
The SMART Project: Multi-Agent Scheduling 
Simulation of Real-time Architectures

P. Dissaux1, O. Marc2, S. Rubini3 , C. Fotsing3, V. Gaudel3, F. Singhoff3, A. Plantec3, 
Vương Nguyễn-Hồng3, Hải Nam Trần3

1: Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France
2: Virtualys, 41 rue Yves Collet, 29200 Brest, France

3: Lab-STICC, CNRS UMR 6285, Université de Bretagne Occidentale, 20, av Le Gorgeu, 29200 Brest, France 

Abstract

The ongoing SMART collaborative project addresses 
modeling  and  analysis  techniques  for  software 
intensive  real-time  systems.  The  AADL  modeling 
language  has  been  selected  to  describe  multi-
thread, multi-partition, multi-processor and multi-core 
architectures.

This  paper  focuses  on  the  use  of  the  Marzhin 
simulator that is based on a Multi-Agent technology 
for providing scheduling analysis results of real-time 
systems.  This  simulator  is  integrated  in  the  AADL 
Inspector product and can also be used to animate 
realistic 3D animations.

Introduction

The  SMART  project  (Simulation  Multi-Agent  
d'ARchitectures  Temps-réel) is  a  collaborative 
project focused on real-time analysis and simulation 
of real-time hardware and software architectures. It 
aims  at  emulating  the  behavior  of   the  control-
command  logic  of  a  system  and  animating  a  3D 
graphical representation of this system.

The first section of this article briefly summarizes the 
capabilities of the AADL language for specifying real-
time  architectures.  The  second  section  introduces 
Marzhin,  an  original  approach  for  performing  real-
time simulations at a model level. The third section 
explains how the Cheddar scheduling analysis tool 
has  been  used  to  verify  the  results  generated  by 
Marzhin. Finally, the fourth section shows one of the 
main  benefits  of  the  approach  which  consists  in 
using the real-time simulation output to animate a 3D 
graphical representation of the system.

1. Modeling Real-Time Architectures

The  AADL  Language  (Architecture  Analysis  and 
Design Language) is an international standard of the 
SAE (AS-5506B) [1].

The standard defines a default execution model that 
specifies the way the various components interact at 
run-time.  This enables precise timing analysis  and 
simulation of AADL models.

A typical AADL model is composed of one or several 
execution  units  (Processor)  that  can  communicate 
via  Buses. The software application is composed of 
one  or  several  memory address  spaces (Process) 
that  contain  concurrent  Threads and shared  Data. 
Various inter-threads communication paradigms are 
supported by the standard.

1.1. Processors

In  AADL,  the  Processor represents  the  hardware 
computation unit associated with a scheduler. It must 
declare a Scheduling_Protocol property whose value 
corresponds  to  one  of  those  that  are  actually 
supported  by  the  analysis,  simulation  or  code 
generator.

Typically supported Scheduling_Protocols are:

- Rate Monotonic Protocol,  based on the period of 
the Threads.
- Deadline  Monotonic  Protocol,  based  on  the 
deadline of the Threads.
- POSIX 1003, based on the priority of the threads.
- ...

1.2. Threads

The default behavior of AADL Threads is specified in 
the standard by a state-transition automaton.
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A  Thread must  also  have  a  Dispatch_Protocol 
property  that  defines  when it  is  ready to  execute. 
Supported protocols are:

- Periodic
- Aperiodic
- Sporadic
- Timed
- Hybrid
- Background

Thread interfaces contain Features that are used to 
implement communication channels. They can be:

- Data Ports
- Event Ports or Event Data Ports
- Access to shared Data
- Access to remote Subprograms

1.3. Shared Data

One particular way to exchange information between 
Threads is  to  let  them  have  access  to  the  same 
shared  data. Shared data are represented in AADL 
by Data subcomponents to which Threads can have 
access through Data Access Connections.

It is possible to specify critical sections thanks to the 
AADL  Behavior  Annex.  In  order  to  ensure  mutual 
exclusion of all the threads accessing a given shared 
data  component,  a  Concurrency_Control_Protocol 
property can be set.

1.4. AADL Behavior Annex

The core definition of AADL restricts its scope to the 
architectural  description of  the  system.  It  specifies 
which components are instantiated and how they are 
connected together. The functional activity of threads 
is  summarized  by  a  Compute_Execution_Time 
property  that  must  be given with  its  Min and Max 
values.  The  Max  value  of  this  property  thus 
corresponds  to  the  usual  WCET  (Worst  Case 
Execution Time).

However, in order to perform precise timing analysis 
or  simulation,  it  is  necessary  to  provide  a  more 
detailed description of  the functional  behavior of  a 
Thread.  The  AADL  Behavior  Annex is  an  action 
language that  can be used to provide a simplified 
representation of the code logic (pseudo-code).

Examples of actions that can be described with the 
AADL Behavior Annex are:

- p! :  sending an event on port  p (Put_Value and 
Send_Output)
- d!< :  entering  a  critical  section  on  shared  data 
access d (Get_Resource)
- d!> :  leaving  a  critical  section  on  shared  data 
access d (Release_Resource)

- computation(a..b) : use of the processor for a 
duration between the minimum duration a and the 
maximum duration b.

2. The Marzhin Multi-Agent Simulator

Usually, the implementation of real-time simulators is 
based  on  an  emulation  of  an  actual  Real-Time 
Operating  System (RTOS).  These  emulators  must 
thus  provide  the  same  Application  Programming 
Interface (API) and have the same dynamic behavior 
as  the  real  software.  Due  to  these  strong 
requirements,  the  development  and  validation  of 
such simulators is a complex and costly task.

An  alternate  and  original  approach  has  been 
followed  to  build  the  Marzhin  real-time  simulator. 
After presenting the general  notions of  Multi-Agent 
systems,  we  describe  how   Marzhin  has  been 
implemented.

2.1 Notions of Multi-Agent Systems

According  to  [8],  an  agent  is  a  computer  system, 
situated  in  some  environment,  that  is  capable  of 
flexible  autonomous  action  in  order  to  meet  its 
design  objectives.  This  definition  means  that  an 
agent  must  be  able  to  react  to  events  in  its 
environment,  to  be  proactive,  social,  in  order  to 
maintain its goal.

When multiple agents work within the same system, 
we call such a system a Multi-Agent system. In this 
case,  they  need  a  framework  to  communicate, 
coordinate and negotiate in order to meet their goals.

Several models for agent communication have been 
developed  [9]:  agent  to  agent,  where  each  agent 
knows the name of  any other agents with which it 
might need to communicate, agent broker and agent 
matchmaker,  where  globally,  a  special  agent  is 
tasked with finding agents to fulfill services required 
by  requesting  agents.  And,  in  mostly  case,  the 
communication  among  agents  is  facilitated  by  an 
agent communication language [10]: The Knowledge 
Query Manipulation Language (KQML).

Finally,  many  agent  architectures  have  been 
developed to support Multi-Agent systems. We can 
distinguish: DECAF [11] (Distributed, Environment - 
Centered  Agent  Framework)  Agent  Framework, 
which  is  a  Java-based  Multi-Agent  system,  and 
provides  a  matchmaker  agent  that  accepts  KQML 
“performatives”  to  allow  for  agent  communication; 
FIPA  [12]  (Foundation  for  Intelligent  Physical 
Agents), which have developed a standard for Multi-
Agent systems, that  include specification for agent 
architecture,  agent  management,  agent 
communication  and  interoperability;  and  COBALT 
[13] which is an agent framework based on KQML 
and  CORBA,  and  provides  a  complete 
communication layer that can support cooperation in 
Multi-Agent systems.
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Marzhin is based on the reuse of an existing Multi-
Agents simulation kernel called VAgent. As opposed 
to traditional simulators that implement deterministic 
scheduling  algorithms,  this  kernel  randomly 
stimulates  a  set  of  autonomous  interconnected 
elementary entities (the Agents) in order to exhibit a 
resulting macroscopic behavior. 

However, VAgent only provide generic Agents. The 
precise behavior of each category of Agent must be 
refined  in  order  to  implement  a  simulator.  In  our 
case, this behavior is specified by the semantics of 
the simulated AADL component categories.

2.2 Marzhin Implementation Details

The realization of such a simulator thus consists in 
specifying  and  implementing  the  awaited  behavior 
for  each  individual  Agent,  which  is  a  much easier 
task  than  doing  so  globally  for  a  complete  RTOS 
emulator.

Practically, the realization of Marzhin mostly consists 
in implementing the AADL real-time specifications for 
the  Processors,  Threads and  shared  Data 
components as they are described individually  in the 
previous section in order to enrich the basic behavior 
of the VAgent kernel.

The  design  of  the  simulation  kernel  is  thus  very 
modular and the implementation of each specialized 
Agent can be performed by a small piece of source 
code  that  can  be  easily  traced  against  its 
requirements.

However, due to the intrinsic low determinism of the 
Multi-Agent simulation approach, there is a need to 
provide  some  kind  of  evidence  that  the  resulting 
global  behavior  of  Marzhin  is  realistic  and can be 
used  with  a  certain  level  of  confidence  for  critical 
real-time system development. A specific verification 
task is thus mandatory.

3. Verifying Simulation Results with Cheddar

Cheddar  [3]  is  a  scheduling  analysis  tool  that 
performs  real-time  analysis  complying  with  the 
“scheduling theory” [2].  It  is mostly composed of  a 
set  of  analytical  feasibility  tests  providing 
mathematically proven results on analyzed models.

Unfortunately, it is not possible to analyze any kind 
of  systems  by  this  mean,  and  some  theoretical 
results  are  often  known  as  being  too  pessimistic. 
That's  why additional  techniques such as dynamic 
simulation can help to increase the “confidence” the 
designer has on his design.

However, it is quite difficult to demonstrate that non 
exhaustive and non deterministic simulation results 
are  realistic  enough  to  be  used  in  a  real-time 
analysis process.

The approach that has been followed in the SMART 
project is to identify a set of “validation points” each 
of  them being described by an AADL architectural 
model. The goal is then to compare the results given 
by  Cheddar  and  Marzhin  for  these  well  identified 
models.

This  comparison task is facilitated by the fact  that 
Cheddar and Marzhin are embedded in the  AADL 
Inspector  product  [17].  It  is  thus easy to  run both 
verification tools on the same AADL models.

This verification approach is of course limited by the 
fact that Cheddar cannot provide a significant result 
for any kind of AADL architecture. However, it must 
be recalled that the role of Marzhin is specifically to 
complement  Cheddar  with  cases  that  cannot  be 
processed in a deterministic manner.

3.1. AADL Design Patterns

A first set of validation points have been defined on 
the basis of predefined AADL Design Patterns that 
highlight  various  inter-thread  communication 
paradigms [4].   The advantage of reusing some of 
these  patterns  is  that  they  have  already  been 
analyzed  in  details  with  Cheddar.  The  simulation 
results are thus well known and the comparison with 
the outputs of Marzhin consists in checking that the 
time  lines  for  each  thread  are  similar  during  a 
bounded period of time.

3.1.1. Data flow communication

The simplest communication pattern consists in a set 
of  periodic  Threads communicating  by  data  ports 
connected  in  a  sampling  mode.  This  implies  that 
communication  does  not  interfere  with  the  thread 
dispatch policy.
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The real-time characteristics of each thread instance 
is  given  by  the  appropriate  AADL  properties,  as 
shown by the following AADL source code fragment:

PROCESS IMPLEMENTATION my_process.others
SUBCOMPONENTS
  T1 : THREAD a_thread
    { Dispatch_Protocol => Periodic;
      Compute_Execution_Time => 5ms..5ms;
      Period => 25ms; 
      Deadline => 25ms; };
  T2 : THREAD a_thread
    { Dispatch_Protocol => Periodic;
      Compute_Execution_Time => 5ms..5ms;
      Period => 20ms; 
      Deadline => 20ms; };
  T3 : THREAD a_thread
    { Dispatch_Protocol => Periodic;
      Compute_Execution_Time => 5ms..5ms;
      Period => 15 ms; 
      Deadline => 15 ms; };
CONNECTIONS
  C1 : PORT T1.output -> T2.input;
  C2 : PORT T2.output -> T3.input;
END my_process.others;

If  such  a  real-time  architecture  is  bound  to  a 
processor  and scheduled for  instance with  a Rate 
Monotonic  protocol,  it  will  be  possible  to  use 
Cheddar to apply feasibility tests and run the static 
simulation. The first part  of  this simulation trace is 
given  below  (the  black  rectangles  represent  the 
Threads in a running state, and the orange ones the 
Threads in a ready state, awaiting for the Processor 
resource): 

The  same  AADL  specification  can  also  feed  the 
Marzhin dynamic simulator, in order to get another 
simulation trace, as shown below:

Simple direct visual comparison of the two simulation 
traces  during  the  complete  simulation  period  (the 
time required for the simulation trace to repeat itself) 
shows that the two simulators give a similar result in 
that  case.  Another  analysis  method  consists  in 
automatically perform the comparison of the output 
data that are produced by each tool.

A light change in the AADL specification can show a 
difference in the way the two simulators behave in 
case the system becomes non schedulable.  If  the 
capacity  of  Thread T3  is  increased  by  1ms,  the 
simulation traces of  Cheddar and Marzhin become 
as shown below:

  

At  tick  25  indeed,  Thread T1  should  start  a  new 
period, but it cannot happen as it is still preempted 
by T2 at that time and has not completed its previous 
job. With the current implementation of the two tools, 
Cheddar (on the left) starts the new job of T2 even if 
late, whereas Marzhin (on the right) skips the missed 
job.  Further  investigation  would  be  required  to 
determine which of these two behaviors is the more 
realistic according to actual RTOS implementations.

3.1.2. Shared data communication

The second communication  pattern  that  has  been 
selected  for  our  study  makes  use  of  Access 
Connections to shared  Data component instead of 
direct  point-to-point  communication  between  the 
Threads.
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A fragment of the corresponding AADL specification 
is as follows. Note that we initially applied a Priority 
Ceiling Protocol (PCP) to  access the shared  Data 
components. 

PROCESS IMPLEMENTATION my_process.others
SUBCOMPONENTS
  T1 : THREAD T.i1;
  T2 : THREAD T.i2;
  D1 : DATA D.others 
    { Concurrency_Control_Protocol =>
      PRIORITY_CEILING_PROTOCOL; };
  D2 : DATA D.others 
    { Concurrency_Control_Protocol =>
      PRIORITY_CEILING_PROTOCOL; };
CONNECTIONS
  cnx_0 : DATA ACCESS D1 -> T1.D1;
  cnx_1 : DATA ACCESS D2 -> T1.D2;
  cnx_2 : DATA ACCESS D1 -> T2.D1;
  cnx_3 : DATA ACCESS D2 -> T2.D2;
END my_process.others;

The precise timing of the interaction between each 
Thread and  shared  Data component  has  now  a 
direct  impact on the global scheduling.  The critical 
sections  can  be  expressed  thanks  to  the  AADL 
Behavior Annex subclause that is attached to each 
Thread.

THREAD IMPLEMENTATION T.i1
PROPERTIES
  Dispatch_Protocol => Periodic;
  Compute_Execution_Time => 5ms..5ms;
  Period => 15 ms;
ANNEX Behavior_Specification {**
  states 
    s : initial complete final state;
  transitions 
    t : s -[on dispatch]-> s { 
      D1 !<; 
      computation(3 ms); 
      D2 !<; 
      D2 !>; 
      D1 !>
    };
**};
END T.i1;

THREAD IMPLEMENTATION T.i2
PROPERTIES
  Dispatch_Protocol => Periodic;
  Compute_Execution_Time => 5ms..5ms;
  Period => 20 ms;
ANNEX Behavior_Specification {**
  states 
    s : initial complete final state;
  transitions 
    t : s -[on dispatch]-> s { 
      D2 !<;  
      computation(5 ms); 
      D1 !<; 
      D1 !>; 
      D2 !>
    };
**};
END T.i2;

With such  an  AADL specification,  running the  two 
analysis tools gives again a similar execution trace 
(the  gray  rectangles  indicate  when  Threads  are 
accessing the Data).

However, if the concurrency control protocol property 
is  removed,  the  execution  trace  produced  by 
Marzhin quickly shows that a deadlock situation has 
occurred  (the  pink  rectangles  indicate  a  “wait  for 
resource” state).

3.2. Composite Examples

We have  shown  in  the  previous  section  how  the 
results obtained by Cheddar and Marzhin could be 
compared  when  applied  to  popular  real-time 
modeling patterns. We will now address three case 
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studies  that  are  a  little  closer  to  industrial 
considerations.

3.2.1. ARINC 653

It  is  possible  to  describe  partitioned  architectures 
with AADL and its ARINC 653 Annex. 

PROCESSOR IMPLEMENTATION powerpc.impl
SUBCOMPONENTS
  part1 : VIRTUAL PROCESSOR p1.impl;
  part2 : VIRTUAL PROCESSOR p2.impl;
PROPERTIES
  Scheduling_Protocol => ARINC653;
  ARINC653::Partition_Slots => 
    (10ms, 10ms);
  ARINC653::Slots_Allocation => 
   ERTS2014.odt 
(reference(part1),reference(part2));
  ARINC653::Module_Major_Frame => 20ms;
END powerpc.impl;

An ARINC 653 partition is declared in AADL by the 
association of a  Virtual Processor handling its own 
scheduler  and  a  Process containing  a  set  of 
Threads. At the higher level, the partitions that are 
co-located  on  the  same  Processor are  scheduled 
according  to  a  time  sharing  protocol.  A  set  of 
properties specifies how the time slots are allocated 
to the partitions.

PROCESS IMPLEMENTATION part1_process.impl
SUBCOMPONENTS
  T1 : THREAD T.i;
  T3 : THREAD T.i {Period => 21ms;};
END part_process.impl;

PROCESS IMPLEMENTATION part2_process.impl
SUBCOMPONENTS
  T2 : THREAD T.i;
END part2_process.impl;

THREAD IMPLEMENTATION T.i
PROPERTIES
  Dispatch_Protocol => Periodic;
  Compute_Execution_Time => 5 ms..5 ms;
  Deadline => 20 ms;
  Period => 20 ms;
END T.i;

In  our  simplified  example,  the  first  partition 
encompasses  two  Threads whereas  the  second 
partition has only one Thread. 

The schedule table that is generated by Cheddar for 
this  example  is  as  shown  below  (the  green 
rectangles show which partition is active):

And  once  again  the  simulation  trace  of  Marzhin 
provide a similar result:

It must be noted that at the time of the redaction of 
this  paper,  inter-partition communications have not 
been implemented in Marzhin yet.

3.2.2. Priority Inversion

The  following  example  is  used  to  compare  the 
results  produced  by  Cheddar  and  Marzhin  on  a 
simplified  representation  of  the  Mars  Pathfinder 
probe  which  failed  because  of  an error  known as 
“priority  inversion”.  The  AADL code  used  for  this 
example is a lightly modified copy of the one that can 
be found at http://www.openaadl.org/aadlib.html.

Several  Threads have access to the same shared 
Data component and are scheduled with a Highest 
Priority First  protocol.  When PCP is applied to the 
shared  resource,  the  simulation  traces  that  is 
generated  by  both  Cheddar  and  Marzhin  look  as 
follows:

Note that the Threads are shown with an increasing 
level of priority (i.e. the bus scheduling  Thread has 
the highest priority). If the PCP concurrency protocol 
is  removed from the  shared  Data component,  the 
“priority inversion” problem  is displayed by Marzhin 
as follows:
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We can observe that some high priority Threads are 
postponed by low priority  Threads that are blocking 
the access to the shared Data. The priority inversion 
phenomena is highlighted by the fact that the high 
priority Threads are in a “wait for resource” state

3.2.3. Large Multi-processor System

It  is  also  important  to  check  that  the  use  of  this 
simulator is scalable. The test case that  has been 
used  for  this  verification  is  an open source  AADL 
model developed by Rockwell Collins to describe the 
architecture of an avionic display system. 

This model contains more than 12000 lines of AADL 
code, and defines 5  Processors, 22  Processes and 
123  Threads.  With the current  state of this model, 
only a single Process can run on a Processor which 
restricts  the  complexity  to  5  Processors,  5 
Processes and 33  Threads. A separate set of time 
lines is produced by Marzhin for each Processor.

The  next  step  in  this  scalability  check  will  be  to 
modify  the  case  study  into  a  set  of  multi-partition 
system,  so  that  the  entire  set  of  Processes and 
Threads would have to be actually managed by the 
Multi-Agent simulator.

It must be noted that the version of Marzhin that is 
available at the time this paper is written does not 
support inter-Processors communications that would 
have to be modeled by Buses.

4. 3D Graphical Animation

We saw that  a Multi-Agent kernel  can be used to 
contribute  to  Real-Time  system  analysis  activities. 
However an original usage of  this technology is to 
realize 3D graphical animations. One of the tasks of 
the SMART project consists in studying the feasibility 
of using the same Multi-Agent application to animate 
a  3D graphical  representation of  a  system and to 
simulate the corresponding control/command logic of 
this system.

The Real-Time behavior of  3D applications entities 
are  usually  described  independently  of  graphical 
rendering  issues,  by  the  mean  of  state-transition 

diagrams or behavior trees.  The implementation of 
the  control  logic  for  the  interaction  between  the 
various entities must be done in the 3D application 
under the responsibility of its designer.

There  is  thus  a  great  interest  in  reusing  the 
implementation  of  the  control  logic  that  is  derived 
from  the  corresponding  AADL  specification  when 
such a model has already been developed for Real-
Time analysis purposes. The benefit of this approach 
is a less error-prone and more realistic behavior of 
the 3D application.

The  Marzhin  simulator  acts  as  a  server  that 
implements a bi-directional communication interface 
in  order  to  send  commands  to  the  simulator  and 
receive dynamic information about the state of  the 
simulation.  A client application can thus collect  the 
state of the various entities (Threads,  Ports,  …) at 
each simulation cycle.  This  data  collection can be 
organized  by  specifying  measurement  probes  that 
observe the dynamic behavior of the application.

The graphical time-lines editor that is embedded in 
AADL inspector is one of  the client applications of 
the Marzhin simulator. Similarly, the 3D environment 
must  also  implement  the  client  side  of  the 
communication interface with the simulator so that it 
can be used to animate a 3D representation of the 
system and send user-controlled events to Marzhin.

At this stage of the exploratory part of the SMART 
project for the animation of  a 3D environment, the 
first  experiments  show  that  the  communication 
between the 3D virtual world and Marzhin simulation 
is  done  through  an  interface  integrating  AADL 
features. These are Event Ports, Data Ports and and 
Event Data Ports in both input and output.

In output of the Marzhin simulator, the 3D animation 
application retrieves the state changes of the various 
AADL output  Ports and the subscribing 3D entities 
are dynamically warned of the changes of the status 
of these Ports. The AADL input Ports of the simulator 
Marzhin are similarly connected to events occurring 
in the 3D environment.
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The example above shows how a traffic light could 
be controlled by a Marzhin simulation described in 
AADL. The Different color signals are connected to 
Data  Port  outputs. It  is  possible  for  a  virtual 
pedestrian  to  stop  the  cars  by  clicking  on  a  red 
button  in  the  3D  environment,  this  request  is 
connected to an Event Port input of the AADL model. 
The interactive 3D objects (sensors and actuators) 
can be implemented by AADL Device components in 
order  to  well  separate  the  control  system  and  its 
environment.

This approach provides a concrete solution for the 
integration  of  software  models  and  virtual  digital 
models in 3D. Although these two kinds of models 
are currently developed in separate design tracks for 
a same system, such an integration can benefit  to 
both of them.

For  the  real-time  control  software  design  team, 
having the ability to perform realistic simulations in 
the early stages of the modeling process can help in 
ensuring  requirements  traceability  as  well  as 
performing design trade-offs with future users.

For  the 3D model  design  team, the use  of  actual 
models  of  the  future  software  to  animate  the 
automated parts of the simulation will provide a more 
realistic  and intuitive behavior  of  the system when 
used  by  its  virtual  users  (training  activities  for 
instance).

However,  our  goal  is  not  to  develop  an  all-in-one 
integrated  modeling  framework  that  would 
encompass  all  the  embedded  software  and  3D 
design  activities  of  a  complete  system.  On  the 
contrary, we intend to focus on the specification of a 
library  of  reusable  components  representing  the 
sensors and actuators that are the only entities that 
need to be described by both a real-time behavior 
and a 3D animation.

One possible approach to reach this goal would be 
to  enrich  the  definition  of  the  AADL  Device 
components that are representing these sensors and 
actuators with a 3D annex. 

5. Related Works

In this part, we present several works which also use 
a Multi-Agent  approach in  the  context  of  real-time 
and/or  scheduling systems,  either  for  validation  or 
implementation goals.

In  order  to  validate  agent  based  models,  [5] 
proposes  a  framework  called  VOMAS  (Virtual 
Overlay Multi-Agent), where a virtual overlay Multi-
Agent  system  can  be  used  to  validate  simulation 
models. While a simulation is executed, the overlay 
system performs monitoring and logging functions, 
and  then  checks  constraints  given  by  the  system 
designer.  Although VOMAS has not been especially 
design  for  verifying  real-time  architecture,  this 
approach could be effectively applied in the context 
of  SMART  project,  in  order  to  validate  Marzhin 
simulations driven by some constraints issued from 
the Cheddar analysis.

In [6], the authors address the problem of dynamic 
scheduling of resources for multiple projects in real-
time.  Agents  are  used  to  represent  projects, 
composed of several tasks, and resources. Projects 
have  scheduled  work  to  be  done  by  different 
resources.  Resources  are  endowed  with  some 
capabilities  that  are  requested  to  do  the  work.  In 
order  to  visualize  the  current  state,  a  monitoring 
agent  is  created,  and  allows  to  have  a  global 
behavior of the system. The implementation is based 
on  a  basic  Liu  and  Layland  [2]  model  of  the 
application,  while,  in  our  works,  an  AADL  model 
defines the simulation parameters.

Beyond  the  use  of  Multi-Agent  framework  for 
simulation and validation aims, the agents may be 
integrated for implementing the system itself.  A real-
time  agent  architecture  is  described  in  [16],  and 
implements on-line scheduling algorithms, like EDF 
for  instance.  In  the  context  of  multi-core 
architectures of real-time systems, [15] combines a 
AMAS  (Adaptive  Multi-Agent  Systems)  with  an 
affinity-based  processor  scheduling.  The  approach 
consists  to  define  for  each  processor  one  agent, 
Processor Agent, and a central Middle Agent which 
interacts with the scheduler; the Middle Agent acts 
as a storage space for faster scheduling. 

As shown in this section, various other projects have 
done  the  choice  of  using  Muti-Agent  technology 
within  system and  software  modeling  frameworks. 
However,  none  of  these works  have considered a 
close  integration  of  an  existing  generic  and 
lightweight  Multi-Agent  kernel  and  a  standardized 
real-time system modeling language (AADL).
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Conclusion and Future Work

This  paper  describes  an  outcome  of  the  SMART 
collaborative project. The purpose of this work is to 
extend  the  capabilities  of  a  real-time  software 
simulator called Marzhin and to compare its results 
with those produced by Cheddar in order  to verify 
that they are consistent.

After  having  given  some  elements  showing  this 
consistency,  the  paper  introduces  another  benefit 
brought by the Multi-Agent approach by describing 
how such a simulator can also be used to animate a 
3D graphical model of the system for which the real-
time software is being developed.

The results presented in this paper correspond to the 
outcomes obtained at the middle of the project. We 
plan to provide a more complete solution at the end 
of the project in September 2014. 

These  future  works  will  in  particular  address  the 
following topics and apply them to case studies:

- Inter-Processors communication by Bus
- Impact of the use of multi-core Processors
- Enriched support of the AADL Behavior Annex
- Definition of reusable real-time 3D components
- UML/MARTE models import front-end
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