
Universite de Bretagne
Occidentale

Implementation of aperiodic server scheduler in the
cheddar tool.

Scheduling methods for aperiodic tasks

Author :
Cyril Muller

Tutor :
M. Frank Singhoff

February 28, 2014

Scheduling methods for aperiodic tasks • February 28, 2014

Contents

Introduction 2

1 Aperiodic servers 3

1.1 Polling server . 3

1.2 Deferrable server . 4

1.3 Sporadic server . 6

1.4 Priority exchange server . 8

2 Implementation 11

2.1 Cheddar . 11

2.2 Test sets . 11

2.3 Algorithms . 13

2.4 Testing . 15

Conclusion 20

Bibliography 21

1 1

Scheduling methods for aperiodic tasks • February 28, 2014

Introduction

The scheduling of aperiodic tasks is very different than with periodic tasks in the way that by
definition aperiodic tasks’ behavior is unpredictable however such tasks still needs to be treated.
There exist many way to deal with aperiodic tasks with different level of efficiency. The method
we will explore in this paper is called the aperiodic server.

An aperiodic server is a task specially created to service aperiodic tasks. This server can be
activated periodically or when aperiodic requests occur depending on the server’s parameters.
If there are several aperiodic tasks pending, they will be serviced according to their start-
ing time (FIFO). The server can be scheduled with the same algorithm as the other periodic tasks.

We have found four main implementations of aperiodic servers, the polling server, the de-
ferrable server, the sporadic server and the priority exchange server. In this paper we will see
the implementation of the polling server, the deferrable server and the sporadic server in the
Cheddar[4] software.

The rest of the paper will be organized as follow: a presentation of the possible aperiodic
servers with examples, then the implementation in Cheddar and the different tests and finally a
conclusion of the work done.

2 2

Aperiodic servers • February 28, 2014

1 Aperiodic servers

In this section we will see four implementations for aperiodic servers with some examples and
diagrams. First, we will focus on the polling server, then on deferrable, then on the sporadic
server and finally on the priority exchange server.

1.1 Polling server

The polling server is a periodic task with a period Ts, a capacity Cs and the highest priority.
Every server’s activation, it checks if there are any pending aperiodic tasks, if there are, the
server uses its capacity to service them until either the task is finished or the server’s capacity
is depleted. However, if there is no pending aperiodic task, the server remains idle until its next
activation which means that even if an aperiodic request occurs in the middle of the server’s
servicing time, the request will not be treated until the next period as the server will already be
inactive.
This is the simplest implementation of an aperiodic server but the aperiodic tasks tend to have
a relatively long response time (depending on the server’s period), also when there is no task to
service, the aperiodic servicing time is lost.

Figure 1: Polling server example with two periodic tasks and four aperiodic requests

In the figure 1, there are two periodic tasks T1 and T2 and four aperiodic requests a1, a2,
a3 and a4. We can see that the aperiodic request a2 is serviced for one time unit during the first
polling period and is finished at the tenth time unit when the server awakes. The task a4 was
not serviced during the hyper period because the polling server did not have enough capacity. It
will be serviced at the fifteenth time unit though.

3 3

Aperiodic servers • February 28, 2014

Figure 2: Polling server example when an aperiodic request occurs in the middle of the server’s
servicing time and is not serviced

In the figure 2 we change the previous tasks set by removing the aperiodic request a1. Now
we can see that the task a2 occurs in the middle of the time assigned to the server for servicing
aperiodic requests but was serviced at the tenth time unit. This is because at the fifth time unit,
the polling server checked for pending aperiodic request and as there was none fell back to sleep
until the tenth time unit.

1.2 Deferrable server

As the polling server, the deferrable server has a capacity Cs and a period Ts and the highest
priority. However, the deferrable server is not periodically activated to service aperiodic tasks
but when an aperiodic task is pending and the server has capacity superior to 0. The server
then services the task(s) until depletion of its capacity or the aperiodic task is finished. The
server’s capacity is restored periodically every Ts. If an aperiodic task occurs when the server
has depleted its capacity, this task will be serviced when the server will have replenished its
capacity.
Unlike the polling server, the deferrable server saves its capacity for a longer period when not
used and also provides a better response time than the polling server as it is potentially able to
immediately service aperiodic request. However in some cases, the server might take up to 2*Cs

time units servicing aperiodic tasks which may impose a delay too long on periodic task as the
server has the highest priority.

4 4

Aperiodic servers • February 28, 2014

Figure 3: Deferrable server example with two periodic tasks and four aperiodic requests

In figure 3, we have once again two periodic tasks T1 and T2 and four aperiodic requests a1,
a2, a3 and a4. When a1 occurs, it is immediately serviced by the deferrable server which then
has its capacity drop from two to one. As the server has a period of five, at the fifth time unit,
its capacity is refilled and it is then ready to service a2 at the sixth time unit. After servicing
a2, the server capacity is empty because a2 also had a capacity of two. At the eleventh time
unit, a3 and a4 occur, we consider that a3 is serviced first, while the server had replenished its
capacity at the tenth time unit, allowing it to service the request in a row.

5 5

Aperiodic servers • February 28, 2014

Figure 4: Deferrable server example when the server uses 2*Cs time units

In the example of the figure 4, we have modified the previous tasks set to highlight the fact
that the deferrable server can use up to two times its capacity. We can see that after a1 has
been serviced, a2 occurs right after the server had refilled its capacity making a2 being serviced
immediately and the deferrable server using four time units in a row with a capacity of two.

1.3 Sporadic server

The sporadic server works similarly to the deferrable server at the exception of when the server’s
capacity is refilled. In the sporadic server’s case, the capacity is refilled after a specified delay
(Ts) after its activation. The server is activated when an aperiodic request occurs and the server
has a full capacity.
This implementation has the advantages that the server will never use 2*Cs and that the periodic
tasks’ deadlines are guaranteed accordingly to the rate monotonic algorithm. On the other hand
this is also a more complicated design.

6 6

Aperiodic servers • February 28, 2014

Figure 5: Sporadic server example with two periodic tasks and four aperiodic requests

In the figure 5, when a1 occurs, the sporadic server’s capacity is full, the server is then
activated and compute the next time for refilling its capacity, in this case the eighth time unit.
a1 is immediately serviced. However, when a2 occurs, the server’s capacity is only at one, so
a2 is only executed for one time unit and must wait until the sporadic server has a full capacity
again, which happen at the eighth time unit. The same happened with a4, as when it occurred
the sporadic server had exhausted its capacity and so the aperiodic request had to wait.

7 7

Aperiodic servers • February 28, 2014

Figure 6: Sporadic server example with two periodic tasks and three aperiodic requests

In the example of the figure 6, we modified the tasks set from the previous example by
removing a2. This example shows that the sporadic server does not have a period but a minimal
delay until its capacity is refilled. We can see at the eighth time unit, the server refill its capacity,
as a1 occurred at the third time unit and will remain idle with a full capacity until a3 and a4
occurs. As a3 and a4 occurred at the eleventh time unit, the sporadic the server will refill its
capacity at the sixteenth time unit.

1.4 Priority exchange server

The priority exchange server saves its capacity by exchanging it to a lower priority execution
time every time a switch to a periodic task occurs. So the server will have as many capacity
level as there are periodic priority level plus one more for the server higher priority. The server
will then service aperiodic requests if its capacity is not exhausted and its priority is eligible by
using the capacity at the highest priority level available. In case there is a priority tie between
an aperiodic and a periodic task, the aperiodic task will be prioritized. As the server is executed,
there could be an accumulation of unused capacity at the lowest priority level. The low level
capacity will be emptied when there will be no task to serviced, periodic and aperiodic.
However this server has the highest complexity.

8 8

Aperiodic servers • February 28, 2014

Figure 7: Priority exchange server example with two periodic tasks and four aperiodic requests

For the example of the figure 7, we can see that the server has three capacity level. The first
one is the high priority capacity for the server and second an third correspond to the priority
level of the tasks T1 and T2. At the starting time, the high priority capacity of the server is
refilled, but as there is no pending aperiodic request, the task T1 is serviced and the server then
exchange the capacity from the level one with the level two. At the third time unit another
switch between tasks occurs and so the server’s capacity of the level two is exchanged down
with the level three that correspond to T2 ’s priority.

The aperiodic task a1 is serviced with the level three capacity and as aperiodic request are
serviced before periodic task, a1 is serviced before T2. The task a2 is partially serviced with
the high priority server’s capacity and finished with the level two level.

9 9

Aperiodic servers • February 28, 2014

Figure 8: Another priority exchange server

In the figure 8, we have three periodic tasks and also three aperiodic requests:

• a1 : S = 4 ; C = 1 ; D = 10

• a2 : S = 9 ; C = 2 ; D = 6

• a3 : S = 15 ; C = 1; D = 2

First, we can note that a2 and a3 are serviced after T1 because, at the moment when they
occurred, the available capacity was at a lower level than T1 ’s capacity. Also, at the starting
time, as there was no aperiodic tasks to serve, the high priority execution time is exchanged
down with T1 and at the first time unit, another exchange happens with T2, and again with T3
at the third time unit. So, we end up with all the capacity at the lowest capacity level at the
fourth time unit right when a1 occurs. The which was serviced immediately as the only other
pending periodic task was T3 and in case of priority tie the aperiodic task wins.

10 10

Implementation • February 28, 2014

2 Implementation

In this section, we will first see the Cheddar software and how the scheduler framework works,
then the different test cases for the servers implementations, then the algorithm implemented
in the framework which are the polling, the deferrable and the sporadic. The priority exchange
server is not yet implemented. Finally the tests of the different servers implemented.

2.1 Cheddar

Cheddar is real time scheduling analysis tool offering many solutions for scheduling. The
program is developed in Ada language.

To implement the aperiodic servers, we will use the package sched-
uler.fixed_priority.aperiodic_server. This package will contain variables common to all
the servers : the current capacity (current_server_capacity) and a wake time that represents
the period (current_server_wake_time), it also chose the periodic and aperiodic tasks with
the highest priority every tick. This package also receive the scheduler parameters, such as
the default capacity (server_capacity) used to refill current_server_capacity and the server’s
period (server_period).

Then for each server, we will implement another package based on the sched-
uler.fixed_priority.aperiodic_server, where the server will decide for each tick whether the pre-
viously selected periodic or aperiodic tasks should be executed. This package also updates the
variables current_server_capacity and current_server_wake_time as each server has its own
way to deal with them.
The sporadic_server package has one additional variable server_is_idle used to compute the
next server’s wake time as the sporadic server is not periodically activated.

2.2 Test sets

In order to test if the future implementation of the aperiodic servers, we need to create the test
cases corresponding to the tasks sets used in the section 1 Aperiodic servers. The test sets will
be written in the Architecture Description Language (ADL)[5] in the form of XML files in which
we describe the hardware architecture where the tasks will be ran and of course the different
tasks themselves. Following is the example for a polling server using the tasks set from the figure
1. We will only detailed the relevant parts to our implementation which are the scheduler and
the tasks.

Processor

<core_units>
<core_unit id="id_1">
<object_type>CORE_OBJECT_TYPE</object_type>
<name>core1</name>
<scheduling>
<scheduling_parameters>
<scheduler_type>HIERARCHICAL_POLLING_APERIODIC_SERVER_PROTOCOL</scheduler_type>
<quantum>0</quantum>
<preemptive_type>PREEMPTIVE</preemptive_type>
<capacity>2</capacity>
<period>5</period>
<priority>10</priority>

11 11

Implementation • February 28, 2014

<start_time>0</start_time>
</scheduling_parameters>
</scheduling>
<speed>0.00000</speed>
</core_unit>
</core_units>

The type of scheduler is bound to a processor core, in our case we will only use one mono
core processor. The scheduler parameters such as the period or the capacity are defined amongst
the core parameters.

Tasks

<tasks>
<periodic_task id="id_4">
<object_type>TASK_OBJECT_TYPE</object_type>
<name>t1</name>
<task_type>PERIODIC_TYPE</task_type>
<cpu_name>p1</cpu_name>
<address_space_name>as_p1</address_space_name>
<capacity>2</capacity>
<deadline>5</deadline>
<start_time>0</start_time>
<priority>2</priority>
<blocking_time>0</blocking_time>
<policy>SCHED_FIFO</policy>
<text_memory_size>0</text_memory_size>
<stack_memory_size>0</stack_memory_size>
<criticality>0</criticality>
<context_switch_overhead>0</context_switch_overhead>
<period>5</period>
<jitter>0</jitter>
</periodic_task>

<aperiodic_task id="id_6">
<object_type>TASK_OBJECT_TYPE</object_type>
<name>a1</name>
<task_type>APERIODIC_TYPE</task_type>
<cpu_name>p1</cpu_name>
<address_space_name>as_p1</address_space_name>
<capacity>1</capacity>
<deadline>10</deadline>
<start_time>3</start_time>
<priority>1</priority>
<blocking_time>0</blocking_time>
<policy>SCHED_FIFO</policy>
<text_memory_size>0</text_memory_size>
<stack_memory_size>0</stack_memory_size>
<criticality>0</criticality>
<context_switch_overhead>0</context_switch_overhead>
</aperiodic_task>

Periodic and Aperiodic tasks are two separate entities with the same parameters at the
exception of the period which is not needed for an aperiodic task.

12 12

Implementation • February 28, 2014

2.3 Algorithms

Here is the list of the data used for the different algorithms

• Current_Time: current execution time

• current_server_wake_time: time when the server will refill its capacity

• current_server_capacity: the current server’s capacity

• server_capacity: server’s capacity parameter

• server_period: server’s period parameter

• server_is_idle: sporadic server’s variable to know when the server is activated and so when
to compute the next capacity recharge time

Polling server

Here is the algorithm implemented in Cheddar for the polling server.
Algorithm 1: Polling server algorithm

Data: Current_Time, current_server_wake_time, server_capacity, server_period
Result: elected: a task
begin

if Current_Time >= current_server_wake_time and
Current_Time < current_server_wake_time+ server_capacity then

if There is a pending aperiodic request then
elected := aperiodic_task;

else
current_server_wake_time := current_server_wake_time + server_period;
if There is a pending periodic task then

elected := periodic_task;
end

end
else

if There is a pending periodic task then
elected := periodic_task;

end
end

end

13 13

Implementation • February 28, 2014

Deferrable server

Here is the algorithm implemented in Cheddar for the deferrable server.
Algorithm 2: Deferrable server algorithm

Data: Current_Time, current_server_capacity, current_server_wake_time,
server_capacity, server_period

Result: elected: a task
begin

/* Refill the server’s capacity and compute the next wake time */
if Current_Time = current_server_wake_time then

current_server_capacity := server_capacity;
current_server_wake_time := current_server_wake_time + server_period;

end
/* Election */
if current_server_capacity > 0 and there is a pending aperiodic task then

elected := aperiodic_task;
current_server_capacity := current_server_capacity - 1;

else
if There is a pending periodic task then

elected := periodic_task;
end

end
end

Sporadic server

Here is the algorithm implemented in Cheddar for the sporadic server.
Algorithm 3: Sporadic server algorithm

Data: Current_Time, current_server_capacity, current_server_wake_time,
server_is_idle, server_capacity, server_period

Result: elected: a task
begin

/* Refill the server’s capacity and put it back into idle mode */
if Current_Time = current_server_wake_time then

current_server_capacity := server_capacity;
server_is_idle := True;

end
/* Election */
if current_server_capacity > 0 and there is a pending aperiodic task then

elected := aperiodic_task;
current_server_capacity := current_server_capacity - 1;
if server_is_idle = True then

server_is_idle := False;
current_server_wake_time := Current_Time + server_period;

end
else

if There is a pending periodic task then
elected := periodic_task;

end
end

end

14 14

Implementation • February 28, 2014

2.4 Testing

In this section we will focus on the test results of the previous algorithms in Cheddar. Firstly,
the result of the polling server, then the deferrable server and finally the sporadic server.

Polling server

Here are the test result for the polling server (screen captures from Cheddar).

Figure 9: First polling server test

The figure 9 is the test result for the polling server with tasks set from the figure 1.

The figure 10 is the test result for the polling server with tasks set from the figure 2.

15 15

Implementation • February 28, 2014

Figure 10: Second polling server test

16 16

Implementation • February 28, 2014

Deferrable server

Here are the test result for the deferrable server (screen captures from Cheddar).

Figure 11: First deferrable server test

The figure 11 is the test result for the polling server with tasks set from the figure 3.

Figure 12: Second deferrable server test

The figure 12 is the test result for the polling server with tasks set from the figure 4.

17 17

Implementation • February 28, 2014

Sporadic server

Here are the test result for the sporadic server (screen captures from Cheddar).

Figure 13: First sporadic server test

The figure 13 is the test result for the polling server with tasks set from the figure 5.

Figure 14: Second sporadic server test

The figure 14 is the test result for the polling server with tasks set from the figure 6.

18 18

Implementation • February 28, 2014

We can see that all of the above tests were conclusive and behaved as expected (see figures
in section 1 Aperiodic servers). However, as the implementation for the priority exchange server
is still incomplete, there is no test available.

19 19

Scheduling methods for aperiodic tasks • February 28, 2014

Conclusion

This paper’s objective was to do a bibliographic research of the different aperiodic servers and
then to implement different them in the Cheddar software. We have found four different aperiodic
servers, the polling server, the deferrable server, the sporadic server and the priority exchange
server. All but the priority exchange server were actually implemented and tested in Cheddar.

Even though the priority exchange server is not implemented in Cheddar, the server’s behavior
has been defined as well as the test set (XML file).

20 20

Scheduling methods for aperiodic tasks • February 28, 2014

References

[1] F. Cottet, J. Delacroix, C. Kaiser, Z. Mammeri.
Ordonnancement temps reel.
Hermes Science publication.

[2] B. Sprunt, L. Sha, J. Lehoczky
Aperiodic Taks Scheduling for Hard-Real-Time Systems. Journal of Real time system.June
1989, Volume 1, Issue 1, pp 27-60.

[3] A. Linard.
Partie 5: Algorithmes pour les taches aperiodiques
Support de cours sur l’ordonnancement Temps Reel

[4] F. Singhoff, J. Legrand, L. Nana, L. Marcé.
Cheddar : a Flexible Real Time Scheduling Framework.
ACM SIGAda Ada Letters, volume 24, number 4, pages 1-8. Edited by ACM Press, New
York, USA. December 2004, ISSN:1094-3641.

[5] C. Fotsing, F. Singhoff, A. Plantec, V. Gaudel, S. Rubini, S. Li, H. Nam Tran, L. Lemarc-
hand, P. Dissaux, J Legrand.
Cheddar Architecture Description Language.
January 23, 2014. Lab-STICC technical report.

21 21

	Introduction
	Aperiodic servers
	Polling server
	Deferrable server
	Sporadic server
	Priority exchange server

	Implementation
	Cheddar
	Test sets
	Algorithms
	Testing

	Conclusion
	Bibliography

