NoC and Mixed -criticality Systems

Mourad Dridi*, Stephane Rubini*, Mounir Lallali*, Fran k
Singhoff*, Jean-Philippe Diguet+, Martha Johanna T

Lab-STICC, UMR CNRS 6285,
*Université de Bretagne Occidentale
*Université de Bretagne Sud

T Université Technique de Munich

STICC CI"PI'S

Plan

1. Context

2. DTFM : a Scheduling Analysis Model for NoC
based Systems

3. DAS : a NoC Router for Mixed-Criticality Systems

4. Conclusion

Context : Real-time System

e « The correctness of the system depends not only on the
logical result of computation, but also on the time at which the
results are produced » Stankovic, 1988.

 Real Time applications are composed of software tasks

* Properties we look for:

Timing constraints of tasks (e.g. deadline) must be enforced
during execution

Timing behavior of tasks must be predictable: we must verify
that temporal constraints are met prior execution.
[3)

=>» Schedulability analysis of the tasks

Context : Mixed-Criticality Systems (MCS)

Executlon T|me
‘ Task 1 Task 1 l T Communication Time
>

Release Time Deadline Task1 Y.

A
Task 2
Hmkz L, b,

Time

e High-Critical Real-Time applications

Have very strength task execution and communication
requirements.

May have dramatic impact on human life, on the environment, ...

* Low-Critical Real-Time applications (4 J

Can tolerate some missed deadlines for the task execution and
the communication.

Context : Mixed-Criticality Systems (MCS)

Example of a Drone system :

High-Critical Real-Time applications ¢ Low-Critical Real-Time applications

=» Flight control command > Video capture systems

* Flows of small messages exchanged * Flows of large messages
between tasks exchanged between tasks

o Deadline must be met * May tolerate missed deadlines

=>» Assumptions of this work

Context : Mixed-Criticality Systems (MCS)

Flight control command Video capture systems
PEA PE B
L1 Cache L1 Cache
L2 Cache
Bus
Memory

e Methods of schedulability analysis assume that the
response time is predictable, while not

 Two functionally independent tasks are not actually independent
e Contention shared hardware resources
e (Caches L2, NoC, bus

Context: NoC and MCS

* Problem Statement : How to Deploy MCS over NoC ?
e Using NoC:

1. How wecan:

e Ensure the timing constraints for High-Critical flows

e Minimizing the impact of resource sharing on
Low-Critical flows

2. How we can schedule Real-Time communications
according to the tasks of applications ?

Context : Network On Chip (NoC)

e Communication infrastructure based on links and routers that
interconnect cores providing packet-based data transfer

Routers l\r\m T \‘\AH . zza;ar:ili;?cation

parallelism

e Variable
0 Communication
w_ v " Delays
lm @ E (s)

Processin ,
ng Unidirectional physical
Element Link

Examples of latencies with a NoC

o

o

PE

(3

PE

PE

PE

PE

PE

PE

Assumptions:

6 Dependent tasks

e 4*4 NoC

Assumptions:

* 3 Flows : Blue, Red and Black
* 6 Routers

e 4 Buffers in each Router

(o]

Examples of latencies with a NoC

e Blue flow and Red flow share the same physical link (Link A)
=>» Direct interference latency

Blue is Red is
blocked blocked ILink B
By Red

By Black

Examples of latencies with a NoC

e Blue flow and Black flow do not share any physical link
=>» Indirect interference latency

Blue is Red is
blocked blocked I Link B
By Red By Black

Examples of latencies with a NoC

Different types of latencies introduced by the NoC:
e Path latency
* Direct interference latency
e Indirect interference latency

Blue is Red is
blocked blocked I Link B
By Red By Black

Context: NoC and MCS

e Contributions :

1. DTFM : a Dual Task and Flow Model to assess
timing predictability of Real-Time
applications over NoC architectures

2. DAS : A router architecture for On-Chip
Network running Mixed-Criticality
applications

Plan

1. Context

2. DTFM : a Scheduling Analysis Model for NoC
based Systems

3. DAS : a NoC Router for Mixed-Criticality
Systems

4. Conclusion

DTFM : Problem Statement

Periodic dependent tasks . ‘
Periodic data flows . >

A >

PE1

X Task models used by designers :
schedule the execution of many Real-Time tasks on processors
Insufficient : Do not take into account the delays introduced by NoC

X Flow models used by designers : (15]
schedule Real-Time flows on NoC communication platform
Insufficient : Do not take into account the schedulability analysis for tasks

DTEM : Proposition

DTFM, a Dual Task and Flow Model: assess timing predictability of real-time
applications over NoC architectures.

e Take into account the communication delays and possible network conflicts

* Take into account the task schedulability
Task

NoC
V 2

Compute the flow model ‘

v

Check if the communication delays are ‘

predictable
Display to the users that NO
unpredictable delays may <€ :
occur YES

| Compute the communication delays

{

Compute and display to the users the task
schedulability analysis results

DTFM : Evaluation with a multiscale toolset

 Multiscale toolset

 DTFM:
produce the flow model from the task model
Compute the communication delays

¢ Co-Simulation with SHOC (TUM, Lab-STICC) and Cheddar (Lab-
STICC)

DTEM ‘ Worst Case Time of
Communication

t 1

Task Task :
Model Mapping NoC Model Comparison

System Model Generator
1 | - (7]
Time of

Co-Simulation : SHOC + Cheddar ‘ ‘ Somm_unicl:at_ion
rom simulation

DTFM : Evaluation with a multiscale toolset

e Co-Simulation with SHOC and Cheddar:

e SHOC simulator : A cycle-accurate SystemC NoC simulator
Simulate the communication time of each message

* Cheddar simulator : A tick-accurate schedulability analysis tool

Compute the task scheduling in order to predict when messages are sent

to the NoC

DTFM

1

1

—>

Worst Case Time of
Communication

Task
Model

Task
Mapping

NoC Model

System Model Generator

3

!

Co-Simulation : SHOC + Cheddar

—)

Comparison

Time of
Communication
from simulation

[¢

DTFM : Evaluation with a multiscale toolset

120

Validate the correctness of
DTFM for the schedulabilty of
systems

100 - » - - - - -

8

Present the rate of correct
analysis computed by DTFM

8

For each configuration, vary
the task mapping to change
the number of flows

8

The percent of correct analysis computedby DTFM
N
o

Number of flows ranging from 3
3 to 30 with a step of 3 B @ s 12 1 B8 a u 7

Number Of Flow

30

e If there is no indirect delays, any task sets said schedulable
by DTFM are also schedulable by SHOC :
e DTFM is able to predict delays

e DTFM may be pessimistic

Plan

1. Context

2. DTFM : a Scheduling Analysis Model for NoC
based Systems

3. DAS : a NoC Router for Mixed-Criticality
Systems

4. Conclusion

DAS : Problem Statement

* In order to deploy MCS over NoC, we need to :

Ensure the timing constraints for High-Critical flows
Minimize the impact of resource sharing on Low-Critical flows
Provide an accurate communication time analysis

e Virtual Channel + Wormhole + Flit-Level Preemption

=» Too pessimistic Worst Case Communication Time of High-Critical
flows

e TDM NoC Router

=» Low throughput for Low-Critical flows while providing highly
deterministic communication time for High-Critical flows

DAS : Proposition

l -
 N+1 Virtual Channels | i g 1l
1
i o]| TsA —EP 1] TsA
* VCs1ltoN: ! venss 7 i >
High-Critical flows E _______________________ G
: Input Arbitration unit ™ Output Arbitration unit
e Each VCis dedicated to i : ; ; :
only one given flow i ' : : -
| L Vi
P > —>
* VCN+1:) i ;
Low-Critical flows i i i Crossbar i
I]
e VCN +1 can be shared bemmmcc e cc s e e e ———

by several low-critical
flows

Double Arbiter and Switching (DAS)

DAS : Proposition

1
! |
 SAF for High-Critical flows i va s
! |
I I _> I
i TSA 1| TSA
Each packet uses only one link i i N i P
at a time. ! U vevn L
| I
E— 11— T11— e e .
: Input Arbitration unit ™ Output Arbitration unit |
1 |
. ! I I [:
The congestion can be i ' I I -
controlled with a reasonable : T : : Co
cost considering small High- i i > S
Critical packets. —> i i
1 I Crossbar i
1 : i
L ——
e Why? e e e e e e e e e e e e e e
* Noindirect interference Double Arbiter and Switching (DAS)

* Less pessimistic worst case
communication time

DAS : Proposition

s
1 1
* Wormhole for ! |
Low-Critical flows L [T—] T
o o 1
and Flit-level Preemption 1 b Ll ™A —P I | TSA
| I (>
1| i
A packet can be stored over P 1P e PP i L>
multiple routers and occupies ! G o
several physical links at a time. E Input Arbitration unit ™~ Output Arbitration unit |
1 1 |
: ! | | 1
— 11— 11— ! | | -
e . e e
. AR
e« Why? | —> —>
—> i i
« Buffer requirements are . j Crossbar |
reduced to one flit, instead N e
of an entire packet e _________________————

rate by Low-Critical flows

DAS : Proposition

=» High-Critical flows always preempt Low-Critical flows in flit level

e The Two Stages of Arbitration

* |nput and output arbitration units are based on two stages of arbitration :

1. The first stage is a Round Robin Arbitration between the N first virtual
channels

2. The second stage is a Priority-Based Arbitration between the winner of the
first stage and the last virtual channel.

vc1 :] o The winner between N first i

: First Arbitration stage: virtual channels flows :

! Round Robin arbiter i
VCN , :

i Second Arbitration stage : | "
VEN+ Priority-Based arbiter i

L i

DAS : Implementation and Evaluation

e SystemC and Verilog HDL implementation

* Integrated in SystemC TLM Simulator “SHOC”
SHOC : A cycle accurate SystemC-TLM simulator

* Evaluation:
High-Critical flow latency evaluation
Low-Critical flow latency evaluation

VC-Router DAS
Dimension 4*%4 4*4
Topology 2D-mesh 2D-mesh
Routing Algorithm XY XY
Switching Mode Wormhole Wormhole/SAF
Preemption Level Packet Flit / Packet { 26]
Arbitration Policy Priority-Based Arbiter Two Stages of

Arbitration

DAS : High-critical flow Latency Evaluation

. . 500
Evaluate the impact of the resource sharing ! !
on the communication delay of High-Critical 450 +—— =W=VC-Router(Average) ———————
flows. —~400 11— =e=\/C-Router (MAX) _____
()
] =¢=DAS Router (Average)
350 —
- =f=DAS Router (MAX)
g 300
In every evaluation, one High-Critical flow is 8;250
assigned to a randomly generated source and 2 A e
destination node. 3
150 +——— A el ——
For each simulation, we generate Low-Critical 100
flow which share some physical links with the 50
High-Critical flow.
0

0 5 10 15 20

Throughput (% of network capacit
High-Critical flow size = 2 flits ghput (% pacity)

Low-Critical flow size = 8 flits

Release time and the period of each flow are
randomly generated. e Using DAS, High-Critical flows
communication delays are bounded

3 physical links from the source to the
destination node.

DAS : Low-Critical Flow Latency Evaluation

Evaluate the latency overhead on Low-Critical
flows due to High-Critical flows resource
reservation comparing to virtual channel

routers.

In every evaluation, we generate randomly
one low-critical flow.

100 simulations by increasing the number of
high-critical flows and by decreasing the high-
critical flow period in order to increase the
network use rate.

High-Critical flow size = 2 flits
Low-Critical flow size = 8 flits

Release time of each flow are randomly
generated.

3 physical links from the source to the
destination node.

Latency (clock cycles)

180
160 — — __ij_ ,
140 — — _//_0/'_/ _____
/M
100 ————— 68
80 — — — —]
60 — — ——- DAS Router(Average)
40 — — -3- DAS Router(MAX)
—&— VC-Router(Average)
20 — — —8- VC-Router(MAX)
o | | |
0 5 10 15 20

Throughput (% of network capacity)

DAS leads to larger latencies for Low-Critical flows
compared to a Virtual Channel Router.

Low-Critical flows in MCS may tolerate some additional
delays without damaging the integrity of the whole
system

DAS : Cost evaluation

Typical NoC Router, Virtual Channel Router and DAS synthesized with
Synopsys DC using a 28nm ST SOI technology.

Tools included in this technology generate reports describing the area of
implementation

Typical Router Virtual Channel
Router
(A.Burns, 2009)

Number of ports 5 5 5
Data width 32-bits 32-bits 32-bits
Buffer size 16-flits 16-flits 16-flits

Total cell area 16046.31 18369.47 18831.32

Total area 1

(29
» +17% » +2,51%

DAS : Validation with Model-Checking

e Model Checking :

 Computes all the possible states of the system

* Verify whether properties hold on all the possible states of
the system

e To validate the properties of DAS :
1. Formalize properties to be guaranteed by DAS
2. Develop a model of DAS using state machines
3. Express DAS using IF language and its tools

* |F tool Provides an environment for modeling and validation of real-time
systems described in IF language. (M. Bozga, 2004)

4. Validate properties using IF-Observer

DAS : Validation with Model-Checking

An Example of an automaton of DAS

* The behavior of each of these entities is described using state machine.

An automatonis:

e A set of states
e A set of transitions

A transition:

e Can be fired when the guard is true
e When fired, an action is computed

process Switch(SW);

var index i IndexType;
var index_j IndexType;
var childPid i pid;

var childpid j pid;

var doneBoolean boolean;

state idle #start ;
deadline lazy;
input DAS request Switch(index i);
task childPid i := ((DASMain)0).childInfoTable[index i].childPid;
output DAS response Switch(true} to {DASChild}childPid i;
nextstate busyState;
endstate;

[? done from Child;]

[? Request from Child; where j #i]
/ ! Response (FALSE) to child;

Critical [? Feedback (TRUE) from child,]
State

[? Request from Child; AND Criticality = TRUE]

[? Feedback (FALSE) from Child;]
/ ! Response (FALSE) to child,;

/ ! Response (TRUE) to child,
Altcritcity = false

T~
[? Request
/ ! Response

rom Child; AND Criticality = TRUE AND altcritcity = FALSE]
(TRUE) to child,

Non Critical
State [? Feedback (TRUE) from cChildj wherej = i]

[? Request from Child; AND Criticality = TRUE]
/! Response (FALSE) to child;
Altcritcity = TRUE

[? Feedback (FALSE) from Child,]
/ | Response (FALSE) to child,

TRUE]

[? Request from Child; AND Criticality

/! Response (FALSE) to child;

Example : Input Arbiter automaton

15 Parameters
19 Automata
15 Signals

13 Buffers

=TRUE

Altcritcity

DAS : Validation with Model-Checking

e Exhaustive verification of the properties on any possible states of
the system

* |F language provides observers to check properties

* The IF observer is an extended timed automaton which is executed in
parallel with the target system.

* Properties:
* P.1 High-Critical flows always preempt Low-Critical flows in flit level.
* P.2 High-Critical flows always have a higher priority than Low-Critical flows.

Properties Number of Number of Fired Time Proof
States Transitions (hh:mm:ss)
378 452 858 546 00:00:20
P.2 386 684 811 734 00:00:18 Yes

Plan

1. Context

2. DTFM : a Scheduling Analysis Model for NoC
based Systems

3. DAS : a NoC Router for Mixed-Criticality
Systems

4. Conclusion

Conclusion

Problem Statement
e Schedulability analysis of MCS over NoC architectures

Contributions

e DTFM : a Dual Task and Flow Model assess timing predictability of
Real-Time applications over NoC architectures

* Implementation available in the Cheddar tool
http://beru.univ-brest.fr/svn/CHEDDAR/

e Co-simulation: combining a cycle-accurate SystemC simulator
and a tick-accurate scheduling analysis tool

 “DTFM: a Flexible Model for Schedulability Analysis of Real-Time
Applications on NoC-based Architectures”, Reaction 2016, Porto,

Portugal

Conclusion

* DAS : A router architecture for On-Chip Network running Mixed-
Criticality applications

e Evaluation : SystemC simulation with SHOK, Verilog HDL
implementation, model checking with IF

* “DAS: An Efficient NoC Router for Mixed-Criticality Real-Time
Systems”, ICCD2017, Boston, USA

* “Modeling and Validation of a Mixed-Criticality NoC Router Using
the IF Language”, NoCArc2017, Boston, USA

Future Works :

* Measure of the gain for low-critical flow with DAS
* Virtual Channel Manager : dynamic allocation of VCs

Multi-Criticality Systems vs Mixed-Criticality Systems

Multi-Criticality Systems Mixed-Criticality Systems
e Tasks with different level of criticality

* Tasks with different level of * Several Execution mode:

criticality e Degradation Mode
e One Execution mode e Normal Mode
* No mode change
e LO tasks are never stopped * Mode change

executing or changed of periods. * In degradation mode, LO tasks are stopped

executing or changed of periods.

“Systems with more than one criticality level but aim to only
give complete isolation are called multiple-criticality systems;
The use of mixed-criticality implies some tradeoff between
isolation and integration that involves resource sharing. ” [37]

Alan Burns and Robert |. Davis, Mixed Criticality Systems - A Review, Jan 2017

Early Verification

Early
ﬂ Verification

Tests

Requirements ' Implementation
i o Design > & P> unitiintegration)

 Specific software engineering methods/models/tools to master
qguality and cost

* Example : early verifications at design step

sion b
ity (s/w) 1t —=
ommerc siw develop 08! 08
% of new aircraft development cost is shw
iw development cost in rework and certification
- S/W complexity increasing logarithmicall
« Obsol
- Ra uting technology -
m m m] - Pr sticated threat systems
« Increa: ation challenges: — = ’— |
ouvation ior edriy veriication === R |
| - L
- Muf y | - o -~ g
- ar Avionics -
= Increasing complexity of Cyber Physical Systems \ - ¥ =
+ Time to integrate and field new capabilities | = =
« Emphasis on commonality across the fleet -
*» Re-use and portability of s/w between on-board and off-board systems
 Ad { ity of archi ly centric model based system
* From AMRDEC: R
[] ' WARFIGHTER FOCJSED.

* 70% of fault are introduced during the design step ; Only 3% are
found/solved. Cost : x1

* Unit test step: 20% of fault are introduced ; 16% are found/solved.
Cost : x5

* Integration test step: 10% of fault are introduced ; 50% are
found/solved. Cost : x16

* Objective: increase the number of faults found at design
step!

e Early verification: multiple verifications, including
expected performances, i.e deadlines can be met?

