

Refactoring the feasibility tests framework
of Cheddar
Master thesis in Information and Communication Technology

PHAM VAN CHINH

Department of Information & Communication Technology
University of Science and Technology of Hanoi
Intake 2012-2014

Supervisor: Professor Frank Singhoff, Professor Alain Plantec
University of Western Brittany
Lab-STICC, CNRS, UMR 6285

Tutor: Professor Daniel Chillet
University of Rennes 1
ENSSAT

Abstract

This report describes a work in the research topic Refactoring the feasibility tests framework of

Cheddar during the 6 months internship at Lab-STICC, CNRS, UMR 6285, University of Western

Brittany, in the context of SMART project and Cheddar tool set. Cheddar is a tool set of verifica-

tion the constraints of time for real-time systems. This simulator allows architecture designers to

model a real-time system and to investigate its behaviour. In the work, there are three important

achievements. The first achievement is to do a survey of many kinds of feasibility tests for mono-

processor. The second achievement is to give a meta-model for automatic generation code Ada for

feasibility tests. The third achievement is to implement the missed feasibility test into Cheddar by

using method automatic generation.

The report is organized in five chapters. Chapter 1 - Introduction gives the context of the intern-

ship and the problem and motivation for the research . In Chapter 2 - Preliminary definitions, we

revise all kinds of feasibility tests on mono-processor in real-time systems. Chapter 3 - Meta-Model

presents the meta-model of feasibility test for method of automatic generation code. Chapter 4 -

Evaluation give some experiments on generating code of feasibility tests and verification of code

generated. The 5th and 6th chapters are Related Works and Conclusion.

Acknowledgements

Special thanks to professor Frank Singhoff and professor Alain Plantec and all colleagues in Lab-

STICC, UBO. Thank you very much for all the supports not only in research activities but also in

living conditions during my present in Lab-STICC. I would like to thank to all people in departe-

ment ICT who always give me supports during my 2 years at USTH.

Pham Van Chinh, Brest, France, 01/09/14

Contents

1 Introduction 1

2 Preliminary definitions 2

2.1 Preemptive Rate Monotonic . 2

2.2 Non preemptive Rate Monotonic . 3

2.3 Non preemptive Earliest Deadline First . 3

2.4 Any preemptive fixed priority scheduler . 3

2.5 Non preemptive Rate Monotonic . 4

2.6 Preemptive Earliest Deadline First . 4

2.7 Tests based on worst case response times . 5

2.8 Any preemptive fixed priority scheduler . 5

2.9 Preemptive Earliest Deadline First . 6

2.10 Conclusion . 7

3 Meta-model of feasibility test formula 8

3.1 Cheddar meta-model . 8

3.2 Express language . 10

3.3 Hierarchy of expression language . 10

3.4 Generic Symbol Expression . 11

3.5 A Constant . 11

3.6 An element of array . 11

3.7 Unary expression . 12

3.8 Binary expression . 12

3.9 Binary comparison . 13

3.10 Binary Union . 13

3.11 Multi-ary . 13

3.12 Conclusion . 14

4 Generation code Ada from meta-model 15

4.1 A constant . 15

4.2 An element of an array . 15

4.3 Code generation for uni-ary expression . 16

4.4 Code generation for binary expression . 17

i

CONTENTS

4.4.1 Addition . 17

4.4.2 Subtraction . 18

4.4.3 Multiplication . 18

4.4.4 Division . 18

4.4.5 Comparison . 18

4.4.6 Binary WCRT . 18

4.4.7 Union Expression . 18

4.5 Generation code for multiary expression . 19

4.5.1 Code generation for expression sum . 19

4.5.2 Generation code for function Min, Max . 19

4.6 Structure of function generated . 19

4.7 Conclusion . 21

5 Evaluation 22

5.1 Formula construction . 22

5.2 Experiment 1 . 23

5.3 Experiment 2 . 24

5.4 Experiment 3 . 25

5.5 Conclusion . 28

6 Related works 29

7 Conclusion 31

Appendices 34

A Appendix A: Programming Tools and Ada Implementation 35

A.1 Programming Tools . 35

A.1.1 Platypus . 35

A.1.2 The GNAT Programming Studio . 35

A.2 Ada Implementation . 35

B Appendix B: Publication 36

ii

List of Figures

3.1 Cheddar meta-model . 8

3.2 Cheddar main ADL software components . 9

3.3 Hierarchy of expression language . 10

4.1 Structure of function generated . 20

iii

List of Tables

4.1 Code generation for element of array of task with higher priority 16

4.2 Code generation for element of array of current task 16

5.1 Task set example . 24

5.2 Task set example . 24

iv

1

Introduction

Real-time systems are systems that have to meet time constraints. Cheddar is a toolset of veri-

fication constraints of time for real-time system. There are many kinds of feasibility tests which

we want to integrate in Cheddar, each test has a formula to compute the constraint of time for a

given task set.

In the current development of Cheddar, feasibility tests are manually programmed. Each test is

implemented as an Ada function. As the project Cheddar evolves, more tests are implemented,

more difficult to manage this part of Cheddar implementation. Another issue comes from the

difficulties to reuse a test or a part of a test implementation to implement a new one. However, a

test specification is rarely independent from another test that are already implemented.

We then propose an approach for automatic generation code of feasibility test. Automic code

generation make the work of verification and validation easier and feasibility tests can be more faster

implemented in the project. The code generated must be adaptive with the current development

of cheddar and avoid of the duplication of tests which have been implemented.

At first, we present a taxonomy of feasibility test and then our meta-model of mathematical

formula of feasibility test by language EXPRESS. Thirdly, we present how to generate the code

Ada adaptive with the current development of Cheddar and finally, the evaluation code generated

and related work in the end.

1

2

Preliminary definitions

In this chapter, we go to detail of feasibility test and introduce some kinds of feasibility test.

We present in section 2.1 the feasibility test Preemptive Rate Monotonic, in subsection 2.2 the

feasibility test Non Preemptive Rate Monotonic, in the section 2.3 the feasibility test Non Pre-

emptive Earliest Deadline First, in the section 2.4 the feasibility test Demand on Processor (Any

preemptive fixed priority scheduler), in the section 2.5 the feasibility test Non preemptive Rate

Monotonic, in the section 2.6 the feasibility test preemptive Earliest Deadline First, in the section

2.7 some feasibility test base on worst case response times, in the section 2.8 the feasibility test

any preemptive fixed priority scheduler, in the section 2.9 the feasibility test preemptive Deadline

First.

2.1 Preemptive Rate Monotonic

Liu and Layland[7], in 1973, studied the fixed priority scheduling theory with some assumptions:

• all tasks are periodic

• all tasks are released at the beginning of period and deadline is equal to period

• all tasks are independent

• all tasks are released at time 0

• execution time is less than or equal to period (Ci ≤ Di = Pi)

• no task suspends itself

• all tasks are pre-emptive

• context switch has no cost

• there is only one mono-processor

All tasks is meet deadline when the following condition is satisfied:

U =

n∑
i

Ci
Pi
≤ B with B = n(2

1
n−1) (2.1)

2

CHAPTER 2. PRELIMINARY DEFINITIONS

U is factor of utilisation of processor. When n-{number of task} go to infinity, B is equal to ln(2).

2.2 Non preemptive Rate Monotonic

For the case there is no preemption, two tasks have different priority. The blocking time Bi is the

waiting time for critical section (for example : sharing resources between tasks). For the case two

tasks with different priority attempt to access data, if the task with higher priority get asses to

resources first, there is no blocking time Bi, but if the task with lower priority get the asses to

resources first, then the higher priority task request to access to resources. This task must wait

for the release the shared data from the lower priority. The blocking time is consider an inversion

of priority. We then must take into account the factor of blocking time Bi with period of current

task Pi.

A set of periodic task using the priority ceiling protocol is scheduled if the following condition is

satisfied[7]:

∀i, 1 ≤ i ≤ n :

i−1∑
k=1

Ck
Pk

+
Ci +Bi
Pi

≤ i(2 1
i − 1) (2.2)

2.3 Non preemptive Earliest Deadline First

A periodic task set T={T1,T2,..., Tn}, for i > j, Pi > Pj is scheduled if satisfy these conditions[9]:

U =

n∑
i=1

Ci
Pi
≤ 1 and (2.3)

∀i, 1 < i ≤ n : Ci +

i−1∑
j=1

⌊
L− 1

Pj

⌋
.Cj ≤ L with P1 < L < Pi (2.4)

Condition (2.3) is considered as the processor is not overload.

Condition (2.4) verifies if the upper bound of task Ti on the processor demand that can be realized

in an interval of length L starting at the time release of a task Ti is scheduled. L denotes any

constant of time between task T1 and Tj

2.4 Any preemptive fixed priority scheduler

Consider a periodic task set T ={T1,T2,T3,..., Tn}. Lui and Layland [7] define the cumulative

demands on processor at time in [0,t] of tasks T1,T2,..,Ti[10]:

Wi(t) =
i∑

j=1

Ci · d tPj
e

Then if task Ti is scheduled if the condition below is respected :

∀1 ≤ i ≤ n : min0≤t≤Di

(i∑
j=1

Cj
t
·
⌈
t

Pj

⌉)
≤ 1 (2.5)

For task Tj < Ti, consider following definition :

3

CHAPTER 2. PRELIMINARY DEFINITIONS

• Li = Wi(t)
t

• Si = {kTj |j = 1,2,..,i; k = 1,..,b Ti

Tj
c}

The equation(2.5) becomes:

Li = min{t∈Si}Li (2.6)

Remark: For automatic generation of code for (2.6) is possible because t is discrete and limited.

But we must develop an algorithm for computing the minimum of expression for t ∈ Si and a

function for computing Si. Then, we must do operation comparison equal or less than 1.

2.5 Non preemptive Rate Monotonic

We suppose that :

• all tasks are periodic and independent.

• task set is concrete and synchronous.

• each task is released on deadline.

• task i-1 is less priority than task i.

This feasibility test is based on factor utilisation of processor. As there is no mechanism of pre-

emption, we must take into account the maximum of factor blocking time Bi over the period Pi of

all the task has higher priority than its current task max1<i≤n

(
Bi

Pi

)
. All tasks are schedulable if

the following condition is satisfied [11]:

∀i, 1 ≤ i ≤ n :

n∑
i=1

Ci
Pi

+max1<i≤n

(
Bi
Pi

)
< n(2

1
n − 1) (2.7)

2.6 Preemptive Earliest Deadline First

We suppose that :

• task set is synchronous and concrete

• all tasks are independent and periodic

• task Ti with deadline is greater than period Di > Pi

• all task will be executed in a single processor

All tasks are scheduled if the following conditions are satisfied[12] [13]:

1. U =
n∑
i

Ci

Pi
≤ 1

2. ∀t ≥ 0 : h(t) ≤ t

with

h(t) =
∑
Di≤t

(
1 +

⌊
t−Di

Ti

⌋)

4

CHAPTER 2. PRELIMINARY DEFINITIONS

2.7 Tests based on worst case response times

Assumption for task set T = {T1,T2,..,Tn} on single processor:

• each task has its fixed priority

• priority of tasks is sorted decreasing in the task set

• task set is concrete and synchronous

• all tasks are independent

• Bi is the blocking time of current task Ti

• Ji is the worst-case delay between a task arriving

• hp(i) is task set with higher priority than task Ti

When the current task Ti is not blocking by any task with lower priority. The worst case response

time of task Ti is computed by equation[14]:

ri = Ci +
∑

∀j∈hp(i)

⌈
ri
Pj

⌉
.Cj (2.8)

When the current task Ti is spent Bi time blocking by a lower priority task, the worst case response

time of Ti is computed by following equation[14]:

ri = Bi + Ci +
∑

∀j∈hp(i)

⌈
ri
Pj

⌉
.Cj (2.9)

When there’s a jitter between two tasks i and i+1, the worst case response time of task Ti is

computed by the following equation[14]:

ri = Ci + Ji +
∑

∀j∈hp(i)

⌈
ri + Jj
Pj

⌉
.Cj (2.10)

2.8 Any preemptive fixed priority scheduler

Assumption for task set T = {T1,T2,..,Tn} on single processor:

• each task has its fixed priority

• priority of tasks is sorted decreasing in the task set

• task set is concrete and synchronous

• all tasks are independent

• Bi is the blocking time of current task Ti

• Ji is the worst-case delay between a task arriving

5

CHAPTER 2. PRELIMINARY DEFINITIONS

The worst case response time of each task Ti is computed by (2.11)[14] [15] [16]:

ri = maxq=1,2,..(Ji +Bi + wi(q)− q.Pi) (2.11)

with

wi(q) = (q + 1)Ci +
∑

∀j∈hp(i)

⌈
Jj+wi(q)

Pj

⌉
.Cj

and

for q satisfies inequality: wi(q) ≥ (q + 1).Pi

2.9 Preemptive Earliest Deadline First

Suppose that a task set T={T1,T2, ..,Tn} is executed in a monoprocessor :

• task set is not concrete

• all tasks are independent

• priority is sorted decreasing after its deadline, so for j<i, task Tj is higher priority than task

Ti

The worst case response time of task Ti is computed by the following formula[17] [18]:

ri = maxa∈S(Li(a)− a) (2.12)

with :

Li(a) = W (a,Li(a)) +

(
a+

⌊
a
Ti

⌋)
and

S =
n⋃
j=1

(
k.Tj +Dj −Di, 0 ≤ k ≤ bmin(λ,Li)

Tj
c
)

λ =
n∑
j=1

⌈
λ
Tj

⌉
· Cj

With Li we denote the length of the longest such deadline busy period for task Ti. Li, for the non

preemptive case, is calculated by the formula :

Li = maxj>i(Cj − 1) +
∑
j≤i
dLi

Tj
e · Cj

For the preemptive case, Li is computed by the following equation :

Li =
∑
j≤i
dLi

Tj
e · Cj

And the higher priority workload :

W (a,t) =
∑

Dj≤a+Di

min

(
d t−Sj

Tj
e, 1 + ba+Di−Dj

Tj
c
)

where Sj = 0 if j 6= i and Sj = a− b aTi
c · Ti else.

6

CHAPTER 2. PRELIMINARY DEFINITIONS

2.10 Conclusion

In conclusion, three kinds of feasibility tests are studied: feasibility tests based on factor of utili-

sation of processor, feasibility tests of demand on processor and feasibility tests by calculating the

worst case response time. Each kind of tests has its assumptions and constraints to be respected.

The feasibility tests by computing worst case response time is the most complicated and difficult

to implement.

7

3

Meta-model of feasibility test

formula

In the previous chapter, we have seen some kinds of feasibility tests for mono-processor. Now, we

present in section 3.1 the meta-model of tool-set Cheddar. Section 3.2 presents an introduction

of language EXPRESS. Section 3.3 presents global view of our meta-model. Section 3.4 presents

the meta-model of generic symbol expression. Section 3.5 presents meta-model of an constant.

Section 3.6 presents meta-model of an element of array. Section 3.7 presents meta-model of unary

expression. Section 3.8 presents meta-model binary expression. Subsection 3.9 presents meta-

model of binary comparison. Section 3.10 presents meta-model of binary Union. Section 3.11

presents meta-model of multi-ary expression.

3.1 Cheddar meta-model

Figure 3.1: Cheddar meta-model

The structure of tool set Cheddar is represented in the Figure 3.1. Cheddar has 3 main meta

models: the system, the scheduler and the feasibility test generated by tool Platypus based on

STEP. In the system, there is hardware components and software components. The software

component is depicted in the Figure 3.2 and it’s included in meta-model of System. There are

three kinds of software components:

• Messages are present mostly in the real-time systems. They can be periodic messages or

aperiodic messages

8

CHAPTER 3. META-MODEL OF FEASIBILITY TEST FORMULA

• Buffer is a software component for storing data or resources. It has a specific address in

memory

• A software component task can be periodic or aperiodic. Tasks are generated according to

Poisson distribution with interarrival time 1/λ. Each Poisson task can be a sporadic task,

a parametric task, a scheduling task or frame task. They are connected to static memory

components. The access to task passes through classical priority inheritance protocols such

as PCP or others.

Objectif of the internship is to focus on the periodic tasks by analysing the schedulability of a

given task set via formula of feasibility tests. Therefore, we give a meta-model of feasibility test

for generating automatically the code source of feasibility test on mono-processor.

Figure 3.2: Cheddar main ADL software components

The meta-model of generated feasibility test is placed at feasibility test. The generation function

test is added in this part.

Now, we describe our approach for modelling a mathematical formula of feasibility test. First, we

analyse all the formula of feasibility tests. Then, we divide a mathematical formula into smaller

elements that can be modelled. Here, we define all smaller elements, they can be:

9

CHAPTER 3. META-MODEL OF FEASIBILITY TEST FORMULA

• a constant

• element of an array: capacity Ci, deadline Di, period Pi, blocking time Bi, jitter Ji.

• unary operation: Floor, Ceil.

• binary operation: addition, subtraction, multiplication, division, less operation, equal less

operation and union operation.

• multi-ary operation: Sum, Max, Min.

We use language EXPRESS for modelling formula of feasibility tests. After analysing all formula

of feasibility tests, we define all elements and necessary operations in the Figure 3.3

3.2 Express language

In this part, we present a brief introduction about Express language for understanding our meta-

model.

• ENTITY: is a class

• SUBTYPE: is heritage of super class

• ABSTRACT: declare abstract class

• Instance: include an identification and a representation

• DERIVE: declare procedure or function of class

• There is no restriction on type of attribute

• Class can have some operations (or procedure)

• Type of variable can be enumeration, logical, boolean, binary, number, real, integer or string.

3.3 Hierarchy of expression language

Figure 3.3: Hierarchy of expression language

We present our global view of our expression language in the Figure 3.3. In the root, we declare

a Generic symbol, it can be any formula of feasibility test. From the left to the right, there are a

constant and an element of array derive from the root. A constant is present in many feasibility

10

CHAPTER 3. META-MODEL OF FEASIBILITY TEST FORMULA

test, it is considered as time addition taken in account to the formula of feasibility test. An element

of array can be an capacity, deadline, period, jitter, blocking time.

Expression uniary derived from the root, it’s meta-model for operation floor and operation ceil.

Expression binary concludes all operation addition, subtraction, multiplication, division, compari-

son or union. They are derived from the root . Expression binary has 8 sub-classes. We consider

operation comparison less than or equal and less than as binary operation, but its code generations

is different from others binary expression. Expression WCRT is added for calculating the worst

case response time of a task set.

Expression multiary consists of 3 symbols Sum, Max and Min.

3.4 Generic Symbol Expression

It presents the root of our expression language. It can be itself a formula. We define it as an

abstract class.

ENTITY Generic_Symb_Expression

ABSTRACT SUPERTYPE;

operator_type : Symb_Operator_Type;

DERIVE

code_latex : STRING

code_ada : STRING

code_ada_WCRT : STRING

END_ENTITY;

Its attributes code latex, code ada and code ada WCRT are defined as string for generation auto-

matic code.

3.5 A Constant

A Constant on the formula represents an integer. It is defined as a symbol with attribute string.

It’s a subclass of entity Generic Symbol Expression.

ENTITY A_Constant_Expression

SUBTYPE OF (Generic_Symb_Expression);

An_Element : STRING;

END_ENTITY;

3.6 An element of array

An element of array can be capacity Ci, deadline Di, period Pi, blocking time Bi, jitter Ji or others.

It presents a value of array integer at index i. It is defined by entity An Element Array Expression

with two parameters : index and a main element. The main element can be Ci, Pi, Bi, Ji, Cj , Pj ,

Bj or Jj . The i represents the current task, and the j represents the task with higher priority.

11

CHAPTER 3. META-MODEL OF FEASIBILITY TEST FORMULA

ENTITY An_Element_Array_Expression

SUBTYPE OF (Generic_Symb_Expression);

Index : STRING;

Element : Symb_Element_Array_Type;

END_ENTITY;

3.7 Unary expression

The Unary expression is derived from Generic Symbol Expression. It’s the super class of opera-

tion Floor and operation Ceil. An Unary expression contains a generic expression and a type of

operation (floor or ceil). VALUE attribute is a generic expression, it can be a complex formula.

ENTITY Symb_Unary_Expression

SUBTYPE OF (Generic_Symb_Expression);

VALUE : Generic_Symb_Expression;

operator : Symb_Operator_Type;

END_ENTITY;

3.8 Binary expression

The binary expression is derived from Generic Symbol Expression. It’s the supper class of oper-

ation plus, subtraction, multiplication, division which has 2 Generic Symbol Expression, one on

left value and one on right value.

ENTITY Symb_Binary_Expression

SUBTYPE OF (Generic_Symb_Expression);

rvalue : Generic_Symb_Expression;

lvalue : Generic_Symb_Expression;

END_ENTITY;

For modelling all binary expressions, we need to declare another sub class for each operation: ad-

dition, subtraction, multiplication, division or union. For example, expression A+B with A, B a

constant, or a Generic Symbol Expression. We declare another subclass Symb Plus Expression of

superclass Symb Binary Expression.

ENTITY Symb_Plus_Expression

SUBTYPE OF (Symb_Binary_Expression);

DERIVE

(function for generating code)

END_ENTITY;

12

CHAPTER 3. META-MODEL OF FEASIBILITY TEST FORMULA

3.9 Binary comparison

Binary comparison is a special binary expression (operation less than and operation equal and less

than). It derives from class abstract Generic Symb Logic Expression. It contains 2 main attributes

rvalue and lvalue. rlvalue is a Generic Symbol Expression, and rvalue is a constant.

ENTITY Generic_Symb_Logic_Expression

ABSTRACT SUPERTYPE;

operator_type : Symb_Logic_Type;

rvalue : Generic_Symb_Expression;

lvalue : Generic_Symb_Expression;

DERIVE

(function for code generation)

END_ENTITY;

3.10 Binary Union

We denote operation Union as a binary expression (4.1). It derives from the class Binary expression.

It has 2 values, one for computing the value, one for condition for computing the value.

ENTITY Symb_Union_Expression

SUBTYPE OF (Symb_Binary_Expression);

DERIVE

(function for code generation)

END_ENTITY;

3.11 Multi-ary

The multi-ary expression is a subclass of Generic Symbol Expression. Its attributes are index,

lower bound, and a formula (Generic Symbol Expression). It’s the super class of sub class Sum

and class Union. A Multi-ary expression represents for symbol Sum or Min, Max of an array inte-

ger. A Sum of a Generic Symbol Expression is a loop with index go from lower bound to upper

bound.

ENTITY Symb_Multiary_Expression

SUBTYPE OF (Generic_Symb_Expression);

index : STRING;

lower_bound : STRING;

formula : Generic_Symb_Expression;

symb_expression : Symb_Operator_Type;

END_ENTITY;

13

CHAPTER 3. META-MODEL OF FEASIBILITY TEST FORMULA

3.12 Conclusion

In conclusion, an approach by using meta-model for modelling mathematical formula of feasibility

tests is presented. We have seen also how to model feasibility tests using language EXPRESS.

Each feasibility test is composed of smaller elements which is modelled. Each small elements is

presented by its meta-model.

14

4

Generation code Ada from

meta-model

In the previous Chapter, we presented our meta-model of symbolic language for modelling the

formula of feasibility test. Now, by using meta-model of mathematical formula, we assemble from

smaller elements to form a formula of feasibility test. Each formula is composed of many basic

elements. We use a function to generate Ada code which adapts with the current development of

Cheddar. We firstly analyse the code source of Cheddar. Then, we try to a generate each small

elements from the symbolic language to Ada.

4.1 A constant

In many feasibility tests, there are some constants of time in the formula. For example, a L symbol.

The code generated for a Constant is itself. It’s a integer variable.

4.2 An element of an array

An element of an array is present in all feasibility tests. We model all elements concerning for one

task. One task can have a capacity, a deadline, a period, a blocking time, a jitter, an offset and a

priority. A capacity Ci is time of execution of a task Ti. Deadline Di is the time of task Ti must

be completed before. A period Ti of task i is time between each iteration of regularly repeated

task. A Jitter Ji is the delay between the invocation of a task Ti and its release (when it actually

starts to execute). Blocking time Bi is waiting time in critical section of higher priority Ti blocked

by the lower priority task.

We define that the current task has the capacity Ci, deadline Di, period Pi, jitter Ji, blocking time

Bi . The task with higher priority of current task has period Cj , deadline Dj , period Pj , jitter

Jj , and Blocking time Bj . In the Cheddar, we make some concept of element of a task set. First,

we find where the pointer points to the ordered task set with function current element (My Tasks,

Taskj, Iterator) and then we compare the priority of the pointer with the priority of current task.

Its costs (n-i) comparisons with n - number of tasks and i- the ith task of the ordered task set. So

15

CHAPTER 4. GENERATION CODE ADA FROM META-MODEL

we denote elements of the task with higher priority :

• Taskj.capacity: capacity of the higher priority task

• Periodic Task Ptr (Taskj).deadline: dealine of the task with higher priority

• Periodic Task Ptr(Taskj).period: the priority of task with higher priority

• Periodic Task Ptr (Taskj).jitter: the jitter of task with higher priority

• Periodic Task Ptr (Taskj).blocking time: the blocking time of task with higher priority.

Task with higher priority

Capacity Taskj.capacity

Deadline Periodic Task Ptr (Taskj).deadline

Period Periodic Task Ptr(Taskj).period

Jitter Periodic Task Ptr (Taskj).jitter

Blocking time Periodic Task Ptr (Taskj).blocking time

Table 4.1: Code generation for element of array of task with higher priority

For the current task, first we initialize the task by using this code current element (My Tasks,

Taski, Iterator2) and then we use a pointer to point to this current task. The code generation for

the elements of current task is showed in table 4.2.

Current task

Capacity Current Task.capacity

Deadline Periodic Task Ptr (Taski).deadline

Period Periodic Task Ptr(Taski).period

Jitter Periodic Task Ptr (Taski).jitter

Blocking time Periodic Task Ptr (Taski).blocking time

Table 4.2: Code generation for element of array of current task

As the current development of Cheddar, we consider time as an integer for simulating. For the

code generation, we need to put a converter type Double before each element of array generated.

For example Double(Current Task.capacity), Double(Periodic Task Ptr (Taskj).capacity), ... The

code Ada is generated by a function returning a String.

4.3 Code generation for uni-ary expression

Uni-ary expression has only 2 operations Floor and Ceil. The current development of cheddar has

integrated these two operations. The generation code is below :

• Floor operation : Double’Floor(EXP.VALUE.code ada)

16

CHAPTER 4. GENERATION CODE ADA FROM META-MODEL

• Ceil operation :Double’Ceil(EXP.VALUE.code ada)

EXP : is a generic formula

code ada : is a function that generates the formula and return the formula as a string. We call a

function for generating code of operation Floor function Symb Floor Expression code ada (EXP :

Symb Ceil Expression) : STRING. For the operation Ceil, we use another function for generation

code : function Symb Ceil Expression code ada

4.4 Code generation for binary expression

By analysing all the feasibility tests introduced in the chapter 2, we define all necessary binary

operations of a feasibiity tests is:

• Addition

• Subtraction

• Multiplication

• Division

• Comparison (less than and equal or less than)

• Union expression

In the meta-model of binary expression, there are two attributes : lvalue and rvalue. Each value is

an generic expression. An generic expression can be itself a formula. Because there are two kinds

of computation for the feasibility test:

• compute without depending on the previous result

• compute with the previous result

Therefore, we define 2 others functions generating code:

• computing a general formula

• computing the value of worst case response time.

4.4.1 Addition

There are two kinds of binary expression Addition :

• for computing general formula:

Ci +Bi

• for computing worst case response time:

Ci +
∑

∀j∈hp(i)
d riPj
e · Cj

Here, the generation code for a general formula is lvalue + rvalue with lvalue is Ci and rvalue

is Ci + Bi. For the second binary Addition, there is a multiary expression on the right value.

The generated function must have a loop for summing up d riPj
e · Ci of all tasks which have higher

priority than the current task Ti.

17

CHAPTER 4. GENERATION CODE ADA FROM META-MODEL

4.4.2 Subtraction

Operation subtraction is considered as an operation between 2 constants of time (or 2 integers).

Code generation for this binary expression is lvalue − rvalue which lvalue and rvalue are generic

expression. It’s forbidden to have an multi-ary expression either on left value or on right value.

4.4.3 Multiplication

The same as the operation addition, we have two values lvalue and rvalue, each is a generic

expression. Code generation of this operation is lvalue ∗ rvalue. It’s possible to have a multiary

expression on the left value or on the right value.

4.4.4 Division

The code generation of this operation is lvalue
rvalue which lvalue and rvalue are generic expression. It’s

not allowed to have any multi-ary expression either on left value lvalue or on right value rvalue.

4.4.5 Comparison

In formula of feasibility test, there are two kinds of comparison : less than and equal or less than.

The code generation for this comparison is more complex. First, we generate the code of function

for computing the left value lvalue, then another function call this first function result to compare

with the right value rvalue. The result of this comparison returns a boolean.

4.4.6 Binary WCRT

It’s added for computing some formula like (2.8). We must take into account the existent of right

value which is a multi-ary expression. So, the generation code for binary WCRT formula is more

complex. In the generated function, there are 2 loops. One inner loop sums up all values d riPj
e.Cj

of all tasks which have higher priority than current task. One outer loop computes the next value

rki in function of rk−1k . The condition for existing the outer loop is the previous computation is

equal to the current computation (rki = rk−1i) or the current computation is bigger than the period

of current task Ti (rki > Ti). It’s forbidden to have an multi-ary expression on left value. The

multi-ary expression is present only on the right value. The complexity of computation of this

equation is θ = n ∗m with n is the number of task, and m is number of iteration on the inner loop.

The complexity of computing the WCRT is order of θ = n2.

4.4.7 Union Expression

Consider formula of an Union expression below :

S =

n⋃
j=1

(
k.Tj +Dj −Di, 0 ≤ k ≤ b

min(λ,Li)

Tj
c
)

(4.1)

The code generation for Union expression like (4.1) is a function with 2 loops for computing all

values of set S. One outer loop varies j from 1 to n. One inner loop computes lvalue = k.Tj+Dj−Di

for all values k satisfies condition of rvalue : 0 ≤ k ≤ bmin(λ,Li)
Tj

c.

18

CHAPTER 4. GENERATION CODE ADA FROM META-MODEL

4.5 Generation code for multiary expression

Code generation of multiary expression is more complex. It can be many functions with loops for

computing the the formula of feasibility test. And the code generation must be adaptive with the

current development of Cheddar. We try to reuse written code of Cheddar for generating code

from our meta-model.

4.5.1 Code generation for expression sum

Consider formula processor utilisation factor (2.1). For this example, we generate first function for

computing processor utilisation factor (lvalue). Condition for exiting the loop of the first function

is at the end of task list. A second function for the comparison the lvalue with the constant

B(rvalue). The result of second function returns a boolean.

4.5.2 Generation code for function Min, Max

Consider the (2.12), the code generation for this kind of formula is 2 functions. One function

computes an array value of Li(a) with a ∈ S. And one another function with a loop computes the

maximum of Li(a)− a. The algorithm for finding the maximum is described below :

max := 0.0;

for j from 0 to nb_element of array S

temp:=L_i(S(j))-S(j);

if (max < temp) then

max := temp;

end if

end for;

return max;

For computing S(j), we use meta-model of Union Expression which is described from section Binary

Expression.

4.6 Structure of function generated

We generate one or many functions for computing the formula. Structure of a function generated

Figure 4.1 is divided into 3 parts. The first part is the beginning of the program. The second part

is the loop with the generated formula . The third part is the end of function. In the beginning

of the function, we put the part of declaration of input variables or input data, and the initiation

of local variables. In the middle of function, the loop will be generated for computation. The last

part, we return the result of computation.

19

CHAPTER 4. GENERATION CODE ADA FROM META-MODEL

Figure 4.1: Structure of function generated

20

CHAPTER 4. GENERATION CODE ADA FROM META-MODEL

4.7 Conclusion

In conclusion, the automatic generation code Ada for feasibility tests is presented by its smaller

elements. Each smaller element has its own code generation. Therefore, the complex formula

of feasibility tests which is composed by many smaller elements, can be easier to be generated.

However, The code generation for multiary expression can be many functions with loops. An

analysis of the code of Cheddar is also studied so that code generation can be adaptive with

current development of project Cheddar.

21

5

Evaluation

In previous chapter, the automatic generation Ada code for smaller elements of formula of feasibility

tests is presented. Now, we do evaluation the code generated by choosing some formulas from which

the function generation will be used for producing the code. Firstly, we want to generate code latex

of the formula for being sure that our meta-model is correct. Then, we generate code Ada and

integrate this code on Cheddar, and verify if it gives the expected result. In this chapter, we also

see how to use meta-model to build a function for producing code of the chosen feasibility test.

5.1 Formula construction

For building a formula, we need to use the small elements that we defined above. Step by step, we

call its instance for putting together these small elements to build the wanted formula.

• For creating a constant, we call a instance of a constant expression. For creating a constant

we call its expression. For example, we need a constant L dans le formula, just call a new

instance : A CONSTANT EXPRESSION(.PLUS TYPE.,’L’)

• For creating an element of array, we call an instance of an element array expression. For

example, if we need a capacity of current task, we call its expression :

AN ELEMENT ARRAY EXPRESSION(.PLUS TYPE., ’i’, .C I.)

• For creating a uniary expression, for example a Ceil operation, we need to call an instance

of ceil operation symb ceil expression. In this example #7 is a formula which the operation

will compute this expression. SYMB CEIL EXPRESSION(*, #7, .PLUS TYPE.)

• For creating a binary expression, we call instance of binary expression. For example the

addition of 2 generic expressions SYMB PLUS EXPRESSION(*, #5, #1);

• For creating an multiary expression,in this case, the sum of a formula :

SYMB SUM EXPRESSION(.PLUS TYPE., ’j’, ’n’, #8, *). #8 is a generic expression.

We go to the details of an example:

22

CHAPTER 5. EVALUATION

5.2 Experiment 1

Consider the formula (2.8) that we want to model. With its formula, we want to compute all the

worst case response time (WCRT) of each task. By using the meta-model, we need to create the

formula steps by steps which is described below:

(*declare Ci*)

#1=AN ELEMENT ARRAY EXPRESSION(*,’i’,.C I.)

(*declare Cj*)

#2=AN ELEMENT ARRAY EXPRESSION(*,’j’,.C J.)

(*declare Pj*)

#3=AN ELEMENT ARRAY EXPRESSION(*,”,.P J.)

(*declare a constant*)

#4=A CONSTANT EXPRESSION(*,’R i’)

(*ceil(Ri/Pj)*)

#5=SYMB CEIL EXPRESSION(*,#6,.PLUS TYPE.)

(*Ri/Pj*)

#6=SYMB DIVIDE EXPRESSION(*,#3,#4)

(*ceil(Ri/Pj)*Cj*)

#7=SYMB MULTIPLY EXPRESSION(*,#5,#2)

(*sum of ceil(Ri/Pj)*Cj*)

#8=SYMB SUM EXPRESSION(*,’j’,’n’,#7,*)

(*Ci + sum of ceil(Ri/Pj)*Cj*)

#9=SYMB SUM WCRT EXPRESSION(*,#8,#1)

After do all those steps, we formed the formula as we wish. We now take a task set to test

with our code generated. We then generate the code of feasibility test ri = Ci +
∑

∀j∈hp(i)
d riPj
e.Cj

function compute

(My_Tasks : in Tasks_Set;

Current_Task : in Generic_Task_Ptr)

return Double

is

Iterator, Iterator2 : Tasks_Iterator;

Taskj,Taski : Generic_Task_Ptr;

calcul, tmp : Double;

begin

calcul := 0.0;

tmp:=-0.1;

current_element (My_Tasks, Taski, Iterator2);

While (tmp/=calcul) loop

reset_iterator (My_Tasks, Iterator);

tmp :=calcul;

calcul := Double(Taski.capacity);

loop

23

CHAPTER 5. EVALUATION

current_element (My_Tasks, Taskj, Iterator);

if (Taskj.priority > Current_Task.priority) then

calcul := calcul +

Double(Taskj.capacity)*

Double’Ceiling((tmp/Double(Periodic_Task_Ptr (Taskj).period)));

end if;

exit when is_last_element (My_Tasks, Iterator);

next_element (My_Tasks, Iterator);

end loop;

end loop;

return calcul;

end compute;

Consider a task set with 3 tasks T1, T2, T3. By theory, we obtain R1 = 3, R2=5 and R3=18.

Task name Capacity Period

T1 3 7

T2 2 12

T3 5 20

Table 5.1: Task set example

The code generated gives us a function named compute which produces the same result as above.

Hence, we validate our code generation and our method to generate automatic code.

5.3 Experiment 2

Consider the formula we want to evaluate for the test based on processor utilisation factor (2.3).

Consider a same task set with 3 tasks T1, T2, T3. We then generate the code of function of feasi-

Task name Capacity Period

T1 3 7

T2 2 12

T3 5 20

Table 5.2: Task set example

bility test U =
n∑
i

Ci

Pi
≤ 1 First, we generate function for calculating the right value of expression.

function compute

(My_Tasks : in Tasks_Set;

Processor_Name : in Unbounded_String)

return Double

is

24

CHAPTER 5. EVALUATION

Taski : Generic_Task_Ptr;

My_Iterator : Tasks_Iterator;

calcul : Double := 0.0;

begin

Periodic_Control (My_Tasks, Processor_Name);

reset_iterator (My_Tasks, My_Iterator);

loop

current_element (My_Tasks, Taski, My_Iterator);

if (Taski.task_type /= Aperiodic_Type) then

calcul := calcul +

(Taski.capacity)/Double(Periodic_Task_Ptr(Taski).period);

end if;

exit when is_last_element (My_Tasks, My_Iterator);

next_element (My_Tasks, My_Iterator);

end loop;

return calcul;

end compute;

Second, we compare it with the right value in another function and return the result.

function compute_less_equal

(My_Tasks : in Tasks_Set;

Processor_Name : in Unbounded_String)

return boolean

is

rightvalue, leftvalue : Double;

begin

leftvalue :=compute(My_Tasks,To_Unbounded_String("CPU_A")) ;

rightvalue := 1.0;

if (leftvalue <= rightvalue) then

return True;

else return False;

end if;

end compute_less

By theory, the factor of processor utilisation for this case is U = 0.845. For this comparison with

constant 1 the function will return TRUE as the result. Generating the code source for computing

this formula, we obtain the same result as theory.

5.4 Experiment 3

In this experiment, we generate code Ada for feasibility test (2.11). We first generate code for

function Wi:

wi(q) = (q + 1)Ci +
∑

∀j∈hp(i)

⌈
Jj + wi(q)

Pj

⌉
.Cj (5.1)

Wi(q) ≥ (q + 1).Pi (5.2)

25

CHAPTER 5. EVALUATION

And then we compare Wi(q) with (q + 1).Pi. For each q go from 0 to n, we compute Wi(q). If

Wi(q) satisfy (5.2), we then store the value of Wi(q) and increase k by 1. If condition (5.2) is not

satisfied, we go out the loop and return a table of value Wi(q).

procedure compute_less_equal

(My_Tasks : in Tasks_Set;

Processor_Name : in Unbounded_String;

Current_Task : in Generic_Task_Ptr;

Value_W_i : out MY_ARRAY;

q: out integer)

is

My_Iterator : Tasks_Iterator;

Taski : Generic_Task_Ptr;

rightvalue : Double;

leftvalue : Double;

k: integer:=0;

begin

reset_iterator (My_Tasks, My_Iterator);

current_element (My_Tasks, Taski, My_Iterator);

rightvalue := 0.0;

leftvalue :=0.0;

Value_W_i(0):=1.0;

While (Value_W_i(k) >= rightvalue) loop

leftvalue :=Double(W_i(My_Tasks,Double(k),Taski)) ;

rightvalue :=Double(Periodic_Task_Ptr(Taski).period)

*Double(1.0+Double(k));

Value_W_i(k):= leftvalue;

k:=k+1;

end loop;

q:=k;

end compute_less_equal;

We generate the function for computing Wi(q) by our meta-model. The function is very similar

to (2.8) which is calculated in the same algorithm in experiment 1. The iteration stops when

Wn
i (q) = Wn−1

i (q) or Wn
i > Pi with precondition W 0

i = 0.

function W_i

(My_Tasks : in Tasks_Set;

q:in Double;

Current_Task : in Generic_Task_Ptr

)

return Double

is

Iterator : Tasks_Iterator;

Taski, Taskj : Generic_Task_Ptr;

calcul, tmp : Double;

begin

calcul := 0.0;

26

CHAPTER 5. EVALUATION

tmp:=-0.1;

current_element (My_Tasks, Taski, Iterator);

While (tmp/=calcul) loop

reset_iterator (My_Tasks, Iterator);

tmp :=calcul;

calcul := (Double(Current_Task.capacity))*(1.0+q);

loop

current_element (My_Tasks, Taskj, Iterator);

if (Taskj.priority > Current_Task.priority) then

calcul := calcul + double((Double(Taskj.capacity))*

(Double’Ceiling((Double(Periodic_Task_Ptr (Taskj).jitter)+tmp)/

(Double(Periodic_Task_Ptr (Taskj).period)))));

end if;

exit when is_last_element (My_Tasks, Iterator);

next_element (My_Tasks, Iterator);

end loop;

end loop;

return calcul;

end W_i;

For computing (2.11), we generate a function to compute the maximun of array. First, we compute

all value ri, then find the maximum of array ri.

function max_r_i

(My_Tasks : in Tasks_Set;

W_i : in MY_ARRAY;

nb_value_W_i : in integer;

Current_Task : in Generic_Task_Ptr

)

return Double

is

My_Iterator : Tasks_Iterator;

Taski : Generic_Task_Ptr;

q : integer;

calcul,max : Double;

begin

calcul := 0.0;

current_element (My_Tasks, Taski, My_Iterator);

max :=0.0;

for q in 0..nb_value_W_i loop

calcul := Double(Periodic_Task_Ptr(Taski).jitter)+

Double(Periodic_Task_Ptr(Taski).blocking_time) +

W_i(q)-Double(q)*Double(Periodic_Task_Ptr(Taski).period);

if calcul > max then

max:=calcul;

end if;

end loop;

return max;

end max_r_i;

27

CHAPTER 5. EVALUATION

5.5 Conclusion

In conclusion, for three cases studied, code generation gives us the same results with the code

programmed by hand. The code generation can be produced any feasibility tests presented in the

chapter 2. However, feasibility tests are generated into many functions or procedures which are

needed for each complex formula of feasibility test.

28

6

Related works

In previous chapter, we have seen the evaluation of code generation, now we present the related

work of modelling real-time system and feasibility tests using calculus equation and compare with

our works.

ModelicaML[4] is a object-oriented modelling language. It is is tool set for modelling industrial

environment. ModelicaUML is a UML profile. It gives the possibility to model system using meta-

model with code implemented to control system. The function of calculus formula is integrated in

the model for doing the control. They use formula for modelling the control system with diagram,

the connection diagram, and for graphical modelling.

AADL[5] based on the synchronous language SIGNAL is used for modelling the system by blocks

and intern signal and event signal. For based-time scheduling, it uses a trigger to activate each

task. For computing worst case response time before sending to the simulator, it uses a library cost

function to calculate the cost time of thread which are tested. The formula for time computing is

described block by block. The execution of threads(or tasks), the storage of data and code, and

the communication platforms are supported by execution platform components. SIGNAL allows

the specification of multi-clocked systems for seeing if any signal is present in components.

HybridUML[3] for modelling system with meta-model using a part of expression which is added in

the model for computing : AlgebraicExpression, DifferentialExpression and InvariantExpression.

Gautier, Talpin proposed a notation of state machine for describing the system. Differential ex-

pression, algebraic expression are needed to use for describing analogue-real variable. They use

CHARON and its basic mechanisms for modelling the hybrid system.

Gilles and Hugues developped REAL, an AADLv2 annex language[6] for modelling complex system

with formula for computing processor utilization factor and generating code from the meta model

with OCARINA.

O. Sokolsky, I. Lee [19] used ACRS for modelling real-time system for verification of constraints of

time in mono processor with 2 variables e and t. e represents execution time of a thread and t is

the elapsed time since its dispatch which some dispatch policy of threads in the system. But the

computation of time on ACSR model is calculated in hardware components. The output of data

on a connection presents its completion of execution on CPU.

A. Amano, M. Kawabata[20] proposed a method for generation code of simulation in any language

for solving ODE (Ordinary Differential Equation). They use a TecML (Time Evolution Calculation

29

CHAPTER 6. RELATED WORKS

Markup Language) file for describing the input and output of a loop of calculation ODE and a

CellML file for describing the mathematical description of biological models. RelML (Relation

Markup Language) a language for describing the correspondence between variables in the CellML

model file and the variable types in an ODE numerical solution or a coupling calculation scheme

described in the TecML file. All the inputs, outputs, preconditions and conditions for exit from

the loops must be specified for work of generation code. The method is very complex, not easy to

manipulate for each simulation. More than that, there are too much parameters needed for the

inner loop and outer loop for example: re, initial, inner, loopcondition, final and post.

F.R. Punzalan, Y. Yamashita[21] introduce CellML a description language for generating exe-

cutable file for simulation of ODE (Ordinary Differential Equation) which is the same method of

Amano[20].

Our work is to use meta-model with language EXPRESS for generating the function of feasibility

tests and then integrate the missed feasibility tests to source of Cheddar[2]. Moreover, we can not

generate totally function of feasibility test, but for dividing the formula into enough small that can

be generated automatically. The advantage of our method is to give a simple approach to generate

code of each small element of mathematical formula of feasibility test and that makes us easy to

verify the long programme of feasibility test. The work for code generation is different from others

who have integrated the calculus function in their model for do the task. There is no meta-model

or model using AADL, UML,... that was used to generate the code source for integrated in the

system electronics or embedded system. The work of A. Amano, M. Kawabata [20] is very closed to

ours but it doesn’t solve the same problem. Our method is more simple and easier to manipulate.

30

7

Conclusion

In the report, we presented first a survey of feasibility tests and then an approach to model formula

of feasibility tests using language EXPRESS. We describe how to produce generic code for any type

of feasibility test from meta-model and show the possibility for generating automatically code for

feasibility tests. Modelling formula of feasibility test makes our project easier to verify and validate

if the function of feasibility test is correct. Using automatic generation code, the project evolves

more rapid and simplify the work of testing and verifying code source for future development, and

get out of the coincidence of feasibility with another. That means we avoid of duplicating some

feasibility tests.

In the future, we want to model all kind of feasibility test with our meta-model for multi-processor

feasibility test. The generation of code more and more adaptive with the software Cheddar for

solving the problem of programming by ”Ad-hoc”.

31

Bibliography

[1] F. Singhoff, J. Legrand, L. Nana and L. Marcé Cheddar : a Flexible Real Time Scheduling

Framework. ACM SIGAda Ada Letters, volume 24, number 4, pages 1-8. Edited by ACM Press,

New York, USA. December 2004, ISSN:1094-3641.

[2] F. Singhoff. Investigating the usability of real-time scheduling theory with Cheddar project.

Habilitation à diriger des recherches de l’Université de Bretagne Occidentale. Novembre 2008.

[3] K. Berkenkotter, S. Bisanz, U. Hannemann. HybridUML Profile for UML 2.0

[4] W.Schamai. Application of Model Based specification Approach in a Industrial Environment

[5] Y. Ma, H. Yu, T. Gautier, J-P. Talpin, L. Besnard, P. Le Gueni. System synthesis from AADL

using Polychrony.

[6] O.Gilles, J.Hugues. Expressing and enforcing user-defined constraints of AADL models. In:

Proceedings of the 5th UML and AADL Workshop (UML and AADL 2010)

[7] Lui and Layland. Scheduling Algorithms for multi-programming in a Hard Real-Time Enviro-

ment. Journal of the Association for Computing Machinery,20(1):46-61, January 1973.

[8] L. Sha, R. Rajkumar, ans J.P Lehoczky. Priority Inherence Protocols: An Approach to real-

time Synchronization. IEEE Transactions on computers, 39(9):1175-1185, 1990.

[9] K. Jeffay, D. Stanat, and C.Martel On Non-Preemptive Scheduling of Periodic and Sporadic

Tasks. in Proc. Of the IEEE Real Time Symposium (RTSS’91), San Antonio, Texas, December

1991.

[10] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotoic Scheduling Algorithm : Exact Charac-

terization and Average Case Behaviour.page 166-171. In Proc. Of the IEEE Real Time System

symposium (RTSS’89), December 1989.

[11] F.V.Carcahlo. Sur l’intégration de Mécanismes d’Ordonnancement et de Communication dans

la sous-Couche MAC de Réseaux Locaux Temps Réel. Thèse de l’Université de Toulouse 3,1996.

[12] S.K. Baruah, R.R. Howell, and L. E. Rosier. Algorithms ans Complexity Concerning the

Preemptive Scheduling of Periodic Real Time Tasks on one Processor. Real Time Systems

journal 2: 301-324, 1990

32

BIBLIOGRAPHY

[13] L. George, N. Di Natale. Minimizing memory utilisation of real time task sets in single and

multi-processor system on chip, volume 3, pages 67-99. In Proceedings of the 22nd IEEE Real

Time Systems Symposium, March 2001.

[14] M. Joseph ans P. Pandya. Finding Response Time in a Real-Time System. Computer Journal,

29(5): 390-395, 1996.

[15] A.N. Audsley, A. Burns, M. Richardson, and K. Tindell. Applying new scheduling theory to

static priority preemptive scheduling. Software Engineering Journal, pages 284-292, 1993.

[16] K.W. Tindell ans J. Clark. Holistic schedulability analysis for distributed hard real time sys-

tems. Microprocessing ans Microprogramming, 40(2-3):117-134, April 1994.

[17] L. George, N. Riverre, and M. Spuri. Preemptive Scheduling of periodic ans Sporadic Tasks.

INRIA Technical report number 2966, 1996.

[18] Marco Spuri. Analysis of deadline scheduled real-time systems.Technical Report RR-2772,

1996.

[19] O. Sokolsky, I. Lee, D. Clarke. Schedulability Analysis of AADL Models

[20] A. Amano, M. Kawabata. A program code generator for multiphisics biological simulation

using Markup Language.

[21] F.R. Punzalan , Y. Yamashita, N. Soejima, M. Kawabata,T. Shimayoshi, H. Kuwabara, Y.

Kunieda and A.Amano. A CellML simulation compiler and code generator using ODE solving

schemes.

[22] F Singhoff, A Plantec. Towards User-Level extensibility of an Ada library: an experiment with

Cheddar. Reliable Software Technologies–Ada Europe 2007, 180-191

33

Appendices

34

A

Appendix A: Programming Tools

and Ada Implementation

A.1 Programming Tools

All toolsets have been used for my work during the internship at Lab-STIC-UBO.

A.1.1 Platypus

Platypus is a STEP-based meta-environment. The tool is used for meta-models and code genera-

tion. The method of generation of code is the same in this article [22]. The method is used in my

work based on language EXPRESS and toolset Platypus. We decribe the meta-model of feasibility

test on EXPRESS and generate the code from meta-model with Platypus. Platypus run on the

Pharo - an open-source Smalltalk-inspired environment.

A.1.2 The GNAT Programming Studio

GNAT Programming Studio (GPS) is an integrated development environment for Ada developed

by AdaCore. The tool is available for download at:

http://libre.adacore.com/tools/gps/

A.2 Ada Implementation

The implementation of the work in the project, at the moment the report is written, can be found

at the address below. This is integrated inside the principal branch of the Cheddar repository.

http://beru.univ-brest.fr/svn/CHEDDAR/trunk/src

35

B

Appendix B: Publication

This is the paper presented my work during the internship at Lab-STIC of UBO.

• Meta-model for automatic generation Ada code for feasibility test. V.C. Pham, F. Singhoff,

A. Plantec. To be submitted at ACM Ada Letters Journal.

36

	Introduction
	Preliminary definitions
	Preemptive Rate Monotonic
	Non preemptive Rate Monotonic
	Non preemptive Earliest Deadline First
	Any preemptive fixed priority scheduler
	Non preemptive Rate Monotonic
	Preemptive Earliest Deadline First
	Tests based on worst case response times
	Any preemptive fixed priority scheduler
	Preemptive Earliest Deadline First
	Conclusion

	Meta-model of feasibility test formula
	Cheddar meta-model
	Express language
	Hierarchy of expression language
	Generic Symbol Expression
	A Constant
	An element of array
	Unary expression
	Binary expression
	Binary comparison
	Binary Union
	Multi-ary
	Conclusion

	Generation code Ada from meta-model
	A constant
	An element of an array
	Code generation for uni-ary expression
	Code generation for binary expression
	Addition
	Subtraction
	Multiplication
	Division
	Comparison
	Binary WCRT
	Union Expression

	Generation code for multiary expression
	Code generation for expression sum
	Generation code for function Min, Max

	Structure of function generated
	Conclusion

	Evaluation
	Formula construction
	Experiment 1
	Experiment 2
	Experiment 3
	Conclusion

	Related works
	Conclusion
	Appendices
	Appendix A: Programming Tools and Ada Implementation
	Programming Tools
	Platypus
	The GNAT Programming Studio

	Ada Implementation

	Appendix B: Publication

