
Extending Schedulability Tests of Tree-Shaped
Transactions for TDMA Radio Protocols

Shuai Li∗†, Frank Singhoff†, Stéphane Rubini†, Michel Bourdellès∗
∗Thales Communications & Security, 4 av. des Louvresses, 92622 Gennevilliers, France

∗Email: {first-name}.{last-name}@fr.thalesgroup.com
†Lab-STICC/UMR 6285, UBO, UEB, 20 av. Le Gorgeu, 29200 Brest, France

†Email: {last-name}@univ-brest.fr

Abstract—In this article, a schedulability test is proposed
for tree-shaped transactions with non-immediate tasks. A tree-
shaped transaction is a group of precedence dependent tasks,
partitioned on different processors, which may release several
other tasks upon completion. When there are non-immediate
tasks, tasks are not necessarily released immediately upon their
predecessor’s completion. The schedulability test we propose is
based on an existing test that does not handle non-immediate
tasks directly. Simulation results show that tighter response time
upper-bounds can be accessed when effects of non-immediateness
are considered. Our schedulability test is motivated by real
industrial TDMA systems developed at Thales, and experimental
results show it provides less pessimistic schedulability results
compared to current methods used by Thales system engineers.

I. INTRODUCTION

In this article we propose a schedulability test, called
WCDOPS+ NIM, for tree-shaped transactions with non-
immediate tasks. A tree-shaped transaction is a group of tasks
that are related by precedence dependencies. This kind of
transaction considers that a task can release one or several
other tasks, and that a task can only have one predecessor
task. In this article, these transactions may include non-
immediate tasks. We call non-immediate tasks, tasks that are
not necessarily released immediately after their predecessor
completion time. Non-immediateness in task releases changes
how combination of tasks can interfere and how task Worst
Case Response Times (WCRTs) should be computed. WC-
DOPS+ NIM is an adaptation of WCDOPS+ [14], a holistic
schedulability test for tree-shaped transactions that does not
handle non-immediate tasks directly.

Like previous works on holistic schedulability tests applied
to real systems [11], WCDOPS+ NIM is motivated by in-
dustrial TDMA Software Radio Protocols (TDMA SRP) [7]
developed at Thales. A SRP is a software that implements a
communication protocol (like TDMA) embedded in a radio
station. These radio stations communicate in a mobile ad-hoc
wireless network.

A TDMA SRP is a time-triggered [5] system because it has
tasks released in time due to the nature of the TDMA protocol.
Furthermore, task parameters depend on the TDMA protocol.
A TDMA SRP is also an event-triggered [5] system due to
tasks handling data/control flow in the radio protocol.

Numerous works [9] have been done previously to analyze
schedulability of TDMA systems, but they only handle the

time-triggered aspect of such systems, and they do not consider
task dependencies (e.g. shared resources). In our approach,
we specify a TDMA SRP with the transaction model [16]
and consider schedulability of such systems as a fixed-priority
schedulability analysis problem. Indeed, in a transaction model
both tasks released by other tasks (event-triggered) [13],
[14], and tasks released in time (time-triggered) [16], can be
modeled.

The rest of the article is organized as follows. Section
II compares our work to existing schedulability tests for
transactions. We then expose our system model and basic
concepts in Section III. Section IV presents a TDMA SRP
and illustrates issues when applying WCDOPS+ to such a
system. Our test is then explained in Section V. The test is
evaluated in Section VI by simulation, complexity discussion,
and application to a real TDMA SRP. Finally we conclude
with future works.

II. RELATED WORK

Since the seminal processor utilization based [8] and re-
sponse time based [3] schedulability tests for periodic tasks
was proposed, the periodic task model has been extended with
offset and jitter and new tests have been proposed.

In [16] the authors introduce the transaction model and
a response time based schedulability test. The test uses a
holistic approach to compute an upper-bound of the end-to-
end response time between communicating tasks. The authors
in [16] apply their test to a TDMA system, where tasks are
released at different times. Although precedence dependencies
between tasks of a same transaction are implicitly modeled,
offsets and jitters are static, thus precedence dependencies
aren’t fully specified [14].

In [12] the authors generalize the work in [16] for systems
where task offset, jitter and deadline may be higher than their
period. In this case, several instances of tasks in a transaction
may interfere. The authors also introduce dynamic offset and
jitter to fully model precedence dependency between tasks.
Their test, called WCDO, computes an upper-bound to the
WCRT of a task.

In [13] the authors of WCDO compute tighter upper-
bounds by exploiting precedence dependencies between tasks.
They notice that there exists execution conflicts, (i.e. conflicts

1



between tasks that can interfere together) and then propose a
new test called WCDOPS to encompass this issue.

All previous tests are only applicable to linear transactions
where a task can release one, and only one, other task.
They cannot be applied to our system. The WCDOPS+ test
in [14] adapts the original test for tree-shaped transactions,
where a task can immediately release several other tasks upon
completion. It also reduces further the pessimism of WCDOPS
by observing new execution conflicts between tasks.

WCDOPS+ is extended in [10] for time partitioned systems
and in [4] for graph-shaped transactions. The authors in [2]
propose relative offsets and jitters to compute lower response
time upper-bounds for tree-shaped transactions.

Our WCDOPS+ NIM test is an adaptation of WCDOPS+.
Unlike existing extensions of WCDOPS+, our test focuses on
non-immediate tasks. Non-immediate tasks introduce new exe-
cution conflicts and thus modifies the way jitters, interference,
and thus response times should be computed.

III. SYSTEM MODEL AND BASIC CONCEPTS

Let us first expose our system model and some basic
concepts from schedulability tests.

A. System Model

The studied system has several tasks that are allocated
on processors. Once allocated on a processor, a task does
not migrate to other processors. Each processor is scheduled
according to a preemptive fixed-priority (FP) policy. We as-
sume that the processors are accurate enough to neglect the
effects of jittery coarse-grain clocks. Tasks may communicate
either directly or using communication buses. Messages on
communication buses are scheduled according to a preemptive
FP policy. When tasks use a shared resource, we assume it is
protected by a protocol [15] that makes it possible to bound
the time a task is blocked.

The system is modeled with tree-shaped transactions (de-
noted Γi) that group several tasks (denoted τij). A transaction
is released by a periodic event that occurs every Ti units of
time. A particular instance of a transaction is called a job.
When a tree-shaped transaction is released, an unique root
task is released. The root task will lead to the release of other
tasks, upon completion time. The root task is denoted τi1.

A job of a task in a transaction is released after the event
that releases the job of the transaction; if the event that releases
the pth job of Γi occurs at t0, then the pth jobs of its tasks are
released at or after t0. Each task is defined by the following
parameters: Cij is the Worst Case Execution Time (WCET).
Cb

ij is the Best Case Execution Time (BCET). Oij is the offset,
i.e. the pth job of τij is released at earliest Oij units of time
after t0. Jij is the maximum jitter, i.e. the pth job of τij is
released in [t0+Oij ; t0+Oij+Jij ]. Dij is the global deadline
(relative to t0) [12], i.e. the WCRT of the pth job of τij must
be lower or equal to Dij . Bij is the maximum shared resource
blocking time [15]. prio(τij) is the fixed priority of τij . Finally
proc(τij) is the processor on which τij is allocated on. A
transaction can have tasks allocated on different processors.

We want to compute an upper-bound of the WCRT of a task
τij , denoted Rw

ij . Similarly, a task’s best case response time
is denoted Rb

ij . In this article, Rw
ij and Rb

ij are expressed as
values relative to the release time of Γi.

Tasks in a transaction are related by precedence dependen-
cies. A precedence dependency between two tasks, denoted
τip ≺ τij , is a constraint that means that τip must complete
execution before τij can be released.

A task τij , of a tree-shaped transaction, is said to have
one direct predecessor, denoted pred(τij), and a set of direct
successors, denoted succ(τij). A task τix is pred(τij) (resp.
in succ(τij)) if there is no task τiy such that τix ≺ τiy ≺ τij
(resp. τij ≺ τiy ≺ τix). For the root task, pred(τi1) is
undefined.

Direct predecessors and successors may be non-immediate:
Definition 1 (Non-Immediateness): A task τix and its direct

successor task τiy are said to be non-immediate tasks if τix ≺
τiy ∧ Oiy > Oix + Cb

ix. Task τix is called a non-immediate
predecessor and τiy a non-immediate successor.

When analyzing a particular task τab, the set hpi(τab) is
the set of tasks in transaction Γi with a priority higher than
or equal to prio(τab) and allocated on the same processor as
τab. A respective definition is given for lower priority tasks
lpi(τab).

For readability issues, when analyzing τab we will some-
times note hpi(τab) by hpi, and similarly for any other
notation that has the τab parameter.

B. Basic Concepts

Busy period [6]. A τab busy period is the time interval
during which the processor is busy executing tasks in hpi and
τab. The length of a τab busy period is denoted w.

Critical instant [16]. The time at which a τab busy period
starts, is called the critical instant, denoted tc.

Worst case scenario [12]. In [12] the authors show that
the maximum interference from a transaction Γi to a τab busy
period occurs when the release of Γi is phased such that some
task τik ∈ hpi is released at tc after having experienced its
maximum release jitter Jik. We say that τik starts the τab
busy period and we created a (worst case) scenario (candidate).
Jobs of tasks before/at tc must experience enough jitter to be
released at tc and jobs of tasks after tc must not experience
jitter.

Transaction phasing [12]. When τik starts the τab busy
period, the phasing of jobs of Γi can be determined. Fig. 1
shows parameters of the phasing of jobs of Γi.

p=p
0,ijk

=-1 p=0 p=1Ti

Oik

Oij Oij O ij

tc

Jik
J ij

t

ijk

Fig. 1. Transaction Phasing

2



A job number p is assigned to a job of Γi according to the
job’s release time. Jobs p ≤ 0 are released before or at tc and
jobs p > 0 are released after tc. For a particular task τij ∈ Γi,
the first job after tc (p = 1) is released at φijk [12]:

φijk = Ti +Oij − (Oik + Jik) mod Ti (1)

The first pending job of τij at tc is numbered p0,ijk [12]:

p0,ijk = 1−
⌊
Jij + φijk

Ti

⌋
(2)

Execution conflicts [13]. When analyzing a task τab, not all
tasks in hpi are eligible to execute within the same τab busy
period. This is called an execution conflict. Execution conflicts
are due to priority schemes [13]. For example consider τij ≺
τij+1 ≺ τij+2 with τij+2, τij ∈ hpi and τij+1 ∈ lpi. Tasks τij
and τij+2 cannot execute within the same τab busy period. To
solve execution conflicts, some tasks are grouped into sets (e.g.
tasks that must all execute within a same τab busy period).

Holistic approach [16], [12]. Tests in [12], [13], [14]
are based on the holistic approach proposed in [16]. In this
approach, the system starts in an initial state where task
parameters are set according to precedence dependencies [12]
τip ≺ τij :

Oij = Rb
ip (3)

Rb
ij = Oij + Cb

ij (4)

Jij = Rw
ip −Oij (5)

Rw
ip = Oip + Cw

ip (6)

WCRTs (Rw
ij) are then updated and they may increase

jitters. Since jitters and WCRTs are dependent, the holistic
approach algorithm is iterative: response times and jitters are
updated until the system comes to a stable state where no
values are modified.

IV. APPLICABILITY OF WCDOPS+ ON A TDMA SRP
In this section we introduce TDMA SRPs, our motivational

system. We show how an example of such system is modeled
with a tree-shaped transaction, with non-immediate tasks.
Then we try to apply directly the original WCDOPS+ test
to the example and discuss the resulting analysis.

A. TDMA Software Radio Protocol

From a system point of view, a SRP is divided into
several layers, according to the OSI model for communication
systems. In the layers, tasks implement the radio protocol.

Tasks implementing a TDMA protocol are constrained by
a TDMA Frame. A TDMA Frame is divided into several time
slots of different types, durations, and modes. The duration
of a TDMA Frame is the sum of durations of its slots. A
TDMA Configuration defines the combination of slots (type
and mode) in a TDMA Frame. We assume to analyze a
particular TDMA Configuration.

Fig. 2 shows an example of tasks in two layers L1 and L2,
and a TDMA Frame with two slots.

Fig. 2. TDMA SRP Example: Black circles are high-priority tasks; Gray
circles are mid-priority tasks; White are low-priority tasks; ”IO” are input-
output tasks; ”PR” are processing tasks; ”MGT” is a management task; Slots
have a duration of 4; Slot ”1: (S, Rx)” is of type Service (S), mode Reception
(Rx); Slot ”2: (T, Tx)” is of type Traffic (T), mode Transmission (Tx)

In Fig. 2, transaction Γ1 is used to model tasks constrained
by the TDMA Frame. Clearly Γ1 is a tree-shaped transaction.
Task IO1 is released at slot 1. IO1 then leads to the releases of
other tasks. Task PR22 cannot be released earlier than slot 2.
It can be released only if PR21 has finished execution, because
of some data dependency. IO tasks have lower priorities than
processing tasks so input-output operations won’t preempt
processing operations. Transaction Γ2 has a single MGT task
that is released periodically. Generally this kind of task has a
period greater or equal to the TDMA Frame duration, and it
must not be delayed by more than a TDMA Frame duration.
For this reason, MGT has a priority higher than IO tasks, to
ensure that MGT won’t be preempted too long after its release.

B. Applying WCDOPS+ Directly

Let us apply WCDOPS+ directly to the system in Fig. 2. We
assume that each task of Γi has a WCET of 1. Then we have
PR22 a non-immediate successor of PR21, because PR22 is
released at earliest at t = 4 and PR21 can complete execution
as early as t = 3.

If WCDOPS+ is applied directly for the analysis of MGT,
since non-immediateness is not handled by WCDOPS+, the
test considers that PR22 can only execute with, at most, PR1
and PR21 in the same MGT busy period. This is not true as
shown by one possible schedule in Fig. 3. If, for example,
PR3 has a WCET equal to 2 instead, the interference of Γ1

to MGT is underestimated.

0 8

IO1 PR1 PR21 IO2 PR3 PR4 PR22 MGT

MGT busy period

Fig. 3. PR3, PR4, and PR22 in same MGT busy period

A possible solution to better identify combinations of tasks
that can interfere, is to model the non-immediateness between

3



two tasks by ghost intermediate tasks. The concept of ghost
tasks is introduced in [14], while the concept of intermediate
tasks is proposed in [1]. A ghost intermediate task can be
defined as:

Definition 2: A ghost intermediate task τixy between a task
τix and its non-immediate direct successor τiy (τix ≺ τiy) is
one that is allocated alone on an unique processor. It is defined
as follows: Cixy = Cb

ixy = Oiy − (Oix+Cb
ix); Oixy = Oix+

Cb
ix; Jixy = Rw

ix −Oixy; Dixy = ∞; Bixy = 0; prio(τixy) =
1; proc(τixy) is unique. Precedence dependency τix ≺ τiy is
replaced by τix ≺ τixy ≺ τiy .

Adding ghost intermediate tasks introduces pessimism to
WCRTs computation. For example if a ghost intermediate
tasks is added between PR21 and PR22, any increase in Rw

PR21

will increase JPR22 and thus Rw
PR22. This is not always the

case, as shown by a possible schedule in Fig. 4, so Rw
PR22

can be overestimated.

OPR22

MGT IO1 PR1 PR22

0 5

PR21

R
w
PR21

Fig. 4. Rw
PR21 increases due to MGT preempting IO1 but JPR22 does not

increase. (CMGT = 1)

Furthermore, with a ghost intermediate task, the test con-
siders that PR3 and PR4 can interfere PR22 even if PR22
experiences jitter, since IO2 is allowed to execute during the
execution of the ghost intermediate task on another proces-
sor. Then both JPR22 and interference from PR3 and PR4,
contribute to Rw

PR22. This is not possible as shown by the
schedule in Fig 5, so Rw

PR22 can again be overestimated.

MGT IO1 PR1 PR21 PR22 IO2 PR3 PR4

R
w
PR21

OPR22 JPR22
0 11

PR22 busy period

Fig. 5. PR22 experiences jitter, due to increase in Rw
PR21, but PR3 and PR4

cannot interfere PR22. (CMGT = 4)

C. Conclusion on Applicability

To conclude this section, two problems are observed when
applying WCDOPS+ to our TDMA SRP modeled with trans-
actions with non-immediate tasks. First, if applied directly,
tasks interference may be underestimated. Second, by model-
ing non-immediate tasks with ghost intermediate tasks, jitter
and task interference can both be overestimated. In conclusion
both problems lead to WCRTs that may be over or underesti-
mated. In the following section we show how our test proposes
to solve these problems by considering the effects of non-
immediateness directly.

V. WCDOPS+ NIM

WCDOPS+ NIM adapts the original feasibility test by
considering the effects of non-immediateness.

A. Overview of the Analysis

Fig. 6 gives an overview of the WCDOPS+ NIM algorithm
for the analysis of τab during an iteration of the holistic
algorithm. The approach is inherited from [16], [12], [14].

Fig. 6. WCDOPS+ NIM Overview: Circles indicate key operations

Some task sets are first defined to help the analysis of
τab (Op0). The idea is to compute the WCRT of τab for
each scenario where a τac starts the τab busy period (Op1).
Within a scenario, the WCRT of each job pab of τab in the
τab busy period is computed. The length of the busy period
w can be estimated [12]. To compute the WCRT of pab of
τab, interference from transactions in the system (Op2) is
computed. The WCRT of τab is then the maximum of WCRTs
of each job pab of each scenario (Op3).

Once the WCRT of each task τab, in the system, is com-
puted, jitters are updated. Convergence is then checked and if
any values are modified, we go on to the next iteration of the
holistic analysis.

The algorithm has several key operations. In the following
sections each key operation in Fig. 6 is explained.

B. (Op0) Task Sets and Execution Conflicts

Op0 consists in defining some task sets to help the analysis
of τab when resolving execution conflicts.

Two sets of tasks are defined in [14]. An H segment is a set
of tasks that must all execute within a same τab busy period.
Two tasks in hpi belong to the same H segment if there is
no other task that is not in hpi that precedes one but not the
other. An H section is a set of tasks that may execute in the
same τab busy period. Two tasks in hpi belong to the same H
section if there is no other task in lpi that precedes one but
not the other.

We now adapt these sets. Let us first integrate the definition
of non-immediateness (Definition 1) in the IM function in

4



Algorithm 1. This function checks if the successor τij of a
task τip is immediate.

Algorithm 1 Immediate Function
1: function IM(τip, τij )
2: return τip = undefined ∨Oij > Oip + Cip ∨ IS IMMEDIATE(τij)
3: end function

IS IMMEDIATE(τij) returns true if we decide to make
IM(τip, τij) always return true. Otherwise it returns false.
Without loose of generality, this will simplify explanations
of algorithms later in this article.

Let us re-define an H segment by modifying its conditions:
there is also no non-immediate predecessor that precedes one
of the task but not the other, and there is no non-immediate
predecessor that is a direct predecessor of both tasks. To
formally re-define an H segment, we use some notations from
[14]. Γij is a sub-transaction and is the set of all tasks, in
Γij , preceding τij and τij itself. Γij∆Γik is the symmetric
difference between two sub-transactions. Formally, the new
definition of an H segment is then:

Hseg
ij (τab) = {τik | τik ∈ hpi(τab)∧

(¬∃τil ∈ Γij∆Γik | τil /∈ hpi(τab)

∨ ¬IM(pred(τil), τil))} (7)

The definition of an H section does not need any modifica-
tion since a non-immediate successor may belong to the same
busy period as its predecessor (both in hpi).

Let us consider again the system in Fig. 2, assuming MGT
is under analysis. Sets (PR1, PR21), (PR3, PR4), and (PR22)
are H segments. Set (PR1, PR21, PR22) is an H section.

C. (Op1) Worst Case Scenario

Op1 consists in creating a scenario where τik ∈ Γi (resp.
τac ∈ Γa) starts the τab busy period at tc.

In [14], tasks in Γi that may start the busy period are in a
set XPi(τab), which is the set of tasks that come first in their
respective H segments.

We re-define XPi: a set that contains tasks in hpi whose
predecessors are not in hpi but also tasks in hpi that are non-
immediate successors.

XPi(τab) = {τif ∈ hpi(τab) |pred(τif ) /∈ hpi(τab)∨
¬IM(pred(τif ), τif )} (8)

For example in Fig. 2, PR1, PR22, PR3 and PR4 are in
XPi(MGT).

Let us now assume that a task τik ∈ XPi starts a τab busy
period. If τik is not an immediate successor then the following
theorem applies if τik starts the τab busy period.

Theorem 1: Let τik be a task in XPi that starts a τab busy
period. If τik is a non-immediate successor, and pred(τik) ∈
hpi, then τik must not experience jitter to be released at tc. If
pred(τik) /∈ hpi, the scenario where τik experiences maximum
jitter to be released at tc is also analyzed.

Proof: We assume τik ∈ XPi is a non-immediate succes-
sor that starts the τab busy period. If τik experiences jitter in a
scenario, then it means that the response time of pred(τik) is
greater than the offset of τik. τik is then released immediately
after pred(τik) completes execution. If pred(τik) ∈ hpi(τab)
then, according to Lemma 5-1 in [13], τik cannot start the busy
period, which contradicts our assumption. The case where τik
experiences its maximum jitter will be analyzed in the scenario
where the H segment of pred(τik) starts the τab busy period. If
pred(τik) /∈ hpi(τab) then there is no predecessor H segment
that may start the busy period with τik experiencing jitter.
This is why, in this case, the scenario where τik starts the
busy period, after having experienced Jik, is also analyzed.

To create a scenario where τij is released at tc without
experiencing jitter, Jij is set to 0. This is what we call jitter
canceling. In this case, we say that Jij is canceled. To integrate
jitter canceling in the schedulability test, whenever we loop
through τik tasks in XPi to create scenarios, we memorize
the original value of Jik, set Jik to 0, compute interference
for the scenario, and afterwards reset Jik to the memorized
value. We also create the scenario where Jik is not canceled
if pred(τik) /∈ hpi, so interference for both scenarios can be
compared.

D. (Op2) Worst Case Interference

Op2 consists in computing the interference from transac-
tions to job pab of τab.

Like WCDOPS+, our test computes two kinds of interfer-
ence for a transaction: blocking and non-blocking [14]. The
existence of blocking interference is due to execution conflicts.
Only one blocking interference from any transaction in the
system, can contribute to the τab busy period. If a transaction’s
blocking interference is not chosen to contribute, then its non-
blocking interference contributes to the τab busy period.

In the following first two sections, we show how to compute
interference of jobs of a single transaction Γi before/at tc,
then jobs after tc. In these sections, it is assumed that task τik
from XPi starts the τab busy period, of length w, at tc = 0.
Afterwards we show how to compute the total interference:
interference from Γa and from all other transactions Γi ̸= Γa.

1) Jobs before and at tc (p ≤ 0): The interference of
jobs p ≤ 0 are computed with three functions in [14]: (F1)
Compare/sum interference of each job p ≤ 0 of Γi; (F2)
Compute interference of a particular job p of Γi; (F3) Compute
interference of a particular task of job p of Γi. In the following
paragraphs we modify these three functions for non-immediate
tasks.

a) (F1) TransactionInterference: Interference
from jobs before/at tc is computed by the
TransactionInterference [14] function. This
function returns a transaction’s blocking and non-blocking
interference. It loops through each pending job p of Γi

before/at tc that may interfere. Assuming tasks are ordered by
increasing offsets in Γi, the first pending job of Γi that may
interfere is the first pending job of its last task’s H segment:
pseg0,iNk(τab) [14] computed by Equation 2 applied to the first

5



task of Hseg
iN , with τiN the last task of Γi. Algorithm 2 shows

our modification of TransactionInterference.

Algorithm 2 TransactionInterference Function
1: function TRANSACTIONINTERFERENCE(τab, τik, w)
2: Add ghost root task τi0 as predecessor to τi1
3:
4: for p in pseg

0,iNk(τab)..0 do
5: for τij ∈ Γi do
6: if τij ∈ hpi(τab) ∧ ¬IM(pred(τij), τij) ∧ (φijk + (p − 1) ×

Ti) < 0 then
7: Make IS IMMEDIATE(τij ) return true
8: end if
9: end for

10:
11: [jobI, jobDelta] ← BranchInterference(τab, τik, τi0, w, p)
12: transI NoB ← transI NoB + jobI
13: transDelta ← max(transDelta, jobDelta)
14:
15: for τij ∈ Γi do
16: Make IS IMMEDIATE(τij ) return false
17: end for
18: end for
19:
20: transI B ← transI NoB + transDelta
21: return [transI NoB, transI B]
22: end function

Before computing the interference of job p of Γi, we check
which non-immediate successors τij , at job p, are released
immediately (lines 5 to 9) in the scenario where τik starts
the τab busy period. Checking if a non-immediate successor
τij ∈ hpi is to be considered immediately released by
pred(τij) ∈ hpi also determines to which H segment τij
belongs to in the given scenario: either the H segment of τij
or the H segment of pred(τij). This has an effect on blocking
interference computation.

Theorem 2: A non-immediate successor task τij ∈ hpi is
released immediately by pred(τij), at job p, when τik starts
the τab busy period, if τij is released before tc = 0:

(φijk + (p− 1)× Ti) < 0)

Proof: Let τij ∈ hpi be a non-immediate successor. Value
φijk+(p−1)×Ti is the release time of τij at job p, when τik
starts the τab busy period. If τij is released before tc = 0, τij
needs to have experienced enough jitter to be released at tc
[13]. If τij experiences jitter, then τij is immediately released
by pred(τij).

For example, in Fig. 5, if PR1 starts a busy period after
having experienced JPR1 = 4, PR22 is released at t = −1
and experiences a jitter of 1 to be released at tc. PR22 is thus
released immediately by PR21 and belongs the the same H
segment as PR21.

b) (F2) BranchInterference: To compute the interference
of a particular job p ≤ 0 of Γi, since the transaction is tree-
shaped, the tree is explored by a depth-first search algorithm
in the BranchInterference [14] function. The tree is
explored by branches defined by tasks denoted τiB (our
modified formal definition below). The general idea is to
compute interference of a branch and compare/sum it with
interference from branches that arrive after it in the tree (called
sub-branches SB in the algorithm). Algorithm 3 shows our
modification of BranchInterference.

Algorithm 3 BranchInterference Function
1: function BRANCHINTERFERENCE(τab, τik, τiB , w, p)
2: SB ← succ(τiB)
3: if ∃τim ∈ SB | τim ∈ hpi(τab) ∧ IM(τiB , τim) then
4: S ← {τil ∈ Him(τab) | τiB ≺ τil}
5: sectionI ←

∑
τij∈S

TaskInterference(τab, τik, τij , w, p)

6: SB ← {SB ∪ succ(Hseg
im (τab))} \ {succ(τiB) ∩Hseg

im (τab)}
7: end if
8:
9: if τiB ∈ hpi(τab) then

10: sectionI ← sectionI + TaskInterference(τab, τik, τiB , w, p)
11: end if
12:
13: for τiS ∈ SB do
14: [bI, bD] ← BranchInterference(τab, τik, τiS , w, p)
15: subBranchesI ← subBranchesI + bI
16: subBDelta ← max(subBDelta, bD)
17: end for
18:
19: if τiB ∈ lpi(τab) then
20: branchI ← subBranchesI
21: branchDelta ← max(sectionI - subBranchesI, subBDelta)
22: if ¬IM(pred(τiB), τiB) then
23: branchDelta ← max(branchDelta, 0)
24: end if;
25: else
26: branchI ← max(sectionI, subBranchesI)
27: branchDelta ← max(subBranchesI + subBDelta - branchI, 0)
28: end if
29:
30: return [branchI, branchDelta]
31: end function

In Algorithm 3, the modified definition of a branch-defining
task τiB is:

τiB /∈ hpi ∨ ¬IM(pred(τiB), τiB)

For example, in Fig. 2, IO1, IO2, and PR22 define branches,
when analyzing MGT.

Compared to [14], sub-branches of τiB (SB) can now
contain hpi tasks. For example, in Fig. 2, IO2 and PR22 are
in SB of the branch defined by IO1.

Due to the existence of non-immediate tasks, the exploration
and computation of interference need some modifications on
lines 3, 10, and 22. These modifications model the existence
ghost intermediate task between a task τij and its non-
immediate successor succ(τij), so correct values are returned
by the function.

c) (F3) TaskInterference: When computing interference
of a particular job p ≤ 0 of Γi, each task’s interference is
computed by the TaskInterference function [14]. This
function returns the task’s WCET if it can interfere. A task can
interfere if it is released in [0, w) [12] and if it passes a number
of reduction rules [13] that eliminate execution conflicts.

We add a new reduction rule to the original ones in [14],
according to the following theorem:

Theorem 3: Let τik be a non-immediate successor that starts
the τab busy period at tc, with Jik canceled. A job p of a task
τij ∈ hpi, that precedes τik, does not interfere the τab busy
period if p ≤ pseg0,ikk.

Proof: We assume that τik ∈ XPi is a non-immediate
successor that starts the τab busy period, and Jik is canceled.
Task τik does not experience jitter and is released at tc. If

6



any job, earlier or same as pseg0,ikk, of a task, that precedes τik,
executes in the τab busy period, then the task executes after tc.
If a preceding task executes after tc, then τik is not released
at tc. This contradicts our assumption that τik is released at
tc.

Our new reduction rule is formally defined as:

τij ≺ τik ∧ p < pseg0,ikk ∧ ¬IM(pred(τik), τik) ∧ Jik = 0

For example, in Fig. 3, let us assume PR22 starts a busy
period with JPR22 canceled. PR22 is released at tc so tasks
PR1 and PR21 must have completed execution before tc or
PR22 is not released at tc.

2) Jobs after tc (p > 0): For jobs p > 0, the original test
does not need any modification. Indeed, jobs p > 0 of τij can
only interfere τab if τij belongs to the first H section of Γi,
and the first H segment is not preceded by a task in lpi [14].

If a non-immediate successor τij ∈ hpi, of pred(τij) ∈ hpi,
is in the first H section, we do not need to check if τij belongs
its own H segment or the H segment of pred(τij), because
both H segments belong to the first H section and the rule in
[14], for jobs p > 0, applies.

3) Total interference: In [14] the interference from Γa on a
τab busy period is computed the same way as for Γi, only with
more reduction rules. Thus computation of Γa interference
needs the same kind of modifications as those for Γi (replacing
respectively τaj for τij and τac for τik when necessary).

When computing interference from Γi ̸= Γa to job pab
of τab the upper-bound of the interference is computed as
the maximum interference computed for each scenario τik.
The upper-bound of the non-blocking interference is denoted
W ∗i [14], and the upper-bound of the blocking interference is
expressed as an interference increase, denoted ∆W ∗i [14].

When computing interference from Γa to job pab of τab
the non-blocking interference of Γa (denoted Wac) and the
interference increase (denoted ∆Wac) are computed for a
given τac, and not as upper-bounds [14].

E. (Op3) Worst Case Response Time

Op3 consists in computing the WCRT of τab from the
WCRTs computed for each of its jobs pab in each of the
scenarios τac.

The WCRT of pab of τab [14] is:

Rw
abc(pab) = wabc(pab)− (φabc + (pab − 1)Ta) +Oab

(9)

wabc(pab) = Bab +Wac +
∑
∀i ̸=a

W ∗i + max(∆Wac,∆W ∗i )

(10)

The WCRT of τab is then Rw
ab: maximum Rw

abc(pab) for all
τac that start the τab busy period.

Our modifications introduced to the general algorithm, has a
consequence on the contribution of jitter to a WCRT computed
for a scenario. When we create the scenario τac = τab, if τab

is a non-immediate successor, Jab is canceled. Jab will then
not contribute to the WCRT of τab computed for the scenario
τac = τab. Otherwise the WCRT computed for τac = τab is
overestimated.

VI. EXPERIMENTS AND EVALUATION

WCDOPS+ NIM and WCDOPS+ have been implemented
in the Cheddar scheduling analysis tool1 for our experiments.
In this section, WCDOPS+ NIM is compared to WCDOPS+
by simulation. The complexity of our test is also discussed.
Finally our test is applied to a real TDMA SRP.

A. Comparison to WCDOPS+ by Simulation

1) Simulation Parameters: In order to compare WC-
DOPS+ NIM with WCDOPS+, the tests are applied to ran-
domly generated systems composed of 4 processors and 10
transactions with 10 tasks in each. The systems are gener-
ated according to the same parameters as the WCDOPS+
simulations in [14] so both tests can be compared. Initially
tasks have the same priorities and allocated processors. Both
parameters can vary with a probability of 0.25 to choose
a random priority/processor. Tasks are immediate initially
(offsets set by precedence dependency [12]). When its offset
is set, a task has a probability of nim prob to become
non-immediate (offset increased by a value between 1 and
1000). WCDOPS+ NIM is applied on systems without any
modification. WCDOPS+ is applied with ghost intermediate
tasks to model non-immediateness.

2) Simulation Results: Fig. 7 shows results of two simula-
tions where WCDOPS+ NIM is compared to WCDOPS+. The
CPU utilization varies between 10% and 70%. Like in [14],
due to the nature of the experiment, the simulation becomes
unfeasible for high CPU utilizations (higher than 70% in our
case).

10 20 30 40 50 60 70

CPU Utilization (%)

1

1,1

1,2

1,3

1,4

R
(W

C
D

O
P
S
+

) 
/ 

R
(W

C
D

O
P
S
+

_
N

IM
)

nim_prob = 0.25 nim_prob = 0.5

Fig. 7. Comparison between WCDOPS+ and WCDOPS+ NIM by CPU
Utilization and Offset Increase Probability (nim prob)

From the simulation, we see that results are mainly de-
pendent on the CPU utilization and WCDOPS+ NIM gives
more significant tighter upper-bounds for lower and higher
CPU utilizations. For the highest CPU utilization, WCDOPS+
gives an upper-bound 1.43 higher than WCDOPS+ NIM.

1http://beru.univ-brest.fr/svn/CHEDDAR/

7



B. Complexity

Although WCDOPS+ NIM gives tighter upper-bounds, its
time complexity needs to be discussed. The general algorithm
is pseudo-polynomial, a complexity inherited from [12]. In our
feasibility test, two statements increase the complexity of the
general algorithm: jitter canceling and checking immediate-
ness. Each of these statements is a loop.

Jitter canceling adds a scenario to create, if τik is non-
immediate and pred(τik) /∈ hpi. Let nτ be the number of
tasks, nΓ the number of transactions. The maximum number
of extra scenarios created is (nτ − nΓ)/2 and the complexity
is about O(nτ − nΓ), thus stays linear.

Checking immediateness is done by looping through tasks
of a transaction. It depends on the number of tasks in the
system and so it also stays linear.

In conclusion these statements do not add a significant
increase in time complexity.

C. Experimentation on TDMA SRP

To assess the gain of applying WCDOPS+ NIM on a
TDMA SRP, the test is compared to current practices at Thales,
where the classic test in [3] is applied.

Our case-study is a real TDMA SRP, implemented with
9 POSIX threads, running on a platform with 2 processors
(GPP1 and GPP2), scheduled by the SCHED FIFO scheduler
of Linux (patched RT-Preempt) on both processors. For a
TDMA Frame of 14 slots, the time parameters of pthreads
instances are illustrated in Fig. 8.

Fig. 8. TDMA Frame and Pthreads: Line = Instances of a pthread; Down
arrow = Deadline; Dashed arrow = Precedence; Black = Exec on GPP1; Gray
= Exec on GPP2; 9 pthreads (36 instances) in total; For readability, sizes are
not proportional to time values.

The case-study is modeled with a transaction of 44 tasks,
illustrated in Fig. 92.

Fig. 9. Transaction of TDMA SRP: Processors differentiation by colors

2The model and analysis results can be found at: http://beru.univ-brest.fr/
svn/CHEDDAR/trunk/project examples/wcdops+ nimp/tdma mac/

In average the test in [3] gives a WCRT 5 times higher
than WCDOPS+ NIM. Thus using transactions to model a
TDMA SRP and applying a holistic schedulability test, like
WCDOPS+ NIM, increases schedulability of such systems.

VII. CONCLUSION

In this article we proposed a schedulability test for tree-
shaped transactions with non-immediate tasks. The test, called
WCDOPS+ NIM, is based on WCDOPS+ and is motivated by
TDMA SRPs. Simulation results show that WCDOPS+ gives
upto 1.43 higher WCRT upper-bounds than WCDOPS+ NIM.
Both tests have the same complexity. This work shows that the
effects of non-immediateness must be taken into consideration
when computing the WCRTs of tasks. Applying our test to real
TDMA SRP also shows that out test gives upto 5 times tighter
WCRT upper-bounds compared to WCRTs given by the classic
test [3] used at Thales. In the future, WCDOPS+ NIM will
be integrated in a design process at Thales.

REFERENCES

[1] J. Garcia, J. Gutierrez, and M. Harbour. Schedulability analysis of
distributed hard real-time systems with multiple-event synchronization.
In Proceedings of the 12th Euromicro Conference on Real-Time Systems,
pages 15–24. IEEE Comput. Soc, 2000.

[2] R. Henia and R. Ernst. Improved offset-analysis using multiple timing-
references. In Proc. Conf. Design Automation and Test in Europe 2006,
pages 450–455, Munich, Germany, 2006.

[3] M. Joseph and P. Pandya. Finding response times in a real-time system.
Comput. J., 29(5):390–395, 1986.

[4] J. Kany and S. Madsen. Design optimisation of fault-tolerant event-
triggered embedded systems. Master’s thesis, Tech. Univ. of Denmark,
Lyngby, Denmark, 2007.

[5] H. Kopetz. Event-triggered versus time-triggered real-time systems. In
Operating Systems of the 90s and Beyond, volume 563 of Lecture Notes
in Computer Science, pages 86–101. Springer Berlin Heidelberg, 1991.

[6] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Proc. 11th Real-Time Syst. Symp., pages 201–209, Lake
Buena Vista, USA, 1990.

[7] S. Li, F. Singhoff, S. Rubini, and M. Bourdellès. Applicability of real-
time schedulability analysis on a software radio protocol. ACM SIGAda
Ada Lett., 32(3):81–94, Dec, 2012.

[8] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20(1):46–61, Jan, 1973.

[9] N. Malcolm and W. Zhao. The timed-token protocol for real-time
communications. Comput., 27(1):35–41, Jan. 1994.

[10] S. O. Marinescu, D. Tamas-Selicean, V. Acretoaie, and P. Pop. Timing
analysis of mixed-criticality hard real-time applications implemented on
distributed partitioned architectures. In Proc. 17th Int. Conf. Emerging
Technologies & Factory Automation, pages 1–4, Krakow, Poland, 2012.

[11] S. Mubeen, J. Maki-Turja, and M. Sjodin. Extending offset-based
response-time analysis for mixed messages in controller area network.
In Proceedings of the 18th Conf. on Emerging Technologies & Factory
Automation, Cagliari, Italy, 2013.

[12] J. Palencia and M. Harbour. Schedulability analysis for tasks with static
and dynamic offsets. In Proc. 19th IEEE Real-Time Syst. Symp., pages
26–37, Madrid, Spain, 1998.

[13] J. Palencia and M. Harbour. Exploiting precedence relations in the
schedulability analysis of distributed real-time systems. In Proc. 20th
IEEE Real-Time Syst. Symp., pages 328–339, Phoenix, USA, 1999.

[14] O. Redell. Analysis of tree-shaped transactions in distributed real time
systems. In Proc. 16th Euromicro Conf. Real-Time Syst., pages 239–248,
Catania, Italy, 2004.

[15] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
an approach to real-time synchronization. IEEE Trans. Comput.,
39(9):1175–1185, Sep, 1990.

[16] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems. Microprocessing and Microprogramming, 40(2-
3):117–134, Apr, 1994.

8


