
The SMART Project: Multi-Agent Scheduling
Simulation of Real-time Architectures

P. Dissaux1, O. Marc2, S. Rubini3 , C. Fotsing3, V. Gaudel3, F. Singhoff3, A. Plantec3,
Vương Nguyễn-Hồng3, Hải Nam Trần3

1: Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France
2: Virtualys, 41 rue Yves Collet, 29200 Brest, France

3: Lab-STICC, CNRS UMR 6285, Université de Bretagne Occidentale, 20, av Le Gorgeu, 29200 Brest, France

Abstract

The ongoing SMART collaborative project addresses
modeling and analysis techniques for software
intensive real-time systems. The AADL modeling
language has been selected to describe multi-
thread, multi-partition, multi-processor and multi-core
architectures.

This paper focuses on the use of the Marzhin
simulator that is based on a Multi-Agent technology
for providing scheduling analysis results of real-time
systems. This simulator is integrated in the AADL
Inspector product and can also be used to animate
realistic 3D animations.

Introduction

The SMART project (Simulation Multi-Agent
d'ARchitectures Temps-réel) is a collaborative
project focused on real-time analysis and simulation
of real-time hardware and software architectures. It
aims at emulating the behavior of the control-
command logic of a system and animating a 3D
graphical representation of this system.

The first section of this article briefly summarizes the
capabilities of the AADL language for specifying real-
time architectures. The second section introduces
Marzhin, an original approach for performing real-
time simulations at a model level. The third section
explains how the Cheddar scheduling analysis tool
has been used to verify the results generated by
Marzhin. Finally, the fourth section shows one of the
main benefits of the approach which consists in
using the real-time simulation output to animate a 3D
graphical representation of the system.

1. Modeling Real-Time Architectures

The AADL Language (Architecture Analysis and
Design Language) is an international standard of the
SAE (AS-5506B) [1].

The standard defines a default execution model that
specifies the way the various components interact at
run-time. This enables precise timing analysis and
simulation of AADL models.

A typical AADL model is composed of one or several
execution units (Processor) that can communicate
via Buses. The software application is composed of
one or several memory address spaces (Process)
that contain concurrent Threads and shared Data.
Various inter-threads communication paradigms are
supported by the standard.

1.1. Processors

In AADL, the Processor represents the hardware
computation unit associated with a scheduler. It must
declare a Scheduling_Protocol property whose value
corresponds to one of those that are actually
supported by the analysis, simulation or code
generator.

Typically supported Scheduling_Protocols are:

- Rate Monotonic Protocol, based on the period of
the Threads.
- Deadline Monotonic Protocol, based on the
deadline of the Threads.
- POSIX 1003, based on the priority of the threads.
- ...

1.2. Threads

The default behavior of AADL Threads is specified in
the standard by a state-transition automaton.

Page 1/9

suspended

ready

running

awaiting
return

awaiting
resource

Dispatch

Complete
Preempt

Resume

Call subprogram

Return from
subprogram

Get resource

Release
Resource

A Thread must also have a Dispatch_Protocol
property that defines when it is ready to execute.
Supported protocols are:

- Periodic
- Aperiodic
- Sporadic
- Timed
- Hybrid
- Background

Thread interfaces contain Features that are used to
implement communication channels. They can be:

- Data Ports
- Event Ports or Event Data Ports
- Access to shared Data
- Access to remote Subprograms

1.3. Shared Data

One particular way to exchange information between
Threads is to let them have access to the same
shared data. Shared data are represented in AADL
by Data subcomponents to which Threads can have
access through Data Access Connections.

It is possible to specify critical sections thanks to the
AADL Behavior Annex. In order to ensure mutual
exclusion of all the threads accessing a given shared
data component, a Concurrency_Control_Protocol
property can be set.

1.4. AADL Behavior Annex

The core definition of AADL restricts its scope to the
architectural description of the system. It specifies
which components are instantiated and how they are
connected together. The functional activity of threads
is summarized by a Compute_Execution_Time
property that must be given with its Min and Max
values. The Max value of this property thus
corresponds to the usual WCET (Worst Case
Execution Time).

However, in order to perform precise timing analysis
or simulation, it is necessary to provide a more
detailed description of the functional behavior of a
Thread. The AADL Behavior Annex is an action
language that can be used to provide a simplified
representation of the code logic (pseudo-code).

Examples of actions that can be described with the
AADL Behavior Annex are:

- p! : sending an event on port p (Put_Value and
Send_Output)
- d!< : entering a critical section on shared data
access d (Get_Resource)
- d!> : leaving a critical section on shared data
access d (Release_Resource)

- computation(a..b) : use of the processor for a
duration between the minimum duration a and the
maximum duration b.

2. The Marzhin Multi-Agent Simulator

Usually, the implementation of real-time simulators is
based on an emulation of an actual Real-Time
Operating System (RTOS). These emulators must
thus provide the same Application Programming
Interface (API) and have the same dynamic behavior
as the real software. Due to these strong
requirements, the development and validation of
such simulators is a complex and costly task.

An alternate and original approach has been
followed to build the Marzhin real-time simulator.
After presenting the general notions of Multi-Agent
systems, we describe how Marzhin has been
implemented.

2.1 Notions of Multi-Agent Systems

According to [8], an agent is a computer system,
situated in some environment, that is capable of
flexible autonomous action in order to meet its
design objectives. This definition means that an
agent must be able to react to events in its
environment, to be proactive, social, in order to
maintain its goal.

When multiple agents work within the same system,
we call such a system a Multi-Agent system. In this
case, they need a framework to communicate,
coordinate and negotiate in order to meet their goals.

Several models for agent communication have been
developed [9]: agent to agent, where each agent
knows the name of any other agents with which it
might need to communicate, agent broker and agent
matchmaker, where globally, a special agent is
tasked with finding agents to fulfill services required
by requesting agents. And, in mostly case, the
communication among agents is facilitated by an
agent communication language [10]: The Knowledge
Query Manipulation Language (KQML).

Finally, many agent architectures have been
developed to support Multi-Agent systems. We can
distinguish: DECAF [11] (Distributed, Environment -
Centered Agent Framework) Agent Framework,
which is a Java-based Multi-Agent system, and
provides a matchmaker agent that accepts KQML
“performatives” to allow for agent communication;
FIPA [12] (Foundation for Intelligent Physical
Agents), which have developed a standard for Multi-
Agent systems, that include specification for agent
architecture, agent management, agent
communication and interoperability; and COBALT
[13] which is an agent framework based on KQML
and CORBA, and provides a complete
communication layer that can support cooperation in
Multi-Agent systems.

Page 2/9

Marzhin is based on the reuse of an existing Multi-
Agents simulation kernel called VAgent. As opposed
to traditional simulators that implement deterministic
scheduling algorithms, this kernel randomly
stimulates a set of autonomous interconnected
elementary entities (the Agents) in order to exhibit a
resulting macroscopic behavior.

However, VAgent only provide generic Agents. The
precise behavior of each category of Agent must be
refined in order to implement a simulator. In our
case, this behavior is specified by the semantics of
the simulated AADL component categories.

2.2 Marzhin Implementation Details

The realization of such a simulator thus consists in
specifying and implementing the awaited behavior
for each individual Agent, which is a much easier
task than doing so globally for a complete RTOS
emulator.

Practically, the realization of Marzhin mostly consists
in implementing the AADL real-time specifications for
the Processors, Threads and shared Data
components as they are described individually in the
previous section in order to enrich the basic behavior
of the VAgent kernel.

The design of the simulation kernel is thus very
modular and the implementation of each specialized
Agent can be performed by a small piece of source
code that can be easily traced against its
requirements.

However, due to the intrinsic low determinism of the
Multi-Agent simulation approach, there is a need to
provide some kind of evidence that the resulting
global behavior of Marzhin is realistic and can be
used with a certain level of confidence for critical
real-time system development. A specific verification
task is thus mandatory.

3. Verifying Simulation Results with Cheddar

Cheddar [3] is a scheduling analysis tool that
performs real-time analysis complying with the
“scheduling theory” [2]. It is mostly composed of a
set of analytical feasibility tests providing
mathematically proven results on analyzed models.

Unfortunately, it is not possible to analyze any kind
of systems by this mean, and some theoretical
results are often known as being too pessimistic.
That's why additional techniques such as dynamic
simulation can help to increase the “confidence” the
designer has on his design.

However, it is quite difficult to demonstrate that non
exhaustive and non deterministic simulation results
are realistic enough to be used in a real-time
analysis process.

The approach that has been followed in the SMART
project is to identify a set of “validation points” each
of them being described by an AADL architectural
model. The goal is then to compare the results given
by Cheddar and Marzhin for these well identified
models.

This comparison task is facilitated by the fact that
Cheddar and Marzhin are embedded in the AADL
Inspector product [17]. It is thus easy to run both
verification tools on the same AADL models.

This verification approach is of course limited by the
fact that Cheddar cannot provide a significant result
for any kind of AADL architecture. However, it must
be recalled that the role of Marzhin is specifically to
complement Cheddar with cases that cannot be
processed in a deterministic manner.

3.1. AADL Design Patterns

A first set of validation points have been defined on
the basis of predefined AADL Design Patterns that
highlight various inter-thread communication
paradigms [4]. The advantage of reusing some of
these patterns is that they have already been
analyzed in details with Cheddar. The simulation
results are thus well known and the comparison with
the outputs of Marzhin consists in checking that the
time lines for each thread are similar during a
bounded period of time.

3.1.1. Data flow communication

The simplest communication pattern consists in a set
of periodic Threads communicating by data ports
connected in a sampling mode. This implies that
communication does not interfere with the thread
dispatch policy.

Page 3/9

AADL

Marzhin

Cheddar

The real-time characteristics of each thread instance
is given by the appropriate AADL properties, as
shown by the following AADL source code fragment:

PROCESS IMPLEMENTATION my_process.others
SUBCOMPONENTS
 T1 : THREAD a_thread
 { Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 5ms..5ms;
 Period => 25ms;
 Deadline => 25ms; };
 T2 : THREAD a_thread
 { Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 5ms..5ms;
 Period => 20ms;
 Deadline => 20ms; };
 T3 : THREAD a_thread
 { Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 5ms..5ms;
 Period => 15 ms;
 Deadline => 15 ms; };
CONNECTIONS
 C1 : PORT T1.output -> T2.input;
 C2 : PORT T2.output -> T3.input;
END my_process.others;

If such a real-time architecture is bound to a
processor and scheduled for instance with a Rate
Monotonic protocol, it will be possible to use
Cheddar to apply feasibility tests and run the static
simulation. The first part of this simulation trace is
given below (the black rectangles represent the
Threads in a running state, and the orange ones the
Threads in a ready state, awaiting for the Processor
resource):

The same AADL specification can also feed the
Marzhin dynamic simulator, in order to get another
simulation trace, as shown below:

Simple direct visual comparison of the two simulation
traces during the complete simulation period (the
time required for the simulation trace to repeat itself)
shows that the two simulators give a similar result in
that case. Another analysis method consists in
automatically perform the comparison of the output
data that are produced by each tool.

A light change in the AADL specification can show a
difference in the way the two simulators behave in
case the system becomes non schedulable. If the
capacity of Thread T3 is increased by 1ms, the
simulation traces of Cheddar and Marzhin become
as shown below:

At tick 25 indeed, Thread T1 should start a new
period, but it cannot happen as it is still preempted
by T2 at that time and has not completed its previous
job. With the current implementation of the two tools,
Cheddar (on the left) starts the new job of T2 even if
late, whereas Marzhin (on the right) skips the missed
job. Further investigation would be required to
determine which of these two behaviors is the more
realistic according to actual RTOS implementations.

3.1.2. Shared data communication

The second communication pattern that has been
selected for our study makes use of Access
Connections to shared Data component instead of
direct point-to-point communication between the
Threads.

Page 4/9

A fragment of the corresponding AADL specification
is as follows. Note that we initially applied a Priority
Ceiling Protocol (PCP) to access the shared Data
components.

PROCESS IMPLEMENTATION my_process.others
SUBCOMPONENTS
 T1 : THREAD T.i1;
 T2 : THREAD T.i2;
 D1 : DATA D.others
 { Concurrency_Control_Protocol =>
 PRIORITY_CEILING_PROTOCOL; };
 D2 : DATA D.others
 { Concurrency_Control_Protocol =>
 PRIORITY_CEILING_PROTOCOL; };
CONNECTIONS
 cnx_0 : DATA ACCESS D1 -> T1.D1;
 cnx_1 : DATA ACCESS D2 -> T1.D2;
 cnx_2 : DATA ACCESS D1 -> T2.D1;
 cnx_3 : DATA ACCESS D2 -> T2.D2;
END my_process.others;

The precise timing of the interaction between each
Thread and shared Data component has now a
direct impact on the global scheduling. The critical
sections can be expressed thanks to the AADL
Behavior Annex subclause that is attached to each
Thread.

THREAD IMPLEMENTATION T.i1
PROPERTIES
 Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 5ms..5ms;
 Period => 15 ms;
ANNEX Behavior_Specification {**
 states
 s : initial complete final state;
 transitions
 t : s -[on dispatch]-> s {
 D1 !<;
 computation(3 ms);
 D2 !<;
 D2 !>;
 D1 !>
 };
**};
END T.i1;

THREAD IMPLEMENTATION T.i2
PROPERTIES
 Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 5ms..5ms;
 Period => 20 ms;
ANNEX Behavior_Specification {**
 states
 s : initial complete final state;
 transitions
 t : s -[on dispatch]-> s {
 D2 !<;
 computation(5 ms);
 D1 !<;
 D1 !>;
 D2 !>
 };
**};
END T.i2;

With such an AADL specification, running the two
analysis tools gives again a similar execution trace
(the gray rectangles indicate when Threads are
accessing the Data).

However, if the concurrency control protocol property
is removed, the execution trace produced by
Marzhin quickly shows that a deadlock situation has
occurred (the pink rectangles indicate a “wait for
resource” state).

3.2. Composite Examples

We have shown in the previous section how the
results obtained by Cheddar and Marzhin could be
compared when applied to popular real-time
modeling patterns. We will now address three case

Page 5/9

studies that are a little closer to industrial
considerations.

3.2.1. ARINC 653

It is possible to describe partitioned architectures
with AADL and its ARINC 653 Annex.

PROCESSOR IMPLEMENTATION powerpc.impl
SUBCOMPONENTS
 part1 : VIRTUAL PROCESSOR p1.impl;
 part2 : VIRTUAL PROCESSOR p2.impl;
PROPERTIES
 Scheduling_Protocol => ARINC653;
 ARINC653::Partition_Slots =>
 (10ms, 10ms);
 ARINC653::Slots_Allocation =>
 ERTS2014.odt
(reference(part1),reference(part2));
 ARINC653::Module_Major_Frame => 20ms;
END powerpc.impl;

An ARINC 653 partition is declared in AADL by the
association of a Virtual Processor handling its own
scheduler and a Process containing a set of
Threads. At the higher level, the partitions that are
co-located on the same Processor are scheduled
according to a time sharing protocol. A set of
properties specifies how the time slots are allocated
to the partitions.

PROCESS IMPLEMENTATION part1_process.impl
SUBCOMPONENTS
 T1 : THREAD T.i;
 T3 : THREAD T.i {Period => 21ms;};
END part_process.impl;

PROCESS IMPLEMENTATION part2_process.impl
SUBCOMPONENTS
 T2 : THREAD T.i;
END part2_process.impl;

THREAD IMPLEMENTATION T.i
PROPERTIES
 Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 5 ms..5 ms;
 Deadline => 20 ms;
 Period => 20 ms;
END T.i;

In our simplified example, the first partition
encompasses two Threads whereas the second
partition has only one Thread.

The schedule table that is generated by Cheddar for
this example is as shown below (the green
rectangles show which partition is active):

And once again the simulation trace of Marzhin
provide a similar result:

It must be noted that at the time of the redaction of
this paper, inter-partition communications have not
been implemented in Marzhin yet.

3.2.2. Priority Inversion

The following example is used to compare the
results produced by Cheddar and Marzhin on a
simplified representation of the Mars Pathfinder
probe which failed because of an error known as
“priority inversion”. The AADL code used for this
example is a lightly modified copy of the one that can
be found at http://www.openaadl.org/aadlib.html.

Several Threads have access to the same shared
Data component and are scheduled with a Highest
Priority First protocol. When PCP is applied to the
shared resource, the simulation traces that is
generated by both Cheddar and Marzhin look as
follows:

Note that the Threads are shown with an increasing
level of priority (i.e. the bus scheduling Thread has
the highest priority). If the PCP concurrency protocol
is removed from the shared Data component, the
“priority inversion” problem is displayed by Marzhin
as follows:

Page 6/9

http://www.openaadl.org/aadlib.html

We can observe that some high priority Threads are
postponed by low priority Threads that are blocking
the access to the shared Data. The priority inversion
phenomena is highlighted by the fact that the high
priority Threads are in a “wait for resource” state

3.2.3. Large Multi-processor System

It is also important to check that the use of this
simulator is scalable. The test case that has been
used for this verification is an open source AADL
model developed by Rockwell Collins to describe the
architecture of an avionic display system.

This model contains more than 12000 lines of AADL
code, and defines 5 Processors, 22 Processes and
123 Threads. With the current state of this model,
only a single Process can run on a Processor which
restricts the complexity to 5 Processors, 5
Processes and 33 Threads. A separate set of time
lines is produced by Marzhin for each Processor.

The next step in this scalability check will be to
modify the case study into a set of multi-partition
system, so that the entire set of Processes and
Threads would have to be actually managed by the
Multi-Agent simulator.

It must be noted that the version of Marzhin that is
available at the time this paper is written does not
support inter-Processors communications that would
have to be modeled by Buses.

4. 3D Graphical Animation

We saw that a Multi-Agent kernel can be used to
contribute to Real-Time system analysis activities.
However an original usage of this technology is to
realize 3D graphical animations. One of the tasks of
the SMART project consists in studying the feasibility
of using the same Multi-Agent application to animate
a 3D graphical representation of a system and to
simulate the corresponding control/command logic of
this system.

The Real-Time behavior of 3D applications entities
are usually described independently of graphical
rendering issues, by the mean of state-transition

diagrams or behavior trees. The implementation of
the control logic for the interaction between the
various entities must be done in the 3D application
under the responsibility of its designer.

There is thus a great interest in reusing the
implementation of the control logic that is derived
from the corresponding AADL specification when
such a model has already been developed for Real-
Time analysis purposes. The benefit of this approach
is a less error-prone and more realistic behavior of
the 3D application.

The Marzhin simulator acts as a server that
implements a bi-directional communication interface
in order to send commands to the simulator and
receive dynamic information about the state of the
simulation. A client application can thus collect the
state of the various entities (Threads, Ports, …) at
each simulation cycle. This data collection can be
organized by specifying measurement probes that
observe the dynamic behavior of the application.

The graphical time-lines editor that is embedded in
AADL inspector is one of the client applications of
the Marzhin simulator. Similarly, the 3D environment
must also implement the client side of the
communication interface with the simulator so that it
can be used to animate a 3D representation of the
system and send user-controlled events to Marzhin.

At this stage of the exploratory part of the SMART
project for the animation of a 3D environment, the
first experiments show that the communication
between the 3D virtual world and Marzhin simulation
is done through an interface integrating AADL
features. These are Event Ports, Data Ports and and
Event Data Ports in both input and output.

In output of the Marzhin simulator, the 3D animation
application retrieves the state changes of the various
AADL output Ports and the subscribing 3D entities
are dynamically warned of the changes of the status
of these Ports. The AADL input Ports of the simulator
Marzhin are similarly connected to events occurring
in the 3D environment.

Page 7/9

The example above shows how a traffic light could
be controlled by a Marzhin simulation described in
AADL. The Different color signals are connected to
Data Port outputs. It is possible for a virtual
pedestrian to stop the cars by clicking on a red
button in the 3D environment, this request is
connected to an Event Port input of the AADL model.
The interactive 3D objects (sensors and actuators)
can be implemented by AADL Device components in
order to well separate the control system and its
environment.

This approach provides a concrete solution for the
integration of software models and virtual digital
models in 3D. Although these two kinds of models
are currently developed in separate design tracks for
a same system, such an integration can benefit to
both of them.

For the real-time control software design team,
having the ability to perform realistic simulations in
the early stages of the modeling process can help in
ensuring requirements traceability as well as
performing design trade-offs with future users.

For the 3D model design team, the use of actual
models of the future software to animate the
automated parts of the simulation will provide a more
realistic and intuitive behavior of the system when
used by its virtual users (training activities for
instance).

However, our goal is not to develop an all-in-one
integrated modeling framework that would
encompass all the embedded software and 3D
design activities of a complete system. On the
contrary, we intend to focus on the specification of a
library of reusable components representing the
sensors and actuators that are the only entities that
need to be described by both a real-time behavior
and a 3D animation.

One possible approach to reach this goal would be
to enrich the definition of the AADL Device
components that are representing these sensors and
actuators with a 3D annex.

5. Related Works

In this part, we present several works which also use
a Multi-Agent approach in the context of real-time
and/or scheduling systems, either for validation or
implementation goals.

In order to validate agent based models, [5]
proposes a framework called VOMAS (Virtual
Overlay Multi-Agent), where a virtual overlay Multi-
Agent system can be used to validate simulation
models. While a simulation is executed, the overlay
system performs monitoring and logging functions,
and then checks constraints given by the system
designer. Although VOMAS has not been especially
design for verifying real-time architecture, this
approach could be effectively applied in the context
of SMART project, in order to validate Marzhin
simulations driven by some constraints issued from
the Cheddar analysis.

In [6], the authors address the problem of dynamic
scheduling of resources for multiple projects in real-
time. Agents are used to represent projects,
composed of several tasks, and resources. Projects
have scheduled work to be done by different
resources. Resources are endowed with some
capabilities that are requested to do the work. In
order to visualize the current state, a monitoring
agent is created, and allows to have a global
behavior of the system. The implementation is based
on a basic Liu and Layland [2] model of the
application, while, in our works, an AADL model
defines the simulation parameters.

Beyond the use of Multi-Agent framework for
simulation and validation aims, the agents may be
integrated for implementing the system itself. A real-
time agent architecture is described in [16], and
implements on-line scheduling algorithms, like EDF
for instance. In the context of multi-core
architectures of real-time systems, [15] combines a
AMAS (Adaptive Multi-Agent Systems) with an
affinity-based processor scheduling. The approach
consists to define for each processor one agent,
Processor Agent, and a central Middle Agent which
interacts with the scheduler; the Middle Agent acts
as a storage space for faster scheduling.

As shown in this section, various other projects have
done the choice of using Muti-Agent technology
within system and software modeling frameworks.
However, none of these works have considered a
close integration of an existing generic and
lightweight Multi-Agent kernel and a standardized
real-time system modeling language (AADL).

Page 8/9

Conclusion and Future Work

This paper describes an outcome of the SMART
collaborative project. The purpose of this work is to
extend the capabilities of a real-time software
simulator called Marzhin and to compare its results
with those produced by Cheddar in order to verify
that they are consistent.

After having given some elements showing this
consistency, the paper introduces another benefit
brought by the Multi-Agent approach by describing
how such a simulator can also be used to animate a
3D graphical model of the system for which the real-
time software is being developed.

The results presented in this paper correspond to the
outcomes obtained at the middle of the project. We
plan to provide a more complete solution at the end
of the project in September 2014.

These future works will in particular address the
following topics and apply them to case studies:

- Inter-Processors communication by Bus
- Impact of the use of multi-core Processors
- Enriched support of the AADL Behavior Annex
- Definition of reusable real-time 3D components
- UML/MARTE models import front-end

Acknowledgments

This work has been performed in the context of the
SMART project with financial support from the
Council of Brittany, Council of Finistère, BMO and
BPI France.

References

[1] P. Feiler, B. Lewis and S. Vestal, “The SAE AADL
standard: A basis for model-based architecture-
driven embedded systems engineering”, Workshop
on Model-Driven Embedded Systems, 2003.

[2] C. L. Liu and J. W. Layland, “Scheduling
algorithms for multiprogramming in a hard real-time
environnment”, Journal of the Association for
Computing Machinery, vol. 20, n° 1, pp 46-61, 1973.

[3] F. Singhoff, J. Legrand, L. Nana, L. Marcé.
“Cheddar: a Flexible Real-Time Scheduling
Framework”, ACM SIGAda Ada Letters, 24(4):1-8,
ACM Press. 2004.

[4] P. Dissaux, J. Legrand, A. Plantec, M. Kerboeuf,
F. Singhoff, “AADL Design Patterns and Tools for
Modelling and Performance Analysis of Real-Time
Systems”, Embedded Real-time Software and
Systems Conference (ERTS), 2010.

[5] M. Niazi, A. Hussain and M. Kolberg , “Verification
and Validation of Agent-Based Simulation using the
VOMAS approach”, Proceedings of the Third

Workshop on Multi-Agent Systems and Simulation
(MAS&S), 2009.

[6] J. Alberto, A. Arauzo, J. Pavon, A. Lopez-Paredes
and J. Pajares, “Agent based Modeling and
Simulation of Multi-project”, Proceedings of the Third
Workshop on Multi-Agent Systems and Simulation
(MAS&S), 2009.

[7] L. C. DiPippo, E. Hodys and B. Thuraisingham.
“Towards a real-time agent architecture - a
whitepaper”, Fifth International Workshop on
Object-oriented Real-Time Dependable Systems
(WORDS), pp 59-64. 1999.

[8] N. R. Jennings, K. Sycara and M. Wooldbridge,
“A Roadmap of Agent Research and Development”,
IAutonomous Agents and Multi-Agent Systems, no 1,
pp 275-306, Kluwer Academic Publishers, 1998.

[9] K. Decker, M. Williamson and K. Sycara.
“Matchmaking and Brokering”, Second International
Conference on Multi-Agent Systems (ICMAS), 1996.

[10] T. Finin, R. Frtzson, D. McKay and R. McEntrire,
“KQML as an Agent Communication Language”,
Third International Conference on Information and
Knowledge Management (CIKM), ACM Press, 1994.

[11] J. Graham and K. Decker, “Towards a
Distributed, Environment – Centered Agent
Framework”, Workshop on Agent Theories,
Architectures and Languages (ATAL), 1999.

[12] The Foundation for Intelligent Physical Agents,
http://www.fipa.org/specifications/index.html.

[13] D. Benech and T. Desprats, “A KQML-CORBA
based Architecture for Intelligent Agents
Communication in Cooperative Service and Network
Management”, IFIP/IEEE International Conference
on Management of Multimedia Networks and
Services, pp 8-10, 1997.

[14] “CORBA Services: Common Object Services
Specification. Vol 1.”, OMG Specification, 1996.

[15] G. Muneeswari and K. L. Shunmuganathan, “A
Novel Hard-Soft Processor Affinity Scheduling for
Multicore Architecture using Multi-agents”, European
Journal of Scientific Research, vol 55, n° 3, pp 419-
429, 2011.

[16] J. H. M. Lee and L. Zhao, “A Real-Time Agent
Architecture: Design, Implementation and
Evaluation”, Intelligent Agents and Multi-agent
Systems. Lecture Notes in Computer Science.
Volume 2413, pp 18-32, 2002.

[17]Ellidiss download site:
 http://www.ellidiss.com/download

Page 9/9

http://www.ellidiss.com/
http://www.fipa.org/specifications/index.html

