/***************************************************************************** avl.c - Source code for the AVL-tree library. Copyright (C) 1998 Michael H. Buselli Copyright (C) 2000-2002 Wessel Dankers This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Augmented AVL-tree. Original by Michael H. Buselli . Modified by Wessel Dankers to add a bunch of bloat to the sourcecode, change the interface and squash a few bugs. Mail him if you find new bugs. *****************************************************************************/ #include #include #include #include "avl.h" static void avl_rebalance(avl_tree_t *, avl_node_t *); #ifdef AVL_COUNT #define NODE_COUNT(n) ((n) ? (n)->count : 0) #define L_COUNT(n) (NODE_COUNT((n)->left)) #define R_COUNT(n) (NODE_COUNT((n)->right)) #define CALC_COUNT(n) (L_COUNT(n) + R_COUNT(n) + 1) #endif #ifdef AVL_DEPTH #define NODE_DEPTH(n) ((n) ? (n)->depth : 0) #define L_DEPTH(n) (NODE_DEPTH((n)->left)) #define R_DEPTH(n) (NODE_DEPTH((n)->right)) #define CALC_DEPTH(n) ((L_DEPTH(n)>R_DEPTH(n)?L_DEPTH(n):R_DEPTH(n)) + 1) #endif #ifndef AVL_DEPTH /* Also known as ffs() (from BSD) */ static int lg(unsigned int u) { int r = 1; if(!u) return 0; if(u & 0xffff0000) { u >>= 16; r += 16; } if(u & 0x0000ff00) { u >>= 8; r += 8; } if(u & 0x000000f0) { u >>= 4; r += 4; } if(u & 0x0000000c) { u >>= 2; r += 2; } if(u & 0x00000002) r++; return r; } #endif static int avl_check_balance(avl_node_t *avlnode) { #ifdef AVL_DEPTH int d; d = R_DEPTH(avlnode) - L_DEPTH(avlnode); return d<-1?-1:d>1?1:0; #else /* int d; * d = lg(R_COUNT(avlnode)) - lg(L_COUNT(avlnode)); * d = d<-1?-1:d>1?1:0; */ #ifdef AVL_COUNT int pl, r; pl = lg(L_COUNT(avlnode)); r = R_COUNT(avlnode); if(r>>pl+1) return 1; if(pl<2 || r>>pl-2) return 0; return -1; #else #error No balancing possible. #endif #endif } #ifdef AVL_COUNT unsigned int avl_count(const avl_tree_t *avltree) { return NODE_COUNT(avltree->top); } avl_node_t *avl_at(const avl_tree_t *avltree, unsigned int index) { avl_node_t *avlnode; unsigned int c; avlnode = avltree->top; while(avlnode) { c = L_COUNT(avlnode); if(index < c) { avlnode = avlnode->left; } else if(index > c) { avlnode = avlnode->right; index -= c+1; } else { return avlnode; } } return NULL; } unsigned int avl_index(const avl_node_t *avlnode) { avl_node_t *next; unsigned int c; c = L_COUNT(avlnode); while((next = avlnode->parent)) { if(avlnode == next->right) c += L_COUNT(next) + 1; avlnode = next; } return c; } #endif int avl_search_closest(const avl_tree_t *avltree, const void *item, avl_node_t **avlnode) { avl_node_t *node; avl_compare_t cmp; int c; if(!avlnode) avlnode = &node; node = avltree->top; if(!node) return *avlnode = NULL, 0; cmp = avltree->cmp; for(;;) { c = cmp(item, node->item); if(c < 0) { if(node->left) node = node->left; else return *avlnode = node, -1; } else if(c > 0) { if(node->right) node = node->right; else return *avlnode = node, 1; } else { return *avlnode = node, 0; } } } /* * avl_search: * Return a pointer to a node with the given item in the tree. * If no such item is in the tree, then NULL is returned. */ avl_node_t *avl_search(const avl_tree_t *avltree, const void *item) { avl_node_t *node; return avl_search_closest(avltree, item, &node) ? NULL : node; } avl_tree_t *avl_init_tree(avl_tree_t *rc, avl_compare_t cmp, avl_freeitem_t freeitem) { if(rc) { rc->head = NULL; rc->tail = NULL; rc->top = NULL; rc->cmp = cmp; rc->freeitem = freeitem; } return rc; } avl_tree_t *avl_alloc_tree(avl_compare_t cmp, avl_freeitem_t freeitem) { return avl_init_tree(malloc(sizeof(avl_tree_t)), cmp, freeitem); } void avl_clear_tree(avl_tree_t *avltree) { avltree->top = avltree->head = avltree->tail = NULL; } void avl_free_nodes(avl_tree_t *avltree) { avl_node_t *node, *next; avl_freeitem_t freeitem; freeitem = avltree->freeitem; for(node = avltree->head; node; node = next) { next = node->next; if(freeitem) freeitem(node->item); free(node); } avl_clear_tree(avltree); } /* * avl_free_tree: * Free all memory used by this tree. If freeitem is not NULL, then * it is assumed to be a destructor for the items referenced in the avl_ * tree, and they are deleted as well. */ void avl_free_tree(avl_tree_t *avltree) { avl_free_nodes(avltree); free(avltree); } static void avl_clear_node(avl_node_t *newnode) { newnode->left = newnode->right = NULL; #ifdef AVL_COUNT newnode->count = 1; #endif #ifdef AVL_DEPTH newnode->depth = 1; #endif } avl_node_t *avl_init_node(avl_node_t *newnode, void *item) { if(newnode) { avl_clear_node(newnode); newnode->item = item; } return newnode; } avl_node_t *avl_insert_top(avl_tree_t *avltree, avl_node_t *newnode) { avl_clear_node(newnode); newnode->prev = newnode->next = newnode->parent = NULL; avltree->head = avltree->tail = avltree->top = newnode; return newnode; } avl_node_t *avl_insert_before(avl_tree_t *avltree, avl_node_t *node, avl_node_t *newnode) { if(!node) return avltree->tail ? avl_insert_after(avltree, avltree->tail, newnode) : avl_insert_top(avltree, newnode); if(node->left) return avl_insert_after(avltree, node->prev, newnode); avl_clear_node(newnode); newnode->next = node; newnode->parent = node; newnode->prev = node->prev; if(node->prev) node->prev->next = newnode; else avltree->head = newnode; node->prev = newnode; node->left = newnode; avl_rebalance(avltree, node); return newnode; } avl_node_t *avl_insert_after(avl_tree_t *avltree, avl_node_t *node, avl_node_t *newnode) { if(!node) return avltree->head ? avl_insert_before(avltree, avltree->head, newnode) : avl_insert_top(avltree, newnode); if(node->right) return avl_insert_before(avltree, node->next, newnode); avl_clear_node(newnode); newnode->prev = node; newnode->parent = node; newnode->next = node->next; if(node->next) node->next->prev = newnode; else avltree->tail = newnode; node->next = newnode; node->right = newnode; avl_rebalance(avltree, node); return newnode; } avl_node_t *avl_insert_node(avl_tree_t *avltree, avl_node_t *newnode) { avl_node_t *node; if(!avltree->top) return avl_insert_top(avltree, newnode); switch(avl_search_closest(avltree, newnode->item, &node)) { case -1: return avl_insert_before(avltree, node, newnode); case 1: return avl_insert_after(avltree, node, newnode); } return NULL; } /* * avl_insert: * Create a new node and insert an item there. * Returns the new node on success or NULL if no memory could be allocated. */ avl_node_t *avl_insert(avl_tree_t *avltree, void *item) { avl_node_t *newnode; newnode = avl_init_node(malloc(sizeof(avl_node_t)), item); if(newnode) { if(avl_insert_node(avltree, newnode)) return newnode; free(newnode); errno = EEXIST; } return NULL; } /* * avl_unlink_node: * Removes the given node. Does not delete the item at that node. * The item of the node may be freed before calling avl_unlink_node. * (In other words, it is not referenced by this function.) */ void avl_unlink_node(avl_tree_t *avltree, avl_node_t *avlnode) { avl_node_t *parent; avl_node_t **superparent; avl_node_t *subst, *left, *right; avl_node_t *balnode; if(avlnode->prev) avlnode->prev->next = avlnode->next; else avltree->head = avlnode->next; if(avlnode->next) avlnode->next->prev = avlnode->prev; else avltree->tail = avlnode->prev; parent = avlnode->parent; superparent = parent ? avlnode == parent->left ? &parent->left : &parent->right : &avltree->top; left = avlnode->left; right = avlnode->right; if(!left) { *superparent = right; if(right) right->parent = parent; balnode = parent; } else if(!right) { *superparent = left; left->parent = parent; balnode = parent; } else { subst = avlnode->prev; if(subst == left) { balnode = subst; } else { balnode = subst->parent; balnode->right = subst->left; if(balnode->right) balnode->right->parent = balnode; subst->left = left; left->parent = subst; } subst->right = right; subst->parent = parent; right->parent = subst; *superparent = subst; } avl_rebalance(avltree, balnode); } void *avl_delete_node(avl_tree_t *avltree, avl_node_t *avlnode) { void *item = NULL; if(avlnode) { item = avlnode->item; avl_unlink_node(avltree, avlnode); if(avltree->freeitem) avltree->freeitem(item); free(avlnode); } return item; } void *avl_delete(avl_tree_t *avltree, const void *item) { return avl_delete_node(avltree, avl_search(avltree, item)); } avl_node_t *avl_fixup_node(avl_tree_t *avltree, avl_node_t *newnode) { avl_node_t *oldnode = NULL, *node; if(!avltree || !newnode) return NULL; node = newnode->prev; if(node) { oldnode = node->next; node->next = newnode; } else { avltree->head = newnode; } node = newnode->next; if(node) { oldnode = node->prev; node->prev = newnode; } else { avltree->tail = newnode; } node = newnode->parent; if(node) { if(node->left == oldnode) node->left = newnode; else node->right = newnode; } else { oldnode = avltree->top; avltree->top = newnode; } return oldnode; } /* * avl_rebalance: * Rebalances the tree if one side becomes too heavy. This function * assumes that both subtrees are AVL-trees with consistant data. The * function has the additional side effect of recalculating the count of * the tree at this node. It should be noted that at the return of this * function, if a rebalance takes place, the top of this subtree is no * longer going to be the same node. */ void avl_rebalance(avl_tree_t *avltree, avl_node_t *avlnode) { avl_node_t *child; avl_node_t *gchild; avl_node_t *parent; avl_node_t **superparent; parent = avlnode; while(avlnode) { parent = avlnode->parent; superparent = parent ? avlnode == parent->left ? &parent->left : &parent->right : &avltree->top; switch(avl_check_balance(avlnode)) { case -1: child = avlnode->left; #ifdef AVL_DEPTH if(L_DEPTH(child) >= R_DEPTH(child)) { #else #ifdef AVL_COUNT if(L_COUNT(child) >= R_COUNT(child)) { #else #error No balancing possible. #endif #endif avlnode->left = child->right; if(avlnode->left) avlnode->left->parent = avlnode; child->right = avlnode; avlnode->parent = child; *superparent = child; child->parent = parent; #ifdef AVL_COUNT avlnode->count = CALC_COUNT(avlnode); child->count = CALC_COUNT(child); #endif #ifdef AVL_DEPTH avlnode->depth = CALC_DEPTH(avlnode); child->depth = CALC_DEPTH(child); #endif } else { gchild = child->right; avlnode->left = gchild->right; if(avlnode->left) avlnode->left->parent = avlnode; child->right = gchild->left; if(child->right) child->right->parent = child; gchild->right = avlnode; if(gchild->right) gchild->right->parent = gchild; gchild->left = child; if(gchild->left) gchild->left->parent = gchild; *superparent = gchild; gchild->parent = parent; #ifdef AVL_COUNT avlnode->count = CALC_COUNT(avlnode); child->count = CALC_COUNT(child); gchild->count = CALC_COUNT(gchild); #endif #ifdef AVL_DEPTH avlnode->depth = CALC_DEPTH(avlnode); child->depth = CALC_DEPTH(child); gchild->depth = CALC_DEPTH(gchild); #endif } break; case 1: child = avlnode->right; #ifdef AVL_DEPTH if(R_DEPTH(child) >= L_DEPTH(child)) { #else #ifdef AVL_COUNT if(R_COUNT(child) >= L_COUNT(child)) { #else #error No balancing possible. #endif #endif avlnode->right = child->left; if(avlnode->right) avlnode->right->parent = avlnode; child->left = avlnode; avlnode->parent = child; *superparent = child; child->parent = parent; #ifdef AVL_COUNT avlnode->count = CALC_COUNT(avlnode); child->count = CALC_COUNT(child); #endif #ifdef AVL_DEPTH avlnode->depth = CALC_DEPTH(avlnode); child->depth = CALC_DEPTH(child); #endif } else { gchild = child->left; avlnode->right = gchild->left; if(avlnode->right) avlnode->right->parent = avlnode; child->left = gchild->right; if(child->left) child->left->parent = child; gchild->left = avlnode; if(gchild->left) gchild->left->parent = gchild; gchild->right = child; if(gchild->right) gchild->right->parent = gchild; *superparent = gchild; gchild->parent = parent; #ifdef AVL_COUNT avlnode->count = CALC_COUNT(avlnode); child->count = CALC_COUNT(child); gchild->count = CALC_COUNT(gchild); #endif #ifdef AVL_DEPTH avlnode->depth = CALC_DEPTH(avlnode); child->depth = CALC_DEPTH(child); gchild->depth = CALC_DEPTH(gchild); #endif } break; default: #ifdef AVL_COUNT avlnode->count = CALC_COUNT(avlnode); #endif #ifdef AVL_DEPTH avlnode->depth = CALC_DEPTH(avlnode); #endif } avlnode = parent; } }