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Abstract This paper gives and proves correct a simulation interval for any schedule
generated by a deterministic andmemoryless scheduler (i.e., one where the scheduling
decision is the same and unique for any two identical system states) for identical mul-
tiprocessor platforms. We first consider independent periodic tasks, then generalize
the simulation interval to tasks sharing critical resources, and subject to precedence
constraints or self-suspension. The simulation interval is based only on the periods,
release times and deadlines, and is independent from any other parameters. It is proved
large enough to cover any feasible schedule produced by any deterministic and memo-
ryless scheduler on multiprocessor platforms, including non conservative schedulers.
To the best of our knowledge, this simulation interval covers the largest class of task
systems and scheduling algorithms on identical multiprocessor platforms ever stud-
ied. This simulation interval is used to derive a simulation algorithm using a linear
space complexity. Finally, a generic exact schedulability test based on simulation is
presented. This test can be applied only when sustainability is consistent with online
variability of the tasks’ parameters.
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1 Introduction

1.1 Feasibility and simulation intervals

Real-time systems are widely used nowadays; their correctness is determined by func-
tional and temporal requirements. Real-time scheduling theory focuses on the temporal
validation of such systems. The temporal validation of a real-time system relies on a
set of worst-case behaviors depending on the task model: each task is characterized by
some temporal properties and constraints that have to be met by the scheduling algo-
rithm. Most task models are based on the model initially defined in Liu and Layland
(1973), where a task is characterized by its worst-case execution time (WCET), and
its release period. Every task is generating a potentially infinite sequence of jobs, each
job is using up to its WCET amount of processor time. In the beginning of the paper,
we consider schedules where every job is using exactly its WCET. This hypothesis
is relaxed in Sect. 7. The temporal constraints of a task are represented by a relative
deadline, and every job has to be completely executed between its release and its
deadline.

One of the key problems in real-time system design is the schedulability problem
(Carpenter et al. 2005; Davis and Burns 2011): a task system is schedulable by a
scheduling algorithm if, in any scenario, all the temporal constraints aremet.A scenario
represents a specific instance of the real-time system. (actual release times, actual
execution requirements, etc.) Regarding the schedulability of the system it is required
to identify the worst-case scenario(s). For some task systems, the worst-case scenario
is easy to determine. As an example, for independent synchronous (the first job of
every task is released at the same time) task systems executed on a uniprocessor
platform, the worst-case scenario is the initial instant, known as the critical instant.
In this context, the worst-case response time1 of the tasks is encountered in the first
synchronous busy period2. This allows efficient exact3 schedulability tests to exist,
running in pseudo-polynomial time [e.g. Joseph and Pandya (1986), Lehoczky (1990)
for fixed-task priority scheduling like DeadlineMonotonic or Jeffay and Stone (1993),
Baruah et al. (1990) for fixed-job priority scheduling like Earliest Deadline First (Liu
and Layland 1973)].

However, the critical instant does not correspond to the first synchronous busy
period when the tasks are asynchronous, or for multiprocessor platforms. In these
cases, a larger time interval has to be considered in order to reach a cycle in the
schedule, and the schedulability problem is NP-hard in the strong sense (Leung and
Whitehead 1982). The only known exact schedulability tests are simulation-based
like in Goossens and Devillers (1999) and have to consider the whole schedule, using
a simulation interval representing finitely the infinite schedule, before concluding
about the schedulability of a system, or the worst-case response time of the tasks.
Simulation-based schedulability tests can only be used when the context (scheduling

1 Duration between a job release and its completion.
2 Period of continuous processor occupation starting at the critical instant, ignoring tasks of lower priority.
3 Necessary and sufficient.

123



810 Real-Time Syst (2016) 52:808–832

algorithm, task system, and platform) is such that the simulation is C-sustainable. A
schedulability test is C-sustainable if a system deemed schedulable when tasks are
using their WCET is schedulable even if some tasks do not use up to their WCET
(Baruah and Burns 2006). In the sequel, every time a simulation is mentioned, every
job of the tasks are assumed to use their WCET.

If the context is such that simulation is C-sustainable, we need a finite interval to
conclude about schedulability. This interval can either be a simulation interval or a
feasibility interval with the following definitions:

– Simulation interval a safe time interval such that the schedule repeats in a cycle.
– Feasibility interval a finite interval [a, b] such that if all the deadlines of jobs
released in the interval are met, then the system is schedulable.

Knowing the length of the simulation interval is also required for capturing the
whole behavior of a system when building a pre-run-time schedule (Xu and Par-
nas 2000), also called offline schedule. In this case, the online execution of the system
is controlled by a dispatcher. The dispatcher is using the pre-run-time schedule to
allocate the tasks to the processors. There is a rich literature addressing the problem
of building pre-run-time schedules, see for example (Pop et al. 2006; Xu and Parnas
1990; Grolleau and Choquet-Geniet 2002; Baro et al. 2012). In every case, a pre-run-
time schedule has to correspond to a simulation interval, since the schedule has to
be repeated infinitely. Our simulation interval will allow to bound the time interval
to consider in the search space, or the number of jobs, when building a pre-run-time
schedule.

Finally, when displaying a schedule, either for pedagogical purpose, or for char-
acterizing some metrics, it is important to know how long a schedule should be built
to capture the whole behavior of the system. Several schedulability analysis tools
(Singhoff et al. 2008) are intensively based on simulation for illustration purpose.

In this paper, we give and prove correct a general simulation interval for sched-
ules produced by deterministic and memoryless schedulers, for periodic, dependent,
arbitrary deadlines tasks executed on identical multiprocessor platforms. Since it is
addressing awide class of scheduling algorithm, this simulation interval is safe, but not
tight. Then we provide simulation algorithms, including one requiring a linear space
complexity. Finally we compare our simulation interval to other simulation intervals,
and we discuss how simulation can be used as an exact schedulability test.

1.2 Definitions and notations

In order to present the state-of-the-art about simulation intervals, some definitions are
introduced.

A system Sys = {τ1, . . . , τn} is a task set, where every task τi is defined by:

– Oi ∈ N the task offset, i.e., the release date of the first job τi,1 of τi ,
– Ci ∈ N the Worst-Case Execution Time (WCET), i.e., the maximum amount of
time required on a processor for a job of τi to be executed,

– Ti ∈ N the task period, the jobs are released at the instants Oi + kTi , k ∈ N,
– Di ∈ N is the relative deadline and represents the timing constraint of a task:
the kth, (k ∈ N) job τi,k of τi must be completely executed in the window
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[Oi + k · Ti , Oi + k · Ti + Di ). If ∀i ∈ {1 . . . n}, Di ≤ Ti , then the system
has constrained deadlines, else if deadlines are equal to periods then the system
has implicit deadlines. In this paper, we consider themost general case of arbitrary
deadlines (i.e., deadlines and periods are unrelated).

In this paper, we do not assume any relation between Oi , Di , and Ti which are inde-
pendent, arbitrary, integers. The following parameters can be deduced4:

– ai, j
.= Oi + j · Ti is by definition the release time of the job τi, j ,

– di, j
.= Oi + j · Ti + Di the absolute deadline of τi, j ,

– H
.= lcm(T1, . . . , Tn) is the hyperperiod of the system, with lcm the least common

multiple,
– Omax .= maxi=1...n(Oi ) is the largest offset,
– U

.= ∑n
i=1 Ci/Ti is the processor utilization factor.

We consider that tasks are sequential, i.e., a task can execute at most upon one
processor simultaneously, i.e. job/task parallelism is forbidden. Moreover, we assume
a FIFO order for the execution of the jobs of the same task: the job τi, j+1 cannot be
started before the completion of the job τi, j .

A task system is said concrete if Oi is specified for every task at design time
[see Jeffay et al. 1991 for details]. Tasks are said independent if the executions of jobs
of different tasks are not related to each other, and if they do not suspend themselves
(e.g., input/output operation). If two tasks τi and τ j share a critical resource, then their
critical sections (portion of code where they use the critical resource) shall mutually
exclude each other (this may be ensured by synchronization tools as semaphores or
monitors, or by the scheduler). If the executions of the jobs of τ j cannot occur before
some executions of the jobs of τi , then we say that τi precedes τ j , noted τi ≺ τ j ,
and the system is said precedence constrained. In this paper, we consider precedence
constraints between tasks sharing the same period. Therefore, if τi ≺ τ j then for any
positive integer k, job τi,k must be completed before starting the job τ j,k .

We consider that the temporal parameters are integer numbers, called time units,
which are multiples of the processor clock ticks, and that a scheduling decision can
occur at most once at the beginning of every time unit. A scheduler is a decision
algorithm which is deciding at every time unit, considering the state of the system,
which task is executed on which processor. Note that depending on the scheduling
algorithm, the scheduling decision may occur less frequently than at every time unit
(e.g., in a fixed-task priority scheduling5 algorithm, a scheduling decision has to take
place only when a new job is released or when a job is completed).

In this paper, we consider identical multiprocessor platforms, and we assume that
preemption and migration durations are negligible. We assume scheduling points to
occur only at integer time units.We consider deterministic andmemoryless schedulers,
which are those schedulers for which the scheduling decision depends only on the state
of the system (seeDefinition 1) at the current time unit. Therefore, for those schedulers,
let t be an integer time unit, the scheduler is taking a decision according to the state
S of the system at this time. For the sake of the following proofs, we also define the

4 Where
.= means “equals by definition”.

5 See Definition 4.
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notion of pre-state Ŝ, which is the state of the system at time t−, occurring at time t
but before releasing the new jobs, and before the scheduling decision. In the following
definition, every concept (state, pre-state, local clock, remaining work) is function of
the time, but for simplicity, we omit the time in the notations.

Definition 1 (State and pre-state of a system) The state of a system of n tasks can be
defined as a (2n)-tuple S

.= 〈
Crem1 , . . . ,Cremn ,�1, . . . , �n

〉
, where:

– �i is the local clock of τi , undefined before Oi , initialized at 0 at the time Oi , being
reset at every new request of the task. Formally, at time t ≥ Oi , �i

.= (t − Oi )

mod Ti ,
– while Cremi is the remaining work to process for τi .

The pre-state of a system of n tasks can be defined as a (2n)-tuple Ŝ
.=〈

Ĉrem1, . . . , Ĉremn ,�1, . . . , �n

〉
, where:

– �i is the same local clock as in the state S of the system,
– Ĉremi is the remaining work to process for τi not taking the releases at the consid-
ered instant into account.

We can formalize the remaining work in state and pre-state, for any t ≥ Oi as follows:

Ĉremi (t)
.= 0,∀t ≤ Oi

Cremi (t)
.= Ĉremi (t) + Ci if �i = 0

Ĉremi (t) otherwise

Ĉremi (t + 1)
.= Cremi (t) − 1 if τi executed on [t, t + 1)

Cremi (t) otherwise

Since deadlines are arbitrary, at some time instant several jobs of the same task can
be pending: in this case, its remaining work can be greater than its WCET. A task is
ready at time t if its remaining work to process is not zero. In the sequel, the total
remaining work of a system is referring to the sum of the individual remaining work
of the tasks.

Definition 2 (Scheduling decision) A scheduling decision on m identical processors
at time t is a subset of cardinality ≤ m of ready tasks. Every task in the subset is
executed on a processor in the time interval [t, t + 1).

Definition 3 (Deterministic and memoryless scheduler) A scheduler is determinis-
tic and memoryless if, and only if, the scheduling decision at time t is unique and
univocally defined by the state of the system (as defined in Definition 1) at time t .

Definition 4 (Fixed-task priority scheduler) In a fixed-task priority (FTP) scheduler,
every task is assigned a fixed priority. The scheduling decision is selecting the tasks
to be executed based on their priority.

The most popular fixed-task priority schedulers are Rate Monotonic (Liu and
Layland 1973) and Deadline Monotonic (Leung and Whitehead 1982).
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Definition 5 (Fixed-job priority scheduler) In a fixed-job priority (FJP) scheduler,
every job is assigned a fixed priority. The scheduling decision is selecting the jobs to
be executed based on their priority.

Themost common fixed-job priority scheduler is Earliest Deadline First (EDF) (Liu
and Layland 1973) where the priority of a job is related to the date of its absolute
deadline: the closer the deadline, the higher the priority.

Popular real-time schedulers are deterministic and memoryless as long as the
tie-breaker (rule used when two jobs have the same priority) is deterministic and
memoryless (e.g., using the task index).

A simulation interval is defined such that an infinite feasible schedule can be
expressed on a finite time interval.

Definition 6 (Feasible schedule) Let Sys be a task system where tasks are defined
by a first release time Oi , activated at a period Ti and having a relative deadline Di .
If the tasks are independent, an infinite feasible schedule σ is such that every job of
every task τi is executed and completed in its time window. We denote sσ (τi, j ) (resp.
eσ (τi, j )) the starting date (resp. ending date) of the j th job of τi in the schedule σ .
Every job is executed and completed in its time window [ai, j , di, j ] if and only if it
satisfies sσ (τi, j ) ≥ ai, j and eσ (τi, j ) ≤ di, j .

Definition 7 (Feasible schedule on a simulation interval) A simulation interval of
a feasible schedule σ , generated by a deterministic and memoryless scheduler, is
restricted to the interval [0, b], where b is the simulation duration, and is such that at
least two states reached in the simulation interval are identical.

1.3 State of the art

1.3.1 Uniprocessor simulation intervals

Note that the necessary condition U ≤ 1 has to hold in the following results.

– The seminal work of Leung and Merrill (1980) shows that [0, Omax + 2H) is
an upper bound of the simulation interval for fixed-task priority schedulers, and
independent task systems with constrained deadlines (i.e., Di ≤ Ti ). The transient
phase of the schedule is included in the time window [0, Omax + H), while its
steady phase (i.e., cyclic part) is given by the schedule in the timewindow [Omax+
H, Omax + 2H).

– It is shown in Goossens and Devillers (1999) that, with arbitrary deadlines,
[0, Omax+2H) is still giving an upper bound of the simulation interval for Earliest
Deadline First, and fixed-task priority scheduling algorithms.

– The most general result concerning task systems with constrained deadlines is
given in Choquet-Geniet and Grolleau (2004). It shows how to determine the
exact6 simulation interval for most online and offline scheduling algorithms. The
steady phase of a schedule starts exactly at the date θc, date following the last

6 Here exact means that a shorter interval would not be a simulation interval.
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acyclic idle time, thus the simulation interval is given by [0, θc + H). The date of
the last acyclic idle time is 0 ≤ θc ≤ Omax + H . This exact bound shows that the
first time window of length H with exactly H(1 − U ) idle times within the time
interval [0, Omax + 2H) is the steady phase of the schedule. This result has been
extended to non-preemptible tasks, precedence constraints, and resource sharing.
It has been extended to multi-threaded tasks in Bado et al. (2012).

– An upper bound to the simulation interval is [0, sn + H) (Goossens and Devillers
1997) for fixed-task priority scheduling algorithms, for independent tasks with
constrained deadlines, where sn is calculated iteratively on the system, giving the
tasks ordered by priority level:

s1
.= O1 (1)

si
.= max(Oi , Oi +

⌈
si−1 − Oi

Ti

⌉

Ti )

We can notice that the feasibility or simulation interval problem for arbitrary dead-
lines systems is still an open problem in the case of any algorithm other than EDF or
fixed-task priority: this paper will fill this gap with an upper bound.

1.3.2 Multiprocessor results

Two main families of multiprocessor schedulers are usually considered: global sched-
ulers consider one ready queue for the whole set of processors, while partitioned
schedulers consider a scheduler and a ready queue per processor. Global schedulers
thus allow job migration.

The periodic behavior of schedulers has been studied in the context of global
scheduling on multiprocessor platforms for specific scheduling algorithms. For parti-
tioned scheduling, as long as there is no migration, the simulation duration problem
consists in studying the simulation duration on each processor: this is thus related
to the uniprocessor problem. In the sequel, we consider the problem of the periodic
behavior of global schedulers.

Every known result concerning global scheduling is provided for independent task
systems, except for Baro et al. (2012) considering precedence constraints. There are
several periodicity results in Cucu and Goossens (2006) concerning constrained dead-
line systems, on uniform multiprocessor systems, that can be applied to the identical
multiprocessor platforms. If the tasks are synchronous, then any feasible schedule
generated by a deterministic and memoryless scheduler has a periodic behavior on
the interval [0, H), under the assumption that each job of the same task has the same
execution time. For asynchronous task systems, [0, sn + H) is a simulation interval
of any feasible schedule generated by a global fixed-task priority scheduler, using the
same sn as in Eq. 1.

The case of arbitrary deadlines systems has been studied in Cucu and Goossens
(2007) for identical multiprocessor platforms. It is shown that any feasible schedule
generated by a deterministic and memoryless scheduler is finally periodic. Moreover,
for a feasible schedule generated by a fixed-task priority scheduler, [0, H) is a simu-
lation interval for synchronous systems, while [0, ŝn + H ] is a simulation interval for
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asynchronous systems, with, assuming task indexes ordered from high to low priority:

ŝ1
.= O1 (2)

ŝi
.= max

(

Oi , Oi +
⌈
ŝi−1 − Oi

Ti

⌉

Ti

)

+ Hi

with Hi
.= lcm j=1...i (Tj ). This result has been extended to the case of unrelated

multiprocessor platforms in Cucu-Grosjean and Goossens (2011).
For identical multiprocessor platforms, constrained deadline systems of asyn-

chronous tasks subject to simple precedence constraints, Baro et al. proved that[
0, Omax + H

∏n
i=1(Ci + 1)

)
is a simulation interval of any feasible schedule gener-

ated by an offline scheduler (Baro et al. 2012). The same interval is used and tuned for
fixed-job priority schedulers and independent tasks in Nélis et al. (2013).

We summarize results and contexts of the state of the art concerning simulation
intervals in Table 1.

This research This paper is the first result concerning the simulation interval
applicable to a large context. It deals with identical multiprocessor platforms, any
deterministic and memoryless scheduler, asynchronous periodic tasks with arbitrary
deadlines, subject to a large class of structural constraints (including precedence con-
straints, mutual exclusions, self-suspensions, preemptive or non-preemptive tasks, see
Sect. 5). Most results concerning multiprocessor platforms currently known in the
literature consider independent and preemptive periodic tasks scheduled by specific
schedulers (to the best of our knowledge, the global versions of fixed-task priority
and Earliest Deadline First). Moreover, we propose an interesting intermediate result,
Lemma 1, showing that, for the cyclicity problem, the synchronous case can be used
as a worst-case scenario.

1.4 Organization of the paper

In Sect. 2 we present a simple motivating example showing that for synchronous task
systems on multiprocessor platforms, the first hyperperiod cannot be considered as
a simulation interval for arbitrary deadline systems. In Sect. 3, we show that the set
of feasible schedules for asynchronous task systems is included in the set of fea-
sible schedules for synchronous arbitrary deadlines systems. This is allowing us to
easily prove our general result which is Theorem 1. We derive several simulation
algorithms, including a linear space complexity algorithm, called zero-memory sim-
ulation in Sect. 4. In Sect. 5, the simulation duration bound is shown correct also for
a large set of tasks dependencies. Then, we compare our simulation interval to other
simulation intervals in Sect. 6. Finally, we discuss usability of simulation as an exact
feasibility test for scheduling algorithms in Sect. 7.

2 Motivational example

Let Sys1 be a system containing three synchronous tasks executed on two processors:
τ1, characterized by O1 = 0, C1 = 1, T1 = D1 = 2, τ2, with the same parameters
as τ1, and τ3 with O3 = 0, C3 = 3, T3 = 4 and D3 = 7. Note that the processor
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Fig. 1 Global-EDF schedule of Sys1 on two processors

utilization factor of Sys1 is USys1 = 7/4, the hyperperiod is H = 4, and the task τ3
has a deadline greater than its period. The global-EDF schedule of the system Sys1,
while each job of the same task has the same execution time, is shown in Fig. 1. We
can notice that during the two first hyperperiods (i.e., in the time interval [0,8)), there
are two idle slots per hyperperiod. Giving the number of processors m = 2 and the
utilization factor, the processor executes less workload than the requested workload.
For Sys1,U = 7/4 andm = 2, in order for the system to execute as much workload as
the requested workload, there must be exactly k idle slots in a schedule of length kH .
We can observe that the states of the system at date 8 and at date 12 correspond to an
instant where all previous work is finished by τ1 and τ2, while τ3 is backlogged by 2
units of execution, hence, the steady state of the schedule is given by the time interval
[8, 12), while the transient phase, despite the fact that the tasks are synchronous, lasts
during 8 time units. In the steady state of duration H , there is, as expected, one idle slot.

If we consider the Longest Remaining Processing Time First (LRPTF) (Pinedo
2008) scheduling algorithm, the schedule of the same system has an empty transient
phase (see Fig. 2).

We can observe that, for the considered task system, global-EDF inserts more
idle slots than LRPTF because the job of τ3 cannot be parallelized, while LRPTF is
equalizing the remaining work and reduces the idle slots occurring because of jobs
non-parallelization.

DeadlineMonotonic [the shorter the relative deadline, the higher the priority (Leung
andWhitehead 1982)] priority assignment of the system Sys1 is infeasible (see Fig. 3),
and never enters in a cycle where the right amount of idle slots is present. Since there
are always two idle slots instead of one per hyperperiod, the lateness of the task τ3 is
increasing with every hyperperiod. The transient phase of the schedule never ends, and
in the third hyperperiod of the system, at the time instant 11, τ3 misses its deadline.
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Fig. 2 LRPTF schedule of Sys1 on two processors

Fig. 3 Deadline Monotonic schedule of Sys1 on two processors

Our example Sys1 illustrates that several scheduling algorithms which are work-
conserving in the uniprocessor case insert different idle slots in the multiprocessor
case and do not have the same simulation interval. It is showing also that in the case
of synchronous systems with arbitrary deadlines, the time window [0, H) cannot be
used as a simulation interval.

3 General periodicity result

We first consider independent task systems. Moreover we assume in this section that
each job of the same task has the same execution time. These two restrictions are
relaxed in Sect. 5.
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The timewindow [0, H) cannot be used as a simulation interval because some tasks
with a deadline greater than their period are allowed to be backlogged at the end of the
hyperperiod. The factor allowing a task τi to be backlogged is the fact that at least one
of its jobs has a release date in [0, H) but its deadline in a subsequent hyperperiod.
This is possible only in two cases:

1. The release time Oi of τi is greater than 0, assuming that 0 is corresponding to the
first release in the system,

2. The relative deadline Di of τi is greater than its period Ti .

The proof used to obtain an upper bound on the simulation duration is as follows: we
are looking for some point in a schedule where the system is behaving cyclically, in
other words, two points in time where the same state is encountered. We know, by
definition of the states, that the local clocks must be identical, therefore, these two
points are an integer number of hyperperiods apart. The difficulty comes from the fact
that tasks are asynchronous: we cannot focus on a specific point in time to look for
the cycle. If tasks were synchronous, then we could focus on the hyperperiods, one
after the other, looking for backlogged tasks. In order to do so, we show in the sequel
that we can study, without loss of generality, only synchronous task systems with
arbitrary deadlines, and that any result holding for this case is holding also (modulo a
transformation of the release times and relative deadlines) to the asynchronous case.

Definition 8 (Set of feasible schedules) We define the function F such that F(S) is
the set of all feasible schedules obtained by deterministic and memoryless schedulers
for task system S.

Lemma 1 Let S be a set of independent tasks with ∀i ∈ 1, . . . , n, Oi ≥ 0. We denote
Oi the offset of the task τi and Di its relative deadline. Let S′ be the same system,
except for the release dates given by O ′

i = 0 and the relative deadlines D′
i = Di +Oi .

The set of feasible schedules of S is included in the set of feasible schedules of S′, i.e.,
F(S) ⊆ F(S′).

Proof Let σ ∈ F(S) be a feasible schedule for S, since from Definition 6, for any job
τi, j , sσ (τi, j ) ≥ Oi + jTi ≥ 0 + jTi and eσ (τi, j ) ≤ Oi + jTi + Di = 0 + jTi + D′

i ,
hence σ ∈ F(S′), proving the lemma. 	


The underlying idea behind Lemma 1 is that the time window allocated to every job
in S′ is including the time window allocated to every job in S. Since we are interested
in any deterministic and memoryless scheduling algorithm, we see that focusing only
on synchronous task systems with an arbitrary deadline cannot reduce the possibilities
for a scheduling algorithm to delay its steady phase. For this reason, an upper bound
on the case where deadlines are arbitrary is also an upper bound for asynchronous task
systems.

Lemma 2 For synchronous task systems, if two pre-states are identical, then the
scheduling decision of a deterministic and memoryless scheduler is the same.

Proof Following the definition of deterministic and memoryless schedulers, if two
states are identical, then the scheduling decision is the same. This lemma states that
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Fig. 4 States that can be reached in a feasible schedule at times 0, H and 2H for Di − Ti = 1

it is sufficient to consider the pre-state in the case of synchronous systems. Indeed, if
two pre-states are identical, their local clocks are the same (and so do the clocks of the
corresponding states). Considering t and t ′ the respective time instants where Ŝ and Ŝ′
occur,wehave t ′ = t+kH, k ∈ N,which are the only possible solutions such that every
local clock, all starting at the instant 0 (the system is synchronous), are the same. If the
values of the remaining work are the same in two pre-states Ŝ and Ŝ′, then the values
are also the same for the corresponding states S and S′ because giving Definition 1, we
have Cremi (t) = Ĉremi (t) + Ci if �i = 0, and C ′

remi
(t) = Ĉ ′

remi (t
′) + Ci if �′

i = 0.

Since �i = �′
i , and Ĉremi (t) = Ĉ ′

remi (t
′), then Cremi (t) = C ′

remi
(t ′), and S = S′. 	


It follows from Lemma 2 that we can only focus on the pre-states to prove the
periodicity of synchronous task systems.

Lemma 3 Any feasible schedule of a synchronous independent task system gener-
ated by a deterministic and memoryless scheduler reaches a cycle at or prior to(∏n

i=1 ((Di − Ti )0 + 1)
)
H, where (a)0

.= max(a, 0).

Proof Note that the pre-state at the time 0 is given by Ŝ00 in Fig. 4. In this figure, since
only hyperperiods are considered, the pre-states can be represented only by the values
of Ĉremi , every local clock being null. In order to prove the lemma, we will show that
the number of distinct pre-states for every hyperperiod kH, k ∈ N

+, in any feasible
schedule, is bounded above by

∏n
i=1 ((Di − Ti )0 + 1).

– Constrained deadlines case: if every task has a constrained deadline (i.e., Di ≤ Ti ),
then if the pre-state reached at the date H is such that there is an i ∈ 1..n such that
Ĉremi (H) > 0, then the schedule is infeasible. Indeed, every job started during
the first hyperperiod has to be finished before the end of this hyperperiod. As a
result there is only one possible pre-state at the date H for any feasible schedule,
which is identical to the initial state. Hence, any feasible schedule has a steady
phase given by the interval [0, H), showing the lemma for this case.

– Case of only one task, τi , having a deadline greater than its period. We first give
the proof for Di = Ti + 1. In any feasible schedule there is at most one time
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unit of the (H/Ti )th job of τi backlogged at the time instant H , otherwise the
system cannot be feasible, while every other job released in the first hyperperiod
has to be finished since ∀ j �= i, Dj ≤ Tj . Therefore the only possible pre-states
of the system in a feasible schedule at the date H can be defined by ŜH

0 and ŜH
1

in Fig. 4. Note that ŜH
0 is the same as Ŝ00 , and so if the schedule reaches this state,

then it is behaving cyclically from this point: the schedule [0, H) will be repeated
infinitely. If the system is in ŜH

1 , then consider the schedule at the time 2H : there
again, only two possible pre-states can be part of a feasible schedule, Ŝ2H0 = Ŝ00
and Ŝ2H1 = ŜH

1 . If the system is in the pre-state Ŝ2H0 then the schedule behaves
cyclically over the interval [0, 2H); else the schedule has a transient phase on
[0, H) (from pre-state Ŝ00 to ŜH

1 ) followed by a steady phase on [H, 2H) (from
ŜH
1 to Ŝ2H1 ). The maximal simulation duration is hence 2H , proving the lemma

for one task having Di = Ti + 1.
Now suppose that Di = Ti + k with k an arbitrary finite positive integer. If we
name Ŝ pH

j any reachable pre-state in a feasible schedule where 0 ≤ j ≤ k gives
the remaining work to process for τi at the date pH , with p a positive integer, it is
obvious that there are only k + 1 possible different pre-states. As a consequence,
the possible cyclic behaviors of any feasible schedule are bounded by (k + 1)H .
Any combination of a transient phase lasting over [0, qH) followed by a steady
phase over [qH, r H) with 0 ≤ q < k, r ≥ q + 1 and r ≤ k can be a feasible
memoryless and deterministic schedule.

– If several tasks have a deadline greater than their period, then we could represent
the pre-states that may be reached by a feasible schedule each hyperperiod H
as a n-dimensional matrix given by the Cartesian product of pre-states where
each task can be delayed by an amount between 0 and (Di − Ti )0. The number
of elements of this matrix is therefore

∏n
i=1 ((Di − Ti )0 + 1). As a result, it is

impossible for a feasible schedule not to have reached two identical pre-states
after

(∏n
i=1 ((Di − Ti )0 + 1)

)
H time units.

	


Now we have the material to provide and prove correct our main result.

Theorem 1 Any feasible schedule of an asynchronous independent tasks system gen-
erated by a deterministic and memoryless scheduler reaches a cycle at or prior to(∏n

i=1 ((Oi + Di − Ti )0 + 1)
)
H.

Proof We know from Lemma 1 that any feasible schedule for an asynchronous system
S is a feasible schedule for a synchronous system S′ such that O ′

i = 0 and D′
i =

Oi + Di , i.e., F(S) ⊆ F(S′). From Lemma 3, any feasible schedule of S′ reaches a
cycle at or prior to

(∏n
i=1 ((D′

i − Ti )0 + 1)
)
H , sinceF(S) ⊆ F(S′), then any feasible

schedule of S reaches a cycle at or prior to
(∏n

i=1 ((D′
i − Ti )0 + 1)

)
H . Substituting

D′
i by Oi + Di we obtain the theorem. 	
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Fig. 5 A non-feasible deterministic and memoryless schedule for Sys2 on one processor

4 Simulation algorithms

In this section, we propose a generic method to build a feasible schedule for sets of
independent asynchronous tasks, scheduled on identical processors by a deterministic
and memoryless scheduling algorithm.

4.1 Motivation

Theorem 1 states that any feasible schedule reaches a cycle at or prior to the given
bound. Nevertheless, a more important question is if a given schedule, meeting the
timing constraints on the simulation interval, is indeed a feasible schedule. As an
example, let us consider a task system Sys2 of two tasks τ1 and τ2 scheduled by a
deterministic and memoryless scheduler on a single processor. Both tasks are simul-
taneous O1 = O2 = 0, and share the same period T1 = T2 = 4. Their worst-case
execution times are C1 = 1, and C2 = 2. τ1 has an implicit deadline D1 = T1 = 4,
while τ2 has a greater deadline than its period: D2 = 5.UsingTheorem1,we know that
any feasible schedule produced by a deterministic and memoryless scheduler for Sys2
reaches a cycle at, or prior to,

(∏n
i=1 ((Oi + Di − Ti )0 + 1)

)
H = (1 × 2) × 4 = 8.

We consider Fig. 5, giving a schedule produced on the interval [0, 10] by a deter-
ministic and memoryless scheduler. On the simulation interval [0, 8], no deadline is
missed. It would nevertheless be a mistake to conclude that the schedule is feasible
when reaching the time 8: the next deadline of τ2, at time 9, cannot be met. Indeed,
the backlogged work for τ2 is 2 time units at time 8, while the corresponding deadline
is only one time unit later, at time 9.

It is important to stress the fact that Theorem 1 is giving a simulation interval for
feasible schedules, but does not state that a schedule reaching the simulation interval
while notmissing a deadline is feasible. This statementwould bewrong, like illustrated
in Fig. 5.
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4.2 Simulation using exponential memory

A trivial way to check for feasibility of a schedule under construction is directly based
on Definition 7. In this case, during a simulation, every state is stored during the
construction of the schedule. For every reached state at a time t , if any deadline is
missed, then the schedule is not feasible. If no deadline is missed, we have to check
in history if the current state has already been reached. In order to avoid checking
useless points in history, we can use the fact that two states can be identical only if
their clocks are an integer amount of hyperperiods apart. This technique is highly
memory consuming, since every state of the schedule has to be stored, but the benefit
is that the simulation interval is tight. Theorem 1 is giving an upper bound on the
interval that has to be studied.

In order to limit the amount of states to store, we can use Theorem 1: in this case,
we only have to store one state per hyperperiod. In this case, for any time t , as long
as no deadline is missed, if t is not a multiple of the hyperperiod, then we carry on
the next time unit. If t is a multiple of the hyperperiod, then we store it and check
in the previously stored states if any state is identical to the current state. Simulation
is then stopped and the schedule claimed feasible. The benefits are that we store
very few states compared to storing every state, and that we do not have to store the
local clocks. The drawback of this algorithm compared to the previous one is that the
simulation interval is not tight, since cycle detection is only checked at the end of each
hyperperiod, but not between two subsequent hyperperiods. The major drawback is
that it is also exponential in space, since the maximum number of states to store is
given by

(∏n
i=1 ((Oi + Di − Ti )0 + 1)

)
(see Theorem 1).

4.3 Zero-memory simulation

The two previous ways to build a simulation presented in the previous section are both
storing an exponential amount of states, even if the second one is smaller by far than
the first one. We show in this section that we can build a simulation without storing
any state of the history.

Lemma 4 (Non-negative laxity condition) For any hyperperiod kH, k ∈ N, a
necessary feasibility condition, called non-negative laxity condition, is that in the
pre-state of a schedule, ∀i ∈ 1 . . . n, Ĉremi ≤ (Oi + Di − Ti )0. There are only(∏n

i=1 ((Oi + Di − Ti )0 + 1)
)
pre-states meeting the non-negative laxity condition.

Proof We remind that the remaining work to process Ĉremi in a pre-state corresponds
to the work to process for jobs released before the considered instant, and that (Oi +
Di − Ti )0 represents the largest time interval between the end of a hyperperiod and
the deadline of any job released in this hyperperiod. When building a schedule, if we
encounter at the date kH a pre-state such that ∃i ∈ 1 . . . n, Ĉremi > (Oi + Di − Ti )0
then the deadline of τi at time kH + (Oi + Di − Ti )0 will be missed since there is
more remaining work than time left until the deadline following or at the hyperperiod
kH . The enumeration of the possible states meeting this condition is given by the
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Cartesian product of the possible values of Ĉremi ∈ 0 . . . (Oi + Di − Ti )0, giving at
most

(∏n
i=1 ((Oi + Di − Ti )0 + 1)

)
pre-states. 	


If we look back at Fig. 5, we see that at the time instant 8, τ2 has a negative laxity
since Ĉrem2 = 2 > (O2 + D2 − T2)0 = 1. We show in the next theorem that the
non-negative laxity condition is not only necessary but also sufficient.

Theorem 2 (Zero-memory schedule) Let a schedule of an asynchronous indepen-
dent task system, be generated by a deterministic and memoryless scheduler on the
time interval

[
0 . . .

(∏n
i=1 ((Oi + Di − Ti )0 + 1)

)
H

]
, then the (infinite) schedule is

feasible if, and only if, all the following conditions are satisfied:

– no deadline is missed in the interval,
– for any integer k ∈ 0, . . . ,

(∏n
i=1 ((Oi + Di − Ti )0 + 1)

)
, there is a non-negative

laxity,

Proof The only if part is trivial and a direct application of Lemma 4.
For the if part, we know from the first item that no deadline is missed in

the built interval, nevertheless, we have to show that no deadline will be missed
after the end of the interval. The non-negative laxity condition is met at every
hyperperiod k ∈ {0, 1, . . . , (∏n

i=1 ((Oi + Di − Ti )0 + 1)
)}, but there are only(∏n

i=1 ((Oi + Di − Ti )0 + 1)
)
possible pre-states meeting the non-negative laxity

condition (see Lemma 4).
Since we encountered

(∏n
i=1 ((Oi + Di − Ti )0 + 1)

) + 1 pre-states, at least two
are identical, meaning that the schedule behaves cyclically. Since no deadline has been
missed in the interval, and that a cyclic behaviour has been reached, then no deadline
will ever be missed. 	


The direct application of Theorem 2 is a memory efficient simulation algorithm,
not storing any state, hence the name zero-memory schedule. At every hyperperiod,
we check if the non-negative laxity condition (Lemma 4) is met. When reaching the
simulation upper bound given by Theorem 1, if the non-negative laxity condition
was never violated in the previous hyperperiods, then the schedule is feasible. The
drawback of this method is that the upper bound of the simulation interval is always
reached.

4.4 Optimization of the simulation interval

The non-negative laxity condition of Lemma4 is considering every task independently.
Consider three tasks τi , i = {1, 2, 3}, executed on two processors such that (Oi +Di −
Ti )0 = 1, and that their backlogged work at the hyperperiod is one time unit. Then
we cannot execute them in time, since only two of them at most can be executed prior
to their next deadline. Therefore, even if the pre-states having a remaining execution
time of one for these three tasks are meeting the non-negative laxity condition, all
of them are leading to a deadline miss. We could therefore use a tighter necessary
schedulability test for the non-negative laxity condition, either based on the system,
or based on the scheduling algorithm (e.g. global fixed-priority).
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An easy way to do that is to replace the trivial non-negative laxity condition by
a uniprocessor test on a processor of speed m. Any necessary feasibility condition
on a m−speed processor is also a necessary feasibility condition on m processors of
unitary speed.

As an example, we could use a demand bound function, or a simplified version of a
demand bound function checking only if the next deadline of the tasks could be met on
a m−speed processor. This step is straightforward, the only difficulty is to enumerate
the number of reachable pre-states which are satisfying this new necessary condition
in order to obtain a less pessimistic upper bound on the amount of hyperperiods to
consider.

5 Generalization to dependent tasks

The main cyclicity result of Theorem 1 is based on the following intermediate results:

– for synchronous task systems, the amount of possible pre-states at each hyperpe-
riod of the system is limited by the Cartesian product of the possible remaining
execution time of the tasks allowed to be backlogged at the end of a hyperperiod
(Lemma 3);

– the set of feasible schedules for asynchronous task systems is included in the set
of feasible schedules of synchronous task systems where the absolute deadlines
are preserved (Lemma 1).

In order to generalize our simulation interval to a large set of systems, we consider
structural constraints.

Definition 9 (structural constraints) A structural constraint is a relation between jobs
or sub-jobs, forbidding some execution orders, preemptions, or insuring a minimal
delay between the end of a job (or sub-job) and the start of another one.

A set of tasks subject to structural constraints is called a dependent tasks system.
This large definition covers mutual exclusions, precedence constraints between jobs,
as well as tasks suspension. We do not need here to give further details, since we
can only see a structural constraint as forbidding some schedules, while any feasi-
ble schedule meeting the structural constraints also has to be feasible regarding the
temporal constraints.

We consider here linearized tasks models, where the control flow graph of a task
is reduced to a single line of execution, capturing the longest duration, and structural
constraints. Such a linearized model is classic in the literature, and used for example
in Xu and Parnas (1990). A concrete example of how to obtain a linearized task from
a control flow graph is detailed in Niehaus (1994) in the context of the Spring C
compiler.

Lemma 5 Let S beadependent tasks system.Let S′ be the same set of tasks, considered
as independent. F(S) ⊆ F(S′).

Proof Any feasible schedule of S also has to meet the temporal constraints that the
corresponding independent task system has to meet. Therefore any feasible schedule
of S is also included in F(S′). 	
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Theorem 3 Any feasible schedule of an asynchronous dependent tasks system gen-
erated by a deterministic and memoryless scheduler reaches a cycle at or prior to(∏n

i=1 ((Oi + Di − Ti )0 + 1)
)
H.

Proof We know from Lemma 5 that any feasible schedule for a dependent system
S is also a feasible schedule for the corresponding independent task system S′, i.e.,
F(S) ⊆ F(S′). Since from Theorem 1, the result holds for any independent tasks
system S′, then the result also holds for any dependent task system S. 	


It is important to recall that themain results, Theorems 1 and 3, concern the cyclicity
of the schedule generated for the tasksmodel. The possible behaviors of the real system
are close to infinite, and, assuming an arbitrarily small processor cycle, a system with
a task τi having an arbitrary deadline or a non null offset could, in theory, exhibit,
when scheduled online, a close to infinite behavior without any cycle without missing
a deadline. For example, after one hyperperiod, the remaining execution time could be
δi ≤ Di−Ti+Oi , then δi−ε at the next hyperperiod,with an ε as small as the processor
cycle, and so on. Theorems 1 and 3 are therefore limited to the simulation duration
of the model of the tasks. This result is nevertheless interesting if the simulation of
the tasks model exhibits the worst-case behavior of any possible online execution of
the system. It is the case only if the context is C-sustainable. This property, and the
usefulness of our contribution for schedulability analysis is discussed in Sect. 7.

6 Discussion, comparison with other simulation intervals

In this section, we consider the star operator as the repetition of its preceding inter-
val, and [a, b)[c, d)∗ represents the schedule over the interval [a, b) followed by the
schedule over [c, d) repeated cyclically.

Application of the main result If we use Theorem 1 on Sys1 (see Sect. 2), we
obtain an upper bound of (3 + 1) × 1 × 1 × H = 4H for the simulation interval.
We see that, for LRPTF in Fig. 2 we have an infinite feasible schedule [0, H)∗, while
global-EDF in Fig. 1 gives a feasible schedule [0, 2H)[2H, 3H)∗. The states reached
by global-EDF at each hyperperiod are (0, 0, 0, 0, 0, 0) at the origin, (0, 0, 1, 0, 0, 0)
at the time H , (0, 0, 2, 0, 0, 0) at 2H , (0, 0, 2, 0, 0, 0) at 3H . We can, as an example,
build a feasible schedule lasting [0, 4H)∗ starting at the state (0, 0, 0, 0, 0, 0), and then
passing by the states (0, 0, 1, 0, 0, 0) at H , (0, 0, 2, 0, 0, 0) at 2H , (0, 0, 3, 0, 0, 0) at
3H , and (0, 0, 3, 0, 0, 0) at 4H , as illustrated in Fig. 7. The scheduling algorithm used
to generate such a schedule is not corresponding to any popular scheduling algorithm,
but we can imagine a deterministic and memoryless scheduling algorithm, giving this
schedule, defined by an array indexed by a state of a system giving for any possible
state a scheduling decision.

Comparison with other existing bounds In Table 1, the main results concerning
periodicity are summarized. All the results assume a deterministic and memoryless
scheduling algorithm.

Figure 6 is giving a classification of these results based on a generalization rela-
tionship: we see that, except for Cucu and Goossens (2006) and Cucu-Grosjean and
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Fig. 6 Classification of the main results concerning simulation duration

Goossens (2011), our simulation interval can be applied to any context where the other
simulation intervals hold.

We can note that for identical processors, this research considers the widest area of
application: arbitrary deadlines, the widest class of structural constraints ever con-
sidered, and any deterministic and memoryless algorithm (including any popular
algorithm like fixed-task or fixed-job priority based schedulers, as well as offline
methods a.k.a. time-triggered scheduling). This generality has a cost on the exactness
of the upper bound which may perform less well than a more specific simulation
interval bound. Nevertheless, we show in this section that it is incomparable to other
simulation interval bounds for multiprocessor systems, where by incomparable we
mean that for some task systems, our upper bound behaves better (i.e., is lower) than
the other upper bounds, while for other systems the other upper bounds behave better
than ours.

In order to compare our bound to the bound provided for the case of fixed-task
priority schedulers in Cucu and Goossens (2007), we consider a simple system of
two tasks τ1 and τ2 with the same period T1 = T2 = 8, and offsets and deadlines
given by O1 = 1, D1 = 7, O2 = 0, D2 = 8, and we consider a fixed-task priority
scheduler assigning a higher priority to τ1 than to τ2. Theorem 1 gives a simulation
interval [0, 8), while the bound given in Cucu and Goossens (2007) (see Eq. 2) gives
[0, 24). In this case, since the deadlines are lower than the periods, we could also
use the upper bound given in Cucu and Goossens (2006) (see Eq. 1), and obtain the
simulation interval [0, 16).

If we consider a different system with O1 = 1, D1 = 7, T1 = 12, O2 = 0, D2 =
9, T2 = 8, then the simulation intervals are [0, 96) for Theorem 1, and still [0, 24)
for Cucu and Goossens (2007), and cannot be calculated with Cucu and Goossens
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Fig. 7 Schedule lasting 4H generated by a deterministic and memoryless scheduler for Sys1 on two
processors

(2006), because D1 > T1. We can see that the bounds are not comparable, therefore,
in the case where several upper bounds could be applied, the minimal value giving a
simulation interval upper bound should be chosen.

Note that if the tasks were involving any structural constraint as mutual exclusions,
precedence constraints, suspension delays, or non preemptive tasks, Theorem 1 would
still hold, while the other periodicity results concerning multiprocessor systems are
not applicable.

Tightness Our bound is safe, but not tight, as illustrated in the following example.
Let a system be composed of two synchronous independent tasks τ1 and τ2, executed
on a single processor, such that D1 = T1 + 1 and D2 = T2 + 1. Theorem 1 is giving
an upper bound of 4H for the cycle, because the pre-states that can be reached at
each hyperperiod are given by (0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0) and (1, 1, 0, 0). But
clearly, if both tasks have a remaining processing time of one time unit, with zero
laxity (both deadlines happen one time unit after the considered hyperperiod), then
the schedule cannot be feasible. As a consequence, in this case, the longest feasible
schedule without reaching twice the same state is constrained to the time interval
[0, 3H). In general, a test like a demand bound function could be used to check if the
states obtained by the Cartesian product of the possible lateness of the tasks can lead
to a feasible schedule or not in order to reduce the bound (see Sect. 4.4).

7 Using simulation as a schedulability test

Previous sections considered feasibility of a schedule. This section considers the
(online) schedulability of a system giving a scheduler, and also discusses implemen-
tation issues of pre-run-time schedules.

Checking for schedulability of a task system by a scheduling algorithm has been
addressed in many ways in the literature. Several methods, based on the demand for
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optimal schedulers, or the request for fixed-task priority schedulers, are exact for fully
preemptive task systems executed on a single processor as long as a critical instant can
occur. Nevertheless, as soon as there is no critical instant, the schedulability problem
is co-NP-hard in the strong sense (Leung and Merrill 1980). Simulation based tests
have been proposed as exact tests for this type of systems. Simulation based tests
have an exponential complexity, because every simulation interval includes at least a
hyperperiod, which is exponential. As a consequence, simulation should be used as a
schedulability test only for classes of schedulability problems which are NP-hard or
co-NP-hard in the strong sense.

Moreover, simulations usually consider fixed parameters: the offset, the execution
time, as well as the period and deadline are fixed. This is untrue in general concerning
the execution time: the online execution of a system does not exhibit (unless forced)
the WCET of the task for every job. As a result, using simulation for schedulability
analysis has to carefully consider if considering that every job consumes the WCET
of the task is always the worst-case scenario. This property is named C-sustainability.

Contexts which are not C-sustainable are subject to scheduling anomalies. A
scheduling anomaly occurs when reducing resource consumption (i.e., reducing the
execution time) can increase the worst-case response time of a task. For example, as
soon as tasks are not fully preemptible (non preemptible tasks, mutual exclusion),
it is easy to exhibit scheduling anomalies. Scheduling anomalies can also occur in
most cases of structural constraints. The sustainability concept has been extended to
most tasks parameters (Baruah and Burns 2006). Sustainability addresses a context
which involves three aspects: the constraints on the tasks (independent versus struc-
tural constraints subject to scheduling anomalies), the schedulability or feasibility test,
the addressed online execution of the tasks. C-sustainability represents the property
for a positive schedulability or feasibility test to stay true for any possible variation
(typically in the interval [0..Ci ]) of the actual execution time of any task τi taking the
structural constraints into account and considering theway the systemwill be executed
online.

When the variation of the online parameters of the system does not offer sustain-
ability, some tests with a highly exponential computational and space complexity have
been proposed to address the schedulability problem. For example, schedulability of
sporadic task systems on identical multiprocessor platforms is addressed in Baker and
Cirinei (2007), which is explicitly storing and exploring the search space of every pos-
sible simulation based on every possible release date of every job. The storage of every
state is required in order to find a cycle by comparing every new state to the previously
built states. Other methods, using e.g., timed automata to model the task system, let a
model checker build the search space and find the cyclic points, like (Guan et al. 2008;
Sun and Lipari 2014; Cordovilla et al. 2011). The same kind of exhaustive methods
have also been used in the uniprocessor case, when scheduling anomalies can occur,
like when tasks can self-suspend (Abdeddaïm and Masson 2012). These methods are
not only highly exponential in time, but also in space, since they store every state of
every possible behavior of the system.

The simulation interval can be used for schedulability analysis only for scheduling
algorithms and contexts which are sustainable regarding the online variation of the

123



830 Real-Time Syst (2016) 52:808–832

parameters. For example, most popular scheduling algorithms are C-sustainable when
tasks are independent.

For C-sustainable contexts, if the tasks are strictly periodic, when considering
tasks executed with their WCET as execution time, period, release date, and deadline,
obtaining a feasible schedule by simulation is an exact test proving that the system is
schedulable. Using our zero-memory simulation algorithm requires only to store one
state at any time, has a space complexity of O(n), but an exponential computational
complexity.

On the opposite, if the tasks are sporadic, most multiprocessor scheduling algo-
rithms are not T-sustainable, therefore, a simulation cannot be used as a schedulability
test, and in the best of our knowledge, only exhaustive methods can be used, at the
cost of an exponential space complexity, and a highly exponential computational com-
plexity.

Finally, for dependent task systems, when scheduling anomalies are possible, e.g.
tasks subject to mutual exclusion, simulation is not C-sustainable when considering an
implementation on an online scheduler. Nevertheless, in this context, a static scheduler
(a dispatcher using a pre-run-time schedule to allocate the processing resources) can
be used to execute infinitely a feasible schedule (Xu and Parnas 2000). In every case,
this static scheduler, and the task model, have to be carefully designed to ensure that
no scheduling anomaly can occur. For example, if in the model, a task is supposed
to enter in a critical section after 2 time units, the real execution of the task may
reach this critical section earlier than expected, and if the task was allowed to continue
its execution in the time window planned in the pre-run-time schedule, it could cre-
ate a scheduling anomaly. A possible way to prevent scheduling anomalies in static
scheduling is to split tasks around the synchronization points (e.g. critical sections)
into sub-tasks. Precedence constraints are then added between the sub-tasks to enforce
the sequential behavior of the original task. When executing the pre-run-time sched-
ule, the scheduler has to ensure precedence constraints, and that a (sub-)task does not
start too early like in Fohler (1995) in order to enforce C-sustainability. Building a
pre-run-time schedule to be executed by a static scheduler can thus be done using the
contribution of the paper, but this scheduler has to be carefully designed to avoid any
scheduling anomaly.

8 Conclusion

The problem tackled in this paper is the periodicity problem for feasible sched-
ules produced by any deterministic and memoryless scheduler, in uniprocessor and
multiprocessor cases, for any structural constraints (mutual exclusions, precedence
constraints, self-suspension, non-preemptive tasks, etc.). The result concerning the
periodicity of schedules is, to the best of our knowledge, the most general result
ever proposed in the context of uniprocessor scheduling as well as in the context of
identical multiprocessor systems, since it concerns any deterministic and memoryless
scheduler, arbitrary deadlines, and dependent task systems.

We prove in Lemma 1 how to reduce the general asynchronous and arbitrary dead-
lines problem to a synchronous and arbitrary deadlines problem. This intermediate
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result has a major impact on the relative simplicity of the proof of the main theorem.
Then we have shown that the cycle is reached for any feasible schedule at most at the
time

(∏n
i=1 ((Oi + Di − Ti )0 + 1)

)
H . This result might be improved if we take into

account the local feasibility of the tasks, but we believe that the applicability of the
upper bound would be weakened by the difficulty to handle it in this extended form.

We stress the fact, using an example, that reaching the simulation bound without
missing a deadline does not prove that the schedule is feasible. We introduce the
system laxity as a means to check for feasibility of a schedule under construction
when reaching the simulation bound. We then derive several simulation algorithms,
including a zero-memory simulation algorithm, allowing not to store any past state.

Finally, we discuss how simulation can be used for schedulability analysis of strictly
periodic task systems, in the context ofC-sustainable algorithms. This exact simulation
based schedulability test canbe applied to anydeterministic andmemoryless scheduler,
at the cost of an exponential computational complexity, but a O(n) space complexity.

We also want to stress the fact that our result is an upper bound for any determin-
istic and memoryless scheduler, therefore it may be improved for specific scheduling
algorithms. As an example, specific bounds concerning fixed-task priority schedulers
like in Cucu and Goossens (2007), can in some specific contexts be lower than ours.
In other contexts our bound can be lower. The best known bound would then to be
considered, for such a specific case (fixed-task priority, independent tasks), as the
minimal value of the two upper bounds.

In the future, we plan to extend this result to uniform and unrelated multiprocessor
platforms. We also plan to improve existing bounds for specific scheduling algorithms
using our intermediate result, the Lemma 1.
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