
Time and Space Partitioned
operating systems, an example

with ARINC 653

Laurent Pautet, Julien Delange, Etienne
Borde, Frank Singhoff

Agenda

 Concepts and definitions

 ARINC 653, Scheduling and communication
services

 An example : POK

2

Avionic systems

 Sub-systems enabling an aircraft to perform its
flight mission.
1. Cabin

2. Cockpit

3. Navigation

4. Energy

5. Engines

6. Flight control

7. Communications

3

Functions of the cabin sub-system

1. Smoke Detection function

2. Fire Protection system

3. Cabin & Crew Oxygen

4. Cabin intercommunication data system

5. Cabin Communication system

6. Cockpit Door Locking system

7. Doors and Slide Control system

8. In flight entertainment

4

Functions of the cockpit sub-system

1. External And Taxiing Camera System

2. Audio Control

3. Flight Warnings System

4. Control and Display System

5. Electronic Centralized Aircraft Monitoring

6. Head-Up Display

7. Concentrator and Multiplexer for Video

8. Digital Flight Data Recording System

9. Tail Strike Indication System
5

Avionic Architectures (Airbus A380)

6

Integrated Modular Architecture (IMA)

 From SAVI program (motivation for AADL)
 Development effort, which increases exponentially

with SLOC, is increasing at an alarming rate.

 F35 has approximately 175 times the number of
SLOC as the F16.

 But, it is estimated to have required 300 times the
development effort.

7

Integrated Modular Architecture (IMA)

 From SAVI program (motivation for AADL)

8

Federated Architecture

 Line Replaceable Unit (LRU)
 a function,

 software, hardware,

 confinement,

 a supplier

 Dedicated to a given aircraft

 Assembly of the different LRUs through a
network of cables

 Actuators and Sensors near the computer

 +100 km of cables, 20-30 calculators
9

Integrated Modular Architecture (IMA)

 Objectives
 Reduce dependence on a supplier

 Improve portability and modularity, both software/hardware

 Ease the increase of function number

 Allow optimisation (multi-objective) at integration

 Reduce weight, volume, energy, design & certification &
maintenance & equipment cost

 SWaP: low size, weight, and power

 Trends
 COTS : commercial off-the-shelf

 CAST-32A, Multi-core Processors guidelines by the
Certification Authorities Software Team (CAST)

10

Integrated Modular Architecture (IMA)

 Several functions, one
calculator

 A provider designs the
function

 An integrator allocates
resources to the supplier for
his function

 6 to 8 non-dedicated
calculators

11

Federated versus integrated architecture

12

• Unit: LRU
• Integration:

network

• Unit: partition
• Integration:

module

Prod/cons : federated vs integrated

 Federated Architecture
 One function, one material

 Well-established methodology

 Fairly easy design

 Fairly easy certification

 High volume/weight/energy

 Materials and cables

 Limited bandwidth

 30-40 functions max per bus

 Low reuse / portability

 Tied to suppliers 13

 Integrated Architecture
 Several functions, one

material

 Lower volume/weight/energy

 High software & system reuse

 Strong portability

 Easy addition of functions

 Less established methodology

 More complex integration

 More complex certification

Integrated Modular Architecture (IMA)

 Airbus data

14

A310 A320 A340 A380

Design 1982 1987 1991 2000

Software size (in Mo) 4 10 20 Several
hundreds

Number of computers 77 102 115 8

Number of buses 136 253 368 500
environ

Size (in liter) of electronic devices 745 760 830

Size (in liter) for the autopilot 134 63 31

MIPS 60 160 250 Several
thousands

Criticality and Architecture

 Ensure error containment whether the architecture is
federated or integrated

 Ensure that a given criticality function does not disturb a
higher criticality function

 Therefore, in the case of integrated architecture
 Isolate functions spatially (memory) and temporally (CPU

scheduling)

 Prohibit a given criticality function from transmitting to a higher
criticality function (same computer)

 Safety … and security ?

 Configuration is now a critical and complex job
15

Architecture and actors

 Architecture designers, integrator

 Function providers

 Platform providers

 Operating system providers

 Responsabilities of the stakeholders

16

DO-178 standard

 DO-178 proposes rules to ensure the reliability of the
software (functions, kernel, integration, etc.)

 A function is assigned a criticality level according to the
severity of its failure

 The level of criticality determines the acceptable
probability of occurrence of faults (in number per hour)

 Certification
 It determines the development rules to be applied according to

the level of criticality

 These rules apply to all development (planning, requirement,
design, coding, testing, etc.)

17

DO-178 standard

18

 Criticality level, Design Assurance Level (DAL)
 DO-178B examples:

 Code coverage from the high system requirements
(differents rules for each DAL)

 Add-on: use of formal methods, legacy
 DO-178C example: model based engineering

Criticality and Architecture

19

 Integrated Architecture
 Different criticality levels

on the same computer

 Federated Architecture

Agenda

 Concepts and definitions

 ARINC 653, Scheduling and communication
services

 An example : POK

20

ARINC 653

 ARINC : organization producing standards (Aeronautical Radio
Incorporated) since 1929.

 The ARINC 653 kernel is certified so that if the functions are certified
(independently), the whole becomes certified

 The ARINC 653 kernel must ensure spatial and temporal isolation
and guarantee criticality constraints during communications

 APEX, API of ARINC 653, provides 7 services: Partition, Process,
Time, Memory, Inter and Intra Partition Communication, Health
Monitor

 The ARINC 653 kernel is hierarchical, a first level kernel executing
partitions, each including a second level kernel executing processes

 ARINC 653 hides hardware specificities and dependencies

21

ARINC 653 –Isolation

 Spatial and temporal isolation is ensured by preallocating :

 Fixed-size time slots whose kernel prevents any overflow

 Fixed-size memory areas protected by MMU mechanism

 A kernel within a partition can provide multitasking

 Unicore … and multicore (e.g. core affinitiy inside a partition)

 An XML file allows to configure these services at startup
22

ARINC 653 –Isolation

 Example from Stephen Olsen (VxWorks product line
manager)

 XML file for the configuration

 Other ARINC standards …
23

ARINC 653 – Spatial isolation

 Each partition has a memory area protected by the
kernel when the partition is not active

 The kernel uses the mechanisms provided by the
Memory Management Unit available in the processor

 An active partition therefore cannot write to the memory
areas of other partitions.

 Memory areas for inter-partition communications (shared
by two partitions) are also protected by the kernel

24

ARINC 653 – Process and Time

 Similar to a POSIX thread

 Runs in a partition (at least one process)

 Has attributes such as priority, period, capacity ...

 Preemptive, fixed priority scheduling

 An initialization process starts the partition

 A process can wait for a given time

 A process can wait until its next activation

 A process can get the current time

25

ARINC 653 - Temporal isolation

 A partition may have a period, an execution duration, and a deadline

 Time is divided into periodic MAjor Frame (MAF)
 Often the LCM (Least Common Multiple) of periods of harmonic

partitions

 A MAF is divided into several MInor Frames (MIF)
 Often the GCD (Greatest common divisor) of periods of harmonic

partitions

 Over its period each partition is broken down into several time slices
called Partition Windows

 Each MIF consists of Partition Windows of multiple partitions

 The integrator assigns Partition Windows so that each partition fulfils
its deadline

 The kernel checks that partitions do not overflow the allocated
Partition Window

26

ARINC 653 : Partition scheduling example

27

ARINC 653 – Partition execution

 Execution pattern of a partition in 3 steps, in order to enforce
isolation, with inter-partition communications

1. At windows starting time, received of any data in incoming ports of
the partition in the windows start time

2. Execution of the partition processes until the end of the partition
windows

3. At windows end, transmit outgoing data in the ports

28

21 3

Partition number 1

ARINC 653 – Synchronizarion & communications
between processes

 Synchronization & communications : intra and inter
partitions.

 Synchronization between processes in the same
partition:
 Two mechanisms are available to synchronize processes in the

same partition :

 Semaphores provide the classic semaphore mechanism. PIP
and PCP policies are available. Counting semaphore.

 Events allow to wait for an event to be present and block
otherwise.

29

ARINC 653 – intra-partition communication

 Two mechanisms are available to communicate between
processes of the same partition:

 Blackboard allows to overwrite the previous value of a
data with a new value and read it as many times as
necessary. It has an initial value.

 Buffer also allows to write several values of data but
does not overwrite them and keeps them in a memory
area in either FIFO or priority order. It also allows to read
them by blocking if no value is available.

30

ARINC 653 – inter-partition communication

 Ports are communication points (in or out ports)

 Two mechanisms are available for communicating
between partitions of the same computer.

 Similar to Blackboard and Buffer.

 Sampling allows to overwrite the previous value of data
with a new value and read it as many times as
necessary. It has an initial value.

 Queuing also allows to write several values of a data but
does not overwrite them and keeps them in a memory
area in either FIFO or priority order. It also allows to read
them by blocking if no value is available.

31

ARINC 653 – APEX resume

 51 services of the ARINC 653 APEX
 Management of partitions, processes, clocks/time

 Manage communications/synchronization : Port, Blackboard,
Semaphore, Buffer, Event, Sampling, Queueing

 Ada or C

32

ARINC 653 – Process

// Create process inside a partition, but not start it

extern void CREATE_PROCESS(

/*in */ PROCESS_ATTRIBUTE_TYPE *attributes,

/*out*/ PROCESS_ID_TYPE *process_id,

/*out*/ RETURN_CODE_TYPE *return_code);

// Wait for the next periodic release

extern void PERIODIC_WAIT(

/*out*/ RETURN_CODE_TYPE *return_code);

// Start process

extern void START(

/*in */ PROCESS_ID_TYPE process_id,

/*out*/ RETURN_CODE_TYPE *return_code); 33

typedef struct {

SYSTEM_TIME_TYPE period;

SYSTEM_TIME_TYPE time_capacity;

SYSTEM_ADDRESS_TYPE entry_point;

STACK_SIZE_TYPE stack_size;

PRIORITY_TYPE base_priority;

DEADLINE_TYPE deadline;

PROCESS_NAME_TYPE name;

} PROCESS_ATTRIBUTE_TYPE;

ARINC 653 – Sampling
extern void CREATE_SAMPLING_PORT(

/*in */ SAMPLING_PORT_NAME_TYPE sampling_port_name,

/*in */ MESSAGE_SIZE_TYPE max_message_size,

/*in */ PORT_DIRECTION_TYPE port_direction,

/*in */ SYSTEM_TIME_TYPE refresh_period,

/*out*/ SAMPLING_PORT_ID_TYPE *sampling_port_id,

/*out*/ RETURN_CODE_TYPE *return_code);

extern void WRITE_SAMPLING_MESSAGE(

/*in */ SAMPLING_PORT_ID_TYPE sampling_port_id,

/*in */ MESSAGE_ADDR_TYPE message_address, /* by reference */

/*in */ MESSAGE_SIZE_TYPE length,

/*out*/ RETURN_CODE_TYPE *return_code);

extern void READ_SAMPLING_MESSAGE(

/*in */ SAMPLING_PORT_ID_TYPE sampling_port_id,

/*out*/ MESSAGE_ADDR_TYPE message_address,

/*out*/ MESSAGE_SIZE_TYPE *length,

/*out*/ VALIDITY_TYPE *validity,

/*out*/ RETURN_CODE_TYPE *return_code);

34

Agenda

 Concepts and definitions

 ARINC 653, Scheduling and communication
services

 An example : POK

35

POK, partitioning operating system for
critical systems

 Julien Delange, SEI/CMU

 Time and space isolation, partitions

 Hypervisor kernel, a library (called libPok)

 Ada and C

 POSIX compliant

 ARINC653 compliant
 Partition inter and inter communication

 Partition scheduling

 Relationships with AADL & ocarina code generators
 To generate glue code

 To generate configuration preprocessing instruction

36

POK architecture

37

POK kernel architecture

38

POK libpok architecture

39

Example : architecture

40

 Remember that partitions may be implemented by different suppliers.

 Configuration:
 On which processor each partition must be run

 Port connection and network communications (AFDX)

 Partition scheduling (MAF/MIF/Windows)

Software design/artefact

 1 program per partition
 functions, global variables

 1 main function for the initialization of the partition

 At least 1 process

 Code production artefact (Makefile)

 XML file for the system configuration

41

XML configuration
<ARINC653_Module major_frame="1000">

<Partition name="part1" partition_size="150000" number_of_processes="1"> <Port

name="p1" kind="sampling" direction="out" /> </Partition>

<Partition name="part2" …

<Channel> <Source partition_name="part1" port_name="p1"/> <Destination

partition_name="part3" port_name="p3"/> …

<PartitionWindow partition_name="part1" duration="250"/>

<PartitionWindow partition_name="part2" duration="250"/>

<PartitionWindow partition_name="part3" duration="250"/>

<PartitionWindow partition_name="part4" duration="250"/>

</ARINC653_Module>

42

ARINC 653 – Part1 partition initialization
PROCESS_ID_TYPE arinc_threads[POK_CONFIG_NB_THREADS];

SAMPLING_PORT_ID_TYPE part4_p5_port_id;

void process1();

int main () {

RETURN_CODE_TYPE ret;

CREATE_SAMPLING_PORT ("part4_p5",

sizeof(int), DESTINATION, 10,

&(part4_p5_port_id), &(ret));

PROCESS_ATTRIBUTE_TYPE tattr;

tattr.ENTRY_POINT = process1; tattr.PERIOD = 1000; tattr.DEADLINE = 1000;

tattr.TIME_CAPACITY = 1; tattr.BASE_PRIORITY = 5; strcpy(tattr.NAME, "thread1");

CREATE_PROCESS (&(tattr), &(arinc_threads[1]), &(ret));

START (arinc_threads[1], &(ret));

SET_PARTITION_MODE (NORMAL, &(ret));

return (0);

}

43

ARINC 653 – Part1 process

void process1() {

RETURN_CODE_TYPE ret;

VALIDITY_TYPE message_validity;

int i=0;

while(1) {

READ_SAMPLING_MESSAGE (part4_p5_port_id,

(MESSAGE_ADDR_TYPE) &i,

sizeof(int), &message_validity, &ret);

printf("partition part4 received value through port p5: %d\n", i);

PERIODIC_WAIT (&ret);

}

}

44

ARINC 653 – Produce and run

 Code production

$make

 Run with Qemu

$make run QEMU_MISC="-nographic -serial /dev/stdout > pok_exec.trace“

partition part1 sends value through port p1: 1

partition part2 sends value through port p2: 1

partition part3 received value through port p3: 0

partition part3 received value through port p4: 0

partition part4 received value through port p5: 0

partition part1 sends value through port p1: 2

partition part2 sends value through port p2: 2

…
45

