
NoC and Mixed -criticality Systems

Mourad Dridi*, Stéphane Rubini*, Mounir Lallali*, Fran k
Singhoff*, Jean-Philippe Diguet+, Martha Johanna τ

Lab-STICC, UMR CNRS 6285,
*Université de Bretagne Occidentale

+Université de Bretagne Sud
τ Université Technique de Munich

Plan

1. Context

2. DTFM : a Scheduling Analysis Model for NoC

based Systems

3. DAS : a NoC Router for Mixed-Criticality Systems

4. Conclusion
2

Context : Real-time System

• « The correctness of the system depends not only on the
logical result of computation, but also on the time at which the
results are produced » Stankovic, 1988.

• Real Time applications are composed of software tasks

• Properties we look for:

• Timing constraints of tasks (e.g. deadline) must be enforced
during execution

• Timing behavior of tasks must be predictable: we must verify
that temporal constraints are met prior execution.

� Schedulability analysis of the tasks

3

Context : Mixed-Criticality Systems (MCS)

• High-Critical Real-Time applications

• Have very strength task execution and communication
requirements.

• May have dramatic impact on human life, on the environment, ...

• Low-Critical Real-Time applications

• Can tolerate some missed deadlines for the task execution and
the communication.

4

Time

Execution Time

Task 2

Communication TimeTask 1

Task 1

Task 2 Task 2

Task 1

Release Time Deadline

Time

Context : Mixed-Criticality Systems (MCS)

Example of a Drone system :

5

• High-Critical Real-Time applications

� Flight control command

• Flows of small messages exchanged

between tasks

• Deadline must be met

• Low-Critical Real-Time applications

�Video capture systems

• Flows of large messages

exchanged between tasks

• May tolerate missed deadlines

� Assumptions of this work

• Methods of schedulability analysis assume that the

response time is predictable, while not

• Two functionally independent tasks are not actually independent

• Contention shared hardware resources

• Caches L2, NoC, bus

Context : Mixed-Criticality Systems (MCS)

6

PE A PE B

L1 Cache L1 Cache

L2 Cache

Memory

Bus

Flight control command Video capture systems

Context : NoC and MCS

• Problem Statement : How to Deploy MCS over NoC ?

• Using NoC :

1. How we can :

• Ensure the timing constraints for High-Critical flows

• Minimizing the impact of resource sharing on

Low-Critical flows

2. How we can schedule Real-Time communications

according to the tasks of applications ?
7

• Communication infrastructure based on links and routers that
interconnect cores providing packet-based data transfer

Context : Network On Chip (NoC)

R R R

RRR

R R R

PE PE PE

PE

PEPE

PEPE

PE

• Scalability

• Communication

parallelism

• Variable

Communication

Delays

Routers

Unidirectional physical

Link

Processing

Element

8

PE PEPE PE

PE PEPE PE

PE PE

9

Examples of latencies with a NoC

Assumptions:

• 3 Flows : Blue, Red and Black

• 6 Routers

• 4 Buffers in each Router

PE PE

A

BC

D

F

E

PE PEPE PE

Assumptions:

• 6 Dependent tasks

• 4*4 NoC

10

Blue is
blocked
By Red

Red is
blocked
By Black

Link B

Link A

• Blue flow and Red flow share the same physical link (Link A)

� Direct interference latency

Examples of latencies with a NoC

11

• Blue flow and Black flow do not share any physical link

� Indirect interference latency

Blue is
blocked
By Red

Red is
blocked
By Black

Link B

Link A

Examples of latencies with a NoC

12

Different types of latencies introduced by the NoC:
• Path latency

• Direct interference latency

• Indirect interference latency

Blue is
blocked
By Red

Red is
blocked
By Black

Link B

Link A

Examples of latencies with a NoC

Context : NoC and MCS

• Contributions :

1. DTFM : a Dual Task and Flow Model to assess

timing predictability of Real-Time

applications over NoC architectures

2. DAS : A router architecture for On-Chip

Network running Mixed-Criticality

applications
13

Plan

1. Context

2. DTFM : a Scheduling Analysis Model for NoC
based Systems

3. DAS : a NoC Router for Mixed-Criticality
Systems

4. Conclusion 14

DTFM : Problem Statement

15

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

A

B

A B
Periodic dependent tasks

Periodic data flows
NoC

Task models used by designers :

schedule the execution of many Real-Time tasks on processors

Insufficient : Do not take into account the delays introduced by NoC

Flow models used by designers :

schedule Real-Time flows on NoC communication platform

Insufficient : Do not take into account the schedulability analysis for tasks

PE1

PE2

DTFM : Proposition

16

Task
MappingTask Model

NoC
Parameters

Compute the flow model

Check if the communication delays are
predictable

Compute the communication delays

Display to the users that
unpredictable delays may

occur

Compute and display to the users the task
schedulability analysis results

NO

YES

DTFM, a Dual Task and Flow Model: assess timing predictability of real-time

applications over NoC architectures.

• Take into account the communication delays and possible network conflicts

• Take into account the task schedulability

• Multiscale toolset

• DTFM :

• produce the flow model from the task model

• Compute the communication delays

• Co-Simulation with SHOC (TUM, Lab-STICC) and Cheddar (Lab-
STICC)

17

DTFM : Evaluation with a multiscale toolset

System Model Generator

NoC Model

DTFM

Co-Simulation : SHOC + Cheddar

Worst Case Time of
Communication

Time of
Communication
from simulation

Comparison
Task

Model
Task

Mapping

• Co-Simulation with SHOC and Cheddar :

• SHOC simulator : A cycle-accurate SystemC NoC simulator

Simulate the communication time of each message

• Cheddar simulator : A tick-accurate schedulability analysis tool

Compute the task scheduling in order to predict when messages are sent

to the NoC

18

System Model Generator

NoC Model

DTFM

Co-Simulation : SHOC + Cheddar

Worst Case Time of
Communication

Time of
Communication
from simulation

Comparison
Task

Model
Task

Mapping

DTFM : Evaluation with a multiscale toolset

• For each configuration, vary

the task mapping to change

the number of flows

• Number of flows ranging from

3 to 30 with a step of 3

• If there is no indirect delays, any task sets said schedulable

by DTFM are also schedulable by SHOC :

• DTFM is able to predict delays

• DTFM may be pessimistic

• Present the rate of correct

analysis computed by DTFM

• Validate the correctness of

DTFM for the schedulabilty of

systems

DTFM : Evaluation with a multiscale toolset

19

Plan

1. Context

2. DTFM : a Scheduling Analysis Model for NoC
based Systems

3. DAS : a NoC Router for Mixed-Criticality
Systems

4. Conclusion 20

DAS : Problem Statement

• In order to deploy MCS over NoC, we need to :

• Ensure the timing constraints for High-Critical flows

• Minimize the impact of resource sharing on Low-Critical flows

• Provide an accurate communication time analysis

• Virtual Channel + Wormhole + Flit-Level Preemption

�Too pessimistic Worst Case Communication Time of High-Critical

flows

• TDM NoC Router
� Low throughput for Low-Critical flows while providing highly

deterministic communication time for High-Critical flows 21

Double Arbiter and Switching (DAS)

• N+1 Virtual Channels

• VCs 1 to N :

High-Critical flows

• Each VC is dedicated to

only one given flow

VC1

VCN

VC N+1

TSASA

VC A

RA

Crossbar

Input Arbitration unit Output Arbitration unit

TSA

22

• VC N+1 :

Low-Critical flows

• VC N + 1 can be shared

by several low-critical

flows

DAS : Proposition

VC1

VCN

VC N+1

TSASA

VC A

RA

Crossbar

Input Arbitration unit Output Arbitration unit

TSA

• SAF for High-Critical flows

Each packet uses only one link

at a time.

The congestion can be

controlled with a reasonable

cost considering small High-

Critical packets.

• Why ?

• No indirect interference

• Less pessimistic worst case

communication time

23

DAS : Proposition

Double Arbiter and Switching (DAS)

• Wormhole for

Low-Critical flows

and Flit-level Preemption

VC1

VCN

VC N+1

TSASA

VC A

RA

Crossbar

Input Arbitration unit Output Arbitration unit

TSA

A packet can be stored over

multiple routers and occupies

several physical links at a time.

• Why ?

• Buffer requirements are

reduced to one flit, instead

of an entire packet

• Increase the network use

rate by Low-Critical flows
24

DAS : Proposition

Double Arbiter and Switching (DAS)

� High-Critical flows always preempt Low-Critical flows in flit level

• The Two Stages of Arbitration

• Input and output arbitration units are based on two stages of arbitration :

1. The first stage is a Round Robin Arbitration between the N first virtual

channels

2. The second stage is a Priority-Based Arbitration between the winner of the

first stage and the last virtual channel.

The winner between N first

virtual channels flows
First Arbitration stage:

Round Robin arbiter

Second Arbitration stage :

Priority-Based arbiter

VC1

VC N

VC N+1 25

DAS : Proposition

• SystemC and Verilog HDL implementation

• Integrated in SystemC TLM Simulator “SHOC”

• SHOC : A cycle accurate SystemC-TLM simulator

• Evaluation :

• High-Critical flow latency evaluation

• Low-Critical flow latency evaluation

VC-Router DAS

Dimension 4*4 4*4

Topology 2D-mesh 2D-mesh

Routing Algorithm XY XY

Switching Mode Wormhole Wormhole/SAF

Preemption Level Packet Flit / Packet

Arbitration Policy Priority-Based Arbiter Two Stages of

Arbitration

26

DAS : Implementation and Evaluation

DAS : High-critical flow Latency Evaluation

Evaluate the impact of the resource sharing

on the communication delay of High-Critical

flows.

High-Critical flow size = 2 flits

Low-Critical flow size = 8 flits

Release time and the period of each flow are

randomly generated.

3 physical links from the source to the

destination node.

• Using DAS, High-Critical flows

communication delays are bounded

In every evaluation, one High-Critical flow is

assigned to a randomly generated source and

destination node.

For each simulation, we generate Low-Critical

flow which share some physical links with the

High-Critical flow.
0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25
La

te
n

cy
 (

C
lo

ck
 c

y
cl

e
)

Throughput (% of network capacity)

VC-Router(Average)

VC-Router (MAX)

DAS Router (Average)

DAS Router (MAX)

27

DAS : Low-Critical Flow Latency Evaluation

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25

La
te

n
cy

 (
cl

o
ck

 c
y

cl
e

s)
Throughput (% of network capacity)

DAS Router(Average)

DAS Router(MAX)

VC-Router(Average)

VC-Router(MAX)

Evaluate the latency overhead on Low-Critical

flows due to High-Critical flows resource

reservation comparing to virtual channel

routers.

In every evaluation, we generate randomly

one low-critical flow.

100 simulations by increasing the number of

high-critical flows and by decreasing the high-

critical flow period in order to increase the

network use rate.

High-Critical flow size = 2 flits

Low-Critical flow size = 8 flits

Release time of each flow are randomly

generated.

3 physical links from the source to the

destination node.

• DAS leads to larger latencies for Low-Critical flows

compared to a Virtual Channel Router.

• Low-Critical flows in MCS may tolerate some additional

delays without damaging the integrity of the whole

system

28

DAS : Cost evaluation

• Typical NoC Router, Virtual Channel Router and DAS synthesized with

Synopsys DC using a 28nm ST SOI technology.

• Tools included in this technology generate reports describing the area of

implementation

Typical Router Virtual Channel

Router

(A.Burns, 2009)

DAS

Number of ports 5 5 5

Data width 32-bits 32-bits 32-bits

Buffer size 16-flits 16-flits 16-flits

Total cell area 16046.31 18369.47 18831.32

Total area 1 +17% +2,51%
29

DAS : Validation with Model-Checking

• Model Checking :

• Computes all the possible states of the system

• Verify whether properties hold on all the possible states of

the system

• To validate the properties of DAS :

1. Formalize properties to be guaranteed by DAS

2. Develop a model of DAS using state machines

3. Express DAS using IF language and its tools

• IF tool Provides an environment for modeling and validation of real-time

systems described in IF language. (M. Bozga, 2004)

4. Validate properties using IF-Observer

30

31

An Example of an automaton of DAS

• The behavior of each of these entities is described using state machine.

DAS : Validation with Model-Checking

Example : Input Arbiter automaton

An automaton is :

• A set of states

• A set of transitions

A transition :

• Can be fired when the guard is true

• When fired, an action is computed

• 15 Parameters

• 19 Automata

• 15 Signals

• 13 Buffers

• Exhaustive verification of the properties on any possible states of

the system

• IF language provides observers to check properties

• The IF observer is an extended timed automaton which is executed in

parallel with the target system.

• Properties :

• P.1 High-Critical flows always preempt Low-Critical flows in flit level.

• P.2 High-Critical flows always have a higher priority than Low-Critical flows.

Properties Number of

States

Number of Fired

Transitions

Time

(hh:mm:ss)

Proof

P.1 378 452 858 546 00:00:20 Yes

P.2 386 684 811 734 00:00:18 Yes

32

DAS : Validation with Model-Checking

Plan

1. Context

2. DTFM : a Scheduling Analysis Model for NoC
based Systems

3. DAS : a NoC Router for Mixed-Criticality
Systems

4. Conclusion 33

Conclusion
Problem Statement

• Schedulability analysis of MCS over NoC architectures

Contributions
• DTFM : a Dual Task and Flow Model assess timing predictability of

Real-Time applications over NoC architectures

• Implementation available in the Cheddar tool

http://beru.univ-brest.fr/svn/CHEDDAR/

• Co-simulation: combining a cycle-accurate SystemC simulator

and a tick-accurate scheduling analysis tool

• “DTFM: a Flexible Model for Schedulability Analysis of Real-Time

Applications on NoC-based Architectures”, Reaction 2016, Porto,

Portugal

34

Conclusion

• DAS : A router architecture for On-Chip Network running Mixed-

Criticality applications

• Evaluation : SystemC simulation with SHOK, Verilog HDL

implementation, model checking with IF

• “DAS: An Efficient NoC Router for Mixed-Criticality Real-Time

Systems”, ICCD2017, Boston, USA

• “Modeling and Validation of a Mixed-Criticality NoC Router Using

the IF Language”, NoCArc2017, Boston, USA

Future Works :
• Measure of the gain for low-critical flow with DAS

• Virtual Channel Manager : dynamic allocation of VCs
35

36

Multi-Criticality Systems vs Mixed-Criticality Systems

Multi-Criticality Systems

• Tasks with different level of

criticality

• One Execution mode

• No mode change

• LO tasks are never stopped

executing or changed of periods.

37

Mixed-Criticality Systems

• Tasks with different level of criticality

• Several Execution mode:

• Degradation Mode

• Normal Mode
• …

• Mode change

• In degradation mode, LO tasks are stopped

executing or changed of periods.

“Systems with more than one criticality level but aim to only

give complete isolation are called multiple-criticality systems;

The use of mixed-criticality implies some tradeoff between

isolation and integration that involves resource sharing. ”

Alan Burns and Robert I. Davis, Mixed Criticality Systems - A Review, Jan 2017

• Specific software engineering methods/models/tools to master

quality and cost

• Example : early verifications at design step

38

Early Verification

Motivation for early verification

• From AMRDEC:

• 70% of fault are introduced during the design step ; Only 3% are

found/solved. Cost : x1

• Unit test step: 20% of fault are introduced ; 16% are found/solved.

Cost : x5

• Integration test step: 10% of fault are introduced ; 50% are

found/solved. Cost : x16

• Objective: increase the number of faults found at design

step!

• Early verification: multiple verifications, including

expected performances, i.e deadlines can be met?

39/34

