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Introduction

e Properties/constraints of embedded critical real-time
systems:

1. As any real-time systems: functions and timing
behavior must be predictable.

2. Extra requirements or constraints:

» Limited resources: memory footprint, power, ...
» Reduced accessibility for programmers.

s High level of autonomy (predictability).

9

Interact with their environment, with
sensors/actuators (predictability).

e Various kinds of execution platforms.
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Introduction

e Trends in embedded critical real-time systems:

9

9

Reduce costs.

Use Commercial-off-the-Shelf components (COTS) :
hardware (multicore, not radiation hardened
processors), operating systems (e.g. Linux RT).

Embed complex payloads (e.g. image processing,
Artificial Intelligence algorithms).

Optimize SWAP.
Rethink/review software isolation. Mixed criticality.
But keep predictability for critical software.

e Strong changes on execution platforms.
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A baremetal platform (1)

Application binary

Bare-metal library

Hardware

e Bare-metal

Highest level of predictability. Full access to hardware.
No operating system.
No memory protection : system and application are linked together

High development cost if system re-design.

e o o @ @

Think about a library linked with your application.
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A baremetal platform (2)

Host machine Target machine

Windows/Linux Q

NFS disk

» Cross-compiling : because targets have a limited
amount of resource (configurability) and are composed
of specific hardware/software (timing behavior).

» Host: where we compile the program.
» Target: where we run the program.
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A baremetal platform (3)

e BCC (Baremetal cross-compiler):

>

BCC is a cross-compiler for LEON2, LEON3 and LEON4 processors.
C and C++ applications.

No operating system: and then no usual system concepts: no task,
no semaphore nor mutex, no memory protection, no scheduling, ...

Basic AMP support (e.g. processor atomic statements). SMP is not
supported.

A library: libbcc
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A baremetal platform (4)

e BCC contains:

C standard library with full math support.
Timer management, console management.

Drivers.

o o o @

About 50 functions for direct (not through system abstraction) control
hardware resources: cache units, interrupts, processor, fpu, trap,
memory, DMA, bus, ...

°

Several BSP for Sparc processors.

# Hooks called at starting time to do Initilizations: e.g. __bcc_init_170
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A baremetal platform (5)

bee_timer_tick _init_period | Install a clock

for the system clock

bece_timer_get_us Read system
clock
usec_per_tick Read clock period
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A baremetal platform (6)

bee flush_cache | Flush L1 icache
and dcache

bece__flush_dcache | Flush L1 dcache
bee_flush_icache | Flush L1 icache

bce_get_cer Read cache control

register
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BCC example (1)

#include
#include
#include
#include

<bcc/bcc.h>
<bcc/bcc_param.h>
<stdio.h>
<stdlib.h>

void _ bcc_init70(void) {
int ret;

/[« 1 tick every 100 us «/

ret =

bcc _timer_tick _init_period(100);

if (BCC OK !'= ret) {
exit (EXIT_FAILURE);

int main(void) {
printf ("Hello\n");
return EXIT_SUCCESS;
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BCC example (2)

s main. single entry point. SINGLE FLOW of CONTROL.

o _ bee init70 : do initializations before starting of the
program. Initially, there is a limited clock service.

s return(): stops the application. We can switch off the
board!
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BCC example (3)

e Cross compiling
1. Compile on Linux and generate a SPARC binary:

#make

sparc—gaisler—elf—-gcc —-gbsp=leon3 -02 -g -0 hello.c
sparc—gaisler—elf—-gcc -—gbsp=leon3 hello.c -0 init.exe
sparc—gaisler—elf-size init.exe

text data bss filename

27120 1176 744 init .exe
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BCC example (4)

e Cross-compiling (cont)
2. Send the binary to the Board/Leon processor (TCP/IP, serial link, ...).

3. Run the program on the board/Leon processor. Software emulator
t si m(Leon 3 processor simulator).

#tsim init.exe

TSIM/LEON3 SPARC simulator, version 2.0.15 (evaluation version)
allocated 4096 K RAM memory, in 1 bank(s)
allocated 32 M SDRAM memory, in 1 bank
allocated 2048 K ROM memory

read 2257 symbols

tsim> run

resuming at 0x40000000

Hello

Program exited normally on CPU 0.

tsim> quit
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BCC example (5)

e Compare the same program with RTEMS and BCC.:

sparc—gaisler—elf—-gcc -—-gbsp=leon3 -02 -g -0 hello.c
sparc—gaisler—elf—-gcc -—gbsp=leon3 hello.c -0 init.exe
sparc—gaisler—elf-size init.exe

text data bss filename

27120 1176 744 init.exe

sparc—gaisler—elf-size hello.o
text data bss filename
34 0 O hello.o

sparc—gaisler —-rtems5—-gcc -—-gbsp=leon3 -O02 -g -0 hello.c
sparc—gaisler —-rtems5—-gcc -gbsp=leon3 hello.c -0 init.exe
sparc—gaisler —rtems5-size init.exe

text data bss filename
139376 4832 21920 init.exe
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BCC example (6)

e Development process

1.

Write code and test on Linux/Windows (functionnal
part).

. Write code and simulate its behavior on a real-time

simulator (e.g. tsim simulator)

. Verify behavior/performances on real boards/real-time

boards (grmon tool, e.g. GR712RC, GR740).

. Flash binaries into the board (mkprom tool).
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Offline scheduling (1)

e Online vs offline:

» Online scheduling: order of task execution is deciding
during runtime. Adapted to unplanned event. Higher
schedulablity but lower predictability.

» Offline scheduling: order ot task execution is fully knwon
prior execution. Cannot adapt scheduling to unexpected
event. Lower schedulablity by high predictabllity.
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Offline scheduling (2)

e Preemptive vs nonpreemptive:

» Non preemptive: cannot stop a task during its
execution. No need to task synchronization tools
(semaphore), ease communication. Safer from a
concurrency point of view.

» Preemptive: allow to stop a tasj during its execution.
Lower latency, i.e. better adapted to urgent event
support. Better schedulability. Make programming
concurrent program difficult. Overhead due to
preemptivity.
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Offline scheduling (3)

e Dispatcher is a program that drives an offline scheduling:

>

>

Schedule of the functions of the system is stored in a table

Dispatcher reads the table sequentially and actives functions as
expressed in the table

How to build the table ? i.e. called scheduling table.
Fully predictable: no uncertaincy due to the scheduler.

Lack of flexibility: 1) cannot adapt behavior in case of unexpected
event 2) need a re-design of the scheduling if features are
added/removed/changed.

Ease testing/analysis/certification: 1) no need to certify the OS 2) the
less complex the execution platform is, the easier the analysis is 3)
no task means no race condition.
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Offline scheduling (4)

e Interface example of a dispatcher:

typedef voidx (xfunction_type) (void=«);
typedef struct nonpreemptive _entry t {
uint32_t duration;
function_type entrypoint;
voidx arg;
} nonpreemptive_entry t;

void nonpreemptive active_wait(uint32_t duration);
void nonpreemptive init(void);
void nonpreemptive_add _function(nonpreemptive_entry t entry);
void nonpreemptive _add _array_ function (
nonpreemptive _entry t entries [], int size);
void nonpreemptive_start(int iteration);
void nonpreemptive stop(void);
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Offline scheduling (5)

s nonpreemptive_init. perform all initializations needed by
the dispatcher. Must be called before any interaction
with the dispatcher.

s nonpreemptive_active_wasit. produce an active wait for
the current function of at least duration microseconds.

s nonpreemptive_add_ function:. add one function in the
scheduling table.

» nonpreemptive_start. start to run functions declared in
the scheduling table. Functions are run according to
their order in the scheduling table.
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Offline scheduling (6)

e Example of use:

‘ Cheddar: a free real time scheduling simulator

File Edit Tools Help

\_| ﬂ D i—li E B 4 T‘ .:- [ i' |=| {8 If?.

Model file name: exo2ql.xmlv3 Zoor
0.00 5.00 10.00 16.00 20.00 25.00 30.00 35.00 40.00
I . T . e | . [
Tase=T1 Type=PERIODIC_TYPE, Capacity= 1; Pericd= 10; Deadline= 10; Start time= 0; Priority= 31; Processor=unicore_cpu
— e — —

Task=T2 Type=PERIODIC_TYPE; Capacity= 3, Period= 20; Deadline= 20; Start time= 0, Prigrity= 10, Processor=unicore_cpu

! I —tt | e o e s s | -_r el
Core Unit/Processor=core1/unicore_cpu! Protocol=RATE_MONCOTONIC_FROTOCOL , NOT_PREEMPTIVE ; Speed= 1

- No task set ready to analyse : load a model from the 'File' menu, or edit task set from the 'Edit' menu.

- Task set ready to analyse : run analysis from the Tools' menu.
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Offline scheduling (7)

e Example of use:

voidx Tl(voidx arg)
voidx T2(voidx arg)

int main(void) {

nonpreemptive _entry t entries [3]
= { {1000,T1,NULL}, {9000,T2,NULL}, {10000,T1,NULL} };

nonpreemptive init();
nonpreemptive_add_array_ function (entries , 3);

nonpreemptive start(2);

return EXIT_SUCCESS;
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Summary

e Baremetal means:

1. Low memory footprint and high predictability

2. Low complexity => ease static analysis/test/certification
3. Adapted to high criticality systems

4. High cost of development.
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