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Context : Real-time System 

• « The correctness of the system depends not only on the 
logical result of computation, but also on the time at which the 
results are produced » Stankovic, 1988.

• Real Time applications are composed of software tasks 

• Properties we look for:

• Timing constraints of tasks  (e.g. deadline) must be enforced 
during execution

• Timing behavior of tasks must be predictable: we must verify
that temporal constraints are met prior execution.

� Schedulability analysis of the tasks
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Context : Mixed-Criticality Systems (MCS) 

• High-Critical Real-Time applications 

• Have very strength task execution and communication 
requirements.

• May have dramatic impact on human life, on the environment, ... 

• Low-Critical Real-Time applications 

• Can tolerate some missed deadlines for the task execution and 
the communication.
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Context : Mixed-Criticality Systems (MCS)

Example of a Drone system :
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• High-Critical Real-Time applications 

� Flight control command

• Flows of small messages exchanged 

between tasks

• Deadline must be met

• Low-Critical Real-Time applications 

�Video capture systems

• Flows of  large messages 

exchanged between tasks

• May tolerate missed deadlines

� Assumptions of this  work  



• Methods of schedulability analysis assume that the 

response time is predictable, while not 

• Two functionally independent tasks are not actually independent 

• Contention shared hardware resources

• Caches L2, NoC, bus

Context : Mixed-Criticality Systems (MCS)
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Context : NoC and MCS

• Problem Statement : How to Deploy MCS over NoC ?

• Using NoC : 

1. How  we can : 

• Ensure the timing constraints for High-Critical flows

• Minimizing  the impact of resource sharing on

Low-Critical flows 

2. How we can schedule Real-Time communications 

according to the tasks of applications ? 
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• Communication infrastructure based on links and routers that 
interconnect cores providing packet-based data transfer

Context : Network On Chip (NoC)

R R R

RRR

R R R

PE PE PE

PE

PEPE

PEPE

PE

• Scalability

• Communication 

parallelism 

• Variable 

Communication 

Delays

Routers 

Unidirectional physical 

Link

Processing

Element

8



PE PEPE PE

PE PEPE PE

PE PE

9

Examples of latencies with a NoC

Assumptions:

• 3 Flows : Blue, Red and Black 

• 6 Routers 

• 4 Buffers in each Router 
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Assumptions:

• 6 Dependent tasks

• 4*4 NoC
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• Blue flow and Red flow share the same physical link  (Link A)

� Direct interference latency 

Examples of latencies with a NoC
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• Blue flow and Black flow do not share any physical link  

� Indirect interference latency 

Blue is
blocked
By Red
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Link B

Link A

Examples of latencies with a NoC
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Different types of latencies introduced by the NoC: 
• Path latency

• Direct interference latency

• Indirect interference latency 

Blue is
blocked
By Red

Red is
blocked
By Black

Link B

Link A

Examples of latencies with a NoC



Context : NoC and MCS

• Contributions :

1. DTFM : a Dual Task and Flow Model to assess 

timing predictability of Real-Time 

applications over NoC architectures

2. DAS : A router architecture for On-Chip 

Network running Mixed-Criticality

applications
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DTFM : Problem Statement 
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DTFM : Proposition 
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DTFM, a Dual Task and Flow Model:  assess timing predictability of real-time 

applications over NoC architectures. 

• Take into account the communication delays and possible network conflicts 

• Take into account the task schedulability



• Multiscale toolset

• DTFM : 

• produce the flow model  from the task model 

• Compute the communication delays

• Co-Simulation  with SHOC (TUM, Lab-STICC) and Cheddar (Lab-
STICC) 
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DTFM : Evaluation with a multiscale toolset
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• Co-Simulation  with SHOC and Cheddar :

• SHOC  simulator : A cycle-accurate SystemC NoC simulator

Simulate the communication time of each message

• Cheddar simulator : A tick-accurate schedulability analysis tool

Compute the task scheduling in order to predict when messages are sent 

to the NoC
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DTFM : Evaluation with a multiscale toolset



• For each configuration, vary 

the task mapping to change  

the number of flows

• Number of flows ranging from 

3 to 30 with a step of 3

• If there is no indirect delays, any task sets said schedulable

by DTFM are also schedulable by SHOC :

• DTFM is able to predict delays

• DTFM may be pessimistic

• Present the rate of correct

analysis computed by DTFM

• Validate the correctness of

DTFM for the schedulabilty of

systems

DTFM : Evaluation with a multiscale toolset
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DAS : Problem Statement

• In order to deploy MCS over NoC, we need to : 

• Ensure the timing constraints for High-Critical flows 

• Minimize  the impact of resource sharing on Low-Critical flows

• Provide an accurate communication time analysis 

• Virtual Channel + Wormhole + Flit-Level Preemption

�Too pessimistic Worst Case Communication Time of High-Critical 

flows

• TDM NoC Router
� Low throughput for Low-Critical flows while providing highly 

deterministic communication time for High-Critical flows 21



Double Arbiter and Switching (DAS)

• N+1 Virtual Channels

• VCs 1 to N :  

High-Critical flows

• Each VC is dedicated to 

only one given flow

VC1

VCN

VC N+1

TSASA

VC A

RA

Crossbar

Input Arbitration unit Output Arbitration unit

TSA
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• VC N+1 :  

Low-Critical flows

• VC N + 1 can be shared 

by several low-critical 

flows

DAS : Proposition 



VC1

VCN

VC N+1

TSASA

VC A

RA

Crossbar

Input Arbitration unit Output Arbitration unit

TSA

• SAF for High-Critical flows

Each packet uses only one link

at a time.

The congestion can be

controlled with a reasonable

cost considering small High-

Critical packets.

• Why ?

• No indirect interference 

• Less pessimistic worst case 

communication time 
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DAS : Proposition 

Double Arbiter and Switching (DAS)



• Wormhole for 

Low-Critical flows 

and Flit-level Preemption

VC1

VCN

VC N+1

TSASA

VC A

RA

Crossbar

Input Arbitration unit Output Arbitration unit

TSA

A packet can be stored over

multiple routers and occupies

several physical links at a time.

• Why ?

• Buffer requirements are

reduced to one flit, instead

of an entire packet

• Increase the network use

rate by Low-Critical flows
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DAS : Proposition 

Double Arbiter and Switching (DAS)



� High-Critical flows always preempt Low-Critical flows in flit level

• The Two Stages of Arbitration

• Input and output arbitration units are based on two stages of arbitration : 

1. The first stage is a Round Robin Arbitration between the N first virtual

channels

2. The second stage is a Priority-Based Arbitration between the winner of the

first stage and the last virtual channel.

The winner between N first 

virtual channels flows
First Arbitration stage: 

Round Robin arbiter  

Second Arbitration stage : 

Priority-Based arbiter

VC1

VC N

VC N+1 25

DAS : Proposition 



• SystemC and Verilog HDL  implementation

• Integrated in SystemC TLM Simulator “SHOC”  

• SHOC : A cycle accurate SystemC-TLM simulator

• Evaluation : 

• High-Critical flow latency evaluation 

• Low-Critical flow latency evaluation 

VC-Router DAS 

Dimension 4*4 4*4

Topology 2D-mesh 2D-mesh

Routing Algorithm XY XY

Switching Mode Wormhole Wormhole/SAF

Preemption Level Packet Flit / Packet 

Arbitration Policy Priority-Based Arbiter Two Stages of 

Arbitration 
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DAS : Implementation and Evaluation  



DAS : High-critical flow Latency Evaluation 

Evaluate the impact of the resource sharing

on the communication delay of High-Critical

flows.

High-Critical flow size = 2 flits

Low-Critical flow size = 8 flits

Release time and the period of each flow are

randomly generated.

3 physical links from the source to the

destination node.

• Using DAS, High-Critical flows 

communication delays are bounded

In every evaluation, one High-Critical flow is 

assigned to a randomly generated source and 

destination node. 

For each simulation, we generate Low-Critical 

flow which share some physical links with the 

High-Critical flow.
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DAS : Low-Critical Flow Latency Evaluation 
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Evaluate the latency overhead on Low-Critical

flows due to High-Critical flows resource

reservation comparing to virtual channel

routers.

In every evaluation, we generate randomly 

one low-critical flow. 

100 simulations by increasing the number of 

high-critical flows and by decreasing the high-

critical flow period in order to increase the 

network use rate. 

High-Critical flow size = 2 flits

Low-Critical flow size = 8 flits

Release time of each flow are randomly

generated.

3 physical links from the source to the

destination node.

• DAS leads to larger latencies for Low-Critical flows

compared to a Virtual Channel Router.

• Low-Critical flows in MCS may tolerate some additional

delays without damaging the integrity of the whole

system

28



DAS : Cost evaluation

• Typical NoC Router, Virtual Channel Router and DAS synthesized with

Synopsys DC using a 28nm ST SOI technology.

• Tools included in this technology generate reports describing the area of

implementation

Typical Router Virtual Channel

Router

(A.Burns, 2009)

DAS

Number of ports 5 5 5

Data width 32-bits 32-bits 32-bits

Buffer size 16-flits 16-flits 16-flits

Total cell area 16046.31 18369.47 18831.32

Total area 1 +17% +2,51%
29



DAS : Validation with Model-Checking 

• Model Checking : 

• Computes all the possible states of the system 

• Verify whether properties hold on all the possible states of 

the system 

• To validate the properties of DAS :

1. Formalize properties to be guaranteed by DAS

2. Develop a model of DAS using state machines

3. Express DAS using IF language and its tools

• IF tool Provides an environment for modeling and validation of real-time 

systems described in IF language. (M. Bozga, 2004)

4. Validate properties using IF-Observer
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An Example of an automaton of DAS

• The behavior of each of these entities is described using state machine.

DAS : Validation with Model-Checking 

Example : Input Arbiter automaton 

An automaton is : 

• A set of states 

• A set of transitions 

A transition : 

• Can be fired when the guard is true

• When fired, an action  is computed

• 15 Parameters 

• 19 Automata 

• 15 Signals

• 13 Buffers



• Exhaustive verification of the properties on any possible states of 

the system  

• IF language provides observers to check properties 

• The IF observer is an extended timed automaton which is executed in 

parallel with the target system.

• Properties : 

• P.1 High-Critical flows always preempt Low-Critical flows in flit level.

• P.2 High-Critical flows always have a higher priority than Low-Critical flows.

Properties Number of 

States

Number of Fired 

Transitions 

Time 

(hh:mm:ss)

Proof

P.1 378 452 858 546  00:00:20 Yes

P.2 386 684 811 734 00:00:18 Yes 
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DAS : Validation with Model-Checking 
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Conclusion 
Problem Statement

• Schedulability analysis of MCS over NoC architectures 

Contributions
• DTFM : a Dual Task and Flow Model assess timing predictability of 

Real-Time applications over NoC architectures

• Implementation available in the Cheddar tool 

http://beru.univ-brest.fr/svn/CHEDDAR/

• Co-simulation:  combining a cycle-accurate SystemC simulator 

and a tick-accurate scheduling analysis tool

• “DTFM: a Flexible Model for Schedulability Analysis of Real-Time 

Applications on NoC-based Architectures”, Reaction 2016, Porto, 

Portugal
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Conclusion 

• DAS : A router architecture for On-Chip Network running Mixed-

Criticality applications

• Evaluation : SystemC simulation with SHOK,  Verilog HDL  

implementation, model checking with IF

• “DAS: An Efficient NoC Router for Mixed-Criticality Real-Time 

Systems”, ICCD2017, Boston, USA 

• “Modeling and Validation of a Mixed-Criticality NoC Router Using 

the IF Language”, NoCArc2017, Boston, USA

Future Works : 
• Measure of the gain for low-critical flow with DAS 

• Virtual Channel Manager : dynamic allocation of VCs
35
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Multi-Criticality Systems vs Mixed-Criticality Systems 

Multi-Criticality Systems

• Tasks with different level of 

criticality 

• One Execution mode 

• No mode change 

• LO tasks are never stopped 

executing or changed of periods. 
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Mixed-Criticality Systems

• Tasks with different level of criticality 

• Several Execution mode:

• Degradation Mode 

• Normal Mode 
• …

• Mode change 

• In degradation mode, LO tasks are stopped 

executing or changed of periods. 

“Systems with more than one criticality level but aim to only

give complete isolation are called multiple-criticality systems;

The use of mixed-criticality implies some tradeoff between

isolation and integration that involves resource sharing. ”

Alan Burns and Robert I. Davis, Mixed Criticality Systems - A Review, Jan  2017



• Specific software engineering methods/models/tools to master 

quality and cost

• Example : early verifications at design step

38

Early Verification



Motivation for  early verification

• From AMRDEC:

• 70% of fault are introduced during the design step ; Only 3% are 

found/solved. Cost : x1

• Unit test step: 20% of fault are introduced ; 16% are found/solved. 

Cost : x5 

• Integration test step: 10% of fault are introduced ; 50% are 

found/solved. Cost : x16 

• Objective: increase the number of faults found at design 

step! 

• Early verification: multiple verifications, including 

expected performances, i.e deadlines can be met?
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