
A Task Model for TDMA Communications:
Application to Software Radio Protocols

Shuai Li∗†, Stéphane Rubini†, Frank Singhoff†, Michel Bourdellès∗
∗Thales Communications & Security, 4 av. des Louvresses, 92622 Gennevilliers, France

∗Email: {first-name}.{last-name}@fr.thalesgroup.com
†Lab-STICC/UMR 6285, UBO, UEB, 20 av. Le Gorgeu, 29200 Brest, France

†Email: {last-name}@univ-brest.fr

Abstract—In this article a new task model is proposed for
scheduling analysis of dependent tasks in radio stations that
embed a TDMA communication protocol. TDMA is a channel
access protocol that allows several stations to communicate in a
same network, by dividing time into several time slots. Tasks han-
dling the TDMA radio protocol are scheduled in a manner to be
compliant with the TDMA configuration: task parameters such
as execution times, deadlines and release times are constrained
by TDMA slots. The periodic task model, commonly used in
scheduling analysis, is inefficient for the accurate specification of
such systems, resulting in pessimistic scheduling analysis results.
To encompass this issue, this article proposes a new task model
called Dependent General Multiframe (DGMF). This model
extends the existing GMF model with precedence dependency
and shared resource synchronization. We show how to perform
scheduling analysis with DGMF by transforming it into a
transaction model and using a schedulability test we proposed.
In this article we experiment on ”software radio protocols” from
Thales Communications & Security, which are representative of
the system we want to analyze. Experimental results show an
improvement of system schedulability using the proposed analysis
technique, compared to existing ones (GMF and periodic tasks).
The new task model thus provides a technique to model and
analyze TDMA systems with less pessimistic results.

I. INTRODUCTION

This article proposes to improve scheduling analysis of
systems with Time Division Multiple Access (TDMA) [2]
communications. In this kind of system, the TDMA com-
munication protocol has an impact on task semantics which
leads to pessimistic scheduling analysis with the periodic task
model [16]. Furthermore, we analyze systems where tasks have
dependencies, which, if not considered, may lead to wrong
scheduling analysis results. To specify more accurately tasks
in such systems, a new task model is proposed: the Depen-
dent General Multiframe (DGMF) model, which extends the
General Multiframe (GMF) [1] model with task dependencies.
This task model is applied to TDMA Software Radio Protocols
(SRP) [19], systems for which the mentioned analysis issues
apply.

An SRP is a software implementing a communication
protocol embedded in radio stations that are part of a (mobile
ad-hoc) wireless network. It is a real-time software that
runs on an execution platform (e.g. operating system and
hardware) and it controls how the radio’s physical equipment
behaves in terms of data transmission/reception over the air.
An SRP is a multi-tasked system with time-constrained tasks

accessing the execution platform’s processors according to
a scheduling policy. Tasks may have dependencies through
precedence dependencies (e.g. communications) and shared
resource synchronizations.

TDMA is a channel access protocol, in which a TDMA
frame is synchronized between all stations. The frame is
divided into several contiguous time slots of different types
and durations. When critical tasks are released by slots,
task scheduling depends on the way the TDMA frame is
configured. As an example, a task released by a slot has its
execution time that depends on the slot’s type, its deadline
that depends on the slot’s duration, and its release time that
depends on the slot’s start time.

Scheduling analysis [23] is a typical technique used to verify
that tasks meet their time constraints. Scheduling analysis
techniques assume that simplified task models are used to
model the analyzed system. The periodic task model [16] is an
example of such simplified task model. In [15], we modeled
and performed scheduling analysis of a TDMA SRP system
with the periodic model. It was shown that this model leads
to pessimistic scheduling analysis results in this context.

In this article a new task model is proposed, to increase
accuracy of scheduling analysis of TDMA oriented systems.
Our model is based on the GMF model. This model was
proposed to improve scheduling analysis of video decoder-
s/encoders where task parameters depend on incoming video
frames. A TDMA SRP’s behavior is similar to this kind of
application. Unfortunately GMF does not allow to specify task
dependencies (i.e. precedence and shared resource) and SRPs
have such kind of constraint. We thus propose a new GMF
model called DGMF, to extend GMF with tasks dependencies.

The rest of the article is organized as follows: in section II,
we present the TDMA SRP system, i.e. our system scope and
assumptions. In section III the DGMF task model is proposed.
Section IV shows how to perform scheduling analysis of
DGMF tasks by transforming them to transactions. In section
V, experimental results show the DGMF to transaction trans-
formation’s correctness, performance, and how it is applied
to a TDMA SRP from Thales. In section VI this article’s
approach is compared to related work. We conclude and
discuss future work in section VII.

1

II. SOFTWARE RADIO PROTOCOL

In this article, we consider SRP embedded in a radio station
which is part of a larger physical system (e.g. helicopter,
vehicular transport). An SRP is a software that implements a
communication protocol. Most of the time, these radio stations
communicate in a mobile ad-hoc wireless network. An SRP
observes events occurring in the network (e.g. stations appear-
ing, disappearing), transmits/receives messages and reroutes
them to other stations when necessary. When a message is
received, the SRP can send it to a user system or an equipment
that may control the physical system in which the SRP is
embedded. We assume that the effects of non-determinism in
wireless networks, on scheduling analysis of a single station,
are negligible.

TDMA is a common communication protocol in SRPs. In
the following sections, we present a TDMA SRP through its
system view and then its software and execution platform view.

A. System View

From a system point of view, a SRP is divided into several
layers. Fig. 1 shows an example of such layers.

Fig. 1. TDMA SRP System View Example

In Fig. 1, the IPCS layer interfaces with the IP stack of
the user system above. The RLC layer handles translation
between IP packets and radio protocol packets. It also re-
routes incoming packets if necessary (e.g. a received packet’s
destination is a neighbor). The RSN layer handles network
topology and address updates (e.g. address of neighbor sta-
tions in the network appearing/disappearing). When an SRP
uses TDMA, the MAC layer handles the TDMA protocol by
preparing/receiving protocol packets for/from the PHY layer
that sends them over the air.

In Fig. 1, control and data flows pass through the different
layers. The flows are constrained by the TDMA frame. A
TDMA frame is divided into several time slots of different
types, durations, and modes. For example in Fig. 1, the TDMA
frame has three kinds of slot: Service (S) for synchroniza-
tion between stations; Broadcast (B) for observation/signaling
of/on the network; Traffic (T) for effective data transmis-
sion/reception. Slots of different types do not have the same
duration (e.g. a B slot is shorter than a S and T slot). Slots can
either be in Tx (transmission), Rx (reception), or Idle mode.

A TDMA configuration defines the combination of slots (type
and mode) in a TDMA frame. A TDMA frame is repeated
after it finishes, with possibly a different configuration. We
assume that in a TDMA configuration, only the slot modes
change from one TDMA frame to the next.

B. Software and Execution Platform

Fig. 2 shows an example of the software and execution
platform architecture of an SRP.

Fig. 2. Software and Execution Platform Architecture Example

From Fig. 2, we see that the layers are implemented by tasks
allocated on processors. The tasks thus handle the flows that
pass through layers. Tasks are scheduled by a fixed priority
preemptive policy. Tasks may have precedence dependency
and used shared resources protected by a protocol [24]. Tasks
that handle the TDMA protocol have hard deadlines and are
constrained by the TDMA frame. For example a task must be
released by a TDMA ”tick” indicating the start of a slot; a
task has an execution time that depends on a specific slot; and
a task must finish before some next slot. These tasks are thus
the ones that interest us for scheduling analysis

III. DEPENDENT GENERAL MULTIFRAME

Dependent General Multiframe (DGMF) is a GMF task
model extended with task precedence dependency and shared
resource synchronization.

GMF is well suited for TDMA SRPs where task parameters
depend on TDMA slots. Indeed a GMF task is a vector
of frames (not to be confused with ”TDMA frame”) swith
different parameters. This task model suits tasks released by
slots of a TDMA frame, having different task parameters
at each slot. However, we have to extend GMF with task
dependencies because TDMA SRPs have such requirements.

In the following sections, a DGMF task is defined. An
example of modeling a TDMA SRP’s tasks with DGMF is
then shown. We finish by discussing about scheduling analysis
for DGMF.

A. DGMF Definitions

A DGMF task Gi is a vector composed of Ni frames F j
i ,

with 1 ≤ j ≤ Ni. Each frame has parameters:
• Ej

i [1] is the Worst Case Execution Time (WCET) of F j
i .

• Dj
i [1] is the relative deadline of F j

i .
• P j

i [1] is min-separation of F j
i , i.e. the minimum time

separating the release of of F j
i and the release of F j+1

i .

2

• [U]ji is a set of (R,S,B) tuples denoting shared resource
critical sections. F j

i allocates resource R after it has run
S time units of its execution time, and then locks the
resource during the next B time units of its execution
time.

• [F q
p]

j
i is a set of predecessor frames, i.e. frames from

any other DGMF task that must finish before F j
i can be

released. A predecessor frame is denoted F q
p . To avoid

communication buffer overflows, F q
p can be in [F q

p]
j
i

only if Gi and Gp have the same DGMF-Period (defined
below).

• prio(F j
i) is the priority of F j

i .
• proc(F j

i) is the processor on which F j
i is allocated on.

For GMF task Gi with Ni frames, we define the DGMF-

Period of Gi as: TGi =
Ni∑
j=1

P j
i

Frames are released cyclically [1]: frames are released in the
order defined by the vector and any released frame F j+k×Ni

i

(k > 0) has parameters equal to frame F j
i . The first frame to

be released by a DGMF task Gi is always the first frame in
its vector, denoted F 1

i .
In the GMF model, time between events was only set

between frames of a same task, through the P j
i parameter.

We introduce another parameter to allow further capturing of
time between events. For example a task can be specified to
be released for the first time only two slots after the beginning
of the TDMA frame. We call r1i , the release time of first
frame F 1

i . We call ri, the release time of Gi and we thus
have ri = r1i . For any F j

i , with j > 1, their release time is:

rji = r1i +
j−1∑
h=1

Ph
i . Finally for any F j

i , we call value rji +Dj
i

the global deadline of F j
i .

A DGMF task set may have the following property:
Property 1 (Unique Predecessor): Let F j

i be a frame of
a task Gi, in a DGMF task set. Let [F q

p]
j
i be the set of

predecessor frames of F j
i . F j−1

i is the previous frame of F j
i

in the vector of Gi, if j > 1. The set of frames that precede F j
i

is the set [F q
p]

j
i and F j−1

i (if j > 1). A DGMF task set is said
to respect the Unique Predecessor property if, for all frames
F j
i , there is at most one frame F y

x , among frames that precede
F j
i , with a global deadline (i.e. ryx+Dy

x) greater than or equal
to the release time of F j

i . Formally the Unique Predecessor
property is defined as:

∃≤1F y
x ∈ pred(F j

i), r
y
x+dyx ≥ max(max

Fh
l ∈pred(F

j
i)
(rhl +Eh

l), r
j
i)

(1)
Where ∃≤1 means ”there exist at most one”, and the set

pred(F j
i) is defined as:

pred(F j
i) =

{
[F q

p]
j
i ∪ {F

j−1
i } if j > 1

[F q
p]

j
i otherwise.

(2)

We assume that TDMA SRPs are modeled with DGMF task
sets having the Unique Predecessor property.

B. DGMF Example

Consider the DGMF task set in Table I, modeling tasks
constrained by a TDMA frame.

TABLE I
DGMF TASK SET

Ej
i Dj

i P j
i [U]ji [F q

p]
j
i

G1; r1 = 0
F 1
1 1 4 1 F 1

2
F 2
1 1 3 1

F 3
1 1 2 6

F 4
1 1 4 4 F 2

2
F 5
1 4 8 8 (R, 1, 3) F 3

2
G2; r2 = 0
F 1
2 1 4 8 FTick

F 2
2 1 4 4

F 3
2 1 4 4

F 4
2 2 4 4 (R, 0, 1)

G3; r3 = 4
F 1
3 1 2 2 F 1

4
F 2
3 1 2 18 F 2

4
G4; r4 = 4
F 1
4 1 2 2 FTick

F 2
4 1 2 18

Tick; rTick = 0
FTick 0 +∞ 20

Frames of G1 and G3 have a priority of 1. Frames of G2

and G4 have a priority of 2. All frames are allocated on CPU1
except F 2

1 , which is allocated on CPU2, and FTick, which is
allocated on CPU3. Task Tick is similar to the idea of the
”ghost root task” introduced in [22]. Its only purpose is to
represent the first TDMA tick that starts the whole TDMA
frame. Task Tick ensures that all tasks constrained by the
TDMA frame are part of the same precedence dependency
graph. Fig. 3 shows an example of a schedule produced by
the task set, over 20 time units. In Fig. 3, there is a TDMA
frame of 1 S slot, 2 B slots, and 3 T slots. G2 is released at S
and T slots. G2 releases G1 upon completion. G4 is released
at B slots. G4 releases G3 upon completion. The release time
parameter ri allows to specify the time between releases of
G2, G4, and the TDMA slots.

C. Applicability of GMF Scheduling Analysis on DGMF

Scheduling analysis techniques exist for independent GMF
tasks. Let us see if they can be applied to DGMF tasks.

In [1] a processor utilization based feasibility test for GMF
tasks is proposed. The test runs in polynomial time and is
restricted to independent tasks running on a uniprocessor
system under a preemptive Earliest Deadline First (EDF)
scheduling policy. In [25] a response time based schedulability
test for GMF tasks is proposed. This test assumes that tasks
are independent and run on a uniprocessor system with a
preemptive FP scheduling policy. Furthermore the authors also
assume the relative deadline of a frame to be smaller than the
release time of the next frame.

Obviously original analysis techniques for GMF tasks can-
not be directly applied to DGMF tasks due to task dependen-
cies. For example in the original tests [1], [25], frames can be

3

0 5 10 15 20

G
1

F
1
1

0 5 10 15 20

G
2

F
2
1

0 5 10 15 20

G
3

F
3
1

0 5 10 15 20

G
4

F
4
1

F
2
2

F
2
3

F
2
4

F
1
2

F
1
3

S B B T T T

TDMA Frame

F
3
2

F
4
2

0 5 10 15 20

Tick

0 5 10 15 20

Fig. 3. DGMF Tasks in a TDMA SRP: Up arrows are frame releases;
Down arrows are frame relative deadlines; Dashed arrows are precedence
dependencies; Curved arrows are shared resource allocations; Crossed frame
executes on different processor

released simultaneously as long as they belong to different
GMF tasks. This no longer holds true when precedence
dependencies are defined between frames.

The following section shows how the transaction task model
is used to analyze schedulability of DGMF tasks.

IV. DGMF SCHEDULING ANALYSIS USING
TRANSACTIONS

The transaction model [27] was originally proposed to
model distributed systems and compute end-to-end response
times. This model allows specification of precedence depen-
dency and shared resource synchronization.

In [21] a GMF to transaction transformation algorithm
is proposed. Authors in [21] argue that scheduling analysis
techniques for transactions can be applied to GMF tasks. We
propose to use transactions, and their associated scheduling
analysis techniques, to perform scheduling analysis of DGMF
tasks. The transformation algorithm in [21] is thus extended
for DGMF.

In the following sections the transaction model is defined.
We then show how to transform DGMF tasks to transactions.
Afterwards, a typical transformation example is presented.
From this example we choose a scheduling analysis technique
applicable to transactions resulting from the transformation.

A. Transaction Definitions

From [20], a transaction (denoted Γi) is a group of tasks
(denoted τij). A transaction is released by a periodic event
that occurs every Ti. A particular instance of a transaction is

called a job. In this article, we call ri the release time of a
transaction Γi, i.e. of the first job of Γi.

A job of a task in a transaction is released after/by the event
that releases the job of the transaction. If the event that releases
the pth job of Γi occurs at t0, then the pth jobs of its tasks
are released after/at t0. Each task has parameters:
• Cj

i is the WCET. We assume the Best Case Execution
Time (BCET) of a task is equal to its WCET.

• Oj
i is the offset, i.e. τ ji is released at least Oj

i units of
time after t0. Value rji = ri + Oj

i is called the release
time of τ ji .

• dji is the relative deadline, i.e. the response time of τ ji
must be smaller than Oj

i +dji . Value Oj
i +dji is called the

global deadline [20] of τ ji . Value t0 +Oj
i + dji is called

the absolute deadline of a job of τ ji .
• Jj

i is the maximum jitter, i.e. τ ji is released in [t0 +
Oj

i ; t0 +Oj
i + Jj

i].
• Bj

i is the maximum shared resource blocking time [24].
• prio(τ ji) is the priority.
• proc(τ ji) is the processor on which τ ji is allocated on.
Tasks in a transaction are related by precedence depen-

dencies [20]. A precedence dependency between two tasks,
denoted τip ≺ τij , is a constraint that means that a job p of
τip must finish before a job p of τij can be released. τip (resp.
τij) is called the predecessor (resp. successor) of τij (resp.
τip).

Tasks may access shared resources in critical sections [24].
In this article, a critical section is denoted (τ,R, S,B) where
τ is the task accessing the resource R, S is the resource
allocation time, and B is the resource blocking time.

B. DGMF To Transaction

The DGMF to transaction transformation aims at expressing
parameters and dependencies in the DGMF model as ones
in the transaction model. The transformation has three major
steps:

1 Independent DGMF to Transaction: Consider DGMF
tasks independent and transform to transactions.

2 Add Shared Resource Synchronizations: Express critical
sections in the resulting transaction set.

3 Add Precedence Dependencies: Model precedence depen-
dencies in transaction model [20].

In the following sections each step is explained in detail. We
will also see that the transformation already starts assessing
schedulability.

1) Independent DGMF to Transaction: Step 1 consists in
transforming each DGMF task to a transaction by considering
DGMF tasks as independent. Algorithm IV-B1.1 shows the
original algorithm proposed by [21], that we extend for DGMF
tasks. The idea behind the algorithm is to transform frames
F j
i of a DGMF task Gi into tasks τ ji of a transaction Γi.

Parameters in the transaction model, like WCET (Cj
i), relative

deadline (dji) and priority (prio(τ ji)), are computed from
parameters Ej

i , Dj
i and prio(F j

i) from the DGMF model.
To transform the min-separation between two frames in the

4

DGMF model, offsets (Oj
i) are used in the transaction model.

The offset of a task τ ji is computed by summing the Ph
i of

frames Fh
i preceding F j

i in the vector of Gi. In our extension
of the transformation, the release time ri of a DGMF task Gi

is transformed into the release time ri of a transaction Γi.

Algorithm IV-B1.1 Independent DGMF to Transaction
1: for each DGMF task Gi do
2: Create transaction Γi

3:

4: Ti ←
Ni∑
j=1

P j
i

5: Γi.ri ← Gi.ri
6:
7: for each F j

i in Gi do
8: Create task τj

i in Γi

9:
10: Cj

i ← Ej
i

11: dj
i ← Dj

i

12: Jj
i ← 0

13: Bj
i ← 0

14: prio(τj
i)← prio(F j

i)

15: proc(τj
i)← proc(F j

i)
16: if j = 1 then
17: Oj

i ← 0
18: else

19: Oj
i ←

j−1∑
h=1

Ph
i

20: end if
21: end for
22: end for

Proof of Algorithm IV-B1.1: Algorithm IV-B1.1 in is
based on the algorithm in [21]. The algorithm is proven by
construction.

2) Add Shared Resource Synchronizations: In Step 2, if a
critical section is defined for a frame, then the task, corre-
sponding to the frame after transformation, must also define
the critical section. If there is a critical section (R,S,B) in
[U]ji , then a critical section (τ ji , R, S,B) must be specified
in the transaction set resulting from Step 1. When all frame
critical sections have been transformed, Bj

i of each τ ji is
computed [24].

Proof of Step 2: Task τ ji is the result of the transforma-
tion of F j

i , thus by construction we must have (τ ji , R, S,B)
if we have (R,S,B) ∈ [U]ji .

3) Add Precedence Dependencies: The goal of Step 3 is
to add precedence dependencies to the transaction set, with
respect to how they are modeled in the transaction model (i.e.
with offsets and jitters [20]). Step 3 is divided into three sub-
steps:

3.a Express Precedence Dependency Constraints: In the
transaction set, express precedence dependency con-
straints from the DGMF set.

3.b Model Precedence Dependency in the Transaction
Model: Modifications of releases and offsets so prece-
dence dependencies in the transaction set are modeled
according to [20].

3.c Reduce Precedence Dependencies: Simplify the transac-
tion set by reducing number of precedence dependency
constraints.

The following paragraphs present each of these sub-steps.

a) Express Precedence Dependency Constraints: We de-
fine two kinds of precedence dependency in the DGMF
model: intra and inter. We call intra dependency a precedence
dependency that is implicitly expressed between frames of a
same DGMF task. Frames of a DGMF task execute in the order
defined by the vector. An inter dependency is a precedence
dependency between frames belonging to different DGMF
tasks.

An intra dependency in the DGMF set is expressed in the
transaction set by adding a precedence dependency between
tasks, representing successive frames, if they are part of a
same transaction resulting from Step 1 (i.e. τ ji ≺ τ j+1

i with
j < Ni). This also ensures that these tasks are part of
the same precedence dependency graph, which is important
for determining the transaction’s characteristics, as we will
see later. Inter dependencies must also be expressed in the
transaction set resulting from Step 1. If a frame F q

p of task
τ qp is in the set of predecessor frames [F q

p]
j
i of task τ ji , then

a precedence dependency τ qp ≺ τ ji is added.
Proof of Step 3.a: By definition frames of Gi are released

in the order defined by the vector of Gi so F j
i precedes

F j+1
i (j < Ni). Task τ ji (resp. τ j+1

i) is the result of the
transformation of F j

i (resp. F j+1
i), thus by construction we

must have τ ji ≺ τ j+1
i . The same proof is given for τ qp ≺ τ ji ,

resulting from the transformation of F q
p ∈ [F q

p]
j
i .

b) Model Precedence Dependency in the Transaction
Model: In the transaction model, precedence dependencies
should be modeled with the method in [20]. This is done
in Step 3.b with three algorithms: (ALG1) Task Release
Time Modification; (ALG2) Transaction Merge; and (ALG3)
Transaction Release Time Modification.

(ALG1) Task Release Time Modification
In ALG1 the release time rji of each task τ ji , in the trans-

action set, is modified according to precedence dependencies.
This enforces that the release time of τ ji is larger than the
latest completion time (rqp + Cq

p) of a predecessor τ qp of τ ji .
Task release times are changed by modifying offsets because
rji = ri +Oj

i , where ri is the release time of Γi. The release
time modification algorithm is shown in Algorithm IV-B3.1.
Since the release time of τ qp may also be modified when the
algorithm runs, release time modifications are made until no
more of them occur. Note that when the offset Oj

i of τ ji
is increased, its relative deadline (dji) is shortened and then
compared to its WCET (Cj

i) to verify if the relative deadline
is sure to be missed.

Proof of Algorithm IV-B3.1: Let us assume τ qp ≺ τ ji . The
earliest release time of τ ji is rji . We remind that it is assumed
that the BCET of τ qp is equal to its WCET. According to [3],
τ qp ≺ τ ji ⇒ rqp + Cq

p ≤ rji is true. The implication is false
only if ¬(rqp + Cq

p ≤ rji) ⇔ rqp + Cq
p > rji . Therefore if we

have τ qp ≺ τ ji then we cannot have rqp + Cq
p > rji . Thus, for

all τ qp ≺ τ ji , rji must be modified to satisfy rqp + Cq
p ≤ rji , if

τ qp ≺ τ ji and rqp +Cq
p > rji . Since rji = ri +Oj

i , the offset Oj
i

is increased to increase rji . Relative deadline dji is relative to

5

Algorithm IV-B3.1 Task Release Time Modification
1: repeat
2: NoChanges ← true
3:
4: for each τq

p ≺ τj
i do

5: if rqp + Cq
p > rji then

6: NoChanges ← false
7:
8: diff ← rqp + Cq

p − rji
9: Oj

i ← Oj
i+ diff

10: dj
i ← dj

i− diff
11: rji ← ri + Oj

i
12:
13: if dj

i < Cj
i then

14: STOP (Deadline Missed)
15: end if
16: end if
17: end for
18: until NoChanges

Oj
i , thus dji must be decreased by the amount Oj

i is increased.

(ALG2) Transaction Merge
Up until now, the transformation algorithm produces sep-

arate transactions even if they contain tasks that have prece-
dence dependencies with other tasks from other transactions.
This does not respect the modeling of precedence dependen-
cies in [20]. Indeed two tasks with a precedence dependency
should be in the same transaction and they should be delayed
by a same event that releases the transaction. Two transactions
are thus ”merged” into one single transaction if there exists a
task in one that has a precedence dependency with a task in
the other:

∃τ qp , τ
j
i | (Γi ̸= Γp) ∧

(
τ qp ≺ τ ji ∨ τ ji ≺ τ qp

)
Algorithm IV-B3.2 will merge transactions two by two until

there is no more transaction to merge.

Algorithm IV-B3.2 Transaction Merge
1: for each τq

p ≺ τj
i do

2: if Γp ̸= Γi then
3: for each task τj

i in Γi do
4: Assign τj

i to Γp

5: end for
6: end if
7: end for

Proof of Algorithm IV-B3.2: We remind that tasks of a
transaction are related by precedence dependencies and a task
in a transaction is released after/by the periodic event that
releases the transaction. Let us consider two tasks τ ji and τ qp ,
with τ qp ≺ τ ji . Task τ ji (resp. τ qp) is originally a frame F j

i

(resp. F q
p). We have F q

p ∈ [F q
p]

j
i ⇒ TGi = TGp . Gi (resp.

Gp) is transformed into Γi (resp. Γp) with period Ti (resp.
Tp). We then have Ti = TGi = TGp = Tp. Thus τ ji and τ qp
are released after/by periodic events of period Ti = Tp. Since
τ qp ≺ τ ji , τ ji is released after τ qp . Thus τ ji is released after the
periodic event after/by which τ qp is released. Therefore τ ji and
τ qp are released after/by the same periodic event, that releases
transaction Γp. Both tasks then belong to Γp.

(ALG3) Transaction Release Time Modification
After merging two transactions into Γm, the offset Oj

m of
a task τ jm (originally denoted τ jo and belonging to Γo) is still
relative to the release time ro of Γo, no matter the precedence
dependencies. In Γm, each offset must thus be set relatively
to rm, the release time of Γm. Release time rm is computed
beforehand. This is done in Algorithm IV-B3.3.

Algorithm IV-B3.3 starts by finding the earliest (minimum)
task release time in a merged transaction Γm (we remind that
Oj

m is still relative to ro at this moment). The earliest task
release time becomes rm. The offset Oj

m of each task τ jm is
then be modified to be relative to rm.

Note that when transactions are merged and all of them have
at least one task released at t = 0, then Algorithm IV-B3.3
produces the same merged transaction. We will see that this is
the case for the transaction resulting from the transformation
of our DGMF task set example (Section III-B), which was
used to model tasks constrained by a TDMA frame.

Algorithm IV-B3.3 Transaction Release Time Modification
1: for each merged transaction Γm do
2: rm ← +∞
3: for each τj

m in Γm, originally in Γo do
4: rm ← min(rm, ro + Oj

m)
5: end for
6: for each τj

m in Γm, originally in Γo do
7: Oj

m ← ro + Oj
m − rm

8: end for
9: end for

Proof of Algorithm IV-B3.3: Let Γm be a merged transac-
tion. Tasks in Γm were originally in Γo. The event that releases
Γm occurs at rm, which must be the earliest release time rjm
of a task τ jm in Γm, otherwise the definition of a transaction is
contradicted. A task τ jm should be released at rjm = ro +Oj

m.
Once rm is computed, when task offsets have not been
modified yet, it is possible to have ro + Oj

m ̸= rm + Oj
m.

If we assign rjm ← rm +Oj
m then τ jm may not be released at

ro+Oj
m. This contradicts the fact that τ jm should be released at

rjm = ro+Oj
m. Therefore Oj

m must be shortened to be relative
to rm: Oj

m ← ro+Oj
m−rm. Since rm = min

τj
m∈Γm

(ro+Oj
m), the

minimum value of ro+Oj
m−rm is 0 and thus the assignment

Oj
m ← ro + Oj

m − rm will never assign a negative value to
Oj

m.
c) Reduce Precedence Dependencies: In Step 3.c, we

notice that the transaction set can be simplified by reducing
the number of precedence dependency constraints. This could
not be done in Step 3.a, before Step 3.b, because we did
not yet know the latest completion time among those of
predecessors of a task. Now that offsets have been modi-
fied, we can reduce some precedence dependencies. Reducing
precedence dependencies has the effect of reducing the number
of predecessors/successors of a task.

Algorithm IV-B3.4 loops through tasks with more than 1
predecessor. For a specific task τ ji , the algorithm reduces
predecessors τ qi that have a global deadline (i.e. Oq

i + dqi)
smaller than the offset Oj

i of τ ji .

6

Algorithm IV-B3.4 Reduce Precedence Dependencies
1: for each task τj

i with multiple predecessors do
2: for each τq

i ≺ τj
i do

3: if Oq
i + dq

i < Oj
i then

4: Remove τq
i ≺ τj

i
5: end if
6: if τj

i has only one predecessor then
7: break
8: end if
9: end for

10: end for

Proof of Algorithm IV-B3.4: Let us assume τ qi ≺ τ ji and
Oq

i + dqi < Oj
i . By definition t0 + Oj

i is the earliest release
time of a job of τ ji , corresponding to the job of Γi released at
t0. For the job of Γi released at t0, the absolute deadline of a
corresponding job of τ qi is t0 +Oq

i + dqi . The job of τ qi must
finish before t0+Oq

i+dqi and τ ji is released at earliest after t0+
Oq

i +dqi since Oq
i +dqi < Oj

i . Thus the precedence dependency
constraint τ qi ≺ τ ji is already encoded in the relative deadline
dqi of τ qi . Tasks in a transaction are related by precedence
dependencies so τ ji must have at least one predecessor.

C. Transformation Example

The DGMF task set in section III-B is transformed into a
transaction Γ1 of period T1 = 20. Tasks of transaction Γ1

are defined with parameters shown in Table II (PCP [24] is
assumed for computation of Bj

i). Tasks are all allocated on
CPU1 except τ21 , which is allocated on CPU2. Fig. 4 shows
the precedence dependency graph of tasks. An example of a
schedule over 20 time units is shown in Fig. 5.

TABLE II
TRANSACTION FROM DGMF TRANSFORMATION

Cj
i Oj

i dji Jj
i Bj

i prio(τji)
τ11 1 1 3 0 0 1
τ21 1 2 2 0 0 1
τ31 1 3 1 0 0 1
τ41 1 9 3 0 0 1
τ51 4 13 7 0 0 1
τ12 1 0 4 0 0 2
τ22 1 8 4 0 0 2
τ32 1 12 4 0 0 2
τ42 2 16 4 0 3 2
τ13 1 5 1 0 0 1
τ23 1 7 1 0 0 1
τ14 1 4 2 0 0 2
τ24 1 6 2 0 0 2
Tick 0 0 +∞ 0 0 0
Critical Sections
(τ31 R, 1, 3), (τ42 R, 0, 1)

From the task parameters in Table II, the precedence de-
pendency graph in Fig. 4, and the schedule in Fig. 5 we see
that a transaction resulting from the transformation of DGMF
tasks (modeling tasks constrained by a TDMA frame) has the
following characteristics:
• Tree-shaped [22]: A tree-shaped transaction is one where

each task may have zero or several successor tasks. Each
task may have at most one predecessor. There is an unique

Fig. 4. Tasks Precedence Dependency Graph

0 5 10 15 20

S B B T T T

TDMA Frame

O
1
1

O
4
1

O
3
1

O
4
2

O
3
2

O
2
2

O
1
2

O
2
3

O
1
3

O
2
4

1

O
2
1

0 5 10 15 20

Fig. 5. Transaction Resulted from DGMF Tasks Transformation: Up arrows
below timeline are offsets; curved arrows are shared resource allocations; tasks
execute on same processor except the crossed task

”root task” in the transaction that does not have any
predecessor.

• Tasks may be non-immediate, i.e. a task does not neces-
sarily release immediately its successors.

From these characteristics, we will now propose a suitable
scheduling analysis technique for this kind of task set model-
ing our TDMA system.

D. Assessing Schedulability of Resulting Transactions

To enforce schedulability of the resulting transactions, we
use the schedulability test in [14], based on [22]. The schedu-
lability test is applicable to tree-shaped transactions with non-
immediate tasks. A non-immediate task is one that is not
necessarily immediately released by its predecessor. We obtain
tree-shaped transactions with non-immediate tasks from our
DGMF to transaction transformation algorithm, if the DGMF
task set has the Unique Predecessor property (we remind
that DGMF task sets in this article are assumed to have the
property):

Theorem 1: A DGMF task set with the Unique Predecessor
property (Property 1) is transformed into a transaction set
without tasks that have more than one predecessor.

Proof: Let a DGMF task set have the Unique Predecessor
property. A frame F j

i with inter and intra dependencies is
transformed into a task τ ji with multiple predecessor tasks.
Task τ ji has several predecessor tasks that correspond to frames
that precede F j

i . At most one frame F y
x that precedes F j

i

can have a global deadline (i.e. ryx + Dy
x) greater than the

release time rji of F j
i . By construction, at most one task τyi

(resulting from F y
x and assigned to the same transaction as

τ ji) that precedes τ ji can have a global deadline greater than
the offset of τ ji (i.e. only one τyi can have Oy

i + dyi ≥ Oj
i).

Algorithm IV-B3.4 removes a precedence dependency τyi ≺ τ ji
if Oj

i > Oy
i + dyi . Since there is at most one predecessor τyi

7

of τ ji , such that Oy
i + dyi ≥ Oj

i , all other predecessors will be
reduced until task τ ji has at most one predecessor.

Note that the release time ri of a transaction Γi is not used
by schedulability tests such as the one in [14]. This has no
impact on the analysis since offsets of tasks in Γi are relative
to ri.

V. EXPERIMENTS

Our proposition is implemented in Cheddar [5], a GPL-
licensed open-source real-time scheduling analysis tool. Ex-
periments are conducted on DGMF tasks. These experiments
verify the correctness of the transformation, study the perfor-
mance of the transformation, and evaluate the proposed DGMF
analysis technique, compared to existing scheduling analysis
techniques, when applied to a real TDMA SRP from Thales.

A. Transformation Evaluation

To verify the transformation correctness and its time per-
formance, simulation is conducted.

1) Transformation Correctness: By using an architecture
generator in Cheddar, DGMF task sets are randomly generated.
The varying generator parameters are: 2 to 5 DGMF tasks, as
many frames as tasks and up to 10 for each number of tasks,
1 to 3 shared resources, as many critical sections as frames,
as many precedence dependencies as frames, a DGMF-Period
between 10 to 50, and 50% of DGMF tasks with the same
DGMF-Period.

From the combination of these varying parameters, 25600
DGMF architecture models are generated. Each of them is
transformed to an architecture model with transactions. Both
DGMF and transaction models are then simulated over the
schedulability interval in [4] and schedules are compared.

For each architecture, we observed that the schedule of
the DGMF model is strictly the same as the schedule of the
resulting transaction model. This verifies the proofs of the
transformation.

2) Transformation Time Performance: In the Cheddar im-
plementation, the time complexity of the transformation algo-
rithm depends on two parameters: nF the number of frames,
and nD the number of task dependencies (both precedence
and shared resource). The complexity of the transformation
is O(n2

D + nF). When nF is the varying parameter, the
complexity of the algorithm should be O(nF). When nD is
the varying parameter, the complexity of the algorithm should
be O(n2

D) due to Algorithm IV-B3.1, which has the same
complexity as the algorithm in [3].

The experiment in this section checks that the duration of
the transformation, implemented in Cheddar, is consistent with
these time complexities. Measurements presented below are
taken on a Intel Core i5 @ 2.40GHz processor.

Fig. 6 shows the transformation duration by the number
of precedence dependencies. The number of frames is set to
1000, the number of DGMF tasks to 100, and the number of
shared resource dependencies to 0. Note that it does not matter
which dependency parameter (precedence or shared resource)
varies to verify the influence of nD, since all dependencies

are iterated through once in the Cheddar implementation and
precedence dependency has more impact on the transformation
duration. Since there are 1000 frames and 100 DGMF tasks,
the minimum number of precedence dependencies starts at
900, due to intra dependencies. From Fig. 6 we see that the
transformation duration is polynomial when the number of
precedence dependencies vary. This result is consistent with
the complexity, which is O(n2

D) when nD is the varying
parameter.

950 1000 1050 1100

Precedence Dependencies

200

300

400

500

600

T
im

e
 (

m
s
)

Fig. 6. Transformation Response Time by Number of Precedence Dependen-
cies

Fig. 7 shows the transformation response time by the
number of frames. The number of precedence dependencies
is set to 0 (i.e. no intra dependencies either) and the other
parameters remains the same. From Fig. 7 we see that the
response time is polynomial when the number of frames varies.
One can think that this result is inconsistent with the time
complexity of the algorithm, which is O(nF) when nF is the
varying parameter. In practice, the implementation in Cheddar
introduces a loop to verify that a task is not already present
in the system’s task set. Thus the time complexity of the
implementation is O(n2

F).

0 200 400 600 800 1000

Frames

0

20

40

60

80

100

120

T
im

e
 (

m
s
)

Fig. 7. Transformation Response Time by Number of Frames

Overall we see that a system with no dependency, 1000
frames, and 100 DGMF tasks, takes about 120ms to be
transformed on the PC used for the experiment. A system
with 1100 precedence dependencies, 1000 frames, and 100
DGMF tasks, takes less than 650ms to be transformed. The

8

transformation duration is acceptable for our needs. Indeed
for a typical TDMA frame handled by Thales, with 13 slots
(1S, 4B, 8T) and 10 critical tasks, there would be a maximum
of 130 frames (13 × 10), and 237 precedence dependencies
(10× 13− 10+ 9× 13) if all tasks are part of a same end-to-
end flow released at each slot.

B. Experiment on a TDMA SRP from Thales

We now apply the DGMF task model to the modeling and
scheduling analysis of a real TDMA SRP. The results given
by DGMF analysis are compared to results given by GMF
Worst Case Response Time (WCRT) analysis [25] and periodic
task WCRT analysis [10]. A Cheddar model of the full case-
study (8 DGMF tasks, 44 frames) can be downloaded at the
Cheddar website1. For the sake of space, let us consider a
simple TDMA frame with two slots shown in Fig. 8.

B T

G
3

G
1

G
2

G
3

G
1

4ms 8ms

Fig. 8. Experiment TDMA SRP

In our system there are three tasks: G1, G2 and G3. Task
G3 is released at the beginning of each slot. After it finishes
execution, it releases G1. G1 releases G2 at the first B slot
but not at the T slot. G3 and G1, when released at a slot,
must finish before the end time of the slot. G2 when released
at the B slot, must finish before the end time of slot T . Tasks
are scheduled by a preemptive fixed priority scheduler and
run on a single processor. PCP is used for shared resource
synchronization. Tasks have parameters shown in Table III.
Task priorities are in highest priority first order (e.g. a priority
level 3 task has a higher priority than a priority level 1 task).
Execution times come from a real SRP application. Time units
are in µs.

To compare the DGMF analysis with the GMF WCRT anal-
ysis and the periodic task WRCT analysis, we also model these
tasks in the GMF and periodic models. Since shared resource
synchronization cannot be modeled in the GMF model, we do
not consider them. If the GMF WCRT analysis is still more
pessimistic without shared resources, then pessimism will not
be improved with shared resources. As for the periodic model,
the tasks were considered as sporadic, and then modeled
as periodic. Their longest frame execution time is taken as
their WCET. Their smallest min-separation time between two
frames is taken as their period.

Computed WCRTs are shown in Table IV. Headers repre-
sent the task model. A response time with ”/” means a deadline
was missed.

1http://beru.univ-brest.fr/svn/CHEDDAR/trunk/project examples/wcdops+
nimp/tdma mac/

TABLE III
EXPERIMENT TASK SET

(D)GMF
Ej

i Dj
i P j

i [F q
p]

j
i

F 1
1 955 4000 4000 F 1

3G1, prio(G1) = 1
F 2
1 1874 8000 8000 F 2

3
G2, prio(G2) = 2 F 1

2 5722 12000 12000 F 1
1

F 1
3 986 4000 4000

G3, prio(G3) = 3
F 2
3 986 8000 8000

Periodic Model
Ci di Ti pi

G1 1874 4000 4000 1
G2 5722 12000 12000 2
G3 986 4000 4000 3

TABLE IV
EXPERIMENT RESPONSE TIMES

DGMF GMF Periodic
WCRT WCRT WCRT

F 1
1 1941 / /G1 F 2
1 6523 /

G2 F 1
2 8649 7694 7694

F 1
3 986 986 986G3 F 2
3 986 986

From the WCRTs we see that DGMF analysis determines
that no deadlines are missed. This is not the case for the other
two analysis techniques.

For G2, GMF WCRT analysis gives a lower WCRT the
DGMF analysis but this value is underestimated. Indeed GMF
WCRT analysis considers that F 1

2 is only interfered by F 1
3

and F 2
3 , without considering the fact that F 1

2 is released after
F 1
1 . In conclusion DGMF analysis determines a schedulable

system, and precedence dependencies must be considered by
the analysis, to not underestimate WCRTs.

VI. RELATED WORK

Several works are related either to scheduling analysis of
TDMA communication systems or to the DGMF task model
proposed in this article.

TDMA systems are networked systems for which there exist
formal methods, like network calculus [13], to bound end-
to-end response times of messages in the network. TDMA
systems are also a special case of time-triggered systems [12]
for which there exists feasibility tests [18]. Both approaches
do not consider shared resources and the event-triggered [12]
aspect of SRPs, through precedence dependencies.

Transactions used in this article were initially proposed
by [27] to compute message end-to-end response times in a
distributed system where tasks communicate through a TDMA
bus. [27] thus models the holistic behavior of the TDMA bus
to assess schedulability. The author’s approach is based on the
classic periodic task model, in which task parameter values do
not vary and tasks do not have real precedence dependencies
(i.e. their offset and jitter are static). In our approach, we
need to model depending tasks that have variable parameters
(e.g. execution time) due to functional properties related to a
TDMA frame.

9

Schedulability tests that make use of precedence depen-
dency conflicts [20], or execution-time dependencies [17],
have been proposed for linear transactions (tasks can have at
most one successor and predecessor). These tests cannot be
applied to transactions resulting from DGMF transformation,
since they are tree-shaped.

In [8] the authors propose a model for multi-event syn-
chronization. Their approach is to transform a system with
tasks having multiple predecessors and successors, into a set
of linear transactions and then use tests for linear transactions.
This approach cannot be applied to transactions resulting from
DGMF transformation, since these transactions are tree-shaped
and they have non-immediate tasks.

Tests for tree-shaped [22], [9] and graph-shaped [11] trans-
actions have been proposed. These tests cannot be applied to
transactions resulting from DGMF transformation since these
transactions have non-immediate tasks.

In [26] the authors propose non-cyclic GMF tasks to model
behavior of tasks in software radio modems. Their work does
not consider TDMA constrained tasks and task dependencies.
In [6] the authors propose an optimal resource sharing protocol
for GMF tasks. In our work, we also focus on precedence
dependencies that is not handled by [6].

In [7] Semaphore Precedence Constraint (SPC) is proposed.
A SPC models a multi-rate communication that follows a
regular repetitive pattern (e.g. a task depends on every third
instance of another task). This pattern is not compliant with
our task release requirements. Furthermore the authors use
linear transactions (which cannot be applied to the systems we
investigate) and they do not focus on variable task parameters.

VII. CONCLUSION

In this article we expected to improve scheduling analysis of
systems with TDMA communications and task dependencies.
A TDMA Software Radio Protocol was used as an illustration.
The DGMF task model was proposed to model a TDMA
system. To assess schedulability of DGMF tasks, we proposed
to transform DGMF tasks to tree-shaped transactions with
non-immediate tasks for which we previously proposed a
schedulability test. Experiments were done on a TDMA SRP
from Thales and showed that the DGMF model gives less
pessimistic schedulability results than both the GMF model
and the periodic model.

GMF, on which DGMF is based, was initially proposed for
the multimedia domain. In the future, we will investigate the
applicability of DGMF to such domains.

REFERENCES

[1] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized multiframe
tasks. Real-Time Syst., 17(1):5–22, Jul, 1999.

[2] T. S. Chan. Time-division multiple access. In Handbook of Computer
Networks, pages 769–778. John Wiley & Sons, Inc., Hoboken, USA,
2011.

[3] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-
time tasks under precedence constraints. Real-Time Syst., 2(3):181–194,
1990.

[4] A. Choquet-Geniet and E. Grolleau. Minimal schedulability interval for
real-time systems of periodic tasks with offsets. Theoretical Comput.
Sci., 310:117–134, Jan, 2004.

[5] P. Dissaux, O. Marc, S. Rubini, C. Fotsing, V. Gaudel, F. Singhoff,
A. Plantec, V. Nguyen Hong, and H. N. Nam Tran. The SMART project:
Multi-agent scheduling simulation of real-time architectures. In Proc.
7th European Congr. Embedded Real Time Software and Syst., Toulouse,
France, 2014.

[6] P. Ekberg, N. Guan, M. Stigge, and W. Yi. An optimal resource sharing
protocol for generalized multiframe tasks. In Nordic Workshop on
Programming Theory, 2011.

[7] M. Forget, E. Grolleau, C. Pagetti, and P. Richard. Dynamic priority
scheduling of periodic tasks with extended precedences. In Proc. 16th
Conf. Emerging Technologies & Factory Automation, pages 1–8. IEEE,
2011.

[8] J. Garcia, J. Gutierrez, and M. Harbour. Schedulability analysis of
distributed hard real-time systems with multiple-event synchronization.
In Proc. 12th Euromicro Conf. Real-Time Syst., pages 15–24. IEEE
Comput. Soc, 2000.

[9] R. Henia and R. Ernst. Improved offset-analysis using multiple timing-
references. In Proc. Conf. Design Automation and Test in Europe 2006,
pages 450–455, Munich, Germany, 2006.

[10] M. Joseph and P. Pandya. Finding response times in a real-time system.
Comput. J., 29(5):390–395, 1986.

[11] J. Kany and S. Madsen. Design optimisation of fault-tolerant event-
triggered embedded systems. Master’s thesis, Tech. Univ. of Denmark,
Lyngby, Denmark, 2007.

[12] H. Kopetz. Event-triggered versus time-triggered real-time systems. In
Operating Systems of the 90s and Beyond, volume 563 of Lecture Notes
in Computer Science, pages 86–101. Springer Berlin Heidelberg, 1991.

[13] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of determin-
istic queuing systems for the internet, volume 2050. Springer, 2001.

[14] S. Li, F. Singhoff, S. Rubini, and M. Bourdellès. Schedulability analysis
of tree-shaped transactions with non-immediate tasks. Technical report,
Lab-STICC/UMR 6285 UBO UEB, Brest, France, 2014. Available
online: http://beru.univ-brest.fr/svn/CHEDDAR/trunk/docs/publications/
li14.pdf

[15] S. Li, F. Singhoff, S. Rubini, and M. Bourdellès. Applicability of real-
time schedulability analysis on a software radio protocol. ACM SIGAda
Ada Lett., 32(3):81–94, Dec, 2012.

[16] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20(1):46–61, Jan, 1973.

[17] J. Maki-Turja and M. Sjodin. Response-time analysis for transactions
with execution-time dependencies. In Proc. 19th Int. Conf. Real-Time
and Network Syst., pages 139–146, Nantes, France, 2011.

[18] N. Malcolm and W. Zhao. The timed-token protocol for real-time
communications. Comput., 27(1):35–41, Jan. 1994.

[19] J. Mitola. The software radio architecture. IEEE Commun. Magazine,
33(5):26–38, 1995.

[20] J. Palencia and M. Harbour. Exploiting precedence relations in the
schedulability analysis of distributed real-time systems. In Proc. 20th
IEEE Real-Time Syst. Symp., pages 328–339, Phoenix, USA, 1999.

[21] A. Rahni. Contributions à la validation d’ordonnancement temps réel
en présence de transactions sous priorités fixes et EDF. PhD thesis,
Univ. Poitiers, Poitiers, France, 2008.

[22] O. Redell. Analysis of tree-shaped transactions in distributed real time
systems. In Proc. 16th Euromicro Conf. Real-Time Syst., pages 239–248,
Catania, Italy, 2004.

[23] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time
scheduling theory: A historical perspective. Real-Time Syst., 28(2-
3):101–155, Nov-Dec, 2004.

[24] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
an approach to real-time synchronization. IEEE Trans. Comput.,
39(9):1175–1185, Sep, 1990.

[25] H. Takada and K. Sakamura. Schedulability of generalized multiframe
task sets under static priority assignment. In Proc. 4th Intl. Workshop
on Real-Time Computing Syst. Applicat., pages 80–86, Taipei, Taiwan,
1997.

[26] N. Tchidjo Moyo, E. Nicollet, F. Lafaye, and C. Moy. On schedulability
analysis of non-cyclic generalized multiframe tasks. In Proceedings of
the 2010 22nd Euromicro Conference on Real-Time Systems, pages 271–
278. IEEE, 2010.

[27] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems. Microprocessing and Microprogramming, 40(2-
3):117–134, Apr, 1994.

10

