
The PARSEC Benchmark Suite: Characterization and
Architectural Implications

Christian Bienia†, Sanjeev Kumar‡, Jaswinder Pal Singh† and Kai Li†
† Department of Computer Science, Princeton University ‡ Microprocessor Technology Labs, Intel

cbienia@cs.princeton.edu

ABSTRACT

This paper presents and characterizes the Princeton Application
Repository for Shared-Memory Computers (PARSEC), a bench-
mark suite for studies of Chip-Multiprocessors (CMPs). Previous
available benchmarks for multiprocessors have focused on high-
performance computing applications and used a limited number
of synchronization methods. PARSEC includes emerging appli-
cations in recognition, mining and synthesis (RMS) as well as sys-
tems applications which mimic large-scale multithreaded commer-
cial programs. Our characterization shows that the benchmark suite
covers a wide spectrum of working sets, locality, data sharing, syn-
chronization and off-chip traffic. The benchmark suite has been
made available to the public.

Categories and Subject Descriptors

D.0 [Software]: [benchmark suite]

General Terms

Performance, Measurement, Experimentation

Keywords

benchmark suite, performance measurement, multithreading,
shared-memory computers

1. INTRODUCTION
Benchmarking is the quantitative foundation of computer archi-
tecture research. Benchmarks are necessary to experimentally de-
termine the benefits of new designs. However, to be relevant, a
benchmark suite needs to satisfy a number of properties. First, the
applications in the suite should be written with the target class of
machines in mind. This is necessary to ensure that the architec-
tural features being proposed are relevant and not obviated by mi-
nor rewrites of the application. Second, the benchmark suite should
represent the important applications on the target machines. Third,
the workloads in the benchmark suite should be diverse enough to
exhibit the range of behavior of the target applications. Finally, it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’08, October 25–29, 2008, Toronto, Ontario, Canada
Copyright 2008 ACM 978-1-60558-282-5/08/10 ...$5.00.

is important that the programs use state-of-art algorithms and tech-
niques.
As time passes, the relevance of a benchmark suite diminishes.

This happens not only because machines evolve and change over
time but also because new applications, algorithms, and techniques
emerge. New benchmark suites become necessary after significant
changes in the architectures or applications.
In fact, dramatic changes have occurred both in mainstream pro-

cessor designs as well as applications in the last few years. The
arrival of chip-multiprocessors (CMPs) with ever increasing num-
ber of cores has made parallel machines ubiquitous. At the same
time, new applications are emerging that not only organize and cat-
alog data on desktops and the Internet but also deliver improved
visual experience [9].
These technology shifts have galvanized research in parallel ar-

chitectures. Such research efforts rely on existing benchmark suites.
However, the existing suites [15, 14, 20, 28] suffer from a number
of limitations and are not adequate to evaluate future CMPs (Sec-
tion 2). The lack of good benchmark suites can hamper parallel
architecture research as well as reduce its impact.
To address this problem, we created a publicly available bench-

mark suite called PARSEC in collaboration with Intel Corporation.
It includes not only a number of important RMS applications [9]
but also several leading-edge applications from Princeton Univer-
sity, Stanford University, and the open-source domain. The goal
is to create a suite of emerging workloads that can drive CMP re-
search.
A recent study [6] quantitatively demonstrated that the character-

istics of PARSEC are significantly different from SPLASH-2 (one
of the most widely used parallel benchmark suites). This suggests
that using newer benchmark suites like PARSEC is necessary.
The widely perceived need for such a benchmark suite is proven

by the number of researchers who are already downloading and
using PARSEC. Within the first 6 months of being made publicly
available, the benchmark suite has been downloaded more than 500
times by researchers throughout the world. The first papers using
PARSEC have been submitted.
This paper makes three contributions:
• It identifies shortcomings of commonly used benchmark suites
and explains why they might be less relevant to evaluate CMPs
(Section 2).

• We present and characterize PARSEC, a new benchmark suite
for CMPs that is diverse enough in order to allow representa-
tive conclusions (Sections 3 - 8).

• Based on our characterization of PARSEC, we analyze what
properties future CMPs must have in order to be able to deliver
scalable performance for emerging applications (Sections 6 -
8).

1

2. MOTIVATION
The goal of this work is to define a benchmark suite that can be
used to design the next generation of processors. In this section, we
first present the requirements for such a suite. We then discuss how
the existing benchmarks fail to meet these requirements.

2.1 Requirements for a Benchmark Suite
We have the following five requirements for a benchmark suite:
Multithreaded Applications Shared-memory CMPs are already
ubiquitous. The trend for future processors is to deliver large
performance improvements through increasing core counts on
CMPs while only providing modest serial performance im-
provements. Consequently, applications that require additional
processing power will need to be parallel.

Emerging Workloads Rapidly increasing processing power is en-
abling a new class of applications whose computational re-
quirements were beyond the capabilities of the earlier genera-
tion of processors [9]. Such applications are significantly dif-
ferent from earlier applications (see Section 3). Future proces-
sors will be designed to meet the demands of these emerging
applications and a benchmark suite should represent them.

Diverse Applications are increasingly diverse, run on a variety of
platforms and accommodate different usage models. They in-
clude both interactive applications like computer games, of-
fline applications like data mining programs and programs
with different parallelization models. Specialized collections
of benchmarks can be used to study some of these areas in
more detail, but decisions about general-purpose processors
should be based on a diverse set of applications.

Employ State-of-Art Techniques A number of application areas
have changed dramatically over the last decade and use very
different algorithms and techniques. Visual applications for
example have started to increasingly integrate physics simula-
tions to generate more realistic animations [13]. A benchmark
should not only represent emerging applications but also use
state-of-art techniques.

Support Research A benchmark suite intended for research has
additional requirements compared to one used for benchmark-
ing real machines alone. Benchmark suites intended for re-
search usually go beyond pure scoring systems and provide
infrastructure to instrument, manipulate, and perform detailed
simulations of the included programs in an efficient manner.

2.2 Limitations of Existing Benchmark Suites
In the remaining part of this section we analyze how existing
benchmark suites fall short of the presented requirements and must
thus be considered unsuitable for evaluating CMP performance.
SPLASH-2 SPLASH-2 is a suite composed of multithreaded ap-
plications [26] and hence seems to be an ideal candidate to
measure performance of CMPs. However, its program collec-
tion is skewed towards HPC and graphics programs. It thus
does not include parallelization models such as the pipeline
model which are used in other application areas. SPLASH-
2 should furthermore not be considered state-of-art anymore.
Barnes for example implements the Barnes-Hut algorithm for
N-body simulation [4]. For galaxy simulations it has largely
been superseded by the TreeSPH [12] method, which can also
account for mass such as dark matter which is not concen-
trated in bodies. However, even for pure N-body simulation
barnes must be considered outdated. In 1995 Xu proposed
a hybrid algorithm which combines the hierarchical tree algo-
rithm and the Fourier-based Particle-Mesh (PM) method to the
superior TreePM method [27]. Our analysis shows that simi-

lar issues exist for a number of other applications of the suite
including raytrace and radiosity.

SPEC CPU2006 and OMP2001 SPEC CPU2006 and SPEC
OMP2001 are two of the largest and most significant collec-
tions of benchmarks. They provide a snapshot of current sci-
entific and engineering applications. Computer architecture
research, however, commonly focuses on the near future and
should thus also consider emerging applications. Workloads
such as systems programs and parallelization models which
employ the producer-consumer model are not included. SPEC
CPU2006 is furthermore a suite of serial programs that is not
intended for studies of parallel machines.

Other Benchmark Suites Besides these major benchmark suites,
several smaller workload collections exist. They were usu-
ally designed to study a specific program area and are thus
limited to a single application domain. Therefore they usu-
ally include a smaller set of applications than a diverse bench-
mark suite typically offers. Due to these limitations they are
commonly not used for scientific studies which do not restrict
themselves to the covered application domain. Examples for
these types of benchmark suites are ALPBench [15], BioPar-
allel [14], MediaBench [18], MineBench [20] and Physics-
Bench [28]. Because of their different focus we do not discuss
these suites in more detail.

3. THE PARSEC BENCHMARK SUITE
One of the goals of the PARSEC suite was to assemble a pro-

gram selection that is large and diverse enough to be sufficiently
representative for scientific studies. It consists of 9 applications
and 3 kernels which were chosen from a wide range of application
domains. PARSEC workloads were selected to include different
combinations of parallel models, machine requirements and run-
time behaviors. All benchmarks are written in C/C++ because of
the continuing popularity of these languages in the near future.
PARSEC meets all the requirements outlined in Section 2.1:
• Each of the applications has been parallelized.
• The PARSEC benchmark suite is not skewed towards HPC
programs, which are abundant but represent only a niche. It
focuses on emerging workloads.

• The workloads are diverse and were chosen from many dif-
ferent areas such as computer vision, media processing, com-
putational finance, enterprise servers and animation physics.
PARSEC is more diverse than SPLASH-2 [6].

• Each of the applications chosen represents the state-of-art tech-
nique in its area.

• PARSEC supports computer architecture research in a number
of ways. The most important one is that for each workload six
input sets with different properties are defined (Section 3.1).
The characteristics of the included workloads differ substantially

from SPLASH-2 [6]. Recent technology trends such as the emer-
gence of CMPs and the growth of world data seem to have a strong
impact on workload behavior.

3.1 Input Sets
PARSEC defines six input sets for each benchmark:
test A very small input set to test the basic functionality of the
program.

simdev A very small input set which guarantees basic program
behavior similar to the real behavior, intended for simulator
test and development.

simsmall, simmedium and simlarge Input sets of different sizes
suitable for simulations.

native A large input set intended for native execution.

2

Program Problem Size
Instructions (Billions) Synchronization Primitives

Total FLOPS Reads Writes Locks Barriers Conditions

blackscholes 65,536 options 2.67 1.14 0.68 0.19 0 8 0
bodytrack 4 frames, 4,000 particles 14.03 4.22 3.63 0.95 114,621 619 2,042
canneal 400,000 elements 7.33 0.48 1.94 0.89 34 0 0
dedup 184 MB data 37.1 0 11.71 3.13 158,979 0 1,619
facesim 1 frame, 29.90 9.10 10.05 4.29 14,541 0 3,137

372,126 tetrahedra
ferret 256 queries, 23.97 4.51 7.49 1.18 345,778 0 1255

34,973 images
fluidanimate 5 frames, 14.06 2.49 4.80 1.15 17,771,909 0 0

300,000 particles
freqmine 990,000 transactions 33.45 0.00 11.31 5.24 990,025 0 0
streamcluster 16,384 points per block, 22.12 11.6 9.42 0.06 191 129,600 127

1 block
swaptions 64 swaptions, 14.11 2.62 5.08 1.16 23 0 0

20,000 simulations
vips 1 image, 31.21 4.79 6.71 1.63 33,586 0 6,361

2662×5500 pixels
x264 128 frames, 32.43 8.76 9.01 3.11 16,767 0 1,056

640×360 pixels

Table 1: Breakdown of instructions and synchronization primitives for input set simlarge on a system with 8 cores. All numbers

are totals across all threads. Numbers for synchronization primitives also include primitives in system libraries. "Locks" and

"Barriers" are all lock- and barrier-based synchronizations, "Conditions" are all waits on condition variables.

test and simdev are merely intended for testing and develop-
ment and should not be used for scientific studies. The three sim-
ulator inputs for studies vary in size, but the general trend is that
larger input sets contain bigger working sets and more parallelism.
Finally, the native input set is intended for performance measure-
ments on real machines and exceeds the computational demands
which are generally considered feasible for simulation by orders of
magnitude. Table 1 shows a breakdown of instructions and syn-
chronization primitives of the simlarge input set which we used
for the characterization study.

3.2 Workloads
The following workloads are part of the PARSEC suite:
blackscholes This application is an Intel RMS benchmark. It cal-
culates the prices for a portfolio of European options ana-
lytically with the Black-Scholes partial differential equation
(PDE) [7]. There is no closed-form expression for the Black-
Scholes equation and as such it must be computed numeri-
cally.

bodytrack This computer vision application is an Intel RMSwork-
load which tracks a human body with multiple cameras through
an image sequence [8]. This benchmark was included due
to the increasing significance of computer vision algorithms
in areas such as video surveillance, character animation and
computer interfaces.

canneal This kernel was developed by Princeton University. It
uses cache-aware simulated annealing (SA) to minimize the
routing cost of a chip design [3]. Canneal uses fine-grained
parallelism with a lock-free algorithm and a very aggressive
synchronization strategy that is based on data race recovery
instead of avoidance.

dedup This kernel was developed by Princeton University. It com-
presses a data stream with a combination of global and local
compression that is called ’deduplication’. The kernel uses
a pipelined programming model to mimic real-world imple-
mentations. The reason for the inclusion of this kernel is

that deduplication has become a mainstream method for new-
generation backup storage systems [23].

facesim This Intel RMS application was originally developed by
Stanford University. It computes a visually realistic animation
of the modeled face by simulating the underlying physics [24].
The workload was included in the benchmark suite because an
increasing number of animations employ physical simulation
to create more realistic effects.

ferret This application is based on the Ferret toolkit which is used
for content-based similarity search [16]. It was developed
by Princeton University. The reason for the inclusion in the
benchmark suite is that it represents emerging next-generation
search engines for non-text document data types. In the bench-
mark, we have configured the Ferret toolkit for image similar-
ity search. Ferret is parallelized using the pipeline model.

fluidanimate This Intel RMS application uses an extension of the
Smoothed Particle Hydrodynamics (SPH) method to simulate
an incompressible fluid for interactive animation purposes [19].
It was included in the PARSEC benchmark suite because of
the increasing significance of physics simulations for anima-
tions.

freqmine This application employs an array-based version of the
FP-growth (Frequent Pattern-growth) method [10] for Frequent
Itemset Mining (FIMI). It is an Intel RMS benchmark which
was originally developed by Concordia University. freqmine
was included in the PARSEC benchmark suite because of the
increasing use of data mining techniques.

streamcluster This RMS kernel was developed by Princeton Uni-
versity and solves the online clustering problem [21]. stream-
cluster was included in the PARSEC benchmark suite be-
cause of the importance of data mining algorithms and the
prevalence of problems with streaming characteristics.

swaptions The application is an Intel RMS workload which uses
the Heath-Jarrow-Morton (HJM) framework to price a portfo-
lio of swaptions [11]. Swaptions employs Monte Carlo (MC)
simulation to compute the prices.

3

vips This application is based on the VASARI Image Processing
System (VIPS) [17] which was originally developed through
several projects funded by European Union (EU) grants. The
benchmark version is derived from a print on demand service
that is offered at the National Gallery of London, which is also
the current maintainer of the system. The benchmark includes
fundamental image operations such as an affine transforma-
tion and a convolution.

x264 This application is an H.264/AVC (Advanced Video Coding)
video encoder. H.264 describes the lossy compression of a
video stream [25] and is also part of ISO/IEC MPEG-4. The
flexibility and wide range of application of the H.264 stan-
dard and its ubiquity in next-generation video systems are the
reasons for the inclusion of x264 in the PARSEC benchmark
suite.

4. METHODOLOGY
In this section we explain how we characterized the PARSEC
benchmark suite. We are interested in the following characteristics:
Parallelization PARSEC benchmarks use different parallel mod-
els which have to be analyzed in order to know whether the
programs can scale well enough for the analysis of CMPs of a
certain size.

Working sets and locality Knowledge of the cache requirements
of a workload are necessary to identify benchmarks suitable
for the study of CMP memory hierarchies.

Communication-to-computation ratio and sharing The commu-
nication patterns of a program determine the potential impact
of private caches and the on-chip network on performance.

Off-chip traffic The off-chip traffic requirements of a program are
important to understand how off-chip bandwidth limitations of
a CMP can affect performance.
In order to characterize all applications, we had to make several
trade-off decisions. Given a limited amount of computational re-
sources, higher accuracy comes at the expense of a lower number of
experiments. We followed the approach of similar studies [26, 14]
and chose faster but less accurate execution-driven simulation to
characterize the PARSEC workloads. This approach is feasible be-
cause we limit ourselves to study fundamental program properties
which should have a high degree of independence from architec-
tural details. Where possible we supply measurement results from
real machines. This methodology allowed us to gather the large
amount of data which we present in this study. We preferred ma-
chine models comparable to real processors over unrealistic models
which might have been a better match for the program needs.

4.1 Experimental Setup
We used CMP$im [14] for our workload characterization. CMP-
$im is a plug-in for Pin [22] that simulates the cache hierarchy of
a CMP. Pin is similar to the ATOM toolkit for Compaq’s Tru64
Unix on Alpha processors. It uses dynamic binary instrumentation
to insert routines at arbitrary points in the instruction stream. For
the characterization we simulate a single-level cache hierarchy of
a CMP and vary its parameters. The baseline cache configuration
was a shared 4-way associative cache with 4 MB capacity and 64
byte lines. By default the workloads used 8 cores. All experiments
were conducted on a set of Symmetric Multiprocessor (SMP) ma-
chines with x86 processors and Linux. The programs were com-
piled with gcc 4.2.1.
Because of the large computational cost we could not perform
simulations with the native input set, instead we used the simlarge
inputs for all simulations and analytically describe any differences
between the two sets of which we know.

4.2 Methodological Limitations and Error
Margins

For their characterization of the SPLASH-2 benchmark suite,
Woo et al. fixed a timing model which they used for all experi-
ments [26]. They give two reasons: First, nondeterministic pro-
grams would otherwise be difficult to compare because different
execution paths could be taken, and second, the characteristics they
study are largely independent from an architecture. They also state
that they believe that the timing model should have only a small im-
pact on the results. While we use similar characteristics and share
this belief, we think a characterization study of multithreaded pro-
grams should nevertheless analyze the impact of nondeterminism
on the reported data. Furthermore, because our methodology is
based on execution on real machines combined with dynamic bi-
nary instrumentation, it can introduce additional latencies, and a
potential concern is that the nondeterministic thread schedule is al-
tered in a way that might affect our results in unpredictable ways.
We therefore conducted a sensitivity analysis to quantify the impact
of nondeterminism.
Alameldeen and Wood studied the variability of nondetermin-

istic programs in more detail and showed that even small pseudo-
random perturbations of memory latencies are effective to force
alternate execution paths [2]. We adopted their approach and modi-
fied CMP$im to add extra delays to its analysis functions. Because
running all experiments multiple times as Alameldeen and Wood
did would be prohibitively expensive, we instead decided to ran-
domly select a subset of all experiments for each metric which we
use and report its error margins.
The measured quantities deviated by no more than±0.04% from

the average, with the following two exceptions. The first excpetion
is metrics of data sharing. In two cases (bodytrack and swaptions)
the classification is noticeably affected by the nondeterminism of
the program. This is partially caused because shared and thread-
private data contend aggressively for a limited amount of cache ca-
pacity. The high frequency of evictions made it difficult to classify
lines and accesses as shared or private. In these cases, the maxi-
mum deviation of the number of accesses from the average was as
high as±4.71%, and the amount of sharing deviated by as much as
±15.22%. We considered this uncertainty in our study and did not
draw any conclusions where the variation of the measurements did
not allow it. The second case of high variability is when the value
of the measured quantity is very low (below 0.1% miss rate or cor-
responding ratio). In these cases the nondeterministic noise made
measurements difficult. We do not consider this a problem because
in this study we focus on trends of ratios, and quantities that small
do not have a noticeable impact. It is however an issue for the anal-
ysis of working sets if the miss rate falls below this threshold and
continues to decrease slowly. Only few programs are affected, and
our estimate of their working set sizes might be slightly off in these
cases. This is primarily an issue inherent to experimental work-
ing set analysis, since it requires well-defined points of inflection
for conclusive results. Moreover, we believe that in these cases
the working set size varies nondeterministically, and researchers
should expect slight variations for each benchmark run.
The implications of these results are twofold: First, they show

that our methodology is not susceptible to the nondeterministic
effects of multithreaded programs in a way that might invalidate
our findings. Second, they also confirm that the metrics which
we present in this paper are fundamental program properties which
cannot be distorted easily. The reported application characteristics
are likely to be preserved on a large range of architectures.

4

� � � �� ��
�

�

�

��

��

��	
�

��
�����	�

������
�

�
��	
�

�	���

�
	���

�	��	�

�����
���
�	

��	����	

���	
�����	�

��
������

 ���

!���

"��#	�$�%$���	�

&

�
�	
'

#
�	
$�
�
	
	
�
�
�

Figure 1: Upper bound for speedup of PARSEC workloads

based on instruction count.

�
��
�
�
�
�
�
�
�	
�

�
�

�
�
�
�
�

�
�
�
�
	
�
�

�
	

�
�

�
�
�
	
�
��

�
	

	
�

�
��
�

�
�
��
�
�	

�
	
�
�
��
	

�
�
	
�
�
�
��
�
�	

�
�
�
�
��
�
�
�

�
��
�

�
�
�
�

����

��!�

!���

"�!�

#����

Figure 2: Parallelization overhead of PARSEC benchmarks.

The chart shows the slowdown of the parallel version on 1 core

over the serial version.

5. PARALLELIZATION
In this section we discuss the parallelization of the PARSEC
suite. As we will see in Section 6, several PARSEC benchmarks
(canneal, dedup, ferret and freqmine) have working sets so
large they should be considered unbounded for an analysis. These
working sets are only limited by the amount of main memory in
practice and they are actively used for inter-thread communication.
The inability to use caches efficiently is a fundamental property of
these program and affects their concurrent behavior. Furthermore,
dedup and ferret use a complex, heterogeneous parallelization
model in which specialized threads execute different functions with
different characteristics at the same time. These programs employ a
pipeline with dedicated thread pools for each parallelized pipeline
stage. Each thread pool has enough threads to occupy the whole
CMP, and it is the responsibility of the scheduler to assign cores
to threads in a manner that maximizes the overall throughput of
the pipeline. Over time, the number of threads active for each stage
will converge against the inverse throughput ratios of the individual
pipeline stages relative to each other.

Woo et al. use an abstract machine model with a uniform instruc-
tion latency of one cycle to measure the speedups of the SPLASH-2
programs [26]. They justify their approach by pointing out that the
impact of the timing model on the characteristics which they mea-
sure - including speedup - is likely to be low. Unfortunately, this
is not true in general for PARSEC workloads. While we have veri-
fied in Section 4.2 that the fundamental program properties such as
miss rate and instruction count are largely not susceptible to tim-
ing shocks, the synchronization and timing behavior of the pro-
grams is. Using a timing model with perfect caches significantly
alters the behavior of programs with unbounded working sets, for
example how long locks to large, shared data structures are held.
Moreover, any changes of the timing model have a strong impact
on the number of active threads of programs which employ thread
specialization. It will thus affect the load balance and synchroniza-
tion behavior of these workloads. We believe it is not possible to
discuss the timing behavior of these programs without also consid-
ering for example different schedulers, which is beyond the scope
of this paper. Similar dependencies of commercial workloads on
their environment are already known [5, 1].
Unlike Woo et al. who measured actual concurrency on an ab-

stract machine, we therefore decided to analyze inherent concur-
rency and its limitations. Our approach is based on the number
of executed instructions in parallel and serial regions of the code.
We neglect any delays due to blocking on contended locks and
load imbalance. This methodology is feasible because we do not
study performance, our interest is in fundamental program charac-
teristics. The presented data is largely timing-independent and a
suitable measure of the concurrency inherent in a workload. The
results in Figure 1 show the maximum achievable speedup mea-
sured that way. The numbers account for limitations such as unpar-
allelized code sections, synchronization overhead and redundant
computations. PARSEC workloads can achieve actual speedups
close to the presented numbers. We verified on a large range of
architectures that lock contention and other timing-dependent fac-
tors are not limiting factors, but we know of no way to show it in a
platform-independent way given the complications outlined above.
The maximum speedup of bodytrack, x264 and streamcluster
is limited by serial sections of the code. fluidanimate is primar-
ily limited by growing parallelization overhead. On real machines,
x264 is furthermore bound by a data dependency between threads,
however this has only a noticeable impact on machines larger than
the ones described here. It is recommended to run x264 with more
threads than cores, since modeling and exposing these dependen-
cies to the scheduler is a fundamental aspect of its parallel algo-
rithm, comparable to the parallel algorithms of dedup and ferret.
Figure 2 shows the slowdown of the parallel version on 1 core over
the serial version. The numbers show that all workloads use effi-
cient parallel algorithms which are not substantially slower than the
corresponding serial algorithms.
PARSEC programs scale well enough to study CMPs. We be-

lieve they are also useful on machines larger than the ones analyzed
here. The PARSEC suite exhibits a wider variety of parallelization
models than previous benchmark suites such as the pipeline model.
Some of its workloads can adapt to different timing models and
can use threads to hide latencies. It is important to analyze these
programs in the context of the whole system.

6. WORKING SETS AND LOCALITY
The temporal locality of a program can be estimated by analyz-

ing how the miss rate of a processor’s cache changes as its capacity
is varied. Often the miss rate does not decrease continuously as the
size of a cache is increased, but stays on a certain level and then

5

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

�����

�����

�����

�����

������

�
��
�
��
�
��
�	

�

�
��
�
��
�
��
�	

�

�
��
�
��
�
��
�	

�

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

������

������

������

������

������������

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

�����

�����

�����

���������

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

������

������

������

�������

����������	��� ����������	��� ����������	��� ����������	���

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

�����

�����

�����

������

�����

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

�����

�����

�����������

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

�����

�����

�����

�������

� � � �

�
�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

������

������

������

�������������

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

�����

�����

�����

�����

� �!�����

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

�����

�����

�����

������

"�!�

���

���

���

���

���
���

���

���
���

���

���

���

���

��� ���
���

���

���

���

� � � �
�
�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

�����

�����

�����

������

#���

���

���

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�
�
�
�

�����

�����

�����

�����

�����

����!

���

���

Figure 3: Miss rates versus cache size. Data assumes a shared 4-way associative cache with 64 byte lines. WS1 and WS2 refer to

important working sets which we analyze in more detail in Table 2. Cache requirements of PARSEC benchmark programs can reach

hundreds of megabytes.

Program

Input Set Input Set

simlarge native

Working Set 1 Working Set 2 Working Set 2

Data Size Growth Data Size Growth Size

Structure(s) Rate Structure(s) Rate Estimate

blackscholes options 64 KB C portfolio data 2 MB C same
bodytrack edge maps 512 KB const. input frames 8 MB const. same
canneal elements 64 KB C netlist 256 MB DS 2 GB
dedup data chunks 2 MB C hash table 256 MB DS 2 GB
facesim tetrahedra 256 KB C face mesh 256 MB DS same
ferret images 128 KB C data base 64 MB DS 128 MB
fluidanimate cells 128 KB C particle data 64 MB DS 128 MB
freqmine transactions 256 KB C FP-tree 128 MB DS 1 GB
streamcluster data points 64 KB C data block 16 MB user-def. 256 MB
swaptions swaptions 512 KB C same as WS1 same same same
vips image data 64 KB C image data 16 MB C same
x264 macroblocks 128 KB C reference frames 16 MB C same

Table 2: Important working sets and their growth rates. DS represents the data set size and C is the number of cores. Working set

sizes are taken from Figure 3. Values for native input set are analytically derived estimates. Working sets that grow proportional

to the number of cores C are aggregated private working sets and can be split up to fit into correspondingly smaller, private caches.

6

����������	�
��
�����

����
������	
�	����	

��������� ����	��

	
��

���	���
�		�

��	�������	
����

����

�
�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
�

	
		�

	
���

	
�	�

	
���

�
		�

��
�
��
�
��
��
�
�

�
�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
�

	
		�

�
		�

�	
		�

��
		�

������

�����

Figure 4: Miss rates as a function of line size. Data assumes 8 cores sharing a 4-way associative cache with 4 MB capacity. Miss rates

are broken down to show the effect of loads and stores.

makes a sudden jump to a lower level when the capacity becomes
large enough to hold the next important data structure. For CMPs
an efficient functioning of the last cache level on the chip is crucial
because a miss in the last level will require an access to off-chip
memory.
To analyze the working sets of the PARSEC workloads we stud-
ied a cache shared by all processors. Our results are presented
in Figure 3. In Table 2 we summarize the important characteris-
tics of the identified working sets. Most workloads exhibit well-
defined working sets with clearly identifiable points of inflection.
Compared to SPLASH-2, PARSEC working sets are significantly
larger and can reach hundreds of megabytes such as in the cases of
canneal and freqmine.
Two types of workloads can be distinguished: The first group
contains benchmarks such as bodytrack and swaptions which
have working sets no larger than 16 MB. These workloads have a
limited need for caches with a bigger capacity, and the latest gen-
eration of CMPs often already has caches sufficiently large to ac-
commodate most of their working sets. The second group of work-
loads is composed of the benchmarks canneal, ferret, facesim,
fluidanimate and freqmine. These programs have very large
working sets of sizes 65 MB and more, and even with a relatively
constrained input set such as simlarge, their working sets can
reach hundreds of megabytes. Moreover, the need of those work-
loads for cache capacity is nearly insatiable and grows with the
amount of data which they process. In Table 2 we give our esti-
mates for the largest working set of each PARSEC workload for
the native input set. In several cases they are significantly larger
and can even reach gigabytes. These large working sets are often
the consequence of an algorithm that operates on large amounts of
collected input data. ferret for example keeps a data base of fea-
ture vectors of images in memory to find the images most similar
to a given query image. The cache and memory needs of these ap-
plications should be considered unbounded, as they become more
useful to their users if they can work with increased amounts of
data. Programs with unbounded working sets are canneal, dedup,
ferret and freqmine.
In Figure 4 we present our analysis of the spatial locality of the
PARSEC workloads. The data shows how the miss rate of a shared
cache changes with line size. All programs benefit from larger
cache lines, but to different extents. facesim, fluidanimate and

streamcluster show the greatest improvement as the line size is
increased, up to the the maximum value of 256 bytes which we
used. These programs have streaming behavior, and an increased
line size has a prefetching effect which these workloads can take
advantage of. facesim for example spends most of its time updat-
ing the position-based state of the model, for which it employs an it-
erative Newton-Raphson algorithm. The algorithm iterates over the
elements of a sparse matrix which is stored in two one-dimensional
arrays, resulting in a streaming behavior. All other programs also
show good improvement of the miss rate with larger cache lines,
but only up to line sizes of about 128 bytes. The miss rate is not
substantially reduced with larger lines. This is due to a limited size
of the basic data structures employed by the programs. They rep-
resent independent logical units, each of which is intensely worked
with during a computational phase. For example, x264 operates on
macroblocks of 8×8 pixels at a time, which limits the sizes of the
used data structures. Processing a macroblock is computationally
intensive and largely independent from other macroblocks. Conse-
quently, the amount of spatial locality is bounded in these cases.
For the rest of our analysis we chose a cache capacity of 4 MB

for all experiments. We could have used a matching cache size
for each workload, but that would have made comparisons very
difficult, and the use of very small or very large cache sizes is not
realistic. Moreover, in the case of the workloads with an unbounded
working set size, a working set which completely fits into a cache
would be an artifact of the limited simulation input size and would
not reflect realistic program behavior.

7. COMMUNICATION-TO-COMPUTATION

RATIO AND SHARING
In this section we discuss how PARSEC workloads use caches

to communicate. Most PARSEC benchmarks share data intensely.
Two degrees of sharing can be distinguished: Shared data can be
read-only during the parallel phase, in which case it is only used
for lookups and analysis. Input data is frequently used in such a
way. But shared data can also be used for communication between
threads, in which case it is also modified during the parallel phase.
In Figure 5 we show how the line size affects sharing. The data
combines the effects of false sharing and the access pattern of the
program due to constrained cache capacity. In Figure 6, we ana-

7

����������	�
	
��
��
����� �	��	�

��	����	
���������

����
����

�

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
�

	
		�

�
		�

�	
		�

��
		�

�	
		�

��
		�

�	
		�

��
		�

�	
		�

��
		�

�	
		�

��
		�

���������

��������

��������

��������

��������

��������

��������

��������

�
�
��
�
��
��
�
�
��
�
�

Figure 5: Portion of a 4-way associative cache with 4 MB capacity which is shared by 8 cores. The line size is varied from 8 to 256

bytes.

�
��
��
��
��
	

��

��
��
�

��
��

� � � �
�
�

�

�

�

�

�

�

� � � �
�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
�

����������
���
�����

������������
�������� �������

�������
�����

������
������

����������� ���
� !"

#�������$���

#�������%����

&������$���

&������%����

�����&�����
$���

�����&�����
%����

Figure 6: Traffic from cache in bytes per instruction for 1 to 16 cores. Data assumes a shared 4-way associative cache with 64 byte

lines.

lyze how the program uses its data. The chart shows what data is
accessed and how intensely it is used. The information is broken
down in two orthogonal ways, resulting in four possible types of
accesses: Read and write accesses and accesses to thread-private
and shared data. Additionally, we give numbers for true shared ac-
cesses. An access is a true access if the last reference to that line
came from another thread. True sharing does not count repeated
accesses by the same thread. It is a useful metric to estimate the
requirements for the cache coherence mechanism of a CMP: A true
shared write can trigger a coherence invalidate or update, and a true
shared read might require the replication of data. All programs ex-
hibit very few true shared writes.
Four programs (canneal, facesim, fluidanimate and stream-

cluster) showed only trivial amounts of sharing. They have there-
fore not been included in Figure 5. In the case of canneal, this is
a result of the small cache capacity. Most of its large working set
is shared and actively worked with by all threads. However, only
a minuscule fraction of it fits into the cache, and the probability
that a line is accessed by more than one thread before it gets re-

placed is very small in practice. With a 256 MB cache, 58% of its
cached data is shared. blackscholes shows a substantial amount
of sharing, but almost all its shared data is only accessed by two
threads. This is a side-effect of the parallelization model: At the
beginning of the program, the boss threads initializes the portfolio
data before it spawns worker threads which process parts of it in a
data-parallel way. As such, the entire portfolio is shared between
the boss thread and its workers, but the worker threads can process
the options independently from each other and do not have to com-
municate with each other. ferret shows a modest amount of data
sharing. Like the sharing behavior of canneal, this is caused by
severely constrained cache capacity. ferret uses a database that
is scanned by all threads to find entries similar to the query image.
However, the size of the database is practically unbounded, and
because threads do not coordinate their scans with each other it is
unlikely that a cache line gets accessed more than once. bodytrack
and freqmine exhibit substantial amounts of sharing due to the fact
that threads process the same data. The strong increase of sharing
of freqmine is caused by false sharing, as the program uses an

8

� � � �
�
� � � � � �

�
� � � � � �

�
� � � � � �

�
� � � � � �

�
� � � � � �

�
� � � � � �

�
�

�

���	

���

����

���
�
�
��
��
��
�
�
��
�
��
�
�
��
��

� � � �
�
� � � � � �

�
� � � � � �

�
� � � � � �

�
� � � � � �

�
�

�

���

��

���

�

���������

�� ���

! "�

����������	�
��
����� ����
������	

�	����	
	
��

��������� ����
����

����	��

���	���

�		�
��	�������	

Figure 7: Breakdown of off-chip traffic for 1 to 16 cores. Data assumes a 4-way associative 4 MB cache with 64 byte lines, allocate-

on-store and write-back policy.

array-based tree as its main data structure. Larger cache lines will
contain more nodes, increasing the chance that the line is accessed
by multiple threads. vips has some shared data which is mostly
used by only two threads. This is also predominantly an effect of
false sharing since image data is stored in a consecutive array which
is processed in a data-parallel way by threads. x264 uses signifi-
cant amounts of shared data, most of which is only accessed by a
low number of threads. This data is the reference frames, since a
thread needs this information from other stages in order to encode
the frame it was assigned. Similarly, the large amount of shared
data of dedup is the input which is passed from stage to stage.
Most PARSEC workloads use a significant amount of commu-
nication, and in many cases the volume of traffic between threads
can be so high that efficient data exchange via a shared cache is
severely constrained by its capacity. An example for this is x264.
Figure 6 shows a large amount of writes to shared data, but contrary
to intuition its share diminishes rapidly as the number of cores is
increased. This effect is caused by a growth of the working sets
of x264: Table2 shows that both working set WS1 and WS2 grow
proportional to the number of cores. WS1 is mostly composed of
thread-private data and is the one which is used more intensely.
WS2 contains the reference frames and is used for inter-thread
communication. As WS1 grows, it starts to displace WS2, and the
threads are forced to communicate via main memory. Two more
programs which communicate intensely are dedup and ferret.
Both programs use the pipeline parallelization model with dedi-
cated thread pools for each parallel stage, and all data has to be
passed from stage to stage. fluidanimate also shows a large
amount of inter-thread communication, and its communication needs
grow as the number of threads increase. This is caused by the spa-
tial partitioning that fluidanimate uses to distribute the work to
threads. Smaller partitions mean a worse surface to volume ratio,
and communication grows with the surface.
Overall, most PARSEC workloads have complex sharing pat-
terns and communicate actively. Pipelined programs can require a
large amount of bandwidth between cores in order to communicate
efficiently. Shared caches with insufficient capacity can limit the
communication efficiency of workloads, since shared data struc-
tures might get displaced to memory.

8. OFF-CHIP TRAFFIC
In this section we analyze what the off-chip bandwidth require-

ments of PARSEC workloads are. Our goal is to understand how
the traffic of an application grows as the number of cores of a CMP
increases and how the memory wall will limit performance. We
again simulated a shared cache and analyze how traffic develops
as the number of cores increases. Our results are presented in Fig-
ure 7.
The data shows that the off-chip bandwidth requirements of the

blackscholes workload are small enough so that memory band-
width is unlikely to be an issue. bodytrack, dedup, fluidani-
mate, freqmine, swaptions and x264 are more demanding. More-
over, these programs exhibit a growing bandwidth demand per in-
struction as the number of cores increases. In the case of body-
track, most off-chip traffic happens in short, intense bursts since
the off-chip communication predominantly takes place during the
edge map computation. This phase is only a small part of the serial
runtime, but on machines with constrained memory bandwidth it
quickly becomes the limiting factor for scalability. The last group
of programs is composed of canneal, facesim, ferret, stream-
cluster and vips. These programs have very high bandwidth re-
quirements and also large working sets. canneal shows a decreas-
ing demand for data per instruction with more cores. This behavior
is caused by improved data sharing.
It is important to point out that these numbers do not take the in-

creasing instruction throughput of a CMP into account as its num-
ber of cores grows. A constant traffic amount in Figure 7 means that
the bandwidth requirements of an application which scales linearly
will grow exponentially. Since many PARSEC workloads have
high bandwidth requirements and working sets which exceed con-
ventional caches by far, off-chip bandwidth will be their most se-
vere limitation of performance. Substantial architectural improve-
ments are necessary to allow emerging workloads to take full ad-
vantage of larger CMPs.

9. FUTUREWORK
Page limitations forced us to restrict the scope of our study to

workload characterization using only one of the available input
sets. Additional work is necessary to establish PARSEC as a ma-
ture benchmark suite. The other available input sets should also be

9

analyzed and compared for similarity. PARSEC already is a large
improvement if age, domains of included applications and covered
parallelization models alone are considered. Any weaknesses in
the spectrum of covered programs which might still exist could
be identified with a coverage analysis. Furthermore, the under-
standing of workloads could be further improved if the individual
kernels and phases of the benchmarks are analyzed independently
from each other.

10. CONCLUSIONS
The PARSEC benchmark suite is designed to provide parallel
programs for the study for CMPs. PARSEC can be used to drive
research efforts by application demands. It focuses on emerging
desktop and server applications and does not have the limitations of
other benchmark suites. It is diverse enough to be considered rep-
resentative, it is not skewed towards HPC programs, it uses state-
of-art algorithms and it supports research. In this study we charac-
terized the PARSEC workloads to provide the basic understanding
necessary to allow other researchers the effective use of PARSEC
for their studies. We analyzed the parallelization, the working sets
and locality, the communication-to-computation ratio and the off-
chip bandwidth requirements of its workloads.

11. ACKNOWLEDGMENTS
First and foremost we would like to acknowledge the many au-
thors of the PARSEC benchmark programs which are too numerous
to be listed here. The institutions who contributed the most number
of programs are Intel and Princeton University. Stanford University
allowed us to use their code and data for facesim.
We would like to acknowledge the contribution of the following
individuals: Justin Rattner, Pradeep Dubey, Tim Mattson, Jim Hur-
ley, Bob Liang, Horst Haussecker, Yemin Zhang and Ron Fedkiw.
They convinced skeptics and supported us so that a project the size
of PARSEC could succeed.

12. REFERENCES
[1] A. Alameldeen, C. Mauer, M. Xu, P. Harper, M. Martin, and
D. Sorin. Evaluating Non-Deterministic Multi-Threaded Commercial
Workloads. In Proceedings of the Computer Architecture Evaluation
using Commercial Workloads, February 2002.

[2] A. Alameldeen and D. Wood. Variability in Architectural
Simulations of Multithreaded Workloads. In Proceedings of the 9th
International Symposium on High-Performance Computer

Architecture, February 2003.
[3] P. Banerjee. Parallel algorithms for VLSI computer-aided design.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[4] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation
algorithm. Nature, 324:446–449, December 1986.

[5] L. Barroso, K. Gharachorloo, and F. Bugnion. Memory System
Characterization of Commercial Workloads. In Proceedings of the
25th International Symposium on Computer Architecture, pages
3–14, June 1998.

[6] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A
Quantitative Comparison of Two Multithreaded Benchmark Suites on
Chip-Multiprocessors. In Proceedings of the 2008 International
Symposium on Workload Characterization, September 2008.

[7] Black, Fischer, and Scholes. The Pricing of Options and Corporate
Liabilities. Journal of Political Economy, 81:637–659, 1973.

[8] J. Deutscher and I. Reid. Articulated Body Motion Capture by
Stochastic Search. International Journal of Computer Vision,
61(2):185–205, February 2005.

[9] P. Dubey. Recognition, Mining and Synthesis Moves Computers to
the Era of Tera. Technology@Intel Magazine, February 2005.

[10] G. Grahne and J. Zhu. Efficiently Using Prefix-trees in Mining
Frequent Itemsets. November 2003.

[11] D. Heath, R. Jarrow, and A. Morton. Bond Pricing and the Term
Structure of Interest Rates: A New Methodology for Contingent
Claims Valuation. Econometrica, 60(1):77–105, January 1992.

[12] L. Hernquist and N. Katz. TreeSPH - A unification of SPH with the
hierarchical tree method. The Astrophysical Journal Supplement
Series, 70:419, 1989.

[13] C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar, A. P.
Selle, J. Chhugani, M. Holliman, and Y.-K. Chen. Physical
Simulation for Animation and Visual Effects: Parallelization and
Characterization for Chip Multiprocessors. SIGARCH Computer
Architecture News, 35(2):220–231, 2007.

[14] A. Jaleel, M. Mattina, and B. Jacob. Last-Level Cache (LLC)
Performance of Data-Mining Workloads on a CMP - A Case Study
of Parallel Bioinformatics Workloads. In Proceedings of the 12th
International Symposium on High Performance Computer

Architecture, February 2006.
[15] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The

ALPBench Benchmark Suite for Complex Multimedia Applications.
In Proceedings of the 2005 International Symposium on Workload
Characterization, October 2005.

[16] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Ferret: A
Toolkit for Content-Based Similarity Search of Feature-Rich Data. In
Proceedings of the 2006 EuroSys Conference, pages 317–330, 2006.

[17] K. Martinez and J. Cupitt. VIPS - a highly tuned image processing
software architecture. In Proceedings of the 2005 International
Conference on Image Processing, volume 2, pages 574–577,
September 2005.

[18] MediaBench II. http://euler.slu.edu/~fritts/mediabench/.
[19] M. Müller, D. Charypar, and M. Gross. Particle-Based Fluid

Simulation for Interactive Applications. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 154–159, Aire-la-Ville, Switzerland, Switzerland,
2003. Eurographics Association.

[20] R. Narayanan, B. Özisikyilmaz, J. Zambreno, G. Memik, and A. N.
Choudhary. MineBench: A Benchmark Suite for Data Mining
Workloads. In Proceedings of the IEEE International Symposium on
Workload Characterization 2006, pages 182–188, 2006.

[21] L. O’Callaghan, A. Meyerson, R. M. N. Mishra, and S. Guha.
High-Performance Clustering of Streams and Large Data Sets. In
Proceedings of the 18th International Conference on Data

Engineering, February 2002.
[22] Pin. http://rogue.colorado.edu/pin/.
[23] S. Quinlan and S. D. Venti. A New Approach to Archival Storage. In

Proceedings of the USENIX Conference on File And Storage

Technologies, January 2002.
[24] E. Sifakis, I. Neverov, and R. Fedkiw. Automatic Determination of

Facial Muscle Activations from Sparse Motion Capture Marker Data.
ACM Transactions on Graphics, 24(3):417–425, 2005.

[25] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview
of the H.264/AVC Video Coding Standard. IEEE Transactions on
Circuits and Systems for Video Technology, 13(7):560–576, 2003.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd International Symposium
on Computer Architecture, pages 24–36, June 1995.

[27] G. Xu. A New Parallel N-Body Gravity Solver: TPM. The
Astrophysical Journal Supplement Series, 98:355, 1995.

[28] T. Y. Yeh, P. Faloutsos, S. Patel, and G. Reinman. ParallAX: An
Architecture for Real-Time Physics. In Proceedings of the 34th
International Symposium on Computer Architecture, June 2007.

10

