

Assign an Error Interrupt handler callback routine and custom argu-
ment

int gr1553rt_irq_mc(
 void *rt,
 gr1553rt_irqmc_t func,
 void *data)

Assign a Mode Code Interrupt handler callback routine and custom
argument

int gr1553rt_irq_sa(
 void *rt,
 int subadr,
 int tx,
 gr1553rt_irq_t func,
 void *data)

Assign a Data Transfer Interrupt handler callback routine and custom
argument to a certain sub address and transfer type

int gr1553rt_list_init(
 void *rt,
 struct gr1553rt_list **plist,
 struct gr1553rt_list_cfg *cfg)

Initialize a descriptor List according to configuration. The List can
be used for RX/TX on any sub address.

int gr1553rt_list_alloc(
 void *rt,
 struct gr1553rt_list **plist,
 struct gr1553rt_list_cfg *cfg)

Initialize and allocate a descriptor List according to configuration.
The List can be used for RX/TX on any sub address.

int gr1553rt_bd_init(
 struct gr1553rt_list *list,
 unsigned short entry_no,
 unsigned int flags,
 uint16_t *dptr,
 unsigned short next)

Initialize a Descriptor in a List identified by number.

int gr1553rt_bd_update(
 struct gr1553rt_list *list,
 int entry_no,
 unsigned int *status,
 uint16_t **dptr)

Update the status and/or the data buffer pointer of a descriptor.

22.2.2.1. Data structures

The gr1553rt_cfg data structure is used to configure an RT device. The configuration parameters are described
in the table below.

struct gr1553rt_cfg {
 unsigned char rtaddress;
 unsigned int modecode;
 unsigned short time_res;
 void *satab_buffer;
 void *evlog_buffer;
 int evlog_size;
 int bd_count;
 void *bd_buffer;
 void *bd_sw_buffer;
};

Table 22.3. gr1553rt_cfg member descriptions

Member Description

rtaddress RT Address on 1553 bus [0..30]

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 180

Member Description

modecode Mode codes enable/disable/IRQ/EV-Log. Each mode code has a 2-bit configura-
tion field. Mode Code Control Register in hardware manual

time_res Time tag resolution in microseconds

satab_buffer Sub Address Table (SA-table) allocation setting. Can be dynamically allocated (zero) or
custom location (non-zero). If custom location of SA-table is given, the address must be
aligned to 10-bit (1KiB) boundary and at least 16*32 bytes.

evlog_buffer Eventlog DMA buffer allocation setting. Can be dynamically allocated (zero) or cus-
tom location (non-zero). If custom location of eventlog is given, the address must be of
evlog_size and aligned to evlog_size. See hardware manual.

evlog_size Length in bytes of Eventlog, must be a multiple of 2. If set to zero event log is disabled,
note that enabling logging in SA-table or descriptors will cause failure when eventlog is
disabled.

bd_count Number of descriptors for RT device. All descriptor lists share the descriptors. Maximum
is 65K descriptors.

bd_buffer Descriptor memory area allocation setting. Can be dynamically allocated (zero) or custom
location (non-zero). If custom location of descriptors is given, the address must be aligned
to 32 bytes and of (32 * bd_count) bytes size.

bd_sw_buffer Descriptor memory area allocation for internal usage. Can be dynamically allocated (zero)
or custom location (non-zero). If custom location of descriptors is given, the area must be
of (4 * bd_count) bytes size.

The gr1553rt_list_cfg data structure hold the configuration parameters of a descriptor List.

struct gr1553rt_list_cfg {
 unsigned int bd_cnt;
};

Table 22.4. gr1553rt_list_cfg member descriptions

Member Description

bd_cnt Number of descriptors in List

The current status of the RT core is stored in the gr1553rt_status data structure by the function
gr1553rt_status(). The fields are described below.

struct gr1553rt_status {
 unsigned int status;
 unsigned int bus_status;
 unsigned short synctime;
 unsigned short syncword;
 unsigned short time_res;
 unsigned short time;
};

Table 22.5. gr1553rt_status member descriptions

Member Description

status Current value of RT Status Register

bus_status Current value of RT Bus Status Register

synctime Time Tag when last synchronize with data was received

syncword Data of last mode code synchronize with data

time_res Time resolution in microseconds (set by config)

time Current Time Tag. (time_res * time) gives the number of microsec-
onds since last time overflow.

22.2.2.2. gr1553rt_open

Opens a GR1553B RT device identified by instance number, minor. The instance number is determined by the
order in which GR1553B cores with RT functionality are found, the order of the Plug & Play.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 181

A handle is returned identifying the opened RT device, the handle is used internally by the RT driver, it is used
as an input parameter rt to all other functions that manipulate the hardware.

Close and Stop an RT device identified by input argument rt previously returned by gr1553rt_open().

22.2.2.3. gr1553rt_close

Close and Stop an RT device identified by input argument rt previously returned by gr1553rt_open().

22.2.2.4. gr1553rt_config_init

Configure memory for an RT device. The configuration parameters are stored in the location pointed to by cfg.
The layout of the parameters must follow the gr1553rt_cfg data structure, described in Table 22.3.

This function will not allocate any memory. Replace this function call with gr1553rt_config_alloc() if you want
the driver to allocate memory. If any of the data pointers are NULL, then this function will return a negative result.
On success zero is returned.

22.2.2.5. gr1553rt_config_alloc

Configure and allocate memory for an RT device. The configuration parameters are stored in the location pointed
to by cfg. The layout of the parameters must follow the gr1553rt_cfg data structure, described in Table 22.3.

If memory allocation fails (in case of dynamic memory allocation) the function return a negative result, on success
zero is returned.

22.2.2.6. gr1553bm_config_free

Free allocated memory.

22.2.2.7. gr1553rt_start

Starts RT communication by enabling the core and enabling interrupts. The user must have configured the driver
(RT address, Mode Code, SA-table, lists, descriptors, etc.) before calling this function.

After the RT has been started the configuration function can not be called.

On success this function returns zero, on failure a negative result is returned.

22.2.2.8. gr1553rt_stop

Stops RT communication by disabling the core and disabling interrupts. Further 1553 commands to the RT will
be ignored.

22.2.2.9. gr1553rt_status

Read current status of the RT core. The status is written to the location pointed to by status in the format determined
by the gr1553rt_status structure described in Table 22.5.

22.2.2.10. gr1553rt_indication

Get the next descriptor that will be processed for a specific sub address. The descriptor number is looked up from
the descriptor address found the SA-table for the sub address specified by subadr argument.

The descriptor number of respective transfer type (RX/TX) will be written to the address given by txeno and/or
rxeno. If end-of-list has been reached, -1 is stored into txeno or rxeno.

If the request is successful zero is returned, otherwise a negative number is returned (bad sub address or descriptor).

22.2.2.11. gr1553rt_evlog_read

Copy up to max number of entries from eventlog into the address specified by dst. The actual number of entries
read is returned. It is important to read out the eventlog entries in time to avoid data loss, the eventlog can be sized
so that data loss can be avoided.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 182

Zero is returned when entries are available in the log, negative on failure.

22.2.2.12. gr1553rt_set_vecword

Set a selection of bits in the RT Vector and/or Bit word. The words are used when,

• Vector Word is used in response to "Transmit vector word" BC commands
• Bit Word is used in response to "Transmit bit word" BC commands

The argument mask determines which bits are written, and words determines the value of the bits written. The
lower 16-bits are the Vector Word, the higher 16-bits are the Bit Word.

22.2.2.13. gr1553rt_set_bussts

Set a selection of bits of the Bus Status Register. The bits written is determined by the mask bit-mask and the
values written is determined by sts. Operation:

 bus_status_reg = (bus_status_reg & ~mask) | (sts & mask)

22.2.2.14. gr1553rt_sa_setopts

Configure individual bits of the SA Control Word in the SA-table. One may for example Enable or Disable a SA
RX and/or TX. See hardware manual for SA-Table configuration options.

The mask argument is a bit-mask, it determines which bits are written and options determines the value written.

The subadr argument selects which sub address is configured.

Note that SA-table is all zero after configuration, every SA used must be configured using this function.

22.2.2.15. gr1553rt_list_sa

This function looks up the SA and the transfer type of the descriptor list given by list. The SA is stored into
subadr, the transfer type is written into tx (TX=1, RX=0).

22.2.2.16. gr1553rt_sa_schedule

This function associates a descriptor list with a sub address (given by subadr) and a transfer type (given by tx).
The first descriptor in the descriptor list is written to the SA-table entry of the SA.

22.2.2.17. gr1553rt_irq_err

his function registers an interrupt callback handler of the Error Interrupt. The handler func is called with the
argument data when a DMA error or SA-table access error occurs. The callback must follow the prototype of
gr1553rt_irqerr_t :

typedef void (*gr1553rt_irqerr_t)(int err, void *data);

Where err is the value of the GR1553B IRQ register at the time the error was detected, it can be used to determine
what kind of error occurred.

22.2.2.18. gr1553rt_irq_mc

This function registers an interrupt callback handler for Logged Mode Code transmission Interrupts. The han-
dler func is called with the argument data when a Mode Code transmission event occurs, note that inter-
rupts must be enabled per Mode Code using gr1553rt_config_init(). The callback must follow the prototype of
gr1553rt_irqmc_t:

typedef void (*gr1553rt_irqmc_t)(
 int mcode,
 unsigned int entry,
 void *data
);

Where mcode is the mode code causing the interrupt, entry is the raw event log entry.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 183

22.2.2.19. gr1553rt_irq_sa

Register an interrupt callback handler for data transfer triggered Interrupts, it is possible to assign a unique function
and/or data for every SA (given by subadr) and transfer type (given by tx). The handler func is called with the
argument data when a data transfer interrupt event occurs. Interrupts is configured on a descriptor or SA basis.
The callback routine must follow the prototype of gr1553rt_irq_t:

typedef void (*gr1553rt_irq_t)(
 struct gr1553rt_list *list,
 unsigned int entry,
 int bd_next,
 void *data
);

Where list indicates which descriptor list (Sub Address, transfer type) caused the interrupt event, entry is the
raw event log entry, bd_next is the next descriptor that will be processed by the RT for the next transfer of the
same sub address and transfer type.

22.2.2.20. gr1553rt_list_init

Configure a list structure according to configuration given in cfg, see the gr1553rt_list_cfg data structure
in Table 22.4. Assign the list to an RT device, however not to a sub address yet. The rt handle is stored within list.

This function will not allocate any memory. Replace this function call with gr1553rt_list_alloc() if you want the
driver to allocate the memory.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured using
gr1553rt_config_init() before calling this function.

A negative number is returned on failure, on success zero is returned.

22.2.2.21. gr1553rt_list_alloc

Allocate and configure a list structure according to configuration given in cfg, see the gr1553rt_list_cfg
data structure in Table 22.4. Assign the list to an RT device, however not to a sub address yet. The rt handle
is stored within list.

The resulting descriptor list is written to the location indicated by the plist argument.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured using
gr1553rt_config_alloc() before calling this function.

A negative number is returned on failure, on success zero is returned.

22.2.2.22. gr1553rt_bd_init

Initialize a descriptor entry in a list. This is typically done prior to scheduling the list. The descriptor and the next
descriptor is given by descriptor indexes relative to the list (entry_no and next), see table below for options
on next. Set bit 30 of the argument flags in order to set the IRQEN bit of the descriptors Control/Status Word.
The argument dptr is written to the descriptors Data Buffer Pointer Word.

Note that the data pointer is accessed by the GR1553B core and must therefore be a valid address for the core. This
is only an issue if the GR1553B core is located on a AMBA- over-PCI bus, the address may need to be translated
from CPU accessible address to hardware accessible address.

Table 22.6. gr1553rt_bd_init next argument description

Values of next Description

0xffff Indicate to hardware that this is the last entry in the list, the next descriptor
is set to end-of-list mark (0x3).

0xfffe Next descriptor (entry_no+1) or 0 is last descriptor in list.

other The index of the next descriptor.

A negative number is returned on failure, on success a zero is returned.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 184

22.2.2.23. gr1553rt_bd_update

Manipulate and read the Control/Status and Data Pointer words of a descriptor.

If status is non-zero, the Control/Status word is swapped with the content pointed to by status.

If dptr is non-zero, the Data Pointer word is swapped with the content pointed to by dptr.

A negative number is returned on failure, on success a zero is returned.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 185

23. GR1553B Bus Monitor Driver

23.1. Introduction

This section describes the GRLIB GR1553B Bus Monitor (BM) device driver interface. The driver relies on the
GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

23.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BM functionality of the hardware, it can be used simultaneously
with the RT or BC functionality, but not both simultaneously. When the BM is used together with the RT or BC
interrupts are shared between the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

23.1.2. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 20.

23.2. User Interface

23.2.1. Overview

The BM software driver provides access to the BM core and help with accessing the BM log memory buffer. The
driver provides the services list below,

• Basic BM functionality (Enabling/Disabling, etc.)
• Filtering options
• Interrupt support (DMA Error, Timer Overflow)
• 1553 Timer handling
• Read BM log

The driver sources and definitions are listed in the table below, the path is given relative to the extracted distribution
archive.

Table 23.1. BM driver Source location

Filename Description

src/libdrv/src/gr1553b/gr1553bm.c GR1553B BM Driver source

src/libdrv/src/include/gr1553bm.h GR1553B BM Driver interface declaration

23.2.1.1. Accessing a BM device

In order to access a BM core a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr1553bm_open(), the open function allocates a BM device by calling the lower level
GR1553B driver and initializes the BM by stopping all activity and disabling interrupts. After a BM has been
opened it can be configured gr1553bm_config_init() and then started by calling gr1553bm_start().
Once the BM is started the log is filled by hardware and interrupts may be generated. The logging can be stopped
by calling gr1553bm_stop().

When the application no longer needs to access the BM driver services, the BM is closed by calling
gr1553bm_close().

23.2.1.2. BM Log memory

The BM log memory is written by the BM hardware when transfers matching the filters are detected. Each com-
mand, Status and Data 16-bit word takes 64-bits of space in the log, into the first 32-bits the current 24-bit 1553

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 186

timer is written and to the second 32-bit word status, word type, Bus and the 16-bit data is written. See hardware
manual.

The BM log DMA-area can be dynamically allocated by the driver or assigned to a custom location by the user.
Assigning a custom address is typically useful when the GR1553B core is located on an AMBA-over-PCI bus
where memory accesses over the PCI bus will not satisfy the latency requirements by the 1553 bus, instead a
memory local to the BM core can be used to shorten the access time. Note that when providing custom addresses
the 8-byte alignment requirement of the GR1553B BM core must be obeyed. The memory areas are configured
using the gr1553bm_config() function.

23.2.1.3. Accessing the BM Log memory

The BM Log is filled as transfers are detected on the 1553 bus, if the log is not emptied in time the log may
overflow and data loss will occur. The BM log can be accessed with the functions listed below.

• gr1553bm_available()
• gr1553bm_read()

A custom handler responsible for copying the BM log can be assigned in the configuration of the driver. The
custom routine can be used to optimize the BM log read, for example one may not perhaps not want to copy all
entries, search the log for a specific event or compress the log before storing to another location.

23.2.1.4. Time

Th BM core has a 24-bit time counter with a programmable resolution through the
gr1553bm_config_init() function. The finest resolution is a microsecond. The BM driver maintains a 64-
bit 1553 time. The time can be used by an application that needs to be able to log for a long time. The driver must
detect every overflow in order maintain the correct 64-bit time, the driver gives users two different approaches.
Either the timer overflow interrupt is used or the user must guarantee to call the gr1553bm_time() function
at least once before the second time overflow happens. The timer overflow interrupt can be enabled from the
gr1553bm_config_init() function.

The current 64-bit time can be read by calling gr1553bm_time().

The application can determine the 64-bit time of every log entry by emptying the complete log at least once per
timer overflow.

23.2.1.5. Filtering

The BM core has support for filtering 1553 transfers. The filter options can be controlled by fields in the config-
uration structure given to gr1553bm_config_init().

23.2.1.6. Interrupt service

The BM core can interrupt the CPU on DMA errors and on Timer overflow. The DMA error is unmasked by the
driver and the Timer overflow interrupt is configurable. For the DMA error interrupt a custom handler may be
installed through the gr1553bm_config_init() function. On DMA error the BM logging will automatically
be stopped by a call to gr1553bm_stop() from within the ISR of the driver.

23.2.2. Application Programming Interface

The BM driver API consists of the functions in the table below.

Table 23.2. function prototypes

Prototype Description
void *gr1553bm_open(int minor) Open a BM device by instance number. Returns a handle identifying the

specific BM device opened. The handle is given as input parameter bm in
all other functions of the API

void gr1553bm_close(void *bm) Close a previously opened BM device

int gr1553bm_config_init(
 void *bm,
 struct gr1553bm_cfg *cfg)

Configure the BM device driver BM log DMA-memory

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 187

Prototype Description
int gr1553bm_config_alloc(
 void *bm,
 struct gr1553bm_cfg *cfg)

Configure the BM device driver and allocate BM log DMA-memory

void gr1553bm_config_free(void *bm)Free allocated memory

int gr1553bm_start(void *bm) Start BM logging, enables Interrupts

void gr1553bm_stop(void *bm) Stop BM logging, disables interrupts

void gr1553bm_time(
 void *bm,
 uint64_t *time)

Get 1553 64-bit Time maintained by the driver. The lowest 24-bits are tak-
en directly from the BM timer register, the most significant 40-bits are tak-
en from a software counter.

int gr1553bm_available(
 void *bm,
 int *nentries)

The current number of entries in the log is stored into nentries.

int gr1553bm_read(
 void *bm,
 struct gr1553bm_entry *dst,
 int *max)

Copy contents a maximum number (max) of entries from the BM log to
a user provided data buffer (dst). The actual number of entries copied is
stored into max.

23.2.2.1. Data structures

The gr1553bm_cfg data structure is used to configure the BM device and driver. The configuration parameters
are described in the table below.

struct gr1553bm_config {
 uint8_t time_resolution;
 int time_ovf_irq;
 unsigned int filt_error_options;
 unsigned int filt_rtadr;
 unsigned int filt_subadr;
 unsigned int filt_mc;
 unsigned int buffer_size;
 void *buffer_custom;
 bmcopy_func_t copy_func;
 void *copy_func_arg;
 bmisr_func_t dma_error_isr;
 void *dma_error_arg;
};

Table 23.3. gr1553bm_config member descriptions.

Member Description

time_resolution 8-bit time resolution, the BM will update the time according to this setting. 0 will make
the time tag be of highest resolution (no division), 1 will make the BM increment the time
tag once for two time ticks (div with 2), etc.

time_ovf_irq Enable Time Overflow IRQ handling. Setting this to 1 makes the driver to update the 64-
bit time by it self, it will use time overflow IRQ to detect when the 64-bit time counter
must be incremented. If set to zero, the driver expect the user to call gr1553bm_time()
regularly, it must be called more often than the time overflows to avoid an incorrect time.

filt_error_options Bus error log options:

bit0,4-31 = reserved, set to zero Bit1 = Enables logging of Invalid mode code errors Bit2
= Enables logging of Unexpected Data errors Bit3 = Enables logging of Manchester/pari-
tyerrors

filt_rtadr RT Subaddress filtering bit mask, bit definition:

31: Enables logging of mode commands on subadr 31 1..30: BitN enables/disables log-
ging of RT subadr N 0: Enables logging of mode commands on subadr 0

filt_mc Mode code Filter, is written into "BM RT Mode code filter" register, please see hardware
manual for bit declarations.

buffer_size Size of buffer in bytes, must be aligned to 8-byte boundary.

buffer_custom Custom BM log buffer location, must be aligned to 8-byte and be of buffer_size length. If
NULL dynamic memory allocation is used.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 188

Member Description

copy_func Custom Copy function, may be used to implement a more effective/ custom way of copy-
ing the DMA buffer. For example the DMA log may need to processed at the same time
when copying.

copy_func_arg Optional Custom Data passed onto copy_func()

dma_error_isr Custom DMA error function, note that this function is called from Interrupt Context. Set
to NULL to disable this callback.

dma_error_arg COptional Custom Data passed on to dma_error_isr()

struct gr1553bm_entry {
 uint32_t time;
 uint32_t data;
};

Table 23.4. gr1553bm_entry member descriptions.

Member Description

time Time of word transfer entry. Bit31=1, bit 30..24=0, bit 23..0=time

data Transfer status and data word

Bits Description

31 Zero

30..20 Zero

19 0=BusA, 1=BusB

18..17 Word Status: 00=Ok, 01=Manch-
ester error, 10=Parity error

16 Word type: 0=Data, 1=Command/
Status

15..0 16-bit Data on detected on bus

23.2.2.2. gr1553bm_open

Opens a GR1553B BM device identified by instance number, minor. The instance number is determined by the
order in which GR1553B cores with BM functionality are found, the order of the Plug & Play.

A handle is returned identifying the opened BM device, the handle is used internally by the driver, it is used as an
input parameter bm to all other functions that manipulate the hardware.

This function initializes the BM hardware to a stopped/disable level.

23.2.2.3. gr1553bm_close

Close and Stop a BM device identified by input argument bm previously returned by gr1553bm_open().

23.2.2.4. gr1553bm_config_init

Configure the log DMA-memory for a BM device. The configuration parameters are stored in the location point-
ed to by cfg. The layout of the parameters must follow the gr1553bm_config data structure, described in
Table 23.3.

This function will not allocate any memory. Replace this function call with gr1553bm_config_alloc() if you want
the driver to allocate memory. If BM device is started or any of the data pointers are NULL, then this function
will return a negative result. On success zero is returned.

23.2.2.5. gr1553bm_config_alloc

Configure and allocate the log DMA-memory for a BM device. The configuration parameters are stored in the
location pointed to by cfg. The layout of the parameters must follow the gr1553bm_config data structure,
described in Table 23.3.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 189

If BM device is started or memory allocation fails (in case of dynamic memory allocation), then this function will
return a negative result. On success zero is returned.

23.2.2.6. gr1553bm_config_free

Free allocated memory.

23.2.2.7. gr1553bm_start

Starts 1553 logging by enabling the core and enabling interrupts. The user must have configured the driver (log
buffer, timer, filtering, etc.) before calling this function.

After the BM has been started the configuration function can not be called.

On success this function returns zero, on failure a negative result is returned.

23.2.2.8. gr1553bm_stop

Stops 1553 logging by disabling the core and disabling interrupts. Further 1553 transfers will be ignored.

23.2.2.9. gr1553bm_time

This function reads the driver's internal 64-bit 1553 Time. The low 24-bit time is acquired from BM hardware,
the MSB is taken from a software counter internal to the driver. The counter is incremented every time the Time
overflows by:

• using "Time overflow" IRQ if enabled in user configuration
• by checking "Time overflow" IRQ flag (IRQ is disabled), it is required that user calls this function before

the next timer overflow. The software can not distinguish between one or two timer overflows. This function
will check the overflow flag and increment the driver internal time if overflow has occurred since last call.

This function update software time counters and store the current time into the address indicated by the argument
time.

23.2.2.10. gr1553bm_available

Copy up to max number of entries from BM log into the address specified by dst. The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument is thus in/out. It is
important to read out the log entries in time to avoid data loss, the log can be sized so that data loss can be avoided.

Zero is returned on success, on failure a negative number is returned.

23.2.2.11. gr1553bm_read

Copy up to max number of entries from BM log into the address specified by dst. The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument is thus in/out. It is
important to read out the log entries in time to avoid data loss, the log can be sized so that data loss can be avoided.

Zero is returned on success, on failure a negative number is returned.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 190

24. GR716 memory protection unit driver

24.1. Introduction

This section describes the driver used to control the two memory protection units (MEMPROT) available in
GR716.

24.1.1. User Interface

This section covers how the driver can be interfaced to an application to control the MEMPROT hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with memprot_. All
driver functions take a device handle returned by memprot_open as the first parameter. All supported functions
and their data structures are defined in the driver's header file drv/memprot.h.

24.1.2. Features

• Global enable and disable
• Per-segment configuration
• Automatic locking and unlocking

24.1.3. Limitations

The GR716 master-to-APB grant interface is not directly supported by the driver. Register structures definitions
are available in the header file.

24.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 24.1. Driver registration functions

Registration method Function

Automatic registration memprot_autoinit()

Register one device memprot_register()

Register many devices memprot_init()

24.3. Examples

Examples are available in the src/libdrv/examples directory in the BCC distribution.

24.4. Opening and closing device

A MEMPROT device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using memprot_dev_count. A particular device can be
opened using memprot_open and closed memprot_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all MEMPROT devices on opening and closing. It is assumed that at most
one thread operates on one MEMPROT device at a time.

During opening of a MEMPROT device the following steps are taken:

• The device is marked opened to protect the caller from other users of the same device.
• Internal data structures are initialized.
• The device is locked using the PCR.PROT field.

The example below prints the number of MEMPROT devices to screen then opens and closes the first MEMPROT
device present in the system.

int print_memprot_devices(void)
{
 struct memprot_priv *device;

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 191

 int count;

 count = memprot_dev_count();
 printf("%d MEMPROT device(s) present\n", count);

 device = memprot_open(0);
 if (!device) {
 return -1; /* Failure */
 }

 memprot_close(device);
 return 0; /* success */
}

Table 24.2. memprot_dev_count function declaration

Proto int memprot_dev_count(void)

About Retrieve number of devices registered to the driver.

Return int. Number of devices registered in system, zero if none.

Table 24.3. memprot_open function declaration

Proto struct memprot_priv *memprot_open(int dev_no)

About Opens a MEMPROT device. The device is identified by index. The returned value is used as input ar-
gument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by memprot_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which MEMPROT device.

Table 24.4. memprot_close function declaration

Proto int memprot_close(struct memprot_priv *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from memprot_open.

Return int. DRV_OK

Memory protection configuration is not changed by the open and close functions. In particular, memory pro-
tection is not disabled by close.

24.5. Operation mode

The driver always operates in one of two modes: started or stopped,

This translates directly to whether the memory protection unit is enabled or disabled.

• Started is equivalent to PCR.EN=1. It means that the memory protection unit is enabled.
• Stopped is equivalent to PCR.EN=0. It means that the memory protection unit is disabled.

All API functions are available in both operation modes.

24.5.1. Starting and stopping

The memprot_start() function places the driver in started mode. The function memprot_stop() makes
the driver core leave the started mode and enter stopped mode. memprot_isstarted() is used to determine
the driver operation mode.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 192

Table 24.5. memprot_start function declaration

Proto int memprot_start(struct memprot_priv *priv)

About Start driver.

d [IN] pointerParam

Device handle returned by memprot_open.

int.

Value Description

DRV_OK Device was started by the function call.

Return

DRV_BUSY Device already in started mode. Nothing performed.

Table 24.6. memprot_stop function declaration

Proto int memprot_stop(struct memprot_priv *priv)

About Stop driver.

d [IN] pointerParam

Device handle returned by memprot_open.

int.

Value Description

DRV_OK Device was stopped by the function call.

Return

DRV_BUSY Device already in stopped mode. Nothing performed.

Table 24.7. memprot_isstarted function declaration

Proto int memprot_isstarted(struct memprot_priv *d)

About Get current MEMPROT driver running state

d [IN] PointerParam

Device identifier. Returned by memprot_open.

int. Status

Value Description

0 Stopped

Return

1 Started

24.6. Reset

Opening the driver does not change any of the units configuration. To reset the memory protection unit to a known
accept-all state, the function memprot_reset() can be used.

Table 24.8. memprot_reset function declaration

Proto int memprot_reset(struct memprot_priv *d)

About Reset memory protection unit.

This function disables the unit and disables all segment configurations.

d [IN] PointerParam

Device identifier. Returned by memprot_open.

Return int. DRV_OK

24.7. Segment configuration

24.7.1. Number of segments

The number of implemented segments can be retrieved with the function memprot_nseg().

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 193

Table 24.9. memprot_nseg function declaration

Proto int memprot_nseg(struct memprot_priv *d)

About Retrieve number of implemented memory segments for memory protection device.

d [IN] PointerParam

Device identifier. Returned by memprot_open.

Return int. Number of memory segments supported. This is the value of the constant register field
PCR.NSGEG.

24.7.2. Data structures

struct memprot_seginfo is used by the application to describe individual memory protection segments.
The structure is available in drv/memprot.h and describes how the driver shall configure the segment.

/* User representation of one memory protection segment */
struct memprot_seginfo{
 uintptr_t start;
 uintptr_t end;
 uint32_t g;
 int en;
};

Table 24.10. memprot_seginfo data structure declaration

start Start address

end End address

Exclusive write grant Gi. This is a bit mask. See GR716-DS-UM for bit definitions of Gi.

Bit Description

0 G0 - Grant master 0 exclusive write access.

1 G1 - Grant master 1 exclusive write access.

g

i Gi - Grant master i exclusive write access.

Disable or enable segment.

Value Description

0 Disable this segment.

en

1 Enable this segment.

24.7.3. Set

An individual memory segment can be configured by calling the function memprot_set() with a user supplied
as struct memprot_seginfo parameter. The following example configures segment 2.

 struct memprot_seginfo si;
 si.start = 0x80004000;
 si.end = 0x800040ff;
 si.g = 1 << 2;
 si.en = 1;

 memprot_reset(dev);
 memprot_set(dev, 2, &si);
 memprot_start(dev);

For any segment configuration to be in effect, the device must be in started operation mode.

Closing the driver does not cancel the configured memory protections.

Table 24.11. memprot_set function declaration

Proto int memprot_set(struct memprot_priv *d, int segment, const struct
memprot_seginfo *seginfo)

About Configure a memory protection segment.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 194

The information contained in the seginfo is installed in the hardware registers corresponding to the
segment number.

d [IN] PointerParam

Device identifier. Returned by memprot_open.

segment [IN] IntegerParam

Target segment number.

Must be in the range 0 to memprot_nseg()-1.

seginfo [IN] PointerParam

User representation of segment configuration.

Return int. DRV_OK

24.7.4. Get

Memory protection segments can be read back from hardware into a struct memprot_seginfo record with
the function memprot_get(). Everything in the record is qualified with the en field.

Protection segments are not affected when opening the driver which means that the previous configuration can
be read out.

Table 24.12. memprot_get function declaration

Proto int memprot_get(struct memprot_priv *d, int segment, struct
memprot_seginfo *seginfo)

About Read back memory protection segment configuration from hardware.

The configuration contained in the hardware registers corresponding segment indexed by segment is
read back and written to the seginfo.

d [IN] PointerParam

Device identifier. Returned by memprot_open.

segment [IN] IntegerParam

Target segment number.

Must be in the range 0 to memprot_nseg()-1.

seginfo [OUT] PointerParam

User representation of segment configuration.

Return int. DRV_OK

24.7.4.1. Example

The following example function printall() prints information on all memory protection segment of a partic-
ular device. In addition to the en field, isstarted() can be used as a global qualifier to determine if a segment
is in effect.

static void printsi(const struct memprot_seginfo *si)
{
 printf(" start = %08x\n", (unsigned) si->start);
 printf(" end = %08x\n", (unsigned) si->end);
 printf(" g = %08x\n", (unsigned) si->g);
 printf(" en = %d (%s)\n", si->en, si->en ? "enabled" : "disabled");
}

void printall(struct memprot_priv *dev)
{
 const int nseg = memprot_nseg(dev);
 for (int i = 0; i < nseg; i++) {
 struct memprot_seginfo si;
 printf("SEGMENT %d\n", i);
 memprot_get(dev, i, &si);
 printsi(&si);
 puts("");

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 195

 }
}

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 196

25. Memory scrubber

25.1. Introduction

This section describes the Memory Scrubber (MEMSCRUB) driver for SPARC/LEON processors.

25.1.1. Hardware Support

The MEMSCRUB core hardware interface is documented in the GRIP Core User's manual. The MEMSCRUB
core is used to monitor the memory AHB bus and can be programmed to scrub a memory area.

25.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the driver source tree
src/libdrv.

Table 25.1. MEMSCRUB driver source location

Location Description

src/include/drv/memscrub.h MEMSCRUB user interface definition

src/memscrub MEMSCRUB driver implementation

25.1.3. Examples

There is an example available that uses the MEMSCRUB driver to scrub a memory area and log the different
events. The example is part of the driver distribution, it can be found under examples/memscrub.

25.2. Software design overview

The driver provides a function interface, an API, to the user.

The API is not designed for multi-threading, i.e. multiple threads operating on the driver independently. The
driver does not contain any lock or protection for SMP environments. Changing the MEMSCRUB configuration
is not intended to be done extensively at runtime or independently of the rest of the system, since it usually has
a system-level impact. Therefore the user must take care of any impact that the different actions might have on
other parts of the system (such as threads, CPUs, DMAs, ...).

25.2.1. Driver usage

The driver provides a set of functions that allow to start and stop the scrubber in different modes. The first step is
to setup the memory range (or memory ranges) in which the scrubber is going to act (see Section 25.3.3).

After setting up the range we can start the scrubber in one of the three modes available (see Section 25.3.4):

• Init mode: Initialize the memory area.
• Scrub mode: Scrub the memory area.
• Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for

correcting many errors.

Note that scrub and regen mode can be changed on the fly.

The driver provides functions to check if the scrubber is active and to stop it (see Section 25.3.4).

When dealing with errors, the drivers provides two different interfaces:

• Interrupts (see Section 25.3.6): Allows the user to install an Interrupt Service Routine (ISR) that will be exe-
cuted whenever an error exceeds its corresponding threshold. Also the MEMSCRUB core allows to generate
an interrupt when its done.

• Polling (see Section 25.3.7): Allows the user to poll the error status to check if an error have occurred.

Only one of these interfaces can be used at a given time.

The different errors that the MEMSCRUB can report are:

• AHB correctable error.
• AHB uncorrectable error.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 197

• Scrubber run count errors.
• Scrubber block count errors.

There are functions that allow to configure the error count thresholds for each type of error individually (see
Section 25.3.5). When the error count for a certain type exceeds the threshold, the error status is updated and an
interrupt is generated. If a threshold is disabled, the error status is not updated and no interrupt is generated.

25.3. Memory scrubber user interface

25.3.1. Return values

 MEMSCRUB_ERR_OK
 MEMSCRUB_ERR_EINVAL
 MEMSCRUB_ERR_ERROR

All the driver function calls return the following values when an error occurred:

• MEMSCRUB_ERR_OK - Successful execution.
• MEMSCRUB_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
• MEMSCRUB_ERR_ERROR - Internal error. Can have different causes.

25.3.2. Opening and closing device

A MEMSCRUB device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using memscrub_dev_count. A particular device can be
opened using memscrub_open and closed memscrub_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all MEMSCRUB devices on opening and closing. It is assumed that at most
one thread operates on one MEMSCRUB device at a time.

During opening of a MEMSCRUB device the following steps are taken:

• The device is marked opened to protect the caller from other users of the same device.
• Internal data structures are initialized.
• Error and interrupt status is cleared.

The example below prints the number of MEMSCRUB devices to standard output. It then opens and closes the
first MEMSCRUB device present in the system.

int print_memscrub_devices(void)
{
 struct memscrub_priv *device;
 int count;

 count = memscrub_dev_count();
 printf("%d MEMPROT device(s) present\n", count);

 device = memscrub_open(0);
 if (!device) {
 return -1; /* Failure */
 }

 memscrub_close(device);
 return 0; /* success */
}

Table 25.2. memscrub_dev_count function declaration

Proto int memscrub_dev_count(void)

About Retrieve number of devices registered to the driver.

Return int. Number of devices registered in system, zero if none.

Table 25.3. memscrub_open function declaration

Proto struct memscrub_priv *memscrub_open(int dev_no)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 198

About Opens a MEMSCRUB device. The device is identified by index. The returned value is used as input
argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by memscrub_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which MEMPROT device.

Table 25.4. memscrub_close function declaration

Proto int memscrub_close(struct memscrub_priv *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from memscrub_open.

Return int. MEMSCRUB_ERR_OK

Hardware configuration is not changed by the memscrub_open() function, apart from clearing the error
and interrupt status at open. memscrub_close() does not change the current hardware configuration.

25.3.3. Configuring the memory range

 int memscrub_range_set(struct memscrub_priv *priv, uint32_t start, uint32_t end)
 int memscrub_range_get(struct memscrub_priv *priv, uint32_t * start, uint32_t * end)
 int memscrub_secondary_range_set(struct memscrub_priv *priv, uint32_t start, uint32_t end)
 int memscrub_secondary_range_get(struct memscrub_priv *priv, uint32_t * start, uint32_t * end)
 int memscrub_scrub_position(struct memscrub_priv *priv, uint32_t * position)

The driver uses these functions to setup the primary and secondary memory ranges of the MEMSCRUB core. The
scrubber will act on the range from address start to end, both inclusive.

The position function shows the actual position of the MEMSCRUB within the memory range.

These functions return a negative value if something went wrong, as explained in Section 25.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 25.5. memscrub_range_set function declaration

Proto int memscrub_range_set(struct memscrub_priv *priv, uint32_t start,
uint32_t end)

About Set the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 25.3.3.

start [IN] IntegerParam

32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] IntegerParam

32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.6. memscrub_range_get function declaration

Proto int memscrub_range_get(struct memscrub_priv *priv, uint32_t *
start, uint32_t * end)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 199

About Get the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 25.3.3.

start [IN] PointerParam

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] PointerParam

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.7. memscrub_secondary_range_set function declaration

Proto int memscrub_secondary_range_set(struct memscrub_priv *priv,
uint32_t start, uint32_t end)

About Set the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 25.3.3.

start [IN] IntegerParam

32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] IntegerParam

32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.8. memscrub_secondary_range_get function declaration

Proto int memscrub_secondary_range_get(struct memscrub_priv *priv,
uint32_t * start, uint32_t * end)

About Get the secondary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 25.3.3.

start [IN] PointerParam

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] PointerParam

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.9. memscrub_scrub_position function declaration

Proto int memscrub_scrub_position(struct memscrub_priv *priv, uint32_t *
position)

About Get the position of the scrubber within the memory range. See Section 25.3.3.

position [IN] PointerParam

Pointer to the 32-bit position address.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

25.3.4. Starting/stopping different modes.

 int memscrub_init_start(struct memscrub_priv *priv, uint32_t value, uint8_t delay, int options)
 int memscrub_scrub_start(struct memscrub_priv *priv, uint8_t delay, int options)
 int memscrub_regen_start(struct memscrub_priv *priv, uint8_t delay, int options)
 int memscrub_stop(struct memscrub_priv *priv)
 int memscrub_active(struct memscrub_priv *priv)

The driver uses these functions to start or stop the different modes of the MEMSCRUB core:

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 200

• Init mode: Initialize the memory area.
• Scrub mode: Scrub the memory area.
• Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for

correcting many errors.

All the modes act on the configured memory range (see Section 25.3.3).

The active functions checks if the scrubber is currently running.

These functions return a negative value if something went wrong, as explained in Section 25.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 25.10. memscrub_init_start function declaration

Proto int memscrub_init_start(struct memscrub_priv *priv, uint32_t value,
uint8_t delay, int options)

About Start the initialization mode of the scrubber. See Section 25.3.4.

value [IN] IntegerParam

32-bit value to be written into each memory position.

delay [IN] IntegerParam

8-bit delay value. Processor cycles delay time between processed blocks.

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.

MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).

MEMSCRUB_OPTIONS_EXTERNALSTART_ENABLE Enable external start.

MEMSCRUB_OPTIONS_EXTERNALSTART_DISABLE Disable external start (de-
fault).

MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.

MEMSCRUB_OPTIONS_LOOPMODE_DISABLE Disable loop mode (default).

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE Enable secondary memory
range.

Param

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE Disable secondary memory
range (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.11. memscrub_scrub_start function declaration

Proto int memscrub_scrub_start(struct memscrub_priv *priv, uint8_t delay,
int options)

About Start the scrubbing mode of the scrubber. See Section 25.3.4.

delay [IN] IntegerParam

8-bit delay value. Processor cycles delay time between processed blocks.

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.

Param

MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 201

MEMSCRUB_OPTIONS_EXTERNALSTART_ENABLE Enable external start.

MEMSCRUB_OPTIONS_EXTERNALSTART_DISABLE Disable external start (de-
fault).

MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.

MEMSCRUB_OPTIONS_LOOPMODE_DISABLE Disable loop mode (default).

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE Enable secondary memory
range.

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE Disable secondary memory
range (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.12. memscrub_regen_start function declaration

Proto int memscrub_regen_start(struct memscrub_priv *priv, uint8_t delay,
int options)

About Start the regeneration mode of the scrubber. See Section 25.3.4.

delay [IN] IntegerParam

8-bit delay value. Processor cycles delay time between processed blocks.

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.

MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).

MEMSCRUB_OPTIONS_EXTERNALSTART_ENABLE Enable external start.

MEMSCRUB_OPTIONS_EXTERNALSTART_DISABLE Disable external start (de-
fault).

MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.

MEMSCRUB_OPTIONS_LOOPMODE_DISABLE Disable loop mode (default).

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE Enable secondary memory
range.

Param

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE Disable secondary memory
range (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.13. memscrub_stop function declaration

Proto int memscrub_stop(struct memscrub_priv *priv)

About Stop the scrubber. See Section 25.3.4.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.14. memscrub_active function declaration

Proto int memscrub_active(struct memscrub_priv *priv)

About Returns the active status of the scrubber. When the scrubber is active, it returns a non-zero positive
value. When the scrubber is stopped, it returns zero. See Section 25.3.4.

Return int. Positive value when successful. Otherwise, returns a negative value if something went wrong, as
explained in Section 25.3.1.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 202

25.3.5. Setting up error thresholds

 int memscrub_ahberror_setup(struct memscrub_priv *priv, int uethres, int cethres, int options)
 int memscrub_scruberror_setup(struct memscrub_priv *priv, int blkthres, int runthres, int options)

The driver uses these functions to setup the thresholds for AHB and scrub errors respectively. The following
thresholds can be enabled or disabled:

• AHB correctable error.
• AHB uncorrectable error.
• Scrubber run count errors.
• Scrubber block count errors.

If a threshold is disabled, no error status or interrupt will be generated for that type of error. If a threshold is
enabled, the error status or interrupt will be triggered when the error count exceeds the threshold value.

These functions return a negative value if something went wrong, as explained in Section 25.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 25.15. memscrub_ahberror_setup function declaration

Proto int memscrub_ahberror_setup(struct memscrub_priv *priv, int
uethres, int cethres, int options)

About Setup the AHB correctable and uncorrectable error thresholds for the MEMSCRUB core. See Sec-
tion 25.3.5.

uethres [IN] IntegerParam

AHB uncorrectable error threshold value (only 8 LSB used).

cethres [IN] IntegerParam

AHB correctable error threshold value (only 10 LSB used).

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_AHBERROR_CORTHRES_ENABLE Enable AHB correctable er-
ror threshold.

MEMSCRUB_OPTIONS_AHBERROR_CORTHRES_DISABLE Disable AHB correctable
error threshold (default).

MEMSCRUB_OPTIONS_AHBERROR_UNCORTHRES_ENABLE Enable AHB uncorrectable
error threshold.

Param

MEMSCRUB_OPTIONS_AHBERROR_UNCORTHRES_DISABLE Disable AHB uncorrectable
error threshold (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.16. memscrub_scruberror_setup function declaration

Proto int memscrub_scruberror_setup(struct memscrub_priv *priv, int blk-
thres, int runthres, int options)

About Setup the scrubber run and block count error thresholds for the MEMSCRUB core. See Sec-
tion 25.3.5.

blkthres [IN] IntegerParam

Block count error threshold value (only 8 LSB used).

runthres [IN] IntegerParam

Run count error threshold value (only 10 LSB used).

Param options [IN] Integer

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 203

Options.

Value Description

MEMSCRUB_OPTIONS_SCRUBERROR_RUNTHRES_ENABLE Enable run count error
threshold.

MEMSCRUB_OPTIONS_SCRUBERROR_RUNTHRES_DISABLE Disable run count error
threshold (default).

MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES_ENABLE Enable block count error
threshold.

MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES_DISABLE Disable block count error
threshold (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

25.3.6. Registering an ISR

 typedef void (*memscrub_isr_t) (
 void *arg,
 uint32_t ahbaccess,
 uint32_t ahbstatus,
 uint32_t scrubstatus
)
 int memscrub_isr_register(struct memscrub_priv *priv, memscrub_isr_t isr, void * data)
 int memscrub_isr_unregister(struct memscrub_priv *priv)

The driver uses these functions to register and unregister an ISR for error interrupts. When registering an ISR, in-
terrupts are enabled. To set the error thresholds that trigger interrupts use the functions described in Section 25.3.5.

These functions return a negative value if something went wrong, as explained in Section 25.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 25.17. memscrub_isr_register function declaration

Proto int memscrub_isr_register(struct memscrub_priv *priv,
memscrub_isr_t isr, void * arg)

About Registers an ISR for the MEMSCRUB core. See Section 25.3.6.

isr [IN] PointerParam

The ISR function pointer.

arg [IN] PointerParam

The ISR argument pointer.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.18. memscrub_isr_unregister function declaration

Proto int memscrub_isr_unregister(struct memscrub_priv *priv)

About Unregisters an ISR for the MEMSCRUB core. See Section 25.3.6.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

25.3.7. Polling the error status

 int memscrub_error_status(struct memscrub_priv *priv, uint32_t * ahbaccess, uint32_t * ahbstatus, uint32_t * scrubstatus)

The driver uses this function to poll the error status and clear the error status in case an error is found. To set the
error thresholds that trigger error status use the functions described in Section 25.3.5.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 204

This function returns a negative value if something went wrong, as explained in Section 25.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 25.19. memscrub_error_status function declaration

Proto int memscrub_error_status(struct memscrub_priv *priv, uint32_t *
ahbaccess, uint32_t * ahbstatus, uint32_t * scrubstatus)

About Poll the state of the error status registers. Returns the status registers and the AHB failing access reg-
ister. If a error has been detected the function automatically clears the status in order to catch new er-
rors. See Section 25.3.7.

ahbaccess [OUT] PointerParam

The value pointed will be updated with the AHB failing access.

ahbstatus [OUT] PointerParam

The value pointed will be updated with the AHB error status register content.

scrubstatus [OUT] PointerParam

The value pointed will be updated with the scrub error status register content.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

25.4. API reference

This section lists all functions part of the MEMSCRUB driver API, and in which section(s) they are described.
The API is also documented in the source header file of the driver, see Section 25.1.2.

Table 25.20. MEMSCRUB function reference

Prototype Section

int memscrub_range_get(struct memscrub_priv *priv, uint32_t *start,
uint32_t *end)

25.3.3

int memscrub_range_set(struct memscrub_priv *priv, uint32_t start,
uint32_t end)

25.3.3

int memscrub_secondary_range_get(struct memscrub_priv *priv,
uint32_t *start, uint32_t *end)

25.3.3

int memscrub_secondary_range_set(struct memscrub_priv *priv,
uint32_t start, uint32_t end)

25.3.3

int memscrub_scrub_position(struct memscrub_priv *priv, uint32_t
*position)

25.3.3

int memscrub_init_start(struct memscrub_priv *priv, uint32_t value,
uint8_t delay, int options)

25.3.4

int memscrub_scrub_start(struct memscrub_priv *priv, uint8_t delay,
int options)

25.3.4

int memscrub_regen_start(struct memscrub_priv *priv, uint8_t delay,
int options)

25.3.4

int memscrub_stop(struct memscrub_priv *priv) 25.3.4

int memscrub_active(struct memscrub_priv *priv) 25.3.4

int memscrub_ahberror_setup(struct memscrub_priv *priv, int
uethres, int cethres, int options)

25.3.5

int memscrub_scruberror_setup(struct memscrub_priv *priv, int blk-
thres, int runthres, int options)

25.3.5

int memscrub_isr_register(struct memscrub_priv *priv,
memscrub_isr_t isr, void * data)

25.3.6

int memscrub_isr_unregister(struct memscrub_priv *priv) 25.3.6

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 205

Prototype Section

int memscrub_error_status(struct memscrub_priv *priv, uint32_t *ah-
baccess, uint32_t *ahbstatus, uint32_t *scrubstatus)

25.3.7

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 206

26. SpaceWire Router Driver

26.1. Introduction

The SpaceWire router connects external SpaceWire ports and internal AMBA ports together using a non-blocking
switch matrix which can connect any input port to any output port. A single routing table is used for the whole
router. This chapter describes the API used configure the router. The AMBA port interfaces are controlled by the
SpaceWire driver (Chapter 11).

26.2. Driver sources

The driver sources and definitions are listed in Table 26.1. The path is given relative to the driver source tree at
src/libdrv.

Table 26.1. SpaceWire Router driver source location

Location Description

src/include/drv/grspwrouter.h SpaceWire Router driver interface

src/grspwrouter SpaceWire Router driver implementation

26.3. Routing

Packets can enter into the router from either the external SpaceWire ports or the internal AMBA ports. The router
looks at the first byte of the packet, the destination address, to determine where the package shall be routed. If it
is below 32, it is treated as a physical address and will be routed to either a SpaceWire port, an AMBA port, or
be spilled if there is no port available at the address. For logical addresses (32 and above), the router needs to be
provided route information to know to which port the packet shall be routed.

It is also possible to configure the router to do static routing, where all incoming packets on a specific port are
routed to a specific output port, regardless of the destination address in the packet.

When routing a packet, the router can be instructed to drop the address byte (called header deletion). This can for
example be used to do path addressing, where the packet starts with the entire path through the network and the
first address in the path is dropped after every link to reveal the next step in the path.

26.4. Register and access driver

This driver uses the driver registration mechanism described in Chapter 10.

Table 26.2. grspwrouter_autoinit function declaration

Name grspwrouter_autoinit()

Proto int grspwrouter_autoinit()

About Register SpaceWire router devices using Plug-n-Play

Registers any available SpaceWire router devices and returns the number of devices found.

Return int - The number of devices found and registered

Table 26.3. grspwrouter_register function declaration

Name grspwrouter_register()

Proto drvret grspwrouter_register(struct grspwrouter_devcfg * devcfg)

About Manually register a single SpaceWire router device

The configuration must include the location of the register area and the interrupt number in de-
vcfg->regs. The devcfg->dev member is used be the driver to store information. The memo-
ry used by the devcfg argument must never be freed.

Param devcfg - [in] - Settings defining the router device

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 207

Name grspwrouter_register()

Return drvret - DRV_OK on success

When the driver has been registered a device can be accessed by calling grspwrouter_open(). The function
needs to be provided the system and SpaceWire frequency (in MHz) to be able to configure the scalers used to set
up the correct link rate used for initialisation and optional timeouts. The function will configure the timer prescaler
so that all router timers operate at 10KHz. This is done to be able to set reasonable timeout values using the API.

Table 26.4. grspwrouter_open function declaration

Name grspwrouter_open()

Proto grspwrouter_dev * grspwrouter_open(uint32_t index, uint32_t
spw_freq, int32_t sys_freq)

About Initialize handle to SpaceWire router driver

This function returns a handle to SpaceWire router driver for the device specified by index.

The spw_freq argument shall specify the SpaceWire clock frequency (in MHz) provided to the
router. This value is used to configure the initialization bit rate for the all the SpaceWire links. It is
also used by grspwrouter_port_link_start to set the run state speed of individual links.
Use the value 0 to keep the existing value.

The sys_freq arguments shall specify the system clock frequency (in MHz). This value is used to
configure the various timeout functionality provided by the router. This function will set the timer
scaler so that all timers run at 10KHz. Use the value 0 to keep the existing value.

For the GR740 the default internal SpaceWire clock frequency is 400MHz. This corresponds to an
external clock frequency for a SPW_CLK of 50 MHz if the default PLL configuration of 8x is used.

Param index - Index of the SpaceWire router device

Param spw_freq - SpaceWire clock frequency

Param sys_freq - System clock frequency

Return grspwrouter_dev *
• grspwrouter_dev - on success
• NULL - if no device with the provided index, or if already opened

Table 26.5. grspwrouter_close function declaration

Name grspwrouter_close()

Proto drvret grspwrouter_close(grspwrouter_dev * dev)

About Closes a previously opened device

The provided handle must have been previously opened by grspwrouter_open().

Param dev - [in] - A valid device handle

Return drvret
• DRV_OK - on success
• DRV_INVAL - if not previously opened by grspwrouter_open

26.5. Setup routing table

The router looks at the address of each incoming packet and uses that as an index in a routing table with
information on where to route the packet. The routing information for a specific address is set using the
grspwrouter_route_set(). It is possible to specify one or multiple target ports.

For each route it is possible to set the following options:

• Enable/disable header deletion

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 208

• Spill or wait if output port's link interface is not in run-state
• Set normal / high priority
• Enable packet distribution or group adaptive

Table 26.6. grspwrouter_route_set function declaration

Name grspwrouter_route_set()

Proto drvret grspwrouter_route_set(grspwrouter_dev * dev, uint8_t ad-
dress, uint32_t to_mask, bool header_deletion, bool spill_packet,
uint32_t options)

About Set up a route for incoming packets based on destination address

Incoming packets with the destination address address will be routed to the first available output
port of the ones specified in the to_mask. If packet distribution has been enabled the same packet
will be sent on all specified output ports.

The to_mask argument can be built using a mask where each bit index corresponds to the
SpaceWire port with the same index. The GRSPWROUTER_PORT() define can be used for this:

to_mask = GRSPWROUTER_PORT(3) | GRSPWROUTER_PORT(4)

On the GR740 the following defines can be used:

• AMBA port 0 (GRSPWROUTER_GR740_AMBA_0)
• AMBA port 1 (GRSPWROUTER_GR740_AMBA_1)
• AMBA port 2 (GRSPWROUTER_GR740_AMBA_2)
• AMBA port 3 (GRSPWROUTER_GR740_AMBA_3)
• SpaceWire port 1 (GRSPWROUTER_GR740_SPW_1)
• SpaceWire port 2 (GRSPWROUTER_GR740_SPW_2)
• SpaceWire port 3 (GRSPWROUTER_GR740_SPW_3)
• SpaceWire port 4 (GRSPWROUTER_GR740_SPW_4)
• SpaceWire port 5 (GRSPWROUTER_GR740_SPW_5)
• SpaceWire port 6 (GRSPWROUTER_GR740_SPW_6)
• SpaceWire port 7 (GRSPWROUTER_GR740_SPW_7)
• SpaceWire port 8 (GRSPWROUTER_GR740_SPW_8)

Packets sent to the AMBA ports are handled by the SpaceWire driver.

The router can be configured to automatically remove the first byte of the packet, the byte that con-
tains the destination address. This is called header deletion.

If the output port's link interface is not in run-state the router can be ordered to wait until the link is
up or to spill the packet.

The options argument can be built by or:ing the following defines:

• Set high priority when more than one packet is competing for the same output port
(GRSPWROUTER_ROUTE_PRIORITY)

• Enable packet distribution (default group adaptive) (GRSPWROUTER_PACKET_DIST)

Param dev - [in] - Valid router device handle

Param address - Route incoming packets with this destination address

Param to_mask - Route packets to these output ports

Param header_deletion - Remove the first byte of the packet when routing it

Param spill_packet - Spill the packet if the output port's link interface is not in run-state

Param options - Enable high priority (GRSPWROUTER_ROUTE_PRIORITY) and/or packet distribu-
tion (GRSPWROUTER_PACKET_DIST)

Return drvret
• DRV_OK - on success

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 209

Name grspwrouter_route_set()

• DRV_INVAL - if address is 0

Table 26.7. grspwrouter_route_disable function declaration

Name grspwrouter_route_disable()

Proto drvret grspwrouter_route_disable(grspwrouter_dev * dev, uint8_t
address)

About Disable a route for incoming packets based on destination address

PrSTATUS the router from routing packets with a specific destination address. Only logical ad-
dresses can be blocked. Packets with a physical destination address will still be routed.

Param dev - [in] - Valid router device handle

Param address - Packets with this logical destination address will not be routed (32 - 255)

Return drvret
• DRV_OK - on success
• DRV_INVAL - on non-logical address

The router also supports static routing in which all packets received on a certain port are always forwarded un-
modified to a specified port regardless of the target address in the packet. Static routing is enabled for a port by
grspwrouter_static_route_set().

Table 26.8. grspwrouter_port_static_route_set function declaration

Name grspwrouter_port_static_route_set()

Proto drvret grspwrouter_port_static_route_set(grspwrouter_dev * dev,
uint8_t port, uint32_t destination, bool use_route_info)

About Set up a static route for incoming packets on a specific port

This function enables static routing for a port where incoming packets are always routed unmodified
to a specific output port regardless of the address in the packet. By setting use_route_info to
true it is possible to use the normal route information to route the packet to multiple ports.

Param dev - [in] - Valid router device handle

Param port - Index of a valid port

Param destination - Target port

Param use_route_info - Use the target addresses configured by grspwrouter_route_set for
the target

Return drvret
• DRV_OK - on success
• DRV_INVAL - if static routing not supported, or invalid port or destination

Table 26.9. grspwrouter_port_static_route_disable function declaration

Name grspwrouter_port_static_route_disable()

Proto drvret grspwrouter_port_static_route_disable(grspwrouter_dev *
dev, uint8_t port)

About Disable static routing for the port

Disable static routing for the port.

Param dev - [in] - Valid router device handle

Param port - Index of a valid port

Return drvret
• DRV_OK - on success

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 210

Name grspwrouter_port_static_route_disable()

• DRV_INVAL - if invalid port

26.5.1. GR716B

The SpaceWire router in GR716B can only use 1 logical address at a time. The current logical address that is
mapped can be read by gr716b_grspwrouter_mapped_adr_get()

If a logical address has already been selected then in order to change the currently mapped address it must first be
reset with gr716b_grspwrouter_mapped_adr_reset()

After the mapped address has been reset a new route can then be created with grspwrouter_route_set()

Table 26.10. gr716b_grspwrouter_mapped_adr_get function declaration

Name gr716b_grspwrouter_mapped_adr_get()

Proto uint8_t gr716b_grspwrouter_mapped_adr_get(grspwrouter_dev * dev)

About Return the current mapped address

Returns routers current mapped address. GR716b only.

Param dev - [in] - Valid router device handle

Return uint8_t - Current mapped address

Table 26.11. gr716b_grspwrouter_mapped_adr_reset function declaration

Name gr716b_grspwrouter_mapped_adr_reset()

Proto uint8_t gr716b_grspwrouter_mapped_adr_reset(grspwrouter_dev *
dev)

About Resets the current mapped adress

Reset the currently mapped address on GR716B. The currently mapped address needs to be reset
before a new address can be mapped.

Param dev - [in] - Valid router device handle

Return drvret
• DRV_OK - on success

26.6. Link handling

A SpaceWire link can be started with a desired link rate by calling the grspwrouter_port_link_start()
function.

Table 26.12. grspwrouter_port_link_start function declaration

Name grspwrouter_port_link_start()

Proto drvret grspwrouter_port_link_start(grspwrouter_dev * dev, uint8_t
port, uint32_t link_rate)

About Start the SpaceWire link

Configure the link rate to use and enable the link. The link rate shall be specified in MBits/s.

This function can only be called on a SpaceWire port, not an AMBA port.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param link_rate - The requested run-state link rate

Return drvret
• DRV_OK - on success

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 211

Name grspwrouter_port_link_start()

• DRV_INVAL - port is not a SpaceWire port or invalid link rate

Table 26.13. grspwrouter_port_link_stop function declaration

Name grspwrouter_port_link_stop()

Proto drvret grspwrouter_port_link_stop(grspwrouter_dev * dev, uint8_t
port)

About Stops the SpaceWire port link

This function can only be called on a SpaceWire port, not an AMBA port.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Return drvret
• DRV_OK - on success
• DRV_INVAL - port is not a SpaceWire port

The current state of the link can be checked by using grspwrouter_port_link_status(). Possible states
are:

• error reset (GRSPWROUTER_LINK_ERROR_RESET)
• error wait (GRSPWROUTER_LINK_ERROR_WAIT)
• ready (GRSPWROUTER_LINK_READY)
• started (GRSPWROUTER_LINK_STARTED)
• connecting (GRSPWROUTER_LINK_CONNECTING)
• run state (GRSPWROUTER_LINK_RUN_STATE)

Table 26.14. grspwrouter_port_link_status function declaration

Name grspwrouter_port_link_status()

Proto drvret grspwrouter_port_link_status(grspwrouter_dev * dev, uint8_t
port, link_state * status)

About Returns the link state of the SpaceWire port

This function can only be called on a SpaceWire port, not an AMBA port.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param status - [out] - The current link state

Return drvret
• DRV_OK - on success
• DRV_INVAL - port is not a SpaceWire port

An overview of the run state of all links can be read out by grspwrouter_link_status(), which return
a bitmask indicating which links are in run state.

Table 26.15. grspwrouter_link_status function declaration

Name grspwrouter_link_status()

Proto void grspwrouter_link_status(grspwrouter_dev * dev, uint32_t *
run_state)

About Return list of SpaceWire ports with links in runstate

The mask returned by the function indicates which SpaceWire port links are in runstate. Bit 1 is
SpaceWire port 1, bit 2 is SpaceWire port 2, and so on.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 212

Name grspwrouter_link_status()

Param dev - [in] - Valid router device handle

Param run_state - [out] - Mask indicating runstate of each link

The status of a port can be checked with grspwrouter_port_status(). This includes information on any
error events that have occurred and if the port is currently transmitting or receiving data.

Table 26.16. grspwrouter_port_status function declaration

Name grspwrouter_port_status()

Proto drvret grspwrouter_port_status(grspwrouter_dev * dev, uint8_t
port, uint32_t * status)

About Return the status of the port

This function returns the value of the status register for the port.

The status value can be parsed using the following defines:

• port type (SpaceWire/AMBA/FIFO/Custom)
(GRSPWROUTER_STATUS_PORT_TYPE(status))

• a packet for which this port was the input port has been spilled due to the packet length trunca-
tion feature (GRSPWROUTER_STATUS_ERR_TRUNC)

• a packet for which this port was the input port has been spilled due to the time-code / distribut-
ed interrupt code truncation feature (GRSPWROUTER_STATUS_ERR_INTTRUNC)

• an RMAP / SpaceWire Plug-and-Play command received on this port was spilled by the con-
figuration port (GRSPWROUTER_STATUS_ERR_RMAP)

• a packet received on this port was spilled due to the spill-if-not-ready feature
(GRSPWROUTER_STATUS_ERR_NOTRDY)

• this port either was started, or currently is trying to start, due to the link-start-on-request feature
(GRSPWROUTER_STATUS_START_REQUEST)

• a packet that is incoming on this port currently is being spilled
(GRSPWROUTER_STATUS_SPILL)

• a packet arrives at this port and the port has been given access to the routing table
(GRSPWROUTER_STATUS_ACTIVE_STATUS)

• the active SpaceWire ports if dual ports is implemented
(GRSPWROUTER_STATUS_ACTIVE_PORT)

• a packet for which this port was the input port was spilled due to a packet timeout
(GRSPWROUTER_STATUS_ERR_TIMEOUT)

• a memory error occur while accessing the on-chip memory in the ports
(GRSPWROUTER_STATUS_ERR_MEM)

• transmit FIFO on this port is full (GRSPWROUTER_STATUS_TX_FIFO_FULL)
• receive FIFO on this port is empty (GRSPWROUTER_STATUS_RX_FIFO_EMPTY)
• current link state (GRSPWROUTER_STATUS_LINK_STATE(status))
• the number of the input port for the current or last packet transfer on this port

(GRSPWROUTER_STATUS_INPUT_PORT(status))
• port is the input port of an ongoing packet transfer (GRSPWROUTER_STATUS_RX_BUSY)
• port is the output port of an ongoing packet transfer

(GRSPWROUTER_STATUS_TX_BUSY)
• an invalid address error occurred on this port (GRSPWROUTER_STATUS_ERR_ADRS)
• a credit error has occurred (GRSPWROUTER_STATUS_ERR_CREDIT)
• an escape error has occurred (GRSPWROUTER_STATUS_ERR_ESCAPE)
• a disconnect error has occurred (GRSPWROUTER_STATUS_ERR_DISCON)
• a parity error has occurred (GRSPWROUTER_STATUS_ERR_PARITY)

Param dev - [in] - Valid router device handle

Param port - Index of a valid port

Param status - [out] - The port status register

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 213

Name grspwrouter_port_status()

Return drvret
• DRV_OK - on success
• DRV_INVAL - port is not a valid port

26.7. Error handling

The grspwrouter_isr_register() function can be used to install a handler that will be called when spec-
ified error events occur on the port, or when a link enters run state. It is possible to specify for which events the
handler should be called, and for which ports.

Table 26.17. grspwrouter_isr_register function declaration

Name grspwrouter_isr_register()

Proto void grspwrouter_isr_register(grspwrouter_dev * dev, uint32_t
err_mask, uint32_t port_mask, grspwrouter_isr_func isr, void *
arg)

About Register handler for port events

Register a handler for the selected interrupt types. The defines below can be or:ed together to form
the mask argument:

• Generate an interrupt when a SpaceWire Plug and Play error has been detected in the configu-
ration port (GRSPWROUTER_INTERRUPT_CONF_PNP)

• Generate an interrupt when a packet has been spilled because of the spill-if-not-ready feature
(GRSPWROUTER_INTERRUPT_NOTRDY)

• Generate an interrupt when a SpaceWire link enters run-state
(GRSPWROUTER_INTERRUPT_RUN_STATE)

• Generate an interrupt when a packet has been spilled because of the time code / distributed in-
terrupt code truncation feature (GRSPWROUTER_INTERRUPT_INTTRUNC)

• Generate an interrupt when a packet has been spilled due to the packet length truncation fea-
ture (GRSPWROUTER_INTERRUPT_TRUNC)

• Generate an interrupt when a packet has been spilled due to the timeout mechanism
(GRSPWROUTER_INTERRUPT_TIMEOUT)

• Generate an interrupt when either a header CRC error, protocol ID error, pack-
et type error, early EOP, or early EEP has been detected in the configuration port
(GRSPWROUTER_INTERRUPT_CONF_PORT)

• Generate an interrupt when an error has been detected in the configuration port
for an RMAP command such that the PSTS.EC field is set to a non-zero value
(GRSPWROUTER_INTERRUPT_CONF_RMAP)

• Generate an interrupt when an invalid address error has occurred on a port
(GRSPWROUTER_INTERRUPT_ADRS)

• Generate an interrupt when a link error (parity, escape, credit, disconnect) has been detected on
a SpaceWire port (GRSPWROUTER_INTERRUPT_LINK)

• Generate an interrupt when a memory error occur in any of the router's on-chip memories
(GRSPWROUTER_INTERRUPT_MEM)

The define GRSPWROUTER_INTERRUPT_ALL can be used to enable all interrupt types and
GRSPWROUTER_INTERRUPT_NONE to disable all interrupt types.

Param dev - [in] - Valid router device handle

Param err_mask - Interrupts that the handler should trigger on

Param port_mask - Ports that the interrupts can be generated for

Param isr - [in] - Interrupt handler function pointer

Param arg - [in] - Custom argument to interrupt handler

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 214

26.8. Time codes

To make it possible to send time codes the time code support needs to be enabled both globally in the router and
for each port that shall send or receive them. The router will keep track of the current time code, but initiating
a time code change or handling interrupts codes must be done via an AMBA port using the SpaceWire driver
(Chapter 11).

Time codes are enabled globally by grspwrouter_tc_enable() and per port by
grspwrouter_port_tc_enable(). Using the latter function the router can be configured to ignore the time
code values it receives from the AMBA port and instead always use its internal time representation.

Table 26.18. grspwrouter_tc_enable function declaration

Name grspwrouter_tc_enable()

Proto void grspwrouter_tc_enable(grspwrouter_dev * dev)

About Enable the handling of time codes

Enable the router time code support. Also needs to be enabled for each port that intend to use time
codes using grspwrouter_port_tc_enable.

Param dev - [in] - Valid router device handle

Table 26.19. grspwrouter_tc_disable function declaration

Name grspwrouter_tc_disable()

Proto void grspwrouter_tc_disable(grspwrouter_dev * dev)

About Disable time code support

Disable the router time code support.

Param dev - [in] - Valid router device handle

Table 26.20. grspwrouter_port_tc_enable function declaration

Name grspwrouter_port_tc_enable()

Proto drvret grspwrouter_port_tc_enable(grspwrouter_dev * dev, uint8_t
port, bool router_time)

About Enable time code support

This function enables time codes to be sent and received via the port. If router_time is true
the router will not look at the timer value and instead use its internal time representation.

Time code support also needs to be enabled globally using grspwrouter_tc_enable.

Param dev - [in] - Valid router device handle

Param port - Index of a valid port

Param router_time - If true, always use the routers time, never the incoming time

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

Table 26.21. grspwrouter_port_tc_disable function declaration

Name grspwrouter_port_tc_disable()

Proto drvret grspwrouter_port_tc_disable(grspwrouter_dev * dev, uint8_t
port)

About Disable time code support

Disables support for time codes for the port. Any time codes received will be dropped.

Param dev - [in] - Valid router device handle

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 215

Name grspwrouter_port_tc_disable()

Param port - Index of a valid SpaceWire port

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

The internal time representation can be read out with grspwrouter_tc_get() and set to 0 with
grspwrouter_tc_reset().

Table 26.22. grspwrouter_tc_get function declaration

Name grspwrouter_tc_get()

Proto uint8_t grspwrouter_tc_get(grspwrouter_dev * dev)

About Return the current time code

Returns routers internal time representation.

Param dev - [in] - Valid router device handle

Return uint8_t - Current time code

Table 26.23. grspwrouter_tc_reset function declaration

Name grspwrouter_tc_reset()

Proto void grspwrouter_tc_reset(grspwrouter_dev * dev)

About Set the current time code to 0

Sets the routers internal time representation to 0.

Param dev - [in] - Valid router device handle

26.9. Interrupt codes

The routing of interrupt-codes needs to be enabled both for the router and per port. For the router it is enabled by
grspwrouter_ic_enable(). When enabling the interrupt code support it is possible to set a time out that
will trigger an interrupt if an acknowledge reply is not received within the specified time period (100µs - 6.5s).

It also possible to set a cooldown period to protect against being flooded by interrupt codes (100µs - 25ms). A new
interrupt-code will not be registered until the cooldown has expired. Both the timeout and cooldown are optional
and can be disabled by setting the time period to 0.

Table 26.24. grspwrouter_ic_enable function declaration

Name grspwrouter_ic_enable()

Proto drvret grspwrouter_ic_enable(grspwrouter_dev * dev, uint32_t time-
out, uint32_t cooldown)

About Enable interrupt code support

Enable the router interrupt code support. Also needs to be enabled for each port that intend to send
or receive interrupt codes using grspwrouter_port_ic_enable.

A timer can be configured that will trigger an interrupt when an acknowledge reply is not received
within the specified time period (100µs - 6.5s).

A cooldown period can be configured that prevents new interrupts from being submitted until the
specified time period has passed (100µs - 3.1ms).

Set the timeout to zero to disable.

Param dev - [in] - Valid router device handle

Param timeout - Timeout in microseconds (or 0 to disable) (100 - 6553500 in steps of 100)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 216

Name grspwrouter_ic_enable()

Param cooldown - Cooldown period in microseconds (or 0 to disable) (100 - 3100 in steps of 100)

Return drvret
• DRV_OK - on success
• DRV_INVAL - if the timeout or cooldown value is too big

Table 26.25. grspwrouter_ic_disable function declaration

Name grspwrouter_ic_disable()

Proto void grspwrouter_ic_disable(grspwrouter_dev * dev)

About Disable interrupt code support

Disable interrupt code support for all ports in router

Param dev - [in] - Valid router device handle

The per port interrupt-code support is enabled by grspwrouter_port_ic_enable(). By default it enables
forwarding of both interrupt codes and interrupt acknowledgement codes in both directions, but it is possible to
disable the transmission or reception of interrupt or interrupt acknowledgement codes.

Table 26.26. grspwrouter_port_ic_enable function declaration

Name grspwrouter_port_ic_enable()

Proto drvret grspwrouter_port_ic_enable(grspwrouter_dev * dev, uint8_t
port, uint32_t options)

About Enable interrupt code support for port

By default forwarding of both interrupt codes and interrupt acknowledgement codes in both direc-
tion are enabled. This can be changed by or:ing the defines below together to form an options ar-
gument:

• Disable the transmission of interrupt codes (GRSPWROUTER_IC_DIS_TX_INT)
• Disable the reception of interrupt codes (GRSPWROUTER_IC_DIS_RX_INT)
• Disable the transmission of interrupt acknowledgement codes

(GRSPWROUTER_IC_DIS_TX_ACK)
• Disable the reception of interrupt acknowledgement codes

(GRSPWROUTER_IC_DIS_RX_ACK)

Interrupt code support also needs to be enabled globally using grspwrouter_ic_enable.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param options - Options mask

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

Table 26.27. grspwrouter_port_ic_disable function declaration

Name grspwrouter_port_ic_disable()

Proto drvret grspwrouter_port_ic_disable(grspwrouter_dev * dev, uint8_t
port)

About Disable interrupt code support for port

Disables support for interrupt codes for the port. Any interrupt codes received will be dropped.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 217

Name grspwrouter_port_ic_disable()

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

Using the grspwrouter_port_code_truncation() function it is possible to abort the currently received
packet when an interrupt code or time code with a specified value is received. The packet will be truncated and
marked with an EEP.

Table 26.28. grspwrouter_port_code_truncation function declaration

Name grspwrouter_port_code_truncation()

Proto drvret grspwrouter_port_code_truncation(grspwrouter_dev * dev,
uint8_t port, bool enable, uint8_t value, uint8_t mask)

About Abort packet on time/interrupt code

Configure the port to abort the current packet if a time or interrupt code with the specified value is
received.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param enable - Enable packet truncation

Param value - The value that can cause truncation

Param mask - Mask for the value

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

26.10. Configure timeouts

The packet timeout functionality is enabled by grspwrouter_port_timeout(). It possible to enable it
for overruns (when the input port has data available, but the output port(s) can not accept data fast enough) and
underruns (when the output port(s) can accept more data, but the input port can not provide data fast enough). It
is also possible to use it to automatically stop the link if it has not been used within the specified time.

Table 26.29. grspwrouter_port_timeout function declaration

Name grspwrouter_port_timeout()

Proto drvret grspwrouter_port_timeout(grspwrouter_dev * dev, uint8_t
port, uint32_t timeout, bool overrun, bool underrun, bool autodis-
connect)

About Enable timeouts

Enable a timeout for packets transfers (overrun and underrun) and auto-disconnect per port.

An overrun timeout occurs when the input port has data available but the output port(s) can not ac-
cept data fast enough. An underrun timeout occurs when the output port(s) can accept more data but
the input port can not provide data fast enough. The timeout can be set to between 100µs - 6.5s.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param timeout - The timeout in microseconds (100 - 6553500 in steps of 100)

Param overrun - Enable for overrun

Param underrun - Enable for underrun

Param autodisconnect - Enable for auto disconnect (Only for SpaceWire ports)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 218

Name grspwrouter_port_timeout()

Return drvret
• DRV_OK - on success
• DRV_INVAL - if trying to enable auto disconnect on non-SpaceWire port, or if invalid

port, or if the timeout value is too big

26.11. Configure packet max length

A max packet length can be configured for each port. If a packet exceeds this length it will be trun-
cated by the router and get an error end of packet (EEP). The max packet length is set by the
grspwrouter_port_max_length() function.

Table 26.30. grspwrouter_port_max_length function declaration

Name grspwrouter_port_max_length()

Proto drvret grspwrouter_port_max_length(grspwrouter_dev * dev, uint8_t
port, uint32_t length)

About Set the maximum length of packets

If an incoming packets is larger it will be truncated and marked with an EEP. Use the length 0 to ac-
cept any length.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param length - The maximum length of the packet or 0 to disable

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

26.12. Configure Plug-and-Play

The router supports the SpaceWire Plug-and-Play protocol which can be used to discover devices on the network.
The grspwrouter_pnp_set() function is used to set the vendor id, product id, and serial number of the
device which is presented to any device scanning the network using the protocol.

Table 26.31. grspwrouter_pnp_set function declaration

Name grspwrouter_pnp_set()

Proto void grspwrouter_pnp_set(grspwrouter_dev * dev, uint16_t
vendor_id, uint16_t product_id, uint32_t serial, bool
keep_instance_id)

About Set the SpaceWire Plug-and-Play information

Sets the serial number, vendor id, and product id that is presented when accessing this device using
the SpaceWire Plug-and-Play protocol. Bits 3:0 of the serial number can be set using the INSTAN-
CEID[7:0] signal. Use keep_instance_id to preserve this part of the serial number.

Param dev - [in] - Valid router device handle

Param vendor_id - Custom vendor id

Param product_id - Custom product id

Param serial - Custom serial number

Param keep_instance_id - Use reset value for bits 3:0 of serial number

26.13. Read out credit counters

The credit counter for a SpaceWire port can be read out using grspwrouter_port_cred(). It can only be
called on a SpaceWire port and will return an error if used on an AMBA port.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 219

Table 26.32. grspwrouter_port_cred function declaration

Name grspwrouter_port_cred()

Proto drvret grspwrouter_port_cred(grspwrouter_dev * dev, uint8_t port,
uint8_t * in, uint8_t * out)

About Read the credit counters for the port

Returns the current credit counters for the SpaceWire port. Can not be used on an AMBA port.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param in - [out] - Incoming credit

Param out - [out] - Outgoing credit

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid SpaceWire port

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 220

27. GR716B Real-Time Accelerator (RTA)

27.1. Introduction

This section describes the driver used to control the two Real-Time Accelerator(RTA) available in GR716B.

27.1.1. User Interface

This section covers how the driver can be interfaced to an application to control the RTA devices.

Controlling the driver and device is done with functions provided by the driver prefixed with rta_. All driver
functions take a device handle returned by rta_open as the first parameter. All supported functions and their
data structures are defined in the driver's header file drv/rta.h.

27.1.2. Features

• Set entry point and start RTA devices.
• Inter-processor communication via mailbox register.
• Read and write mailbox interrupt registers.

27.1.3. Hardware support

The RTA interface is only available for GR716B and must be compiled with the -qbsp=gr716b flag.

27.2. Examples

There is an example available that uses the RTA driver to start two RTA units and communicates with them via
the mailbox register.

The example is divided into three parts. One for the main CPU and one for each RTA. The included Makefile
demonstrates how applications can be built and linked for each RTA.

The example is part of the driver distribution, it can be found under examples/rta.

27.3. Software design considerations

The same driver interface is used for both the main CPU and for the RTA themselves. Main difference is that the
main CPU can open both RTAs but the RTA software should only open the device corresponding to itself.

When compiling software for a RTA the software must be compile with the -mflat flag aswell as with Sin-
gle Vector Trapping (using -qsvt flag). The correct linker-script must also be used i.e. using the option -T
linkcmds-rta0 for RTA0 and -T linkcmds-rta1 for RTA1. For example

 $ sparc-gaisler-elf-gcc example.c -o example -qbsp=gr716b -mcpu=leon3 -mflat -qsvt -T linkcmds-rta0 -ldrv

27.4. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the driver source tree
src/libdrv.

Table 27.1. RTA driver source location

Location Description

src/include/drv/rta.h RTA user interface definition

src/rta RTA driver implementation

27.5. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 27.2. Driver registration functions

Registration method Function

Register one devices rta_register()

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 221

Registration method Function

Register many devices rta_init()

27.6. Opening devices

As mentioned in section Section 27.3 the main CPU should open all RTA devices but the RTA software should
only open itself.

For software running on the main CPU it would look something like the following.

int main_cpu_open_rta_devices(void)
{
 int count;
 struct rta_priv *rta0;
 struct rta_priv *rta1;

 rta_init(GR716_RTA_DRV_ALL);

 count = rta_dev_count();
 printf("%d rta device(s) present\n", count);

 rta0 = rta_open(0);
 if (!rta0) {
 return -1; /* Failure */
 }
 rta1 = rta_open(1);
 if (!rta1) {
 return -1; /* Failure */
 }
 rta_close(rta0);
 rta_close(rta1);
 return 0; /* success */
}

For software running on the RTA the following example can be used instead.

 int RTA_INDEX = 0;
 int rta0_open_rta_device(void)
 {
 struct rta_priv *rta_self;

 rta_init(GR716_RTA_DRV_ALL);

 rta_self = rta_open(RTA_INDEX);
 if (!rta_self) {
 return -1; /* Failure */
 }
 rta_close(rta_self);
 return 0; /* success */
 }

Table 27.3. rta_dev_count function declaration

Proto int rta_dev_count(void)

About Retrieve number of devices registered to the driver.

Return int. Number of devices registered in system, zero if none.

Table 27.4. rta_open function declaration

Proto struct rta_priv *rta_open(int dev_no)

About Opens a rta device. The device is identified by index. The returned value is used as input argument to
all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by rta_dev_count.

Pointer. Status and driver's internal device identification.Return

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 222

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all RTA
API functions.

Table 27.5. rta_close function declaration

Proto int rta_close(struct rta_priv *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from rta_open.

Return int. BCC_OK

27.7. Starting the RTAs

There are two ways to start the RTAs. Either with rta_set_ep or with rta_start. But in both cases
rta_set_ep must first be called to set up the entry point of execution for the RTA.

To start the RTA at the same time as setting the entry point call rta_set_ep with the last (start) argument
set to non-zero.

void start_RTAs_n_go(void)
{
 uint32_t rta0_entrypoint = 0x61000038;
 uint32_t rta1_entrypoint = 0x71000038;
 rta_set_ep(rta0, rta0_entrypoint, 1);
 rta_set_ep(rta1, rta1_entrypoint, 1);
}

To first set-up the RTA entry point but start it at a later point, first call rta_set_ep but with the last argument
set to 0. Then at a later point call rta_start to start execution.

void setup_and_start_RTAs(void)
{
 uint32_t rta0_entrypoint = 0x61000038;
 uint32_t rta1_entrypoint = 0x71000038;
 rta_set_ep(rta0, rta0_entrypoint, 0);
 rta_set_ep(rta1, rta1_entrypoint, 0);

 [...]

 rta_start(rta0);

 [...]

 rta_start(rta1);
}

Table 27.6. rta_set_ep function declaration

Proto uint32_t rta_set_ep(struct rta_priv *d, uint32_t entry, int start)

About Set the entry point for given RTA.

d [IN] pointerParam

Device identifier. Returned from rta_open.

entry [IN] uint32_tParam

Entry pointer to set

start [IN] intParam

Set to non-zero to immediately start execution on the RTA

Return int. BCC_OK

Table 27.7. rta_start function declaration

Proto uint32_t rta_start(struct rta_priv *d)

About Start the given RTA.

Param d [IN] pointer

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 223

Device identifier. Returned from rta_open.

Return int. BCC_OK

27.8. Mailbox communication

Communication between the main processor and the RTAs are mainly done via a mailbox register interface and
interrupts.

When setting up the RTA the user should mask the desired interrupts using rta_set_mask. The user can also
set the interrupt level register with rta_set_lvl.

When an event occurs and the corresponding interrupt is masked an interrupt will be generated. The user can read
the RTA status register with rta_get_status to find out what triggered the interrupt. The main CPU can then
acknowledge this interrupt and clear it with the rta_set_irq function. Interrupts are cleared by writing the
the bit representing the interrupt.

Custom user events between the main CPU and the RTA can be sent via the status register using
rta_set_usr_bits. If the USR bits are masked in the interrupt register, an interupt will then be generated
when these bits are written to. Note that there are only 4 user bits in the status register, so only the first nibble of the
input will be written to the mailbox. It is possible to read out the user bits with the rta_get_usr_bits function.

volatile int done = 0;
void *rta0;

void rta0_irq_catch(void)
{
 uint32_t msg = rta_get_usr_bits(rta0);
 printf("cpu0: Got irq from RTA0 with message 0x%08lx\n", msg);
 /* Empty the mailbox */
 rta_set_usr_bits(rta0, 0);

 /* Clear all interrupts */
 rta_set_irq(rta0, -1);
 done = 1;
}
int main ()
{
 rta_init(GR716_RTA_DRV_ALL);
 printf("Found %i registered RTAs in system\n", rta_dev_count());

 rta0 = rta_open(0);

 rta_set_ep(rta0, 0x61000038, 0);
 rta_set_lvl(rta0, 0xf0000001);
 rta_set_mask(rta0, 0xf0000000);

 bcc_int_map_set(60, 5);
 bcc_isr_register(5, rta0_irq_catch, NULL);

 bcc_int_unmask(5);
 printf("cpu0: Starting RTA 0!\n");
 rta_start(rta0);

 while(!done) {
 bcc_power_down();
 }
}

Table 27.8. rta_get_usr_bits function declaration

Proto uint8_t rta_get_usr_bits(struct rta_priv *priv)

About Gets the user bits of the given RTAs status register.

d [IN] pointerParam

Device identifier. Returned from rta_open.

Return int. BCC_OK

Table 27.9. rta_set_usr_bits function declaration

Proto uint32_t rta_set_usr_bits(struct rta_priv *d, uint8_t val)

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 224

About Set the user bits of the RTA mailbox status register.

d [IN] pointerParam

Device identifier. Returned from rta_open.

val [IN] uint8_tParam

Value to set. Note that only the lowest nibble of val will be set, as the register only have 4 user bits.

Return int. BCC_OK

Table 27.10. RTA mailbox getter function declarations

Proto uint32_t rta_get_status(struct rta_priv *priv)

uint32_t rta_get_lvl(struct rta_priv *priv)

uint32_t rta_get_mask(struct rta_priv *priv)

About Get RTA mailbox status register.

Get RTA mailbox interrupt level detection configuration register.

Get RTA mailbox mask register for interrupt generation.

The functions returns the value of the corresponding RTA register.

priv [IN] pointerParam

Device identifier. Returned from rta_open..

Return uint32_t. Value read from register.

Table 27.11. RTA mailbox setter function declarations

Proto uint32_t rta_set_lvl(struct rta_priv *priv, uint32_t val)

uint32_t rta_set_irq(struct rta_priv *priv, uint32_t val)

uint32_t rta_set_mask(struct rta_priv *priv, uint32_t val)

About Set RTA mailbox interrupt level detection configuration register.

Set RTA mailbox interrupt register.

Set RTA mailbox mask register for interrupt generation.

The functions sets the value of the corresponding RTA register.

priv [IN] pointerParam

Device identifier. Returned from rta_open.

val [IN] uint32_tParam

Value to write to the corresponding register.

Return BCC_OK.

27.9. API reference

This section lists all functions part of the rta driver API, and in which section(s) they are described. The API is
also documented in the source header file of the driver, see Section 27.4.

Table 27.12. rta function reference

Prototype Section

int rta_dev_count(void) 27.6

struct rta_priv *rta_open(int dev_no) 27.6

uint32_t rta_close(struct rta_priv *d) 27.6

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 225

Prototype Section

uint32_t rta_set_ep(struct rta_priv *d, uint32_t entry, int start) 27.7

uint32_t rta_start(struct rta_priv *d) 27.7

uint32_t rta_set_usr_bits(struct rta_priv *d, uint8_t val) 27.8

uint8_t rta_get_usr_bits(struct rta_priv *priv) 27.8

uint32_t rta_set_lvl(struct rta_priv *priv, uint32_t val)

uint32_t rta_set_irq(struct rta_priv *priv, uint32_t val)

uint32_t rta_set_mask(struct rta_priv *priv, uint32_t val)

27.8

uint32_t rta_get_status(struct rta_priv *priv)

uint32_t rta_get_lvl(struct rta_priv *priv)

uint32_t rta_get_mask(struct rta_priv *priv)

27.8

https://www.frontgrade.com/gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Oct 2024, Version 2.3.1 226

Frontgrade Gaisler AB
Kungsgatan 12
411 19 Göteborg
Sweden
frontgrade.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Frontgrade Gaisler AB, reserves the right to make changes to any products and services described herein at any time without
notice. Consult the company or an authorized sales representative to verify that the information in this document is current before
using this product. The company does not assume any responsibility or liability arising out of the application or use of any product
or service described herein, except as expressly agreed to in writing by the company; nor does the purchase, lease, or use of
a product or service from the company convey a license under any patent rights, copyrights, trademark rights, or any other of
the intellectual rights of the company or of third parties. All information is provided as is. There is no warranty that it is correct or
suitable for any purpose, neither implicit nor explicit.

Copyright © 2024 Frontgrade Gaisler AB

https://www.frontgrade.com/gaisler
https://www.frontgrade.com/gaisler

	
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Installation
	1.2.1. Host requirements
	1.2.2. Linux
	1.2.3. Windows

	1.3. Contents of /opt/bcc-2.3.1-gcc
	1.4. BCC tools
	1.5. Documentation
	1.6. Toolchain source code distribution
	1.6.1. BCC source code installation
	1.6.2. Building

	1.7. Support

	2. Using BCC
	2.1. General development flow
	2.2. Compiler options
	2.2.1. sparc-gaisler-elf-gcc options
	2.2.2. sparc-gaisler-elf-clang options

	2.3. Compiling BCC applications
	2.4. Floating-point considerations
	2.5. LEON SPARC V8 instructions
	2.6. Multiply and accumulate instructions
	2.7. Single register window model (flat)
	2.8. Register usage
	2.9. Single vector trapping
	2.10. Memory organization
	2.11. BCC Board Support Packages
	2.12. Peripheral driver library
	2.13. Multiprocessing
	2.14. Debugging with GDB
	2.14.1. Debug information considerations

	2.15. Examples
	2.15.1. Target specific examples

	2.16. Creating a bootable ROM images

	3. LLVM based toolchain
	3.1. Introduction
	3.2. BCC LLVM/Clang tools

	4. C standard library
	4.1. File I/O
	4.2. Time functions
	4.3. Dynamic memory allocation
	4.4. Atomic types and operations
	4.5. Newlib nano

	5. BCC library
	5.1. Usage
	5.2. Console API
	5.3. Timer API
	5.3.1. Interrupt based timer service

	5.4. Cache control API
	5.5. Bus access API
	5.6. IU control/status register access API
	5.6.1. Processor State Register
	5.6.2. Trap Base Register
	5.6.3. Processor power-down

	5.7. FPU context API
	5.8. Trap API
	5.8.1. Single vector trapping (SVT)

	5.9. Interrupt API
	5.9.1. Interrupt disable and enable
	5.9.2. Interrupt source masking
	5.9.3. Clear and force interrupt
	5.9.4. Interrupt remap
	5.9.5. Interrupt service routines
	5.9.5.1. Automatic memory management
	5.9.5.2. User memory management

	5.9.6. Interrupt nesting
	5.9.6.1. Advanced configuration

	5.9.7. Low-level interrupt handlers
	5.9.8. Interrupt timestamping

	5.10. Asymmetric Multiprocessing API
	5.10.1. Processor identification
	5.10.2. Inter-processor control

	5.11. Default trap handlers
	5.12. API reference

	6. AMBA Plug&Play library
	6.1. Introduction
	6.1.1. AMBA Plug&Play terms and names
	6.1.2. Availability

	6.2. Device scanning
	6.3. User callback
	6.3.1. Criteria matching
	6.3.2. Device information

	6.4. Example
	6.5. API reference

	7. Board Support Packages
	7.1. Overview
	7.2. LEON3
	7.3. LEON5
	7.4. GR712RC
	7.5. GR740
	7.6. GR716
	7.6.1. Supported features
	7.6.2. Boot ROM
	7.6.2.1. Executing from volatile RAM
	7.6.2.2. Executing from persistent memory
	7.6.2.3. System clock

	7.6.3. APBUART initialization
	7.6.4. Chip specific API
	7.6.4.1. Pin configuration
	7.6.4.2. LVDS configuration
	7.6.4.3. PLL configuration

	7.7. LEON2
	7.8. AGGA4

	8. Customizing BCC
	8.1. Introduction
	8.2. Console driver
	8.2.1. Initialization
	8.2.2. Input and output functions
	8.2.3. Customization
	8.2.4. C library I/O

	8.3. Timer driver
	8.3.1. Initialization
	8.3.2. Time access functions
	8.3.3. Customization

	8.4. Interrupt controller driver
	8.4.1. Initialization
	8.4.2. Access functions
	8.4.3. Customization

	8.5. Initialization override example
	8.6. Initialization hooks
	8.7. Disable .bss section initialization
	8.7.1. Example

	8.8. Heap memory configuration
	8.9. Parameters to main()
	8.10. API reference

	9. Support
	Appendix A. Recommended GCC options for LEON systems
	Appendix B. Recommended Clang options for LEON systems
	Appendix C. Moving applications from BCC 1.0 to BCC 2.3.1
	Part I. Device drivers reference
	10. Driver registration
	10.1. Automatic registration
	10.2. Manual registration
	10.3. System specific device registration tables

	11. GRSPW Packet driver
	11.1. Introduction
	11.1.1. Hardware Support
	11.1.2. Driver sources
	11.1.3. Driver registration
	11.1.4. Examples
	11.1.5. Known driver limitations

	11.2. Software design overview
	11.2.1. Overview
	11.2.2. Initialization
	11.2.3. Link control
	11.2.4. Time Code support
	11.2.5. RMAP support
	11.2.6. Port support
	11.2.7. SpaceWire node address configuration
	11.2.8. User DMA buffer handling
	11.2.8.1. Buffer List help routines

	11.2.9. Driver DMA buffer handling
	11.2.9.1. DMA Queues
	11.2.9.2. DMA Queue operations

	11.2.10. Polling mode and interrupts
	11.2.11. Starting and stopping DMA

	11.3. Device Interface
	11.3.1. Opening and closing device
	11.3.2. Hardware capabilities
	11.3.3. Link Control
	11.3.4. Node address configuration
	11.3.5. Time-control codes
	11.3.6. Port Control
	11.3.7. RMAP Control
	11.3.8. Interrupt handling

	11.4. DMA interface
	11.4.1. Opening and closing DMA channels
	11.4.1.1. Static buffer allocation

	11.4.2. Starting and stopping DMA operation
	11.4.3. Packet buffer description
	11.4.4. Packet buffer lists
	11.4.5. Sending packets
	11.4.6. Receiving packets
	11.4.7. Transmission queue status
	11.4.8. Queue flushing
	11.4.9. Statistics
	11.4.10. DMA channel configuration
	11.4.11. DMA channel status

	11.5. API reference
	11.5.1. Data structures
	11.5.2. Device functions
	11.5.3. DMA functions

	11.6. Restrictions

	12. GRCAN CAN driver
	12.1. Introduction
	12.1.1. User Interface
	12.1.2. Driver registration
	12.1.3. Examples
	12.1.4. Known driver limitations

	12.2. Opening and closing device
	12.2.1. Static buffer allocation

	12.3. Operation mode
	12.3.1. Starting and stopping

	12.4. Configuration
	12.4.1. Channel selection
	12.4.2. GRCAN Timing parameters
	12.4.3. GRCANFD Timing parameters

	12.5. Receive filters
	12.5.1. Data structures
	12.5.2. Acceptance filter
	12.5.3. Sync filter

	12.6. Driver statistics
	12.7. Device status
	12.8. CAN bus transfers
	12.8.1. Data structures
	12.8.2. Transmission
	12.8.3. Reception
	12.8.4. Bus-off recovery
	12.8.5. AHB error recovery

	12.9. Interrupt API
	12.9.1. Interrupt generation

	13. UART driver
	13.1. Introduction
	13.2. Driver registration
	13.3. Opening and closing device
	13.4. Status interface
	13.5. Configuration interface
	13.6. Non-interrupt interface
	13.7. Interrupt interface
	13.8. Restrictions

	14. SPI driver
	14.1. Introduction
	14.2. Driver registration
	14.3. Opening and closing device
	14.4. Status service
	14.5. Transfer Configuration
	14.6. Transfer Interface
	14.7. Synchronous TX/RX mode
	14.8. Slave select
	14.9. Restrictions

	15. I2C master driver
	15.1. Introduction
	15.1.1. User Interface
	15.1.2. Features

	15.2. Driver registration
	15.3. Examples
	15.4. Opening and closing device
	15.5. Operation mode
	15.5.1. Starting and stopping

	15.6. Configuration
	15.6.1. Transaction retries
	15.6.2. Speed
	15.6.3. Interrupt driven operation
	15.6.4. I2C address width

	15.7. Driver statistics
	15.8. I2C bus transfer
	15.8.1. Data structures
	15.8.1.1. Packet
	15.8.1.2. List

	15.8.2. Request
	15.8.3. Reclaim

	15.9. Synchronous example

	16. Timer driver
	16.1. Introduction
	16.2. Driver registration
	16.3. Device interface
	16.3.1. Opening and closing device
	16.3.2. Device control

	16.4. Subtimer interface
	16.4.1. Opening and closing subtimer
	16.4.2. Subtimer control
	16.4.3. Watchdog support

	16.5. Restrictions

	17. GPIO driver
	17.1. Introduction
	17.2. Driver registration
	17.3. Opening and closing device
	17.4. Control interface
	17.4.1. Logical bit operations

	17.5. Interrupt map interface

	18. AHB Status Register driver
	18.1. Introduction
	18.2. Driver registration
	18.3. Opening and closing device
	18.4. Register interface
	18.5. Interrupt service routine

	19. Clock gating unit driver
	19.1. Introduction
	19.2. Driver registration
	19.3. Opening and closing device
	19.4. Operation
	19.5. Core reset
	19.6. Probe clock gating status
	19.7. CPU override

	20. GR1553B Driver
	20.1. Introduction
	20.1.1. Considerations and limitations
	20.1.2. GR1553B Hardware
	20.1.3. Software driver
	20.1.4. Driver Registration

	21. GR1553B Bus Controller Driver
	21.1. Introduction
	21.1.1. GR1553B Bus Controller Hardware
	21.1.2. Software driver
	21.1.3. Driver registration

	21.2. BC Device Handling
	21.2.1. Device API
	21.2.1.1. Data Structures
	21.2.1.2. gr1553bc_open
	21.2.1.3. gr1553bc_close
	21.2.1.4. gr1553bc_start
	21.2.1.5. gr1553bc_pause
	21.2.1.6. gr1553bc_resume
	21.2.1.7. gr1553bc_stop
	21.2.1.8. gr1553bc_indication
	21.2.1.9. gr1553bc_status
	21.2.1.10. gr1553bc_ext_trig
	21.2.1.11. gr1553bc_irq_setup

	21.3. Descriptor List Handling
	21.3.1. Overview
	21.3.2. Example: steps for creating a list
	21.3.3. Major Frame
	21.3.4. Minor Frame
	21.3.5. Slot (Descriptor)
	21.3.6. Changing a scheduled BC list (during BC-runtime)
	21.3.7. Custom Memory Setup
	21.3.8. Interrupt handling
	21.3.9. List API
	21.3.9.1. Data structures
	21.3.9.2. gr1553bc_list_init
	21.3.9.3. gr1553bc_list_alloc
	21.3.9.4. gr1553bc_list_free
	21.3.9.5. gr1553bc_list_config
	21.3.9.6. gr1553bc_list_link_major
	21.3.9.7. gr1553bc_list_set_major
	21.3.9.8. gr1553bc_minor_table_size
	21.3.9.9. gr1553bc_list_table_size
	21.3.9.10. gr1553bc_list_table_init
	21.3.9.11. gr1553bc_list_table_alloc
	21.3.9.12. gr1553bc_list_table_free
	21.3.9.13. gr1553bc_list_table_build
	21.3.9.14. gr1553bc_major_init_skel
	21.3.9.15. gr1553bc_major_alloc_skel
	21.3.9.16. gr1553bc_list_freetime
	21.3.9.17. gr1553bc_slot_alloc
	21.3.9.18. gr1553bc_slot_free
	21.3.9.19. gr1553bc_mid_from_bd
	21.3.9.20. gr1553bc_slot_bd
	21.3.9.21. gr1553bc_slot_irq_prepare
	21.3.9.22. gr1553bc_slot_irq_enable
	21.3.9.23. gr1553bc_slot_irq_disable
	21.3.9.24. gr1553bc_slot_jump
	21.3.9.25. gr1553bc_slot_exttrig
	21.3.9.26. gr1553bc_slot_transfer
	21.3.9.27. gr1553bc_slot_dummy
	21.3.9.28. gr1553bc_slot_empty
	21.3.9.29. gr1553bc_slot_update
	21.3.9.30. gr1553bc_slot_raw
	21.3.9.31. gr1553bc_show_list

	22. GR1553B Remote Terminal Driver
	22.1. Introduction
	22.1.1. GR1553B Remote Terminal Hardware
	22.1.2. Driver registration

	22.2. User Interface
	22.2.1. Overview
	22.2.1.1. Accessing an RT device
	22.2.1.2. Introduction to the RT Memory areas
	22.2.1.3. Sub Address Table
	22.2.1.4. Descriptors
	22.2.1.5. Data Buffers
	22.2.1.6. Event Logging
	22.2.1.7. Interrupt service
	22.2.1.8. Indication service
	22.2.1.9. Mode Code support
	22.2.1.10. RT Time

	22.2.2. Application Programming Interface
	22.2.2.1. Data structures
	22.2.2.2. gr1553rt_open
	22.2.2.3. gr1553rt_close
	22.2.2.4. gr1553rt_config_init
	22.2.2.5. gr1553rt_config_alloc
	22.2.2.6. gr1553bm_config_free
	22.2.2.7. gr1553rt_start
	22.2.2.8. gr1553rt_stop
	22.2.2.9. gr1553rt_status
	22.2.2.10. gr1553rt_indication
	22.2.2.11. gr1553rt_evlog_read
	22.2.2.12. gr1553rt_set_vecword
	22.2.2.13. gr1553rt_set_bussts
	22.2.2.14. gr1553rt_sa_setopts
	22.2.2.15. gr1553rt_list_sa
	22.2.2.16. gr1553rt_sa_schedule
	22.2.2.17. gr1553rt_irq_err
	22.2.2.18. gr1553rt_irq_mc
	22.2.2.19. gr1553rt_irq_sa
	22.2.2.20. gr1553rt_list_init
	22.2.2.21. gr1553rt_list_alloc
	22.2.2.22. gr1553rt_bd_init
	22.2.2.23. gr1553rt_bd_update

	23. GR1553B Bus Monitor Driver
	23.1. Introduction
	23.1.1. GR1553B Remote Terminal Hardware
	23.1.2. Driver registration

	23.2. User Interface
	23.2.1. Overview
	23.2.1.1. Accessing a BM device
	23.2.1.2. BM Log memory
	23.2.1.3. Accessing the BM Log memory
	23.2.1.4. Time
	23.2.1.5. Filtering
	23.2.1.6. Interrupt service

	23.2.2. Application Programming Interface
	23.2.2.1. Data structures
	23.2.2.2. gr1553bm_open
	23.2.2.3. gr1553bm_close
	23.2.2.4. gr1553bm_config_init
	23.2.2.5. gr1553bm_config_alloc
	23.2.2.6. gr1553bm_config_free
	23.2.2.7. gr1553bm_start
	23.2.2.8. gr1553bm_stop
	23.2.2.9. gr1553bm_time
	23.2.2.10. gr1553bm_available
	23.2.2.11. gr1553bm_read

	24. GR716 memory protection unit driver
	24.1. Introduction
	24.1.1. User Interface
	24.1.2. Features
	24.1.3. Limitations

	24.2. Driver registration
	24.3. Examples
	24.4. Opening and closing device
	24.5. Operation mode
	24.5.1. Starting and stopping

	24.6. Reset
	24.7. Segment configuration
	24.7.1. Number of segments
	24.7.2. Data structures
	24.7.3. Set
	24.7.4. Get
	24.7.4.1. Example

	25. Memory scrubber
	25.1. Introduction
	25.1.1. Hardware Support
	25.1.2. Driver sources
	25.1.3. Examples

	25.2. Software design overview
	25.2.1. Driver usage

	25.3. Memory scrubber user interface
	25.3.1. Return values
	25.3.2. Opening and closing device
	25.3.3. Configuring the memory range
	25.3.4. Starting/stopping different modes.
	25.3.5. Setting up error thresholds
	25.3.6. Registering an ISR
	25.3.7. Polling the error status

	25.4. API reference

	26. SpaceWire Router Driver
	26.1. Introduction
	26.2. Driver sources
	26.3. Routing
	26.4. Register and access driver
	26.5. Setup routing table
	26.5.1. GR716B

	26.6. Link handling
	26.7. Error handling
	26.8. Time codes
	26.9. Interrupt codes
	26.10. Configure timeouts
	26.11. Configure packet max length
	26.12. Configure Plug-and-Play
	26.13. Read out credit counters

	27. GR716B Real-Time Accelerator (RTA)
	27.1. Introduction
	27.1.1. User Interface
	27.1.2. Features
	27.1.3. Hardware support

	27.2. Examples
	27.3. Software design considerations
	27.4. Driver sources
	27.5. Driver registration
	27.6. Opening devices
	27.7. Starting the RTAs
	27.8. Mailbox communication
	27.9. API reference

