
Scheduling analysis of AADL

architecture models

Frank Singhoff+, Pierre Dissaux*

+Lab-STICC/CNRS UMR 6285, Université de Bretagne
Occidentale, France

*Ellidiss Technologies, France

Outline

Goal: overview of scheduling analysis capabilities that are

proposed by the AADL and tools implementing it. Show the

benefits that can be expected by performing early scheduling

analysis for real-time software.

� Part 1: introduction to AADLv2 core (about 2h/2h30)

� Syntax, semantics of the language

� Part 2: introducing a case study (about 15’)

� A radar illustrative case study

� Part 3: scheduling analysis (about 2h/2h30)

� Introducing real-time scheduling and its use with AADL

� Part 4: practical labs, exercises, discussion (about 1 or 2 hours)

� How to use tools in order to apply what we learnt in parts 1 to 3

2

CPS-WEEK Agenda

� 9:00-10:00 tutorial

� 10:00-10:30 coffee break

� 10:30-12:30 tutorial

� 12:00-13:30 lunch break

� 14:00-15:00 tutorial

� 15:00-15:30 coffee break

� 15:30-17:30 tutorial

3

Acknowledgments

� Many of those slides were written with or by

Jérôme Hugues/ISAE, for the following tutorials:
� AADLv2, An Architecture Description Language for the Analysis and Generation

of Embedded Systems. J. Hugues, F. Singhoff. Half day tutorial presented in the

ACM HILT conference, Portland, USA, October 2014.

� AADLv2, a Domain Specific Language for the Modeling, the Analysis and the

Generation of Real-Time Embedded Systems. F. Singhoff, J. Hugues. Half day

tutorial presented in the International MODELS conferences, Valencia, Spain,

September 2014.

� AADLv2, an Architecture Description Language for the Analysis and Generation

of Embedded Systems. J. Hugues F. Singhoff. Half day tutorial presented in the

International EMSOFT/ESWEEK conferences, Montreal, Canada, September

2013.

� Développement de systèmes à l'aide d'AADL - Ocarina/Cheddar. J. Hugues, F.

Singhoff. Tutoriel présenté à l’école d'été temps réel (ETR'2009). Septembre

2009. Pages 25-34. Paris.

� Thank you Jérôme :-) 4

We focus on Real-Time, Critical, Embedded

Systems

� « The correctness of the system depends not

only on the logical result of computation, but also

on the time at which the results are produced »

Stankovic, 1988.

� Properties we look for:

� Functions must be predictable: the same data input

will produce the same data output.

� Timing behavior must be predictable: must meet

temporal constraints (e.g. deadline).

5

We focus on Real-Time, Critical, Embedded

Systems

� Critical real-time systems: temporal constraints MUST

be met, otherwise defects could have a dramatic impact

on human life, on the environment, on the system,

� Embedded systems: computing system designed for

specific control functions within a larger system.

� Often with temporal constraints.

� Part of a complete device, often including hardware and
mechanical parts

� Limited amount of resources.

6

We focus on Real-Time, Critical, Embedded

Systems

� Examples: aircraft, satellite, automotive, …

1. Need to handle time. Concurrent applications.

2. May have dramatic impact on human life, on

the system, ...

3. Do not allow software maintenance => difficult

to correct erroneous software/bugs.

4. High implementation cost : temporal constraints

verification, safety, dedicated

hardware/software
7

We focus on Real-Time, Critical, Embedded

Systems

� Specific software engineering
methods/models/tools to master quality and cost

� Example : early verifications at design step

8

Motivation for early verification

� From NIST 2012:

� 70% of fault are introduced during the design step ; Only 3%
are found/solved. Cost : x1

� Unit test step: 20% of fault are introduced ; 16% are
found/solved. Cost : x5

� Integration test step: 10% of fault are introduced ; 50% are
found/solved. Cost : x16

� Objective: increase the number of faults found at

design step!

� Early verification: multiple verifications, including

expected performances, e.g. can deadlines be met?

9

Objectives of this tutorial

� Issues

� How to model/design a real-time critical embedded

system that conforms to requirements?

� How to verify the solution?

� How to simulate it?

� How to implement it (not in this tutorial!)?

� One solution amoung others: use an architecture

description language
� to model the system,

� to run various verification,

� and to automatically produce the system

� Focus on the AADL2.2 SAE standard 10

Objectives of this tutorial

� Illustration: model of a simple radar system

� Let us suppose we have the following

requirements

1. System implementation is composed by physical devices (Hardware entity):

antenna + processor + memory + bus

2. and software entities : running processes and threads + operating system

functionalities (scheduling) implemented in the processor that represent a

part of execution platform and physical devices in the same time.

3. The main process is responsible for signals processing : general pattern:

transmitter -> antenna -> receiver -> analyzer -> display

4. Analyzer is a periodic thread that compares transmitted and received

signals to perform detection, localization and identification.

5. [..]
11

Resources for this tutorial

� Information on AADL

� http://www.aadl.info : updates on AADL standard

� http://www.openaadl.org : many AADL resources

� http://www.ellidiss.fr/: AADLInspector and Ellidiss

Tech. AADL activities

� http://beru.univ-brest.fr/~singhoff/cheddar/: Cheddar

and real-time scheduling

� Feel free to contact us for more details

12

Outline

Goal: overview of scheduling analysis capabilities that are

proposed by the AADL and tools implementing it. Show the

benefits that can be expected by performing early scheduling

analysis for real-time software.

� Part 1: introduction to AADLv2 core (about 2h/2h30)

� Syntax, semantics of the language

� Part 2: introducing a case study (about 15’)

� A radar illustrative case study

� Part 3: scheduling analysis (about 2h/2h30)

� Introducing real-time scheduling and its use with AADL

� Part 4: practical labs, exercises, discussion (about 1 or 2 hours)

� How to use tools in order to apply what we learnt in parts 1 to 3

13

Presentation of the AADL:

Architecture Analysis and

Design Language

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

2

Introduction

� ADL, Architecture Description Language:

� Goal : modeling software and hardware architectures

to master complexity … to perform analysis

� Concepts : components, connections, deployments.

� Many ADLs : formal/non formal, application domain,

…

� ADL for real-time critical embedded systems: AADL

(Architecture Analysis and Design Language).

3

AADL: Architecture Analysis & Design Language

� International standard promoted by SAE, AS-2C

committee, released as AS5506 family of standards

� Core language document:
� AADL 1.0 (AS 5506) 2004

� AADL 2.0 (AS 5506A) 2009

� AADL 2.1 (AS 5506B) 2012

� AADL 2.2 (AS 5506C) 2017

� Annex documents to address specific concerns
� Annex A: ARINC 653 Interface (AS 5506/1A) 2015
� Annex B: Data Modelling (AS 5506/2) 2011
� Annex C: Code Generation Annex (AS 5506/1A) 2015
� Annex D: Behavior Annex v2 (AS 5506/3) 2017
� Annex E: Error Model Annex v2 (AS 5506/1A) 2015

4

AADL is for Analysis

� AADL objectives are “to model a system”

� With analysis in mind (different analysis)

� To ease transition from well-defined

requirements to the final system : code

production

� Require semantics => any AADL entity has

semantics (natural language or formal methods).

5

AADL: Architecture Analysis & Design Language

� Different representations :

� Textual (standardized representation),

� Graphical (declarative and instance views),

� XML/XMI (not part of the standard: tool specific)

� Graphical editors:
� OSATE (SEI):

� declarative model editor
� instance model viewer

� MASIW (ISPRAS)

� Scade Architect (Ansys): instance model editor

� Stood for AADL (Ellidiss) : instance model editor

6

AADL components

� AADL model : hierarchy/tree of components

� Composition hierarchy (subcomponents)

� Inheritance hierarchy (extends)

� Binding hierarchy (e.g. process->processor)

� AADL component:

� Model a software or a hardware entity

� May be organized in packages : reusable

� Has a type/interface, zero, one or several implementations

� May have subcomponents

� May combine/extend/refine others

� May have properties : valued typed attributes (source code file name, priority,

execution time, memory consumption, …)

� Component interactions :

� Modeled by component connections

� Binding properties express allocation of SW onto HW
7

AADL components

� How to declare a component:

� Component type: name, category, properties, features => interface

� Component implementation: internal structure (subcomponents),
properties

� Component categories: model real-time abstractions,

close to the implementation space (ex : processor, task,

…). Each category has well-defined semantics/behavior,

refined through the property and annexes mechanisms

� Hardware components: execution platform

� Software components

� Systems : bounding box of a system. Model deployments.

8

Component type

� Specification of a component: interface

� All component type declarations follow the same

pattern:

AADL Tutorial -- MODELS'14

9

<category> foo [extends <bar>]

features

-- list of features

-- interface

properties

-- list of properties

-- e.g. priority

end foo;

Inherit features and

properties from parent

Interface of the component:

Exchange messages, access to

data or call subprograms

Some properties describing

non-functional aspect of the

component

Component type

� Example:

-- model a sequential execution flow

subprogram Spg -- Spg represents a C function,

features -- in file "foo.c", that takes one

in_param : in parameter foo_data; -- parameter as input

properties

Source_Language => C;

Source_Text => ("foo.c");

end Spg;

-- model a schedulable flow of control

thread bar_thread -- bar_thread is a sporadic thread :

features -- dispatched whenever it

in_data : in event data port foo_data; -- receives an event on its “in_data"

properties -- port

Dispatch_Protocol => Sporadic;

end bar_thread;

Standard properties, one can

define its own properties

10

Component implementation

� Implementation of a component: body

� Think spec/body package (Ada), interface/class (Java)

<category> implementation foo.i [extends <bar>.i]

subcomponents

…

calls

-- subprogram subcomponents

-- called, only for threads or subprograms

connections

properties

-- list of properties, e.g. Deadline

end foo.i;

foo.i implements foo

11

Component implementation

� Example:

thread implementation bar_thread.impl -- in this implementation, at each

calls -- dispatch we execute the "C" call

C : { S : subprogram spg; }; -- sequence. We pass the dispatch

connections -- parameter to the call sequence

parameter in_data -> S.in_param;

end bar_thread.impl;

Connect

data/parameter

subprogram Spg

features

in_param : in parameter foo_data;

properties

Source_Language => C;

Source_Text => ("foo.c");

end Spg;

thread bar_thread

features

in_data : in event data port foo_data;

properties

Dispatch_Protocol => Sporadic;

end bar_thread;

AADL concepts

� AADL introduces many other concepts:

� Related to embedded real-time critical systems :

� AADL flows: capture high-level data+control flows

� AADL modes: model operational modes in the form of an alternative set of

active components/connections/…

� To ease models design/management:

� AADL packages (similar to Ada/Java, renames, private/public)

� AADL abstract component, component extension

� …

� AADL is a rich language :

� Around 200 entities in the meta-model

� Around 200 syntax rules in the BNF (core)

� Around 250 legality rules and more than 500 semantics rules

� 355 pages core document + various annex documents
13

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

14

AADL workflow

15

1. Declarative model (Packages)

� HW libraries

� SW libraries

� Applicative composite systems

2. Instance model

� Selection of the Root System

� Expanded HW hierarchy

� Expanded SW hierarchy

3. Deployed model

� SW instances binding onto HW instances

similar to
UML classes

or SysML blocks

exhaustive
representation of

the system
hierarchy

required for many
advanced analysis:
-schedulability
-simulation
-safety
-security
-…

bottom-up

top-down

A full AADL system : a tree of component

instances

� Component types and
implementations only define a
library of entities (classifiers)

� An AADL model is a set of
component instances (of the
classifiers)

� System must be instantiated
through a hierarchy of
subcomponents, from root
(system) to the leafs
(subprograms, ..)

� We must choose a system
implementation component as
the root system model !

System

Sub System Process Processor

Thread Data

Subprogram

16

Software components categories

� thread : schedulable execution flow, Ada or VxWorks task,

Java or POSIX thread. Execute programs

� data : data placeholder, e.g. C struct, C++ class, Ada record

� process : address space. It must hold at least one thread

� subprogram : a sequential execution flow. Associated to a

source code (C, Ada) or a model (SCADE, Simulink)

� thread group : hierarchy of threads

� subprogram group : library or hierarchy of subprograms

Thread data Threadgroup processsubprogram

17

Software components

� Example of a process component : composed

of two threads

thread receiver

end receiver;

thread implementation receiver.impl

end receiver.impl;

thread analyser

end analyser;

thread implementation analyser.impl

end analyser.impl;

process processing

end processing;

process implementation processing.others

subcomponents

receive : thread receiver.impl;

analyse : thread analyser.impl;

. . .

end processing.others;

18

Software components

� Example of a thread component : a thread

may call different subprograms

thread receiver

end receiver;

thread implementation receiver.impl

CS : calls {

call1 : subprogram Receiver_Spg;

call2 : subprogram ComputeCRC_Spg;

};

end receiver.impl;

subprogram Receiver_Spg

end Receiver_Spg;

subprogram ComputeCRC_Spg

end ComputeCRC_Spg;

. . .

19

Hardware components categories

� processor/virtual processor : scheduling component

(combined CPU and OS scheduler).

� memory : model data storage (memory, hard drive)

� device : component that interacts with the environment.

Internals (e.g. firmware) is not modeled.

� bus/virtual bus : data exchange mechanism between

components

Device Memory bus Processor

20

« system » category

� system :

1. Help structuring an architecture, with its own

hierarchy of subcomponents. A system can include

one or several subsystems.

2. Root system component.

3. Bindings : model the deployment of components

inside the component hierarchy.

System

21

subprogram Receiver_Spg …

thread receiver …

thread implementation receiver.impl

call1 : subprogram Receiver_Spg;

…

end receiver.impl;

process processing

end processing;

process implementation processing.others

subcomponents

receive : thread receiver.impl;

analyse : thread analyser.impl;

. . .

end processing.others;

« system » category

system radar

end radar;

system implementation radar.simple

subcomponents

main : process processing.others;

cpu : processor leon2;

properties

Actual_Processor_Binding =>

reference cpu applies to main;

end radar.simple;

device antenna

end antenna;

processor leon2

end leon2;

22

About subcomponents

� Semantics: restrictions apply on subcomponents

� e.g. hardware cannot contain software, etc

23

category allowed subcomponent categories

system all but thread group and thread

processor virtual processor, memory, bus

memory memory, bus

process thread group, thread, subprogram, data

thread group thread group, thread, subprogram, data

thread subprogram, data

subprogram data

data data, subprogram

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

24

AADL properties

� Property:

� Typed attribute, associated to one or more entities

� Property definition = name + type + possible owners

� Property association to a component = property name

+ value

� Can be propagated to subcomponents: inherit
� Can override parent’s one, case of extends

� Allowed types in properties:

� aadlboolean, aadlinteger, aadlreal, aadlstring, range, list,

enumeration, record, user defined (Property type)

25

AADL properties

� Property sets :

� Group property definitions.

� Property sets part of the standard, e.g. Thread_Properties.

� Or user-defined, e.g. for new analysis as power analysis

� Example :

property set Thread_Properties is

. . .

Priority : aadlinteger applies to (thread, device, …);

Source_Text : inherit list of aadlstring applies to (data, port, thread, …);

. . .

end Thread_Properties;

26

AADL properties

� Properties are typed with units to model physical

systems, related to embedded real-time critical

systems.

property set AADL_Projects is

Time_Units: type units (

ps,

ns => ps * 1000,

us => ns * 1000,

ms => us * 1000,

sec => ms * 1000,

min => sec * 60,

hr => min * 60);

--

end AADL_Projects;

property set Timing_Properties is

Time: type aadlinteger

0 ps .. Max_Time units Time_Units;

Time_Range: type range of Time;

Compute_Execution_Time: Time_Range

applies to (thread, device, subprogram,

event port, event data port);

end Timing_Properties;

AADL properties

� Properties can apply to (with increasing priority)

� a component type (1)

� a component implementation (2)

� a subcomponent (3)

� a contained element path (4)

process implementation processing.others

subcomponents

receive0 : thread receiver.impl;

receive1 : thread receiver.impl;

receive2 : thread receiver.impl

{Deadline => 200 ms;}; -- (3)

properties -- (4)

Deadline => 300 ms applies to receive1;

end processing.others;

thread receiver
properties -- (1)
Compute_Execution_Time => 3 ms .. 4 ms;
Deadline => 150 ms ;

end receiver;

thread implementation receiver.impl
properties -- (2)

Deadline => 160 ms;
end receiver.impl;

28

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

29

Component connection

� Connection: model component interactions, control flow and/or
data flow. E.g. exchange of messages, access to shared data,
remote subprogram call (RPC), …

� features : connection point part of the interface. Each feature has a
name, a direction, and a category

� Features category: specification of the type of interaction
• event port: event exchange (e.g. alarm, interrupt)

• data port: data exchange triggered by the scheduler

• event data port: data exchange of data triggered with sender (message)

• subprogram parameter

• data access : access to external data component, possibly shared

• subprogram access : RPC or rendez-vous

� Features direction for port and parameter:
• input (in), output (out), both (in out). 30

Component connection

� Features of subcomponents are connected in

the “connections” subclause of the enclosing

component

� Ex: threads & thread connection on data port

thread analyser

features

analyser_out : out data port

Target_Position.Impl;

end analyser;

thread display_panel

features

display_in : in data port Target_Position.Impl;

end display_panel;

process implementation processing.others

subcomponents

display : thread display_panel.impl;

analyse : thread analyser.impl;

connections

port analyse.analyser_out -> display.display_in;

end processing.others;

31

Data connection policies

� Allow deterministic communications

� Multiple policies exist to control production and
consumption of data by threads:

1. Sampling connection: takes the latest value

� Problem: data consistency (lost or read twice) !

32

Data connection policies

2. Immediate: receiver thread is immediately

awaken, and will read data when emitter finished

3. Delayed: actual transmission is delayed to the

next time frame

33

data shared_var

end shared_var;

data implementation shared_var.impl

end shared_var.impl;

thread analyser

features

share : requires data access shared_var.impl;

end analyser;

thread display_panel

features

share : requires data access shared_var.impl;

end display_panel;

process implementation processing.others

subcomponents

analyse : thread analyser.impl;

display : thread display_panel.impl;

a_data : data shared_var.impl;

connections

cx1 : data access a_data -> display.share;

cx2 : data access a_data -> analyse.share;

end processing.others;

Component connection

�Connection for shared data :

34

data shared_var

end shared_var;

data implementation shared_var.impl

end shared_var.impl;

thread analyser

features

share : requires data access shared_var.impl;

end analyser;

thread display_panel

features

share : requires data access shared_var.impl;

end display_panel;

process implementation processing.others

subcomponents

analyse : thread analyser.impl;

display : thread display_panel.impl;

a_data : data shared_var.impl;

connections

cx1 : data access a_data -> display.share;

cx2 : data access a_data -> analyse.share;

end processing.others;

Component connection

�Connection for shared data :

35

Component connection

�Connection between thread and subprogram :

36

thread implementation receiver.impl
calls {

RS: subprogram Receiver_Spg;

};

connections

parameter RS.receiver_out -> receiver_out;

parameter receiver_in -> RS.receiver_in;

end receiver.impl;

subprogram Receiver_Spg

features

receiver_out : out parameter

radar_types::Target_Distance;

receiver_in : in parameter

radar_types::Target_Distance;

end Receiver_Spg;

thread receiver

features

receiver_out : out data port

radar_types::Target_Distance;

receiver_in : in data port

radar_types::Target_Distance;

end receiver;

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

37

AADL Behavior Annex

38

� Provides more details on the internal behavior of threads

and subprograms.

� Complements, extends or replaces Modes, Calls and

some Properties defined in the core model.

� Required for accurate timing analysis and virtual

execution of the AADL model.

� State Transition Automata with an action language:

� dispatch conditions

� actions: event sending, subprogram call, critical sections, …

� control structures: loops, tests, …

AADL Behavior Annex example

39

thread transmitter

features

transmitter_out : out data port radar_types::Radar_Pulse;

end transmitter;

thread implementation transmitter.impl

…

annex Behavior_Specification {**

states

s : initial complete final state;

transisitons

t : s -[on dispatch]-> s { transmitter_out := "ping" };

**};

end transmitter.impl;

annex identifier

transition condition

transition actions

state declaration

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

40

AADL & Tools

� OSATE (SEI/CMU, http://aadl.info)

� Eclipse-based tools. Reference implementation.

� Textual and graphical editors + various analysis plug-ins

� STOOD (Ellidiss, http://www.ellidiss.com)

� Graphical editor, code/documentation generation

� Guided modeling approach, requirements traceability

� Cheddar (UBO/Lab-STICC, http://beru.univ-brest.fr/~singhoff/cheddar/)

� Performance analysis

� AADLInspector (Ellidiss, http://www.ellidiss.com)

� Standalone framework to process AADL models and Behavior Annex

� Industrial version of Cheddar + Simulation Engine

� Ocarina (ISAE, http://www.openaadl.org)

� Command line tool, library to manipulate models.

� AADL parser + code generation + analysis (Petri Net, WCET, …)

� Others: RAMSES, PolyChrony, ASSIST, MASIW, MDCF, TASTE, Scade Architect,

Camet, Bless, …
41

Tools used for the tutorial

42

P
ro

c
e
s
s
in

g
 g

o
a
ls

Scheduling Analysis

Safety Analysis

Security Analysis

End to End Flow
Analysis

Power Consumption

Cost Analysis

Requirements
Coverage

Simulation

Code Generation

pivot
model

textual
AADL

AADL Inspector

Cheddar

Marzhin

Ocarina

M
o

d
e
ls

SysML+Variants

MARTE+Variants

UML+Variants

OSATE

Capella

TASTE

EEA

Stood

43

� AADLInspector, OSATE/Cheddar

Tools used for the tutorial

AADL: a radar case study

Back to radar case study

� Goal: to model a simple radar system

� Let us suppose we have the following

requirements

1. System implementation is composed by physical devices (Hardware entity):

antenna + processor + memory + bus

2. and software entity : running processes and threads + operating system

functionalities (scheduling) implemented in the processor that represent a

part of execution platform and physical devices in the same time.

3. The main process is responsible for signals processing : general pattern:

transmitter -> antenna -> receiver -> analyzer -> display

4. Analyzer is a periodic thread that compares transmitted and received

signals to perform detection, localization and identification.

5. [..]
2

Tools used for modeling

� AADL syntax is both textual and graphical, with several

editors available

� Modes exist for emacs, vi

� OSATE provides a comprehensive textual IDE on top of Eclipse,
and additional plug-ins

� IMV : Instance Model Viewer

� Consistency checkers, statistics, various analysis.

� Stood for AADL:

� Top-down modeling approach

� Instance Model graphical editor

� Generation of textual AADL for tool interoperability

� …

� In the following, we will use Stood
3

Radar case study

� Hardware/Software breakdown: components
PACKAGE radar_v1

PUBLIC

-- …

SYSTEM radar

END radar;

-- …

PROCESS processing

-- …

END processing;

-- …

END radar_v1;

PACKAGE radar_common

PUBLIC

-- …

DEVICE screen

-- …

END screen;

-- …

END radar_common; 4

Radar case study

� Hardware/Software breakdown: features

in/out ports

bus access

PROCESS processing

FEATURES

to_screen : OUT EVENT PORT;

send_pulse : OUT EVENT PORT;

receive_pulse : IN DATA PORT;

get_angle : IN DATA PORT;

END processing;

DEVICE screen

FEATURES

screen_in : IN EVENT PORT;

mem_bus : REQUIRES BUS ACCESS mem_bus;

END screen;

5

Radar case study

� Hardware/Software breakdown: connections

Logical cnx

Hardware cnx

6
note:
bindings are not represented graphically with Stood

AADL Tutorial -- MODELS'14

Radar case study

� Hardware/Software breakdown: connections
SYSTEM IMPLEMENTATION radar.v1

SUBCOMPONENTS

aerial : DEVICE radar_common::antenna;

rotor : DEVICE radar_common::motor;

monitor : DEVICE radar_common::screen;

cpu : PROCESSOR radar_common::cpu_leon2;

mem_bus : BUS radar_common::mem_bus;

RAM : MEMORY radar_common::RAM;

main : PROCESS processing.others;

CONNECTIONS

cnx1 : PORT aerial.antenna_out -> main.receive_pulse;

cnx2 : PORT rotor.motor_out -> main.get_angle;

cnx3 : PORT main.send_pulse -> aerial.antenna_in;

cnx4 : PORT main.to_screen -> monitor.screen_in;

cnx5 : BUS ACCESS mem_bus -> aerial.mem_bus;

cnx6 : BUS ACCESS mem_bus -> rotor.mem_bus;

cnx7 : BUS ACCESS mem_bus -> monitor.mem_bus;

cnx8 : BUS ACCESS mem_bus -> cpu.mem_bus;

cnx9 : BUS ACCESS mem_bus -> RAM.mem_bus;

-- …

END radar.v1;
7

Radar case study

� Software elements

8

A few words on AADL usage

� AADL is for architectural description and early analysis

� Not to be compared with UML suites

� Not a graphical representation of the source code

� But can be associated with existing source code via Properties

� Keep in mind models support an objective

� For now, it is just a high-level view of the design

� In the next sections, we will complete the models with

properties to support schedulability analysis

9

AADL: about scheduling

analysis

� Embedded real-time critical systems have temporal
constraints to meet (e.g. deadline).

� Many systems are built with operating systems providing
multitasking facilities … Tasks may have deadline.

� But, tasks make temporal constraints analysis
difficult to do:
� We must take interference delaying a task into

account: other tasks, shared resources, …
� Need to take scheduling into account.
� Scheduling (or schedulability) analysis.

Real-time Scheduling analysis/theory,

what is it?

2

1. A set of simplified tasks models (to model functions of
the system)

2. A set of analytical methods (called feasibility tests)
� Example:

3. A set of scheduling algorithms: build the full
scheduling/GANTT diagram

Real-Time scheduling theory

3

DeadlineRi ≤
j

ihpj j

i
ii C

P

R
CR ⋅

+= ∑

∈)(

Real-Time scheduling theory is hard to apply

� Real-Time scheduling theory (uniprocessor)

� Theoretical results defined from 1974 to 1994:

feasibility tests exist for uniprocessor architectures

� Supported at a decent level since POSIX 1003

real-time operating systems and ARINC653, …

� Industry demanding

� Yet, hard to use

4

Summary

1. Issues about real-time scheduling analysis:

AADL to the rescue

2. Basics on scheduling analysis: fixed-priority

scheduling for uniprocessor architectures

3. AADL components/properties to scheduling

analysis

5

What to model to achieve early scheduling

analysis

1. Software side:

� Workload: release time, execution time

� Timing constraints

� Software entity interferences, examples:

� Tasks relationships/communication or synchronization: e.g. shared

data, data flow

� Task containers: ARINC 653 partition, process

2. Hardware (should be called execution platform) side:

� Available resources, e.g. computing capabilities

� Contention, interference, examples: processing units, cache, memory

bus, NoC, …

3. Deployment

=> Architecture models

=> It is the role of an ADL to model those elements 6

Real-Time scheduling theory is hard to apply

� Requires strong theoretical knowledge/skills

� Numerous theoretical results: how to choose the right

one?

� Numerous assumptions for each result.

� How to abstract/model a system to verify deadlines?

� How to integrate scheduling analysis in the engineering

process?

� When to apply it? What about tools?

=> It is the role of an ADL to hide those details

7

AADL to the rescue?

� Why AADL helps:

� All required model elements are given for the analysis

� Component categories: thread, data, processor

� Feature categories: data access, data port, …

� Properties: Deadline, Priority, WCET, Ceiling Priority, …

� Annexes (e.g. behavior annex)

� AADL semantic: formal and natural language

� E.g. automata to define the concept of periodic thread

� Close to the real-time scheduling analysis methods

� Model engineering: reusability, several levels of abstraction

� Tools & chain tools: AADL as a pivot language (international
standard)

� VERSA, OSATE, POLA/FIACRE/TINA, CARTS, MAST, Marzhin,

Cheddar, … by Ocarina, TASTE, AADLInspector, RAMSES, MOSART,

OSATE …8

AADL to the rescue?

� But AADL does not solve everything:

� AADL is a complex language

� How to ensure model elements are compliant with analysis
requirements/assumptions, sustainability, accuracy, …

� Not a unique AADL model for a given system to model

� Not a unique mapping between a design model and an analysis
model

� Having AADL scheduling analysis tools is not enough too, how to
use them?

� …

9

Summary

1. Issues about real-time scheduling analysis:

AADL to the rescue

2. Basics on scheduling analysis: fixed-priority

scheduling for uniprocessor architectures

3. AADL components/properties to scheduling

analysis

10

Real-time scheduling theory : models of task

� Task simplified model: sequence of

statements + data.

� Usual kind of tasks:

� Independent tasks or dependent tasks.

� Periodic and sporadic tasks (critical

functions) : have several jobs and release

times

� Aperiodic tasks (non critical functions) : only

one job and one release time
11

Real-time scheduling theory : models of task

� Usual parameters of a periodic task i:

� Period: Pi (duration between two release times). A task starts a job
for each release time.

� Deadline to meet: Di, timing constraint to meet.

� First task release time (first job): Si.

� Worst case execution time of each job: Ci (or capacity or WCET).

� Priority: allows the scheduler to choose the task to run
12

Real-time scheduling theory : models of task

�

13

Uniprocessor fixed priority scheduling

� Fixed priority scheduling:

� Scheduling based on fixed priority => priorities do not

change during execution time.

� Priorities are assigned at design time (off-line).

� Efficient and simple feasibility tests.

� Scheduler easy to implement into real-time operating

systems.

� Priority assignments:

� Rate Monotonic, Deadline Monotonic, OPA, …

14

Uniprocessor fixed priority scheduling

� Rate Monotonic:
� Optimal priority assignment in the case of fixed

priority scheduling and uniprocessor.

� Periodic tasks.

� The highest priority tasks have the smallest periods.

15

Uniprocessor fixed priority scheduling

� Rate Monotonic assignment and preemptive
fixed priority scheduling:

� Assuming VxWorks priority levels (high=0 ; low=255)

� T1 : C1=6, P1=10, Prio1=0

� T2 : C2=9, P2=30, Prio2=1 16

Uniprocessor fixed priority scheduling

17

� Feasibility/Schedulability tests to predict on
design-time if deadline will be met:

1. Run simulations on feasibility interval = [0,LCM(Pi)].

Sufficient and necessary condition.

2. Processor utilization factor test:

� = ∑ ��/���
	
� ≤ . (2

�

�-1) (about 69%)

Rate Monotonic assignment and preemptive scheduling.

Sufficient but not necessary condition.

3. Task worst case response time, noted Ri : delay between

task release time and task completion time. Any priority

assignment, preemptive scheduling.

Uniprocessor fixed priority scheduling

18

� Compute Ri, task i worst case response time:

� Task i response time = task i capacity + delay the task i

has to wait for higher priority task j. Or:

� hp(i) is the set of tasks which have a higher priority than

task i.

� � returns the smallest integer not smaller than x.

j

ihpj j

i
ii C

P

R
CRor ⋅

+= ∑

∈)(

 ∑
∈

+=
)(

ihpj

ii jtoduetimewaitingCR

Uniprocessor fixed priority scheduling

�

19

Uniprocessor fixed priority scheduling

20

�3� = �3 = 5

�3� = C3 +
�3�

�1
. �1 +

�3�

�2
. �2 = 10

�3� = C3 +
�3�

�1
. �1 +

�3�

�2
. �2 = 13

�3� = C3 +
�3�

�1
. �1 +

�3�

�2
. �2 = 15

�3� = C3 +
�3�

�1
. �1 +

�3�

�2
. �2 = 18

�3 = C3 +
�3�

�1
. �1 +

�3�

�2
. �2 = 18 ⇒ "3 = 18

� Example: T1(P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

�1� = �1 = 3 ⇒ "1 = 3

�2� = �2 = 2

�2� = C2 +
�2�

�1
. �1 = 2 +

2

7
. 3 = 5

�2� = C2 +
�2�

�1
. �1 = 2 +

5

7
. 3 = 5 ⇒ "2 = 5

Uniprocessor fixed priority scheduling

21

� Example with the AADL radar case study:

� “display_panel” thread which displays data. P=100, C=20.

� “receiver” thread which sends data. P=250, C=50.

� “analyser” thread which analyzes data. P=500, C=150.

� Processor utilization factor test:

� U=20/100+150/500+50/250=0.7

� Bound=3.(2
�

$ − 1)=0.779

� U≤Bound => deadlines will be met.

� Worst case task response time: &'(')*+,-=330,

						&/0+1)'*_1'(,)=20, &-,3,04,-	=70.

� Run simulations on feasibility interval: [0,LCM(Pi)] = [0,500].

Uniprocessor fixed priority scheduling

22

Fixed priority and shared resources

� Previous tasks were independent … does not

exist in real life.

� Task dependencies:

� Shared resources.

� E.g. with AADL: threads may wait for AADL protected data
component access.

� Precedencies between tasks.

� E.g with AADL: threads exchange data by data port
connections.

23

Fixed priority and shared resources

� Shared resources can be modeled by semaphores for scheduling
analysis.

� We use specific semaphores implementing inheritance protocols:

� To take care of priority inversion.

� To compute worst case task waiting time for the access to a shared
resource => Blocking time Bi.

� Inheritance protocols:

� PIP (Priority inheritance protocol), cannot be used with more than
one shared resource due to deadlock.

� PCP (Priority Ceiling Protocol) , implemented in most of real-time
operating systems (e.g. VxWorks).

� Several implementations of PCP exists: OPCP, ICPP, …

24

Fixed priority and shared resources

� What is priority inversion: a low priority task blocks a

high priority task

� 5	 = worst case on the shared resource blocking time.

25

Fixed priority and shared resources

� PIP (Priority Inheritance Protocol):

� A task which blocks a higher priority task runs its critical section
with the priority level of the blocked task

� Only one shared resource, deadlock otherwise

� 5		= sum of critical section durations of lower priority tasks than i
26

Fixed priority and shared resources

� ICPP (Immediate Ceiling Priority Protocol):

� Ceiling priority of a resource = maximum fixed priority of the tasks
which use it.

� Dynamic task priority = maximum of its own fixed priority and the
ceiling priorities of any resources it has locked.

� 5	=longest critical section ; prevent deadlock and reduce blocking
27

Fixed priority and shared resources

28

� How to take into account Bi (blocking time):

� Processor utilization factor test :

∀	�, 1	 ≤ �	 ≤ ∶ 	∑
9:

;:
+

9	<=	

;	

	>�
:
� ≤ 		�. (2

�

? − 1)

� Worst case response time :

j

ihpj j

i
iii C

P

R
CBR ⋅

++= ∑

∈)(

To conclude on scheduling analysis

� Many feasibility tests: depending on task, processor, scheduler,
shared resource, dependencies, multiprocessor, hierarchical,
distributed…

� Many assumptions: require preemptive, fixed priority scheduling,
synchronous periodic, independent tasks, deadlines on requests…

Many feasibility tests... Many assumptions…

How to choose them?

29

j

ihpj j

i
iii C

P

R
CBR ⋅

++= ∑

∈)(
j

ihpj j

ji

ii

iii

C
P

JR
Cw

JwR

⋅

 +
+=

+=

∑
∈)(

))(max(
)(

ihpkCC
P

R
CR kj

ihpj j

i
ii ∈∀+⋅

+= ∑

∈

j

ihpj j

i
ii C

P

R
CR ⋅

+= ∑

∈)(

Summary

1. Issues about real-time scheduling analysis:

AADL to the rescue

2. Basics on scheduling analysis: fixed-priority

scheduling for uniprocessor architectures

3. AADL components/properties to scheduling

analysis

30

AADL to the rescue ?

� Issues:

1. Ensure all required model elements are given for the analysis

2. Ensure model elements are compliant with analysis

requirements/assumptions

� AADL helps for the first issue:

� AADL as a pivot language between tools. International

standard.

� Close to the real-time scheduling theory: real-time scheduling

analysis concepts can be found. Ex:

� Component categories: thread, data, processor

� Property: Deadline, Fixed Priority, ICPP,

Ceiling Priority, …

31

Property sets for scheduling analysis

32

Preemptive_Scheduler : aadlboolean applies to

(processor);

Scheduling_Protocol: inherit list of

Supported_Scheduling_Protocols

applies to (virtual processor, processor);

-- RATE_MONOTONIC_PROTOCOL,

-- POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL, ...

� Properties related to processor components:

Property sets for scheduling analysis

33

Compute_Execution_Time: Time_Range applies to (thread, subprogram, …);

Deadline: inherit Time => Period applies to (thread, …);

Period: inherit Time applies to (thread, …);

Dispatch_Protocol: Supported_Dispatch_Protocols applies to (thread);

-- Periodic, Sporadic, Timed, Hybrid, Aperiodic, Background, ...

Priority: inherit aadlinteger applies to (thread, …, data);

Concurrency_Control_Protocol: Supported_Concurrency_Control_Protocols

applies to (data);

-- None, PCP, ICPP, …

� Properties related to the threads/data components:

AADL to the rescue ?

� Issues:

1. Ensure all required model elements are given for the

analysis

2. Ensure model elements are compliant with analysis

requirements/assumptions

� And for the second issue?

34

Cheddar : a framework to assess

schedulability of AADL models

� Cheddar tool =

+ analysis framework (queueing system theory & real-time scheduling theory)

+ internal ADL (analysis model)

+ simple analysis model editor

+ optimization tools

+ …

� Two versions:

� Open source (Cheddar) : teaching/research, TASTE, OSATE, MOSART, RAMSES,

…

� Commercial product (AADLInspector) : Ellidiss Tech product.

� Supports : Ellidiss Tech., Conseil régional de Bretagne, Brest Métropole, Campus

France, BPI France

35

Cheddar : main analysis features
(see http//beru.univ-brest.fr/~singhoff/cheddar)

� Analysis by scheduling simulations:

� Various scheduling policies, uniprocessor,

multiprocessor, cache, …

� Simulation data analysis

� Task schedulability/feasibility tests

� Design space exploration methods

� Task and resource priority assignments

� Partitioning algorithms

� Queueing system theory models/buffer feasibility tests

� Modeling/analysis with task dependencies

36

37

� Let assume we have to evaluate a given
architecture model in a design exploration
flow.

� Problem statement reminder:

� Numerous schedulability tests ; how to choose the right

one?

� Numerous assumptions for each schedulability test ;

how to enforce them for a given model?

� How to automatically perform scheduling analysis?

AADL “design pattern” approach to automatically

perform scheduling analysis

38

� Approach:
� Define a set of AADL architectural design patterns of real-time

(critical) systems:

= models a typical thread communication or synchronization + a
typical execution platform

= set of constraints on entities/properties of the model.

� For each design pattern, define schedulability tests that can be
applied according to their applicability assumptions.

� Schedulability analysis of an AADL model:

1. Check compliancy of his model with one of the design-patterns …
which then gives him which schedulability tests we can apply.

2. Perform schedulability verification.

AADL “design pattern” approach to automatically perform

scheduling analysis

39

� Top right part: real-time system architecture model
to verify.

� Bottom right part: modeling of a feasibility test
applicability assumption.

� Left part: result of the model compliancy analysis.

Design pattern compliancy verification

40

Example : «Ravenscar» design pattern

� Specification of various design patterns:

• Time-triggered : sampling data port communication between threads

• Ravenscar : PCP shared data communication between threads

• Queued buffer/ARINC653 : producer/consumer synchronization

• Black board/ARINC653 : readers/writers synchronization

• …

• Compositions of design patterns.

� Ravenscar: used by TASTE/ESA

� Constraints defining “Ravenscar” to perform the analysis with a given
schedulability test:
• Constraint 1 : all threads are periodic

• Constraint 2 : threads start at the same time

• Constraint 3 : shared data with PCP

• Constraint n : fixed preemptive priority scheduling + uniprocessor

• …

thread implementation receiver.impl

properties

Dispatch_Protocol => Periodic;

Compute_Execution_Time => 31 ms .. 50 ms;

Deadline => 250 ms;

Period => 250 ms;

end receiver.impl;

data implementation target_position.impl

properties

Concurrency_Control_Protocol

=> PRIORITY_CEILING_PROTOCOL;

end target_position.impl;

process implementation processing.others

subcomponents

receiver : thread receiver.impl;

analyzer : thread analyzer.impl;

target : data target_position.impl;

. . .

processor implementation leon2

properties

Scheduling_Protocol =>

RATE_MONOTONIC_PROTOCOL;

Preemptive_Scheduler => true;

end leon2;

system implementation radar.simple

subcomponents

main : process processing.others;

cpu : processor leon2;

. . .

Example : «Ravenscar» compliant AADL

model

41

42

� Scheduling analysis of the radar example with
AADLInspector & OSATE/Cheddar

Demos, practical labs

Conclusion

To summarize

� We introduced the concepts of AADL

� Architectural description language

� Patterns for scheduling analysis

� Not discussed today:

� Code generation => Ocarina, J. Hugues/ISAE

� Reliability analysis using Error Modeling Annex => P. Feiler CMU/SEI

� Modeling of IMA systems => L. Pautet and E. Borde/Télécom Paris

� Network models & analysis => A. Khoroshilov/ISPRAS

� Multiprocessor support & scheduling analysis => S. Rubini and F.

Singhoff/Lab-STICC

� Formal methods => B. Larson/KS Univ., J.P. Talpin/INRIA, M. Filali/IRIT

� Design exploration => L. Pautet and E. Borde/Télécom Paris , J.

Hugues/ISAE, L. Lemarchand and F. Singhoff/Lab-STICC

� and much more ! 2

