
Time and Space Partitioned
operating systems, an example

with ARINC 653

Laurent Pautet, Julien Delange, Etienne
Borde, Frank Singhoff

Agenda

 Concepts and definitions

 ARINC 653, Scheduling and communication
services

 An example : POK

2

Avionic systems

 Sub-systems enabling an aircraft to perform its
flight mission.
1. Cabin

2. Cockpit

3. Navigation

4. Energy

5. Engines

6. Flight control

7. Communications

3

Functions of the cabin sub-system

1. Smoke Detection function

2. Fire Protection system

3. Cabin & Crew Oxygen

4. Cabin intercommunication data system

5. Cabin Communication system

6. Cockpit Door Locking system

7. Doors and Slide Control system

8. In flight entertainment

4

Functions of the cockpit sub-system

1. External And Taxiing Camera System

2. Audio Control

3. Flight Warnings System

4. Control and Display System

5. Electronic Centralized Aircraft Monitoring

6. Head-Up Display

7. Concentrator and Multiplexer for Video

8. Digital Flight Data Recording System

9. Tail Strike Indication System
5

Avionic Architectures (Airbus A380)

6

Integrated Modular Architecture (IMA)

 From SAVI program (motivation for AADL)
 Development effort, which increases exponentially

with SLOC, is increasing at an alarming rate.

 F35 has approximately 175 times the number of
SLOC as the F16.

 But, it is estimated to have required 300 times the
development effort.

7

Integrated Modular Architecture (IMA)

 From SAVI program (motivation for AADL)

8

Federated Architecture

 Line Replaceable Unit (LRU)
 a function,

 software, hardware,

 confinement,

 a supplier

 Dedicated to a given aircraft

 Assembly of the different LRUs through a
network of cables

 Actuators and Sensors near the computer

 +100 km of cables, 20-30 calculators
9

Integrated Modular Architecture (IMA)

 Objectives
 Reduce dependence on a supplier

 Improve portability and modularity, both software/hardware

 Ease the increase of function number

 Allow optimisation (multi-objective) at integration

 Reduce weight, volume, energy, design & certification &
maintenance & equipment cost

 SWaP: low size, weight, and power

 Trends
 COTS : commercial off-the-shelf

 CAST-32A, Multi-core Processors guidelines by the
Certification Authorities Software Team (CAST)

10

Integrated Modular Architecture (IMA)

 Several functions, one
calculator

 A provider designs the
function

 An integrator allocates
resources to the supplier for
his function

 6 to 8 non-dedicated
calculators

11

Federated versus integrated architecture

12

• Unit: LRU
• Integration:

network

• Unit: partition
• Integration:

module

Prod/cons : federated vs integrated

 Federated Architecture
 One function, one material

 Well-established methodology

 Fairly easy design

 Fairly easy certification

 High volume/weight/energy

 Materials and cables

 Limited bandwidth

 30-40 functions max per bus

 Low reuse / portability

 Tied to suppliers 13

 Integrated Architecture
 Several functions, one

material

 Lower volume/weight/energy

 High software & system reuse

 Strong portability

 Easy addition of functions

 Less established methodology

 More complex integration

 More complex certification

Integrated Modular Architecture (IMA)

 Airbus data

14

A310 A320 A340 A380

Design 1982 1987 1991 2000

Software size (in Mo) 4 10 20 Several
hundreds

Number of computers 77 102 115 8

Number of buses 136 253 368 500
environ

Size (in liter) of electronic devices 745 760 830

Size (in liter) for the autopilot 134 63 31

MIPS 60 160 250 Several
thousands

Criticality and Architecture

 Ensure error containment whether the architecture is
federated or integrated

 Ensure that a given criticality function does not disturb a
higher criticality function

 Therefore, in the case of integrated architecture
 Isolate functions spatially (memory) and temporally (CPU

scheduling)

 Prohibit a given criticality function from transmitting to a higher
criticality function (same computer)

 Safety … and security ?

 Configuration is now a critical and complex job
15

Architecture and actors

 Architecture designers, integrator

 Function providers

 Platform providers

 Operating system providers

 Responsabilities of the stakeholders

16

DO-178 standard

 DO-178 proposes rules to ensure the reliability of the
software (functions, kernel, integration, etc.)

 A function is assigned a criticality level according to the
severity of its failure

 The level of criticality determines the acceptable
probability of occurrence of faults (in number per hour)

 Certification
 It determines the development rules to be applied according to

the level of criticality

 These rules apply to all development (planning, requirement,
design, coding, testing, etc.)

17

DO-178 standard

18

 Criticality level, Design Assurance Level (DAL)
 DO-178B examples:

 Code coverage from the high system requirements
(differents rules for each DAL)

 Add-on: use of formal methods, legacy
 DO-178C example: model based engineering

Criticality and Architecture

19

 Integrated Architecture
 Different criticality levels

on the same computer

 Federated Architecture

Agenda

 Concepts and definitions

 ARINC 653, Scheduling and communication
services

 An example : POK

20

ARINC 653

 ARINC : organization producing standards (Aeronautical Radio
Incorporated) since 1929.

 The ARINC 653 kernel is certified so that if the functions are certified
(independently), the whole becomes certified

 The ARINC 653 kernel must ensure spatial and temporal isolation
and guarantee criticality constraints during communications

 APEX, API of ARINC 653, provides 7 services: Partition, Process,
Time, Memory, Inter and Intra Partition Communication, Health
Monitor

 The ARINC 653 kernel is hierarchical, a first level kernel executing
partitions, each including a second level kernel executing processes

 ARINC 653 hides hardware specificities and dependencies

21

ARINC 653 –Isolation

 Spatial and temporal isolation is ensured by preallocating :

 Fixed-size time slots whose kernel prevents any overflow

 Fixed-size memory areas protected by MMU mechanism

 A kernel within a partition can provide multitasking

 Unicore … and multicore (e.g. core affinitiy inside a partition)

 An XML file allows to configure these services at startup
22

ARINC 653 –Isolation

 Example from Stephen Olsen (VxWorks product line
manager)

 XML file for the configuration

 Other ARINC standards …
23

ARINC 653 – Spatial isolation

 Each partition has a memory area protected by the
kernel when the partition is not active

 The kernel uses the mechanisms provided by the
Memory Management Unit available in the processor

 An active partition therefore cannot write to the memory
areas of other partitions.

 Memory areas for inter-partition communications (shared
by two partitions) are also protected by the kernel

24

ARINC 653 – Process and Time

 Similar to a POSIX thread

 Runs in a partition (at least one process)

 Has attributes such as priority, period, capacity ...

 Preemptive, fixed priority scheduling

 An initialization process starts the partition

 A process can wait for a given time

 A process can wait until its next activation

 A process can get the current time

25

ARINC 653 - Temporal isolation

 A partition may have a period, an execution duration, and a deadline

 Time is divided into periodic MAjor Frame (MAF)
 Often the LCM (Least Common Multiple) of periods of harmonic

partitions

 A MAF is divided into several MInor Frames (MIF)
 Often the GCD (Greatest common divisor) of periods of harmonic

partitions

 Over its period each partition is broken down into several time slices
called Partition Windows

 Each MIF consists of Partition Windows of multiple partitions

 The integrator assigns Partition Windows so that each partition fulfils
its deadline

 The kernel checks that partitions do not overflow the allocated
Partition Window

26

ARINC 653 : Partition scheduling example

27

ARINC 653 – Partition execution

 Execution pattern of a partition in 3 steps, in order to enforce
isolation, with inter-partition communications

1. At windows starting time, received of any data in incoming ports of
the partition in the windows start time

2. Execution of the partition processes until the end of the partition
windows

3. At windows end, transmit outgoing data in the ports

28

21 3

Partition number 1

ARINC 653 – Synchronizarion & communications
between processes

 Synchronization & communications : intra and inter
partitions.

 Synchronization between processes in the same
partition:
 Two mechanisms are available to synchronize processes in the

same partition :

 Semaphores provide the classic semaphore mechanism. PIP
and PCP policies are available. Counting semaphore.

 Events allow to wait for an event to be present and block
otherwise.

29

ARINC 653 – intra-partition communication

 Two mechanisms are available to communicate between
processes of the same partition:

 Blackboard allows to overwrite the previous value of a
data with a new value and read it as many times as
necessary. It has an initial value.

 Buffer also allows to write several values of data but
does not overwrite them and keeps them in a memory
area in either FIFO or priority order. It also allows to read
them by blocking if no value is available.

30

ARINC 653 – inter-partition communication

 Ports are communication points (in or out ports)

 Two mechanisms are available for communicating
between partitions of the same computer.

 Similar to Blackboard and Buffer.

 Sampling allows to overwrite the previous value of data
with a new value and read it as many times as
necessary. It has an initial value.

 Queuing also allows to write several values of a data but
does not overwrite them and keeps them in a memory
area in either FIFO or priority order. It also allows to read
them by blocking if no value is available.

31

ARINC 653 – APEX resume

 51 services of the ARINC 653 APEX
 Management of partitions, processes, clocks/time

 Manage communications/synchronization : Port, Blackboard,
Semaphore, Buffer, Event, Sampling, Queueing

 Ada or C

32

ARINC 653 – Process

// Create process inside a partition, but not start it

extern void CREATE_PROCESS(

/*in */ PROCESS_ATTRIBUTE_TYPE *attributes,

/*out*/ PROCESS_ID_TYPE *process_id,

/*out*/ RETURN_CODE_TYPE *return_code);

// Wait for the next periodic release

extern void PERIODIC_WAIT(

/*out*/ RETURN_CODE_TYPE *return_code);

// Start process

extern void START(

/*in */ PROCESS_ID_TYPE process_id,

/*out*/ RETURN_CODE_TYPE *return_code); 33

typedef struct {

SYSTEM_TIME_TYPE period;

SYSTEM_TIME_TYPE time_capacity;

SYSTEM_ADDRESS_TYPE entry_point;

STACK_SIZE_TYPE stack_size;

PRIORITY_TYPE base_priority;

DEADLINE_TYPE deadline;

PROCESS_NAME_TYPE name;

} PROCESS_ATTRIBUTE_TYPE;

ARINC 653 – Sampling
extern void CREATE_SAMPLING_PORT(

/*in */ SAMPLING_PORT_NAME_TYPE sampling_port_name,

/*in */ MESSAGE_SIZE_TYPE max_message_size,

/*in */ PORT_DIRECTION_TYPE port_direction,

/*in */ SYSTEM_TIME_TYPE refresh_period,

/*out*/ SAMPLING_PORT_ID_TYPE *sampling_port_id,

/*out*/ RETURN_CODE_TYPE *return_code);

extern void WRITE_SAMPLING_MESSAGE(

/*in */ SAMPLING_PORT_ID_TYPE sampling_port_id,

/*in */ MESSAGE_ADDR_TYPE message_address, /* by reference */

/*in */ MESSAGE_SIZE_TYPE length,

/*out*/ RETURN_CODE_TYPE *return_code);

extern void READ_SAMPLING_MESSAGE(

/*in */ SAMPLING_PORT_ID_TYPE sampling_port_id,

/*out*/ MESSAGE_ADDR_TYPE message_address,

/*out*/ MESSAGE_SIZE_TYPE *length,

/*out*/ VALIDITY_TYPE *validity,

/*out*/ RETURN_CODE_TYPE *return_code);

34

Agenda

 Concepts and definitions

 ARINC 653, Scheduling and communication
services

 An example : POK

35

POK, partitioning operating system for
critical systems

 Julien Delange, SEI/CMU

 Time and space isolation, partitions

 Hypervisor kernel, a library (called libPok)

 Ada and C

 POSIX compliant

 ARINC653 compliant
 Partition inter and inter communication

 Partition scheduling

 Relationships with AADL & ocarina code generators
 To generate glue code

 To generate configuration preprocessing instruction

36

POK architecture

37

POK kernel architecture

38

POK libpok architecture

39

Example : architecture

40

 Remember that partitions may be implemented by different suppliers.

 Configuration:
 On which processor each partition must be run

 Port connection and network communications (AFDX)

 Partition scheduling (MAF/MIF/Windows)

Software design/artefact

 1 program per partition
 functions, global variables

 1 main function for the initialization of the partition

 At least 1 process

 Code production artefact (Makefile)

 XML file for the system configuration

41

XML configuration
<ARINC653_Module major_frame="1000">

<Partition name="part1" partition_size="150000" number_of_processes="1"> <Port

name="p1" kind="sampling" direction="out" /> </Partition>

<Partition name="part2" …

<Channel> <Source partition_name="part1" port_name="p1"/> <Destination

partition_name="part3" port_name="p3"/> …

<PartitionWindow partition_name="part1" duration="250"/>

<PartitionWindow partition_name="part2" duration="250"/>

<PartitionWindow partition_name="part3" duration="250"/>

<PartitionWindow partition_name="part4" duration="250"/>

</ARINC653_Module>

42

ARINC 653 – Part1 partition initialization
PROCESS_ID_TYPE arinc_threads[POK_CONFIG_NB_THREADS];

SAMPLING_PORT_ID_TYPE part4_p5_port_id;

void process1();

int main () {

RETURN_CODE_TYPE ret;

CREATE_SAMPLING_PORT ("part4_p5",

sizeof(int), DESTINATION, 10,

&(part4_p5_port_id), &(ret));

PROCESS_ATTRIBUTE_TYPE tattr;

tattr.ENTRY_POINT = process1; tattr.PERIOD = 1000; tattr.DEADLINE = 1000;

tattr.TIME_CAPACITY = 1; tattr.BASE_PRIORITY = 5; strcpy(tattr.NAME, "thread1");

CREATE_PROCESS (&(tattr), &(arinc_threads[1]), &(ret));

START (arinc_threads[1], &(ret));

SET_PARTITION_MODE (NORMAL, &(ret));

return (0);

}

43

ARINC 653 – Part1 process

void process1() {

RETURN_CODE_TYPE ret;

VALIDITY_TYPE message_validity;

int i=0;

while(1) {

READ_SAMPLING_MESSAGE (part4_p5_port_id,

(MESSAGE_ADDR_TYPE) &i,

sizeof(int), &message_validity, &ret);

printf("partition part4 received value through port p5: %d\n", i);

PERIODIC_WAIT (&ret);

}

}

44

ARINC 653 – Produce and run

 Code production

$make

 Run with Qemu

$make run QEMU_MISC="-nographic -serial /dev/stdout > pok_exec.trace“

partition part1 sends value through port p1: 1

partition part2 sends value through port p2: 1

partition part3 received value through port p3: 0

partition part3 received value through port p4: 0

partition part4 received value through port p5: 0

partition part1 sends value through port p1: 2

partition part2 sends value through port p2: 2

…
45

