Programming Real-Time Embedded
systems: baremetal on GR740 boards

Frank Singhoff
Bureau C-203
University of Brest, France
Lab-STICC UMR CNRS 6285
singhoff@univ-brest.fr

Univ. Brest/Lab-STICC Page 1/28

Summary

bk wWwbhE

Introduction

A baremetal platform
Example

Offline scheduling
Summary

Univ. Brest/Lab-STICC

Page 2/28

Introduction

e Properties/constraints of embedded critical real-time
systems:

1. As any real-time systems: functions and timing
behavior must be predictable.

2. Extra requirements or constraints:

» Limited resources: memory footprint, power, ...
» Reduced accessibility for programmers.

s High level of autonomy (predictability).

9

Interact with their environment, with
sensors/actuators (predictability).

e Various kinds of execution platforms.

Univ. Brest/Lab-STICC Page 3/28

Introduction

e Trends in embedded critical real-time systems:

9

9

Reduce costs.

Use Commercial-off-the-Shelf components (COTS) :
hardware (multicore, not radiation hardened
processors), operating systems (e.g. Linux RT).

Embed complex payloads (e.g. image processing,
Artificial Intelligence algorithms).

Optimize SWAP.
Rethink/review software isolation. Mixed criticality.
But keep predictability for critical software.

e Strong changes on execution platforms.

Univ. Brest/Lab-STICC Page 4/28

Summary

bk wWbhE

Introduction

A baremetal platform
Example

Offline scheduling
Summary

Univ. Brest/Lab-STICC

Page 5/28

A baremetal platform (1)

Application binary

Bare-metal library

Hardware

e Bare-metal

Highest level of predictability. Full access to hardware.
No operating system.
No memory protection : system and application are linked together

High development cost if system re-design.

e o o @ @

Think about a library linked with your application.
Univ. Brest/Lab-STICC Page 6/28

A baremetal platform (2)

Host machine Target machine

Windows/Linux Q

NFS disk

» Cross-compiling : because targets have a limited
amount of resource (configurability) and are composed
of specific hardware/software (timing behavior).

» Host: where we compile the program.
» Target: where we run the program.

Univ. Brest/Lab-STICC Page 7/28

A baremetal platform (3)

e BCC (Baremetal cross-compiler):

>

BCC is a cross-compiler for LEON2, LEON3 and LEON4 processors.
C and C++ applications.

No operating system: and then no usual system concepts: no task,
no semaphore nor mutex, no memory protection, no scheduling, ...

Basic AMP support (e.g. processor atomic statements). SMP is not
supported.

A library: libbcc

Univ. Brest/Lab-STICC Page 8/28

A baremetal platform (4)

e BCC contains:

C standard library with full math support.
Timer management, console management.

Drivers.

o o o @

About 50 functions for direct (not through system abstraction) control
hardware resources: cache units, interrupts, processor, fpu, trap,
memory, DMA, bus, ...

°

Several BSP for Sparc processors.

Hooks called at starting time to do Initilizations: e.g. __bcc_init_170

Univ. Brest/Lab-STICC Page 9/28

A baremetal platform (5)

bee_timer_tick _init_period | Install a clock

for the system clock

bece_timer_get_us Read system
clock
usec_per_tick Read clock period

Univ. Brest/Lab-STICC Page 10/28

A baremetal platform (6)

bee flush_cache | Flush L1 icache
and dcache

bece__flush_dcache | Flush L1 dcache
bee_flush_icache | Flush L1 icache

bce_get_cer Read cache control

register

Univ. Brest/Lab-STICC Page 11/28

Summary

bk wWbhE

Introduction

A baremetal platform
Example

Offline scheduling
Summary

Univ. Brest/Lab-STICC

Page 12/28

BCC example (1)

#include
#include
#include
#include

<bcc/bcc.h>
<bcc/bcc_param.h>
<stdio.h>
<stdlib.h>

void _ bcc_init70(void) {
int ret;

/[« 1 tick every 100 us «/

ret =

bcc _timer_tick _init_period(100);

if (BCC OK !'= ret) {
exit (EXIT_FAILURE);

int main(void) {
printf ("Hello\n");
return EXIT_SUCCESS;

Univ. Brest/Lab-STICC

Page 13/28

BCC example (2)

s main. single entry point. SINGLE FLOW of CONTROL.

o _ bee init70 : do initializations before starting of the
program. Initially, there is a limited clock service.

s return(): stops the application. We can switch off the
board!

Univ. Brest/Lab-STICC Page 14/28

BCC example (3)

e Cross compiling
1. Compile on Linux and generate a SPARC binary:

#make

sparc—gaisler—elf—-gcc —-gbsp=leon3 -02 -g -0 hello.c
sparc—gaisler—elf—-gcc -—gbsp=leon3 hello.c -0 init.exe
sparc—gaisler—elf-size init.exe

text data bss filename

27120 1176 744 init .exe

Univ. Brest/Lab-STICC Page 15/28

BCC example (4)

e Cross-compiling (cont)
2. Send the binary to the Board/Leon processor (TCP/IP, serial link, ...).

3. Run the program on the board/Leon processor. Software emulator
t si m(Leon 3 processor simulator).

#tsim init.exe

TSIM/LEON3 SPARC simulator, version 2.0.15 (evaluation version)
allocated 4096 K RAM memory, in 1 bank(s)
allocated 32 M SDRAM memory, in 1 bank
allocated 2048 K ROM memory

read 2257 symbols

tsim> run

resuming at 0x40000000

Hello

Program exited normally on CPU 0.

tsim> quit

Univ. Brest/Lab-STICC Page 16/28

BCC example (5)

e Compare the same program with RTEMS and BCC.:

sparc—gaisler—elf—-gcc -—-gbsp=leon3 -02 -g -0 hello.c
sparc—gaisler—elf—-gcc -—gbsp=leon3 hello.c -0 init.exe
sparc—gaisler—elf-size init.exe

text data bss filename

27120 1176 744 init.exe

sparc—gaisler—elf-size hello.o
text data bss filename
34 0 O hello.o

sparc—gaisler —-rtems5—-gcc -—-gbsp=leon3 -O02 -g -0 hello.c
sparc—gaisler —-rtems5—-gcc -gbsp=leon3 hello.c -0 init.exe
sparc—gaisler —rtems5-size init.exe

text data bss filename
139376 4832 21920 init.exe

Univ. Brest/Lab-STICC Page 17/28

BCC example (6)

e Development process

1.

Write code and test on Linux/Windows (functionnal
part).

. Write code and simulate its behavior on a real-time

simulator (e.g. tsim simulator)

. Verify behavior/performances on real boards/real-time

boards (grmon tool, e.g. GR712RC, GR740).

. Flash binaries into the board (mkprom tool).

Univ. Brest/Lab-STICC Page 18/28

Summary

a & w b=

Introduction

A baremetal platform
Example

Offline scheduling
Summary

Univ. Brest/Lab-STICC

Page 19/28

Offline scheduling (1)

e Online vs offline:

» Online scheduling: order of task execution is deciding
during runtime. Adapted to unplanned event. Higher
schedulablity but lower predictability.

» Offline scheduling: order ot task execution is fully knwon
prior execution. Cannot adapt scheduling to unexpected
event. Lower schedulablity by high predictabllity.

Univ. Brest/Lab-STICC Page 20/28

Offline scheduling (2)

e Preemptive vs nonpreemptive:

» Non preemptive: cannot stop a task during its
execution. No need to task synchronization tools
(semaphore), ease communication. Safer from a
concurrency point of view.

» Preemptive: allow to stop a tasj during its execution.
Lower latency, i.e. better adapted to urgent event
support. Better schedulability. Make programming
concurrent program difficult. Overhead due to
preemptivity.

Univ. Brest/Lab-STICC Page 21/28

Offline scheduling (3)

e Dispatcher is a program that drives an offline scheduling:

>

>

Schedule of the functions of the system is stored in a table

Dispatcher reads the table sequentially and actives functions as
expressed in the table

How to build the table ? i.e. called scheduling table.
Fully predictable: no uncertaincy due to the scheduler.

Lack of flexibility: 1) cannot adapt behavior in case of unexpected
event 2) need a re-design of the scheduling if features are
added/removed/changed.

Ease testing/analysis/certification: 1) no need to certify the OS 2) the
less complex the execution platform is, the easier the analysis is 3)
no task means no race condition.

Univ. Brest/Lab-STICC Page 22/28

Offline scheduling (4)

e Interface example of a dispatcher:

typedef voidx (xfunction_type) (void=«);
typedef struct nonpreemptive _entry t {
uint32_t duration;
function_type entrypoint;
voidx arg;
} nonpreemptive_entry t;

void nonpreemptive active_wait(uint32_t duration);
void nonpreemptive init(void);
void nonpreemptive_add _function(nonpreemptive_entry t entry);
void nonpreemptive _add _array_ function (
nonpreemptive _entry t entries [], int size);
void nonpreemptive_start(int iteration);
void nonpreemptive stop(void);

Univ. Brest/Lab-STICC Page 23/28

Offline scheduling (5)

s nonpreemptive_init. perform all initializations needed by
the dispatcher. Must be called before any interaction
with the dispatcher.

s nonpreemptive_active_wasit. produce an active wait for
the current function of at least duration microseconds.

s nonpreemptive_add_ function:. add one function in the
scheduling table.

» nonpreemptive_start. start to run functions declared in
the scheduling table. Functions are run according to
their order in the scheduling table.

Univ. Brest/Lab-STICC Page 24/28

Offline scheduling (6)

e Example of use:

‘ Cheddar: a free real time scheduling simulator

File Edit Tools Help

_| ﬂ D i—li E B 4 T‘ .:- [i' |=| {8 If?.

Model file name: exo2ql.xmlv3 Zoor
0.00 5.00 10.00 16.00 20.00 25.00 30.00 35.00 40.00
I . T . e | . [
Tase=T1 Type=PERIODIC_TYPE, Capacity= 1; Pericd= 10; Deadline= 10; Start time= 0; Priority= 31; Processor=unicore_cpu
— e — —

Task=T2 Type=PERIODIC_TYPE; Capacity= 3, Period= 20; Deadline= 20; Start time= 0, Prigrity= 10, Processor=unicore_cpu

! I —tt | e o e s s | -_r el
Core Unit/Processor=core1/unicore_cpu! Protocol=RATE_MONCOTONIC_FROTOCOL , NOT_PREEMPTIVE ; Speed= 1

- No task set ready to analyse : load a model from the 'File' menu, or edit task set from the 'Edit' menu.

- Task set ready to analyse : run analysis from the Tools' menu.

Univ. Brest/Lab-STICC Page 25/28

Offline scheduling (7)

e Example of use:

voidx Tl(voidx arg)
voidx T2(voidx arg)

int main(void) {

nonpreemptive _entry t entries [3]
= { {1000,T1,NULL}, {9000,T2,NULL}, {10000,T1,NULL} };

nonpreemptive init();
nonpreemptive_add_array_ function (entries , 3);

nonpreemptive start(2);

return EXIT_SUCCESS;

Univ. Brest/Lab-STICC Page 26/28

Summary

A A

Introduction

A baremetal platform
Example

Offline scheduling
Summary

Univ. Brest/Lab-STICC

Page 27/28

Summary

e Baremetal means:

1. Low memory footprint and high predictability

2. Low complexity => ease static analysis/test/certification
3. Adapted to high criticality systems

4. High cost of development.

Univ. Brest/Lab-STICC Page 28/28

	Summary
	Introduction
	Introduction
	Summary
	A baremetal platform (1)
	A baremetal platform (2)
	A baremetal platform (3)
	A baremetal platform (4)
	A baremetal platform (5)
	A baremetal platform (6)
	Summary
	BCC example (1)
	BCC example (2)
	BCC example (3)
	BCC example (4)
	BCC example (5)
	BCC example (6)
	Summary
	Offline scheduling (1)
	Offline scheduling (2)
	Offline scheduling (3)
	Offline scheduling (4)
	Offline scheduling (5)
	Offline scheduling (6)
	Offline scheduling (7)
	Summary
	Summary

