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Abstract

Optimal multiprocessor real-time schedulers incur significant overhead for pre-

emptions and migrations. We present RUN, an efficient scheduler that reduces the

multiprocessor problem to a series of uniprocessor problems. RUN significantly

outperforms existing optimal algorithms with an upper bound of O(logm) average

preemptions per job on m processors (6 3 per job in all of our simulated task

sets) and reduces to Partitioned EDF whenever a proper partitioning is found.
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I. INTRODUCTION

A. Motivation

Optimal multiprocessor real-time scheduling is challenging. Several solutions

have recently been presented, most based on periodic-preemptive-independent

(PPID) tasks with implicit deadlines. We address a generalization of this with

the goal of finding an efficient valid schedule (i.e., meeting all deadlines).

Multiprocessor scheduling is often achieved via partitioned approaches in

which tasks are statically assigned to processors, guaranteeing only 50% uti-

lization in the worst case [1]. Global approaches can achieve full utilization by

migrating tasks between processors, at the cost of increased runtime overhead.

For example, consider a two-processor system with three tasks, τ1, τ2 and τ3,

each requiring 2 units of work every 3 time units. If two tasks are scheduled on

the two processors and run to completion, the third task cannot complete on time

(see Figure 1 (a)). If tasks may migrate, all three tasks can be completed in the

time available (Figure 1(b)). This is a simple example of McNaughton’s wrap-

around algorithm [2], which works whenever all jobs have the same deadline.

We are interested in optimal scheduling algorithms, which always find a

valid schedule whenever one exists, up to 100% processor utilization. Several

optimal algorithms have been developed [3]–[7], all relying on some version

of proportional fairness and, like McNaughton’s algorithm, all relying upon

the simplicity of scheduling when deadlines are equal. Most enforce deadline

equality by proportionally subdividing workloads and imposing the deadlines
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Fig. 1. (a) Partitioned and (b) Global scheduling approaches

of each task on all other tasks [7]. This causes many tasks to execute between

every two consecutive system deadlines, leading to excessive context switch-

ing and migration overhead. We present RUN (Reduction to UNiprocessor), a

new optimal algorithm based on a weak version of proportional fairness with

significantly lower overhead.

B. Approach

We define a real-time task as an infinite sequence of jobs. Each job is a

portion of work to be executed between its release time r and deadline d. Tasks

are independent and fully preemptable with implicit deadlines, i.e., the deadline

of a task’s job is the release time of its next job. We do not assume that tasks

are periodic. Instead, tasks have a fixed rate and a job of a task with rate µ61
requires µ(d − r) execution time. This is equivalent to the PPID model for

periodic tasks.

RUN produces a valid multiprocessor schedule for a set of fixed-rate tasks

with few preemptions per job, regardless of the number of processors, tasks, or

jobs, averaging less than 3 preemptions per job in all of our simulations. RUN

works by 1) reducing the real-time multiprocessor scheduling problem to an

equivalent set of easily solved uniprocessor scheduling problems through two

operations: DUAL and PACK, 2) solving these problems with well-known tech-

niques, and 3) transforming the solutions back into a multiprocessor schedule.

In the 3-task example of Figure 1, RUN creates a “dual” task set {τ ∗1 , τ
∗
2 , τ

∗
3 }

where each dual task τ ∗i has the same deadline as τi and a complementary

workload of 3 − 2 = 1. The dual τ ∗i of task τi represents τi’s idle time; τ ∗i
executes exactly when τi is idle, and vice versa (see Figure 2). These three

dual tasks can be scheduled to execute on a single dual processor before their

deadlines at time 3. A schedule for the original task set is obtained by blocking

τi whenever τ ∗i executes in the dual schedule.

This example required a single reduction. In general, RUN performs a se-

quence of transformations, iteratively reducing the number of processors until

one or more uniprocessor systems are derived. RUN uses Earliest Deadline

First (EDF) to schedule the uniprocessor problems and iteratively unpacks the

solutions as above to yield a valid schedule for the original multiprocessor

system. Because a dual task and its primal may not execute at the same time,

each schedule in the resulting hierarchy constrains the tasks that may execute

in the next level up, starting with the uniprocessor schedule and working back-

wards to the multiprocessor schedule. Moreover, in each schedule there are
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Fig. 2. Scheduling equivalence of τ1, τ2, τ3 on two processors and τ∗1 , τ∗2 τ∗3 on one processor.

always exactly as many tasks (or servers) selected for execution as there are

processors.

The remainder of this paper is as follows: Section II describes our system

model and notation (summarized in Table I). Section III introduces servers,

which aggregate sets of tasks and other servers into schedulable entities. Sec-

tion IV describes and proves the correctness of the the RUN scheduling algo-

rithm’s transformation from multiprocessor to uniprocessor and back. Section V

provides implementation details, proofs of performance and preemption bounds,

and simulation results comparing RUN with previous solutions. Section VI

briefly surveys related work and Section VII presents our conclusions.

II. SYSTEM MODEL AND NOTATION

A. Fixed-Rate Tasks

We consider a system of n independent real-time tasks, each representing an

infinite sequence of jobs.

Definition II.1 (Job). A real-time job J is a finite sequence of instructions with

a release time J.r, an execution time J.c, and a deadline J.d.

To represent possibly non-periodic execution, a task is defined in terms of a

constant execution rate µ 6 1.

Definition II.2 (Fixed-Rate Task). Let µ 6 1 be a positive real number and D
a countably infinite set of positive integers. The fixed-rate task τ with rate µ and

deadlines D, denoted τ:(µ,D), releases an infinite sequence of jobs satisfying

the following properties: (i) a job J of τ is released at time t if and only if t = 0
or t ∈ D; (ii) if J is released at time J.r, then J.d = mint{t ∈ D, t > J.r};

and (iii) J.c = µ(J.d− J.r).

A fixed-rate task τ has rate R(τ) and deadline set D(τ). All tasks in this

paper are fixed-rate tasks, referred to henceforth simply as “tasks”. As a simple

example, a periodic task τ with start time of t = 0, period T , and execution time

C is a fixed-rate task with rate R(τ) = C/T , and deadlines D(τ) = {jT, j ∈
N

∗}. We use the more general model of a fixed-rate task because it can also

represent groups of tasks, with rate equal to the sum of the group’s rates and

deadlines equal to the union of the group’s deadlines.

B. Fully Utilized System

A system is fully utilized if the sum of the rates of the tasks equals the

number of processors. We assume full system utilization, since idle tasks may
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TABLE I

SUMMARY OF NOTATION

τ ; S; J Fixed-rate task; Server; Job

τ : (µ,D) Task with rate µ and deadline set D

J.r; J.c; J.d Release time; Execution time; Deadline of J

e(J, t) Work remaining for job J at time t

T ; Γ Set of tasks; Set of servers

R(τ); R(Γ) Rate of task τ ; Rate of task set Γ

D(τ) Set of deadlines of task τ

Σ Schedule of a set of tasks or servers

e(JS, t) Budget of server S at time t

cli(S) Set of client servers (tasks) of S

ser(Γ) Server of the set of tasks (servers) Γ

τ ∗, ϕ(τ) Dual task of task τ , DUAL operator

π(Γ) Partition of Γ according to packing π

σ(S) Server of S given by PACK operation

ψ = ϕ ◦ σ REDUCE operator

be inserted as needed to fill in slack. Similarly, if a job does not require its full

worst-case execution time estimate, we may fill in the difference with forced

idle time. If we wish a task to have an initial job release at some time s > 0, we

may add a dummy job J0 with release time 0 and deadline s. Hence, without

loss of generality, we assume that m jobs are executing at all times in any

correct schedule.

C. Global Scheduling

Jobs are enqueued in a global queue and scheduled to execute on a mul-

tiprocessor platform with m > 1 identical processors. Tasks are independent,

preemptable, and may migrate from one processor to another during execution.

Although RUN is intended to minimize preemptions and migrations, our cal-

culations make the standard (incorrect) assumption that these take zero time.

In an actual system, measured preemption and migration overheads can be

accommodated by adjusting our target utilizations.

Our schedules specify which jobs are running at any given time, without

concern for the specific job-to-processor assignment. In an executing schedule,

e(J, t) denotes the work remaining for job J at time t. If c(J, t) is the amount

of time that J has executed as of time t, then e(J, t) = J.c− c(J, t).

Definition II.3 (Schedule). For a set of jobs (or tasks) J on a platform of m
identical processors, a schedule Σ is a function from the set of all non-negative

times t onto the set of all subsets of J such that (i) |Σ(t)| 6 m for all t, and

(ii) if J ∈ Σ(t), then J.r 6 t, e(J, t) > 0 and J executes at t. Thus, Σ(t) is the

set of jobs executing at time t.

That is, only execute jobs which have been released and have work remaining.
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Once we have demonstrated that our algorithm produces valid schedules, we

will explain how to do processor assignment (see Section V).

Definition II.4 (Valid Schedule). A schedule Σ of a job set J is valid if all

jobs in J finish by their deadlines.

For a full utilization task set, a valid schedule must have |Σ(t)| = m for

all times t. A set of jobs or tasks is feasible if a valid schedule for it exists.

Each fixed-rate task has at most one ready job at any time in a valid schedule.

A scheduling algorithm is optimal if it finds a valid schedule for all feasible

sets of fixed-rate tasks. We now describe the construction of our optimal RUN

algorithm.

III. SERVERS

RUN’s reduction from multiprocessor to uniprocessor systems is enabled by

aggregating tasks into servers. We treat servers as tasks with a sequence of

jobs, but they are not actual tasks in the system; each server is a proxy for a

collection of client tasks. When a server is running, the processor time is used

by one of its clients. Server clients are scheduled via an internal scheduling

mechanism.

The rate of a server is never greater than one, so this section focuses only

on uniprocessor systems. We precisely define the concept of servers (see Sec-

tion III-A) and show how they correctly schedule the tasks associated with them

(Section III-B). We return to multiprocessors in the following section.

A. Server model and notations

A server for a set of tasks is defined as follows:

Definition III.1 (Server/Client). Let T be a set of tasks with total rate given by

R(T ) =
∑

τ∈T R(τ) 6 1. A server S for T , denoted ser(T ), is a virtual task

with rate R(T ) and deadlines D(S) = ∪τ∈T D(τ). T is the set of S’s clients,

which is denoted cli(S). S is equipped with a scheduling policy to schedule the

jobs of its clients.

Client/server relationships are statically determined prior to execution. Hence

we can define the rate R(S) of server S to be R(cli(S)). Since servers are

themselves tasks, we may also speak of a server for a set of servers. And

since a server may contain only a single client task, the concepts are largely

interchangeable. We refer to a job of any client of S as a client job of S. If S
is a server and Γ a set of servers, then ser(cli(S)) = S and cli(ser(Γ)) = Γ.

As an example, consider Figure 3, where Γ is a set comprised of the two

servers S1 = ser({τ1}) and S2 = ser({τ2, τ3}) for the tasks τ1, and τ2 and τ3,

respectively. If R(τ1)=0.4, R(τ2)=0.2 and R(τ3)=0.1, then R(S1)=0.4 and

R(S2) = 0.3. Also, if S = ser(Γ) is the server in charge of scheduling S1 and

S2, then Γ=cli(S)={S1, S2} and R(S)=0.7.

We now define a unit set and unit servers, both of which can be feasibly

scheduled on one processor.
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Γ (0.7)

S
(0.4)
1 = ser({τ1})

S
(0.3)
2 = ser({τ2, τ3})

Fig. 3. A two-server set. The notation X(µ) means that R(X) = µ.

Definition III.2 (Unit Set/Unit Server). A set Γ of servers is a unit set if

R(Γ) = 1. The server ser(Γ) for a unit set Γ is a unit server.

By Definition III.1, the execution requirement of a server S in any interval

[di, di+1) equals R(S)(di+1 − di), where di and di+1 are consecutive deadlines

in D(S). Then the workload for job J of server S with J.r = di and J.d = di+1

equals J.c = e(J, J.r) = R(S)(J.d − J.r), just as with a “real” job. However,

just as a server S is a proxy for its clients, so too are the “jobs” of S, which

represent budget allocated to S so that its clients’ jobs may execute. At each

d ∈ D(S), when server S releases a job JS , S replenishes this budget. At any

given time t, that budget is just e(JS, t), where JS is the current job of S.

It is not necessary for all arrival times to be known at the outset. We only

require that there be no gaps or overlap between a task’s jobs. Thus at any

moment, we always know each task’s next deadline. This is an important

distinction; unlike periodic tasks where all deadlines are known at the outset,

the fixed-rate task model allows for jobs whose deadlines are not known a

priori.

Unlike previous approaches, tasks in RUN do not receive their proportional

share between each system deadline. By reserving utilizations equal to the

summed rates of their client tasks, servers enforce “weak proportional fairness.”

The execution of a server’s job ensures that its set of clients collectively gets

its proportional share of processor time between each server deadline, i.e.,

between the deadlines of the clients of the server. This weak proportional

fairness guarantees RUN’s optimality and greatly reduces overhead compared

to algorithms based on standard proportional fairness.

Even if a server meets all of its deadlines, it must use an appropriate schedul-

ing policy to ensure that its clients meet theirs. We use EDF to ensure optimality

within each server.

For example, consider two periodic tasks τ1:(1/2, 2N
∗) and τ2:(1/3, 3N

∗),
with periods equal to 2 and 3 and utilizations µ(τ1) = 1/2 and µ(τ2) = 1/3,

respectively. Assume start times of zero, as usual. Consider a server S schedul-

ing these two tasks on a dedicated processor and let D(S) = {2, 3, 4, 6, . . .}.

Thus, the budget of S during [0, 2) equals e(JS, 0) = 2R(S) = 5/3; that is,

S releases a virtual job JS at time t = 0 with workload 5/3 and deadline 2.

Let Σ be a schedule of τ1 and τ2 in which S is meets this deadline. It follows

that S acquires the processor for at least 5/3 units of time during [0, 2). Now,

suppose that the scheduling policy used by S to schedule its client tasks gives

higher priority to τ2 at time 0. Then τ2 will consume one unit of time before

τ1 begins its execution. Therefore, the remaining budget e(JS, 1) = 2/3 will

be insufficient to complete τ1 by its deadline at 2. Thus a server can meet its
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Fig. 4. Budget management and schedule of S; cli(S) = {τ1:(0.4, 2N
∗), τ2:(0.2, 3N

∗)} and R(S) = 0.6;

τ ′ represents execution of external events.

deadlines even when its clients do not.

B. EDF Server

Rule III.1 (EDF Server). An EDF server is a server that schedules its client

jobs with EDF.

Consider a set of two periodic tasks T = {τ1:(0.4, 2N
∗), τ2:(0.2, 3N

∗)}.

Since R(T ) = 0.6 6 1, we can define an EDF server S to schedule T such

that cli(S)=T and R(S)=0.6. Figure 4 shows both the evolution of e(JS, t)
during interval [0, 6) and the schedule Σ of T by S on a single processor. In

this figure, ij represents the j-th job of τi. During intervals [1.2, 2), [2.6, 3.4),
[4.4, 4.8) and [5.2, 5.6), the execution of S is replaced with execution of external

events represented by τ ′.

Theorem III.1. The EDF server S = ser(Γ) of a set of servers Γ produces a

valid schedule of Γ when R(Γ) 6 1 and all jobs of S meet their deadlines.

Proof: By treating the servers in Γ as tasks, we can apply well known

results for scheduling task systems. For convenience, we assume that S executes

on a single processor; this need not be the case in general, as long as S does

not execute on multiple processors in parallel.

Let R(Γ) = 1 and ηΓ(t, t
′) be the execution demand within a time interval

[t, t′), where t < t′. This demand gives the sum of all execution requests (i.e.,

jobs) that are released no earlier than t and with deadlines no later than t′. This

quantity is bounded above by

ηΓ(t, t
′) 6 (t′ − t)

∑

Si∈Γ

R(Si) = t′ − t
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It is known that there is no valid schedule for Γ if and only if there is some

interval [t, t′) such that ηΓ(t, t
′) > t′−t [8], [9]. Since this cannot happen, some

valid schedule for Γ must exist. Because S schedules Γ using EDF and EDF

is optimal [8], [10], S must produce a valid schedule.

Now, suppose that R(Γ) < 1. We introduce a slack-filling task τ ′ where

D(τ ′) = D(S) and R(τ ′) = 1− R(S). We let Γ′ = Γ ∪ {τ ′}, and let S ′ be an

EDF server for Γ′. Since R(Γ′) = 1, S ′ produces a valid schedule for Γ′. Now

consider the time interval IJ = [J.r, J.d] for a job J of S. Since D(τ ′) = D(S),
τ ′ also has a job J ′ where J ′.r = J.r and J ′.d = J.d. Since S ′ produces a valid

schedule, τ ′ and S do exactly R(τ ′)(J.d − J.r) and R(S)(J.d − J.r) units of

work, respectively, during IJ . Since there are no deadlines or releases between

J.r and J.d, the workload of τ ′ may be arbitrarily rearranged or subdivided

within the interval IJ without compromising the validity of the schedule. We

may do this so as to reproduce any scheduling of S where it meets its deadlines.

Further, since S and S ′ both schedule tasks in Γ with EDF, S will produce the

same valid schedule for Γ as S ′, giving our desired result.

As noted above, a server and its clients may migrate between processors,

as long as no more than one client executes at a time. This will allow us to

schedule multiple servers on a multiprocessor platform.

IV. VIRTUAL SCHEDULING AND RUN

We now describe the operations, DUAL and PACK, which iteratively reduce

the number of processors in a multiprocessor system until a set of uniprocessor

systems is derived. The schedules for these uniprocessor systems are produced

on-line by EDF and from these the corresponding schedule for the original

multiprocessor system is constructed.

The DUAL operation, detailed in Section IV-A, transforms a task τ into the

dual task τ ∗, whose execution time represents the idle time of τ . Since R(τ ∗) =
1−R(τ), the DUAL operation reduces the total rate and the number of required

processors in systems where most tasks have high rates.

Such high rate tasks are generated via the PACK operation, presented in

Section IV-B. Sets of tasks whose rates sum to no more than one can be

packed into servers, reducing the number of tasks and producing the high-

rate tasks needed by the DUAL operation. Given this synergy, we compose

the two operations into a single REDUCE operation, which will be defined in

Section IV-C. As will be seen in Section IV-D, after a sequence of REDUCE

operations, the schedule of the multiprocessor system can be deduced from the

(virtual) schedules of the derived uniprocessor systems. The reduction from the

original system to the virtual ones is carried out off-line. The generation of

these various systems’ schedules can be done on-line.

A. DUAL Operation

Our example of Figure 2 demonstrated dual tasks and schedules and enabled

m + 1 tasks with total rate m to be scheduled on a uniprocessor dual system

(as previously discussed in [11]). We now generalize these ideas in terms of

servers.
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Definition IV.1 (Dual Server). The dual server S∗ of a server S is a server

with the same deadlines as S where R(S∗) equals 1 − R(S). If Γ is a set of

servers, then its dual set Γ∗ is the set of dual servers to those in Γ, i.e., S ∈ Γ
if and only if S∗ ∈ Γ∗.

The dual of a unit server, which has rate R(S) = 1 and must execute

continuously in order to meet its clients’ deadlines, is a null server, which

has rate R(S)=0 and never executes.

Definition IV.2 (Dual Schedule). Let Γ be a set of servers and Γ∗ be its dual

set. Two schedules Σ of Γ and Σ∗ of Γ∗ are duals if, for all times t and all

S ∈ Γ, S ∈ Σ(t) if and only if S∗ 6∈ Σ∗(t); that is, S executes exactly when S∗

is idle, and vice versa.

S, Γ, and Σ are referred to as primal relative to their duals S∗, Γ∗, and Σ∗.

Note that (τ ∗)∗ = τ and (Σ∗)∗ = Σ, as expected with duality. We next observe

that a schedule is valid precisely when its dual is valid.

Theorem IV.1 (Dual Validity). Let Γ be a set of n = m + k servers on m
processors, scheduled by Σ, with k > 1 and R(Γ) = m. Let Γ∗ and Σ∗ be their

duals. Then R(Γ∗) = k, and so Γ∗ is feasible on k processors. Further, Σ is

valid if and only if Σ∗ is valid.

Proof: First,

R(Γ∗) =
∑

S∗∈Γ∗

R(S∗) =
∑

S∈Γ

(1− R(S)) = n− R(Γ) = k

so k processors are sufficient to schedule Γ∗. Next, assume Σ is valid for Γ.

We confirm that Σ∗ is valid for Γ∗ via Definitions II.3 and II.4.

Because Σ is a valid schedule on m processors and we assume full utilization,

Σ always executes m distinct tasks. The remaining k = n−m tasks are idle in

Σ, and so are exactly the tasks executing in Σ∗. Hence Σ∗ is always executing

exactly k distinct tasks on its k (dual) processors. Since Σ is valid, any job J
of server S ∈ Γ does exactly J.c = R(S)(J.d− J.r) units of work between its

release J.r and its deadline J.d. During this same time, S∗ has a matching job

J∗ where J∗.r = J.r, J∗.d = J.d, and

J∗.c = R(S∗)(J∗.d− J∗.r)

= (1− R(S))(J.d− J.r)

= (J.d− J.r)− J.c

That is, J∗’s execution time during the interval [J.d, J.r) is exactly the length

of time that J must be idle. Thus, as J executes for J.c during this interval

in Σ, J∗ executes for J∗.c in Σ∗. Consequently, J∗ satisfies condition (ii) of

Definition II.3 and also meets its deadline. Since this holds for all jobs of all

dual servers, Σ∗ is a valid schedule for Γ∗.

The converse also follows from the above argument, since (Σ∗)∗=Σ.

Once again, see Figure 2 for a simple illustration. We now summarize this

dual scheduling rule for future reference.
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Γ(2): S
(0.5)
1 S

(0.4)
2 S

(0.4)
3 S

(0.3)
4 S

(0.2)
5 S

(0.1)
6 S

(0.1)
7

π(Γ): Γ1={S1, S4} Γ2={S2, S5, S6, S7} Γ3={S3}

σ(Γ): σ(S1)
(0.8) σ(S6)

(0.8) σ(S3)
(0.4)

ψ(Γ): S
(0.2)
8 S

(0.2)
9 S

(0.6)
10

Fig. 5. Packing, PACK operation, and duality applied to Γ = {S1, S2, . . . , S7}, resulting in a reduction

to a unit set of three servers {S8, S9, S10} with S8 = ϕ ◦σ(S1), S9 = ϕ ◦σ(S6), S10 = ϕ ◦σ(S3). The

notation X(µ) means that R(X) = µ.

Rule IV.1 (Dual Server). At any time, execute in Σ the servers of Γ whose

dual servers are not executing in Σ∗.

Finally, we define the DUALoperation ϕ from a set of servers Γ to its dual

set Γ∗ as the bijection which associates a server S with its dual server S∗, i.e.,

ϕ(S) = S∗. We adopt the convention of applying a function to subsets as well

as elements. That is, if f : A→ B and A1 ⊆ A, we understand f(A1) to mean

{f(a), a ∈ A1}. For example, ϕ(Γ) = Γ∗.

Theorem IV.1 states that finding a valid schedule for a server set on m
processors is equivalent to finding a valid schedule for its dual on n−m virtual

processors, which is advantageous whenever n−m < m. The PACK operation

ensures that this is always the case.

B. PACK Operation

The DUAL operation reduces the number of processors whenever n−m < m.

When n−m > m, the number of servers can be reduced by aggregating them

into fewer servers with the PACK operation.

Definition IV.3 (Packing). Let Γ be a set of servers. A packing of Γ, denoted

π(Γ), is a partition of Γ into a collection of subsets {Γ1,Γ2, . . . ,Γk} such that

R(Γi) 6 1 for all i and R(Γi) + R(Γj) > 1 for all i 6= j.

An example of packing a set Γ of 7 servers into three sets Γ1, Γ2 and Γ3, is

illustrated by rows 1 and 2 of Figure 5.

Definition IV.4 (PACK operation). Let Γ be a set of servers and π a packing of Γ.

We associate a server ser(Γi) with each subset Γi ∈ π(Γ). The PACK operation

σ is a function from Γ to these servers of π(Γ) such that, if Γi ∈ π(Γ) and

S ∈ Γi, then σ(S) = ser(Γi). That is, σ(S) is the aggregated server responsible

for scheduling S.

Rows 2 and 3 of Figure 5 show that σ(S1) = ser(Γ1), σ(S6) = ser(Γ2) and
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σ(S3) = ser(Γ3). Also, if Si and Sj are packed in the same subset Γk by π,

then σ(Si) = σ(Sj) = σ(Γk). Hence, σ(Γ) = {σ(Γk),Γk ∈ π(Γ)}.

Definition IV.5 (Packed Server Set). A set of servers Γ is packed if it is a

singleton, or if |Γ| > 2 and for any two distinct servers S and S ′ in Γ, R(S)+
R(S ′) > 1.

The packing of a packed server set Γ is the collection of singleton sets

{{S}}S∈Γ.

C. REDUCE Operation

We now compose the DUAL and PACK operations into the REDUCE operation.

A sequence of reductions transforms a multiprocessor scheduling problem to a

collection of uniprocessor scheduling problems. This transformation is the first

half of the RUN algorithm.

Lemma IV.1. If Γ is a packed set of servers and σ is the PACK operation

associated with a packing π of Γ’s dual set ϕ(Γ), then | σ◦ϕ(Γ)| 6
⌈

|Γ|+1
2

⌉

.

Proof: Let n = |Γ|. Since Γ is packed, there is at most one server S in

Γ such that R(S)6 1/2. This implies that at least n−1 servers in ϕ(Γ) have

rates less than 1/2. When these n−1 dual servers are packed, they will be, at

a minimum, paired off. Thus, π will pack ϕ(Γ) into at most ⌈(n−1)/2⌉+1
subsets. Hence, |σ◦ϕ(Γ)| 6 ⌈(n+1)/2⌉.

Thus, packing the dual of a packed set reduces the number of servers by

at least (almost) half. Since we will use this pair of operations repeatedly, we

define a REDUCE operation to be their composition.

Definition IV.6. Given a set of servers Γ and a packing π of Γ, a REDUCE

operation on a server S in Γ, denoted ψ(S), is the composition of the DUAL

operation ϕ with the PACK operation σ for π, i.e., ψ(S) = ϕ◦σ(S).

Figure 5 illustrates the steps of the REDUCE operation ψ. As we intend to

apply REDUCE repeatedly until we are left with only unit servers, we now define

a reduction sequence.

Definition IV.7 (Reduction Level/Sequence). Let i > 1 be an integer, Γ a set

of servers, and S a server in Γ. The operator ψi is recursively defined by

ψ0(S) = S and ψi(S) = ψ◦ψi−1(S). {ψi}i is a reduction sequence, and the

server system ψi(Γ) is said to be at reduction level i.

Theorem IV.2 proves that a reduction sequence on a server set Γ with R(Γ)=
m always arrives at a collection of unit servers. Table II shows 10 servers

transformed into a unit server via two REDUCE operations and a final PACK.

Two unit servers appear before the terminal level (indicated in the table by

1→). The dual of a unit server is a null server, which is packed into another

server in the next step. This is unnecessary; a unit server can be assigned to a

subset of processors and executed independently from all other tasks. We call

the tasks in a unit server a proper subset, and, along with their assigned

processors, a proper subsystem. Blank columns in Table II separate the



12

TABLE II

SAMPLE REDUCTION AND PROPER SUBSETS

Server Rate

ψ0(Γ) .6 .6 .6 .6 .6 .8 .6 .6 .5 .5

σ(ψ0(Γ)) .6 .6 .6 .6 .6 .8 .6 .6 1→
ψ1(Γ) .4 .4 .4 .4 .4 .2 .4 .4 0

σ(ψ1(Γ)) .8 .8 .4 1→
ψ2(Γ) .2 .2 .6 0

σ(ψ2(Γ)) 1

TABLE III

REDUCTION EXAMPLE WITH DIFFERENT OUTCOMES.

First Packing Second Packing

ψ0(Γ) .4 .4 .2 .2 .8 .4 .4 .2 .8 .2

σ(ψ0(Γ)) .8 .4 .8 1 1

ψ1(Γ) .2 .6 .2

σ(ψ1(Γ)) 1

three proper subsystems. Separating proper subsystems yields more efficient

scheduling because tasks in one subsystem do not impose events on or migrate

to other subsystems. However, in this section we will just DUAL our unit servers

and PACK these into other servers to simplify our proofs.

Lemma IV.2. Let Γ be a packed set of servers, not all of which are unit servers.

If R(Γ) is a positive integer, then |Γ|>3.

Proof: If Γ = {S1} and S1 is not a unit server, then R(Γ) < 1, not a positive

integer. If Γ = {S1, S2} is a packed set, then R(Γ)=R(S1) + R(S2)> 1; but

R(Γ) is not 2 unless S1 and S2 are both unit servers. Thus |Γ| is not 1 or 2.

Theorem IV.2 (Reduction Convergence). Let Γ be a set of servers where R(Γ)
is a positive integer. Then for some p > 0, σ(ψp(Γ)) is a set of unit servers.

Proof: Let Γk = ψk(Γ) and Γk
σ = σ(Γk), and suppose that R(Γk

σ) is a

positive integer. If Γk
σ is a set of unit servers, then p = k and we’re done.

Otherwise, according to Lemma IV.2, |Γk
σ| > 3. Since Γk

σ is a packed set of

servers, Lemma IV.1 tells us that |Γk+1
σ | = |σ◦ϕ(Γk

σ)| 6
⌈

|Γk
σ |+1
2

⌉

.

Since ⌈(x+1)/2⌉ < x for x > 3 and |Γk
σ| > 3, we have that |Γk+1

σ | < |Γk
σ|.

Also, since R(Γk
σ) is a positive integer (and less than |Γk

σ|, since Γk
σ are not all

unit servers), Theorem IV.1 tells us that R(ϕ(Γk
σ)) is also a positive integer; as

is R(Γk+1
σ ), since packing does not change total rate. Thus Γk+1

σ satisfies the

same conditions as Γk
σ, but contains fewer servers.

Hence, starting with the packed set Γ0
σ = σ(Γ), each iteration of σ◦ϕ either

produces a set of unit servers or a smaller set with positive integer rate. This

iteration can only occur a finite number of times, and once |Γk
σ|<3, Lemma IV.2

tells us that Γk
σ must be a set of unit servers; p=k.

In other words, a reduction sequence on any set of servers eventually produces



13

a set of unit servers. We show how to schedule a unit server’s proper subsystem

in the next section. However, ψ is not a well-defined function; it is a mapping

whose outcome is dependent on the packings used. Table III shows two packings

of the same set of servers. One produces one unit server after one reduction

level and the other produces two unit servers with no reductions. While some

packings may be “better” than others (i.e., lead to a more efficient schedule),

Theorem IV.2 implicitly proves that all packings “work”; they all lead to a

correct reduction to some set of unit servers.

D. Scheduling and RUN

Now that we have transformed a multiprocessor system into one or more

uniprocessor systems, we show how to schedule them. The basic idea is to use

the dual schedules to find primal schedules and use EDF servers to schedule

client servers and tasks. Theorem IV.2 says that a reduction sequence produces

a collection of one or more unit servers. As shown in Table II, the original task

set may be partitioned into the proper subsets represented by these unit servers,

which may be scheduled independently. In this section, we assume that T is

a proper subset, i.e., that it is handled by a single unit server at the terminal

reduction level.

The scheduling process is illustrated by inverting the reduction tables from

the previous section and creating a server tree (see Figure 6). The unit server is

the root, which represents the top level virtual uniprocessor system. The root’s

children are the unit server’s clients, which are scheduled by EDF. In Figure 6,

the servers executing at each level at time t=4 are circled. The schedule for T
(the leaves of the tree) is obtained by propagating the schedule down the tree

using Rules III.1 (schedule clients with EDF) and IV.1 (use Σ∗ to find Σ). In

terms of the server tree, these rules may be restated as:

Rule IV.2 (EDF Server). If a packed server is executing (circled), execute the

child node with the earliest deadline among those children with work remaining;

if a packed server is not executing (not circled), execute none of its children.

Rule IV.3 (Dual Server). Execute (circle) the child (packed server) of a dual

server if and only if the dual server is not executing (not circled).

Figure 6 shows this procedure on the first proper subset found in Table II To

the five tasks with rate 0.6, we assign the deadline sets 5N∗, 10N∗, 15N∗, 10N∗,

and 5N∗, respectively. Rule IV.2 is seen in the tree edges {e1, e4, e5, e9, e10, e11}.

Rule IV.3 is seen in the tree edges {e2, e3, e6, e7, e8}. With these two simple

rules, at any time t, we can determine which tasks in T should be executing

by circling the root and propagating circles down the tree into the leaves.

In practice, we only need to execute the rules when some subsystem’s EDF

scheduler generates a scheduling event (i.e., WORK COMPLETE or JOB RELEASE).

Figure 6 shows the scheduling decision process at t = 4, and Figure 7 shows

the full schedule for all three reduction levels for ten time units.

Each child server scheduled by a packed server must keep track of its own

workloads and deadlines. These workloads and deadlines are based on the

clients of the packed server below it. That is, each server node which is not a
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σ(ψ2(Γ)) S
1,{5N∗,10N∗,15N∗}
14

σ e1

ψ2(Γ) S
0.2,{5N∗,10N∗}
11 S

0.2,{10N∗,15N∗}
12 S

0.6,{5N∗}
13

ϕ e2 e3

σ(ψ1(Γ)) σ({S6, S7}) σ({S8, S9}) σ({S10})

σ e4 e5

ψ1(Γ) S
0.4,{5N∗}
6 S

0.4,{10N∗}
7 S

0.4,{15N∗}
8 S

0.4,{10N∗}
9 S

0.4,{5N∗}
10

ϕ e6 e7 e8

σ(ψ0(Γ)) σ({S1}) σ({S2}) σ({S3}) σ({S4}) σ({S5})

σ e9 e10 e11

ψ0 S
0.6,{5N∗}
1 S

0.6,{10N∗}
2 S

0.6,{15N∗}
3 S

0.6,{10N∗}
4 S

0.6,{5N∗}
5

Fig. 6. Reduction tree used to schedule T = {S1, . . . , S5} from Table II by Rules IV.2 and IV.3 at

scheduling instant 4. The notation Sµ,D
i means that R(Si) = µ and D(Si) = D.

task of T simulates being a task so that its parent node can schedule it along

with its siblings in its virtual system. The process of setting deadlines and

allocating workloads for virtual server jobs is detailed in Section III-A.

The process described so far from reducing a task set to unit servers, to the

scheduling of those tasks with EDF servers and duality, is collectively referred

Algorithm 1: Outline of the RUN algorithm

I. OFF-LINE;
A. Generate a reduction sequence for T ;

B. Invert the sequence to form a server tree;

C. For each proper subsystem T ’ of T ;
Define the client/server at each virtual level;

II. ON-LINE;
Upon a scheduling event: ;

A. If the event is a job release event at level 0 ;

1. Update deadline sets of servers on path up to root;
2. Create jobs for each of these servers accordingly;

B. Apply Rules 1 & 2 to schedule jobs from root to leaves, determining the m jobs to
schedule at level 0;

C. Assign the m chosen jobs to processors, according to some task-to-processor
assignment scheme;
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Σ2
0 1 2 3 4 5 6 7 8 9 10

S11 S13 S12 S11 S13

5 10

Σ1

0 1 2 3 4 5 6 7 8 9 10

S9 S10 S10 S6 S7

S10 S6 S7 S8

105

105

Σ0

0 1 2 3 4 5 6 7 8 9 10

S1 S5 S4

S2 S1 S1 S5

S3 S2 S1

5

5

5

10

10

10

Fig. 7. T = {S1, S2, S3, S4, S5} with S1 = ser(3/5, 5N∗), S2 = ser(3/5, 10N∗), S3 = ser(3/5, 15N∗),
S4 = ser(3/5, 10N∗), S5 = ser(3/5, 5N∗). Σ0 is the schedule of T on 3 physical processors. Σ1

is the schedule of ψ(T ) = {S6, S7, S8, S9, S10} on 2 virtual processors, and Σ2 is the schedule of

ψ2(T ) = {S11, S12, S13} on 1 virtual processor.

to as the RUN algorithm and is summarized in Algorithm 1. We now finish

proving it correct.

Theorem IV.3 (Reduction Schedule). If Γ is a proper set under the reduction

sequence {ψi}i6p, then the RUN algorithm produces a valid schedule Σ for Γ.

Proof: Again, let Γk = ψk(Γ) and Γk
σ = σ(Γk) with k < p. Also, let

Σk and Σk
σ be the schedules generated by RUN for Γk and Γk

σ, respectively.

Finally, let µk = R(Γk) = R(Γk
σ), which, as seen in the proof of Theorem IV.2,

is always an integer.

We will work inductively to show that schedule validity propagates down the

reduction tree, i.e., that the validity of Σk+1 implies the validity of Σk. Suppose

that Σk+1 is a valid schedule for Γk+1 = ϕ(Γk
σ) on µk+1 processors, where

k + 1 6 p. Since k < p, Γk
σ is not the terminal level set, and so must contain

more than one server, as does its equal-sized dual Γk+1. Further, since Γ is a

proper set under our reduction, none of these servers can be unit servers and so

|Γk+1| > µk+1. The conditions of Theorem IV.1 are satisfied (where n = |Γk+1|,
m = µk+1, and k > 1), so it follows from our assumption that Σk+1 is valid

that Σk
σ = (Σk+1)∗ is a valid schedule for Γk

σ on µk processors. Also, since

Γk
σ is a collection of aggregated servers for Γk, it follows from Theorem III.1

that Σk is a valid schedule for Γk (i.e., scheduling the servers in Γk
σ correctly

ensures that all of their client tasks in Γk are also scheduled correctly). Thus

the validity of Σk+1 implies the validity of Σk, as desired.

Since uniprocessor EDF generates a valid schedule Σp for the clients of the

unit server at terminal reduction level p, it follows inductively that Σ=Σ0 is

valid for Γ on R(Γ) processors.
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V. ASSESSMENT

A. Implementation Details

Our implementation of RUN uses the worst-fit bin-packing heuristic, which

runs in O(n log n) time. Our reduction procedure partitions off proper subsys-

tems as unit servers are found. At each scheduler invocation, once the set of

m running tasks is determined (as in Figure 6), we use a simple greedy task-

to-processor assignment scheme. In three passes through these m tasks, we (i)

leave executing tasks on their current processors, (ii) assign idle tasks to their

last-used processor, when available, to avoid unnecessary migrations, and (iii)

assign remaining tasks to free processors arbitrarily.

Duality is only defined for task sets with 100% utilization. Dummy tasks fill

in the difference when needed. If done well, this may improve performance. To

this end, we introduce the slack packing heuristic to distribute a task system’s

slack (defined as m − R(T )) among the aggregated servers at the end of the

initial PACK step. Servers are filled to become unit servers, and then isolated

from the system. The result is that some or all processors are assigned only

non-migrating tasks and behave as they would in a partitioned schedule.

For example, suppose that the task set from Figure 6 runs on four processors

instead of three. The initial PACK can only place one 0.6 utilization task per

server. From the 1 unit of slack provided by our fourth processor, we create

a dummy task Sd
1 with R(Sd

1) = 0.4 (and arbitrarily large deadline), pack it

with S1 to get a unit server and give it its own processor. Similarly, S2 also

gets a dedicated processor. Since S1 and S2 never need preempt or migrate,

the schedule is more efficient. With 5 processors, this approach yields a fully

partitioned system, where each task has its own processor. With low enough

utilization, the first PACK usually results in m or fewer servers. In these cases,

slack packing gracefully reduces RUN to Partitioned EDF.

Worst-fit bin-packing and EDF are not the only choices for partitioning and

uniprocessor scheduling. RUN may be modified so that it reduces to a variety of

partitioned scheduling algorithms. Worst-fit bin packing can be replaced with

any other partitioning scheme that (i) uses additional “bins” when a proper

partitioning onto m processors is not found, and (ii) creates a packed server

set. And any optimal uniprocessor scheduling algorithm can be substituted for

EDF. In this way, the RUN scheme can be used as an extension of different

partitioned scheduling algorithms, but one that could, in theory, handle cases

when a proper partition on m processors can’t be found.

B. Complexity

We now observe that the time complexity of a reduction procedure is polyno-

mial and is dominated by the PACK operation. However, as there is no optimality

requirement on the (off-line) reduction procedure, any polynomial-time heuristic

suffices. There are, for example, linear and log-linear time packing algorithms

available.

Lemma V.1. If Γ is a packed set of at least 2 servers, then R(Γ) > |Γ|/2.
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Proof: Let n = |Γ|, and let µi = R(Si) for Si ∈ Γ. Since Γ is packed,

there exists at most one server in Γ, say Sn, such that µn 6 1/2; all others

have µi > 1/2. Thus,
∑n−2

i=1 µi > (n− 2)/2. As µn−1 + µn > 1, it follows that

R(Γ) =
∑n

i=1 µi > n/2.

Theorem V.1 (Reduction Complexity). RUN’s off-line generation of a reduction

sequence for n tasks on m processors requires O(logm) reduction steps and

O(f(n)) time, where f(n) is the time needed to pack n tasks.

Proof: Let {ψi}i6p be a reduction sequence on T , where p is the terminal

level described in Theorem IV.2. Lemma IV.1 shows that a REDUCE, at worst,

reduces the number of servers by about half, so p=O(log n). Since constructing

the dual of a system primarily requires computing n dual rates, a single REDUCE

requires O(f(n)+n) time. The time needed to perform the entire reduction

sequence is described by T (n) 6 T (n/2)+O(f(n)+n), which gives T (n) =
O(f(n)).

Since T is a full utilization task set, R(T ) = m. If we let n′ = |σ(T )|,
Lemma V.1 tells us that m = R(T ) = R(σ(T )) > n′/2. But as σ(T ) is just

the one initial packing, it follows that p also is O(log n′), and hence O(logm).

Theorem V.2 (On-line Complexity). Each scheduler invocation of RUN takes

O(n) time, for a total of O(jn logm) scheduling overhead during any time

interval when n tasks releasing a total of j jobs are scheduled on m processors.

Proof: First, let’s count the nodes in the server tree. In practice, S and

ϕ(S) may be implemented as a single object / node. There are n leaves, and as

many as n servers in σ(T ). Above that, each level has at most (approximately)

half as many nodes as the preceding level. This gives us an approximate node

bound of n+ n+ n/2 + n/4 + · · · ≈ 3n.

Next, consider the scheduling process described by Rules IV.2 and IV.3. The

comparison of clients performed by EDF in Rule IV.2 does no worse than

inspecting each client once. If we assign this cost to the client rather than the

server, each node in the tree is inspected at most once per scheduling invocation.

Rule IV.3 is constant time for each node which “dualed”. Thus the selection of

m tasks to execute is constant time per node, of which there are at most 3n. The

previously described task-to-processor assignment requires 3 passes through a

set of m tasks, and so may be done in O(m) 6 O(n) time. Therefore, each

scheduler invocation is accomplished in O(n) time.

Since we only invoke the scheduler at WORK COMPLETE or JOB RELEASE

events, any given job (real or virtual) can cause at most two scheduler invo-

cations. The virtual jobs of servers are only released at the release times of

their leaf descendants, so a single real job can cause no more than O(logm)
virtual jobs to be released, since there are at most O(logm) reduction levels

(Theorem V.1). Thus j real jobs result in no more than jO(logm) virtual jobs,

so a time interval where j jobs are released will see a total scheduling overhead

of O(jn logm).
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C. Preemption Bounds

We now prove an upper bound on the average number of preemptions per

job through a series of lemmas. To do so, we count the preemptions that a job

causes, rather than the preemptions that a job suffers. Thus, while an arbitrarily

long job may be preempted arbitrarily many times, the average number of

preemptions per job is bounded. When a context switch occurs where A begins

running and B becomes idle, we say that A replaces B; if the current job of

B still has work remaining, we say that A preempts B. Because all scheduling

decisions are made by EDF, we need only consider the preemptions caused by

two types of scheduling events: work complete events (W.C.E.), and job release

events (J.R.E.) (which occur concurrently with job deadlines).

Lemma V.2. Each job from a task or server has exactly one J.R.E. and one

W.C.E.. Further, the servers at any one reduction level cannot release more jobs

than the original task set over any time interval.

Proof: The first claim is obvious and is merely noted for convenience.

Next, since servers inherit deadlines from their clients and jobs are released

at deadlines, a server cannot have more deadlines, and hence not release more

jobs, than its clients. A server’s dual has the same number of jobs as the server

itself. Moving inductively up the server tree, it follows that a set of servers at

one level cannot have more deadlines, or more job releases, than the leaf level

tasks.

Lemma V.3. Scheduling a system T of n = m+1 tasks on m processors with

RUN produces an average of no more than one preemption per job.

Proof: When n = m+1, there is only one reduction level and no packing;

T is scheduled by applying EDF to its uniprocessor dual system. We claim

that dual J.R.E.s cannot cause preemptions in the primal system. A J.R.E. only

causes a context switch when the arriving job J∗
i , say from task τ ∗, has an

earlier deadline than, and replaces, the previously running job. However, if

J∗
i starts executing at time J∗

i .r in the dual, then τ ’s previous job Ji−1 stops

executing at time Ji−1.d=J
∗
i .r in the primal. When a job stops executing at its

deadline in a valid schedule, it must be the case that its work is complete, and

stopping a completed job does not count as a preemption. Thus dual J.R.E.s do

not cause preemptions in the primal system. By Lemma V.2, there can be at

most one W.C.E. in the dual, and hence one preemption in the primal, for each

job released by a task in T , as desired.

Lemma V.4. A context switch at any level of the server tree causes exactly one

context switch between two original leaf tasks in T .

Proof: We proceed by induction, showing that a context switch at any level

of the server tree causes exactly one context switch in the next level below (less

reduced than) it. Consider some tree level where the switch occurs: suppose we

have a pair of client nodes (not necessarily of the same server parent) C+ and

C−, where C+ replaces C−. All other jobs’ “running” statuses at this level are

unchanged. Let S+ and S− be their dual children in the server tree (i.e., C+=S
∗
+
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Not running before or after J.r

Running before and after J.r

Starts running at time J.r

Stops running at time J.r

A replaces BA B

Dual nodes∗

S

C+ C−

(i)∗

S+

∗

S−

C+,0

∗

S+,0

C+,1

∗

S+,1

C−,1

∗

S−,1

(ii)

C+,0,1 C+,0,0

(iv)

C+,1,0 C+,1,1 C−,1,1 C−,1,0

(iii)
τ

Fig. 8. Two Preemptions from one JOB RELEASE

In this 3-level server tree, a job release by τ corresponds to a job release and context switch at

the top level (i), which propagates down to the right of the tree (ii, iii). That same job release

by τ can cause it to preempt (iv) another client C+,0,0 of its parent server S+,0.

and C− = S∗
−), so that S− replaces S+ (see Figure 8 for node relationships).

Now, when S+ was running, it was executing exactly one of its client children,

call it C+,1; when S+ gets switched off, so does C+,1. Similarly, when S− was

off, none of its clients were running; when it gets switched on, exactly one

of its clients, say C−,1, gets executed. Just as the context switch at the higher

(more reduced) level only effects the two servers C+ and C−, so too are these

two clients C+,1 and C−,1 the only clients at this lower level affected by this

operation; thus, C−,1 must be replacing C+,1. So here we see that a context

switch at one client level of the tree causes only a single context switch at the

next lower client level of the tree (in terms of Figure 8, (i) causes (ii)). This one

context switch propagates down to the leaves, so inductively, a context switch

anywhere in the tree causes exactly one context switch in T .

Lemma V.5. If RUN requires p reduction levels for a task set T , then any

J.R.E. by a task τ ∈ T can cause at most ⌈(p+ 1)/2⌉ preemptions in T .

Proof: Suppose task τ releases job J at time J.r. This causes a job release

at each ancestor server node above τ in the server tree (i.e., on the path from

leaf τ to the root). We will use Figure 8 for reference. Let S be the highest

(furthest reduction level) ancestor server of τ for which this J.R.E. causes a

context switch among its clients (S may be the root of the server tree). In

such a case, some client of S (call it C+) has a job arrive with an earlier

deadline than the currently executing client (call it C−), so C+ preempts C−.

As described in the proof of Lemma V.4, C−’s dual S− replaces C+’s dual S+,

and this context switch propagates down to a context switch between two tasks

in T (see preemption (iii)). However, as no client of S+ remains running at
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time J.r, the arrival of a job for τ ’s ancestor C+,0 at this level cannot cause a

J.R.E. preemption at this time (it may cause a different client of S+ to execute

when S+ begins running again, but this context switch will be charged to the

event that causes S+ to resume execution). Thus, when an inherited J.R.E. time

causes a context switch at one level, it cannot cause a different (second) context

switch at the next level down. However, it may cause a second context switch

two levels down (see preemption (iv)). Figure 8 shows two context switches,

(iii) and (iv), in T that result from a single J.R.E. of τ . One is caused by a

job release by τ ’s ancestor child of the root, which propagates down to another

part of the tree (iii). τ ’s parent server is not affected by this, stays running, and

allows τ to preempt its sibling client when its new job arrives (iv).
While S is shown as the root and τ as a leaf in Figure 8, this argument

would still apply if there were additional nodes above and below those shown,

and τ were a descendant of node C+,0,1. If there were additional levels, then

τ ’s J.R.E. could cause an additional preemption in T for each two such levels.

Thus, if there are p reduction levels (i.e., p+1 levels of the server tree), a J.R.E.

by some original task τ can cause at most ⌈(p+ 1)/2⌉ preemptions in T .

Theorem V.3. Suppose RUN performs p reductions on task set T in reducing

it to a single EDF system. Then RUN will suffer an average of no more than

⌈(3p+1)/2⌉ = O(logm) preemptions per job (and no more than 1 when n=
m+ 1) when scheduling T .

Proof: The n = m + 1 bound comes from Lemma V.3. Otherwise, we

use Lemma V.2 to count preemptions based on jobs from T and the two EDF

event types. By Lemma V.5, a J.R.E. by τ ∈ T can cause at most ⌈(p+ 1)/2⌉
preemptions in T . The context switch that happens at a W.C.E. in T is, by

definition, not a preemption. However, a job of τ ∈ T corresponds to one job

released by each of τ ’s p ancestors, and each of these p jobs may have a W.C.E.

which causes (at most, by Lemma V.4) one preemption in T . Thus we have at

most p+ ⌈(p+1)/2⌉ = ⌈(3p+1)/2⌉ preemptions that can be attributed to each

job from T , giving our desired result since p = logm by Theorem V.2.
In our simulations, we almost never observed a task set that required more

than two reductions. For p=2, Theorem V.3 gives a bound of 4 preemptions

per job. While we never saw more than 3 preemptions per job in our randomly

generated task sets, it is possible to do worse.The following 6-task set on

3 processors averages 3.99 preemptions per job, suggesting that our proven

bound is tight: T ={(.57, 4000), (.58, 4001), (.59, 4002), (.61, 4003), (.63, 4004),
(.02, 3)}. There exist task sets that require more than 2 reductions. A set of only

11 jobs with rates of 7/11 is sufficient, with a primal reduction sequence:
{

(11)
7

11

}

→

{

(5)
8

11
,
4

11

}

→

{

10

11
,
9

11
,
3

11

}

→ {1}

Such constructions require narrowly constrained rates and randomly generated

task sets requiring 3 or more reductions are rare. A 3-reduction task set was

observed on 18 processors, and a 4-reduction set appeared on 24 processors,

but even with 100 processors and hundreds of tasks, 3- and 4-reduction sets

occur in less than 1 in 600 of the random task sets generated.
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Fig. 9. Fraction of task sets requiring 1 (filled box) and 2 (empty box) reduction levels; Distributions

of the average number of preemptions per job, their quartiles, and their minimum and maximum values.

All RUN simulations on 16 processor systems at full utilization.

D. Simulation

We have evaluated RUN via extensive simulation using task sets generated

for various levels of n tasks, m processors, and total utilization R(T ). Task

rates were generated in the range of [0.01, 0.99] following the Emberson pro-

cedure [12] using the aleatory task generator [13]. Task periods were drawn

independently from a uniform integer distribution in the range [5, 100] and

simulations were run for 1000 time units. Values reported for migrations and

preemptions are per job averages, that is, total counts were divided by the

number of jobs released during the simulation, averaged over all task sets. For

each data point shown, 1000 task sets were generated.

For direct evaluation, we generated one thousand random n-task sets for

each value n = 17, 18, 20, 22, . . . , 52 (we actually took n up to 64, but results

were nearly constant for n > 52). Each task set fully utilizes a system with

16 processors. We measured the number of reduction levels and the number of

preemption points. Job completion is not considered a preemption point.

Figure 9(a) shows the number of reduction levels; none of the task sets

generated require more than two reductions. For 17 tasks, only one level is

necessary, as seen in Figure 2, and implied by Theorem IV.1. One or two levels

are needed for n ∈ [18, 48]. None of our observed task sets require a second

reduction for n > 48. With low average task rates, the first PACK gives servers

with rates close to 1; the very small dual rates then sum to 1, yielding the

terminal level.

The box-plot in Figure 9(b) shows the distribution of preemption points as

a function of the number of tasks. We see a strong correlation between the

number of preemptions and number of reduction levels; where there is mostly

only one reduction level, preemptions per job is largely independent of the size

of the task set. Indeed, for n > 36, the median preemption count stays nearly

constant just below 1.5. Even in the worst case, no task set ever incurs more

than 2.8 preemptions per job on average.

Next, we ran comparison simulations against other optimal algorithms. In

Figure 10, we count migrations and preemptions made by RUN, LLREF [5],

EKG [6] and DP-Wrap [7] (with these last two employing the simple mirroring
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Fig. 11. Preemptions per job for EKG, RUN, and Partitioned EDF as utilization varies from 55 to

100%, with 24 tasks on 16 processors; Partitioning success rate for worst-fit bin packing under the same

conditions.

heuristic) while increasing processor count from 2 to 32. Most of LLREF’s

results are not shown to preserve the scale of the rest of the data. Whereas

the performance of LLREF, EKG and DP-Wrap get substantially worse as m
increases, the overhead for RUN quickly levels off, showing that RUN scales

quite well with system size.

Finally, we simulated EKG, RUN, and Partitioned EDF at lower task set

utilizations (LLREF and DP-Wrap were excluded, as they consistently perform

worse than EKG). Because 100% utilization is unlikely in practice, and because

EKG is optimized for utilizations in the 50-75% range, we felt these results to

be of particular interest. For RUN, we employed the slack-packing heuristic.

Because this often reduces RUN to Partitioned EDF for lower utilization task

sets, we include Partitioned EDF for comparison in Figure 11’s preemptions

per job plot. Values for Partitioned EDF are only averaged over task sets

where a successful partition occurs, and so stop at 94% utilization. The second

plot shows the fraction of task sets that achieve successful partition onto m
processors, and consequently, where RUN reduces to Partitioned EDF.

With its few migrations and preemptions at full utilization, its efficient scal-

ing with increased task and processor counts, and its frequent reduction to

Partitioned EDF on lower utilization task sets, RUN represents a substantial

performance improvement in the field of optimal schedulers.
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VI. RELATED WORK

Real-time multiprocessor schedulers are categorized by how and if migration

is used. Partitioned approaches are simpler because they disallow migration,

but can leave significant unused processor capacity. Our work focuses on the

higher utilizations allowed by global algorithms.

There have been several optimal global scheduling approaches for the PPID

model. If all tasks share the same deadline, the system can be optimally sched-

uled with very low implementation cost [2]. Optimality was first achieved

without this restriction by pfair [3], which keeps execution times close to their

proportional allotments (fluid rate curves). With scheduler invocations at every

multiple of some discrete time quantum, preemptions and migrations are high.

More recent optimal schedulers [4]–[7] also rely on proportional fairness,

but only enforce it at task deadlines. Time is partitioned into slices based

on the deadlines of all tasks in the system and workloads are assigned in

each slice proportional to task rates. This creates an environment where all

deadlines are equal, greatly simplifying the scheduling problem. Some of these

approaches [5], [14] envision the time slices as T-L Planes, with work remain-

ing curves constrained by a triangular feasible region. Others have extended

these approaches to more general problem models [7], [15]. Regardless of the

specifics, O(n) or O(m) scheduler invocations are necessary within each time

slice, again leading to a large number of preemptions and migrations.

Other recent works have used the semi-partitioning approach to limit mi-

grations [6], [16]–[19]. Under this scheme, some tasks are allocated off-line to

processors, much like in the partitioned approach, while other tasks migrate, the

specifics of which are handled at run-time. These approaches present a trade-off

between implementation overhead and achievable utilization; optimality may be

achieved at the cost of high migration overhead.

RUN employs a semi-partitioned approach, but partitions tasks among servers

rather than processors. RUN also uses a very weak version of proportional

fairness: each server generates a job between consecutive deadlines of any client

tasks, and that job is assigned a workload proportional to the server’s rate. The

client jobs of a server collectively perform a proportionally “fair” amount of

work between any two client deadlines, but such deadlines do not demand

fairness among the individual client tasks and tasks in different branches of

the the server tree may have little influence on each others’ scheduling. This

is in stark contrast to previous optimal algorithms, where every unique system

deadline imposes a new time slice and such slices cause preemptions for many or

all tasks. The limited isolation of groups of tasks provided by server partitioning

and the reduced context switching imposed by minimal proportional fairness

make RUN significantly more efficient than previous optimal algorithms.

Other related work may be found on the topics of duality and servers. Dual

systems and their application in scheduling m+ 1 tasks on m fully utilized

processors [11] is generalized by our approach. The concept of task servers

has been extensively used to provide a mechanism to schedule soft real-time

tasks [20], for which timing attributes like period or execution time are not

known a priori. There are server mechanisms for uniprocessor systems which
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share some similarities with one presented here [21], [22]. Other server mech-

anisms have been designed for multiprocessor systems, e.g., [6], [16], [23].

Unlike such approaches, the mechanism described here works as if each server

were a uniprocessor system providing a useful scheduling framework which

hides some complexities related to the multiprocessor scheduling problem.

VII. CONCLUSION

We have presented the optimal RUN multiprocessor real-time scheduling al-

gorithm. RUN transforms the multiprocessor scheduling problem into an equiv-

alent set of uniprocessor problems. Theory and simulation show that only a

few preemption points per job are generated on average, allowing RUN to

significantly outperform prior optimal algorithms. RUN reduces to the more

efficient partitioned approach of Partitioned EDF whenever worst-fit bin packing

finds a proper partition, and scales well as the number of tasks and processors

increase.

These results have both practical and theoretical implications. The overhead

of RUN is low enough to justify implementation on actual multiprocessor

architectures. At present, our approach only works for fixed-rate task sets with

implicit deadlines. Theoretical challenges include extending the model to more

general problem domains such as sporadic tasks with constrained deadlines.

The use of uniprocessor scheduling to solve the multiprocessor problem raises

interesting questions in the analysis of fault tolerance, energy consumption

and adaptability. We believe that this novel approach to optimal scheduling

introduces a fertile field of research to explore and further build upon.
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