Automatically adapt Cheddar to users need

AADL Standards Meeting, Toulouse

A. Plantec™, V. Gaudel*, S. Rubini™, F. Singhoff*
P. Dissaux*, J. Legrand*

TUniversity of Brest/UBO, LISyC, France
*Ellidiss Technologies, France

October 18, 2011

N
Ell 2. ek
wEllidiss Qsyc 5

nnnnnnnnnnnnnnnnnnnnn

Outline

@ The Cheddar project

© The Cheddar tool

© The Platypus tool

@ Evolution of the Cheddar tool

© Conclusion

A. Plantec™, V. Gaudel™, S. Rubinit, F. Singhofft P. Dissaux*, Automatically adapt Cheddar to users need

The Cheddar project

The Cheddar project

Simplify the use of the Real-Time scheduling theory.

@ A pragmatic approach
e Since 2008, partnership with Ellidiss Tech. for open
source and industrial support
@ A tooled approach: the Cheddar tool
o Freely available as a standalone tool
e Can be run with STOOD or with AADLInspector
(Ellidiss technology support).

[

|
A. Plantec™, V. Gaudel™, S. Rubini™, F. Singhoff™ P. Dissaux*, Automatically adapt Cheddar to users need

The Cheddar project

The Cheddar project

A community
@ Academic research and educational.
@ Industrial utilizations 7

The Cheddar tool is continuously evolving.

Two challenges

@ Make Cheddar reusable and adaptable to user's specific
requirements.

@ Allow Cheddar users to adapt Cheddar themselves.

A. Plantec™, V. Gaudel™, S. Rubini™, F. Singhoff™ P. Dissaux*, Automatically adapt Cheddar to users need

The Cheddar tool

Valida a’ ttern” approach
Valida ex| simulations

The Cheddar tool

Engines for real-time architecture evaluation:
@ Analysis of AADL models with feasibility tests.

@ Exhaustive simulations

e with classical schedulers: Rate Monotonic, Earliest
Deadline First.

e with specific schedulers written into the Cheddar
language.

A. Plantec™, V. Gaudel™, S. Rubinit, F. Singhofft P. Dissaux*, Automatically adapt Cheddar to users need

The Cheddar tocl Validation with a " Design pattern” approach
Validation with exhaustive simulations

"Design pattern” approach

Define a set of AADL architecture design patterns for
real-time systems.
@ Models a typical thread communication/synchronization.
@ Set of constraints on AADL components/properties.

For each design pattern, all feasibility tests that can be applied
according to their applicability assumptions are explicitly
declared.

Verification of a real-time system architecture model

@ The designer uses a tool that detects which design
pattern his architecture is compliant with.

@ The designer performs feasibility tests.

A. Plantec™, V. Gaudel™, S. Rubini™, F. Singhoff™ P. Dissaux*, Automatically adapt Cheddar to users need

The Cheddar tool

Validation with a " Design pattern” approach
Validation with exhaustive simulations

Validation with exhaustive simulations

Consists in verifying timing constraints on an AADL
architecture. A Scheduling simulation runs during
hyper-period.
Two possibilities:

@ Use one of the built-in schedulers.

@ Provide and use your own scheduler programmed into the
Cheddar language.

A. Plantec™, V. Gaudel™, S. Rubinit, F. Singhofft P. Dissaux*, Automatically adapt Cheddar to users need

The Platypus tool

The Platypus tool

Platypus is a general purpose workbench for the building of
target systems with the help of code generators. It allows:

@ The specification, the verification and the validation of
meta-models.

@ The implementation of code generators.

Main idea behind Platypus
Make it possible the very early validation of meta-models.

A. Plantec™, V. Gaudel™, S. Rubinit, F. Singhofft P. Dissaux*, Automatically adapt Cheddar to users need

The Platypus tool

The Platypus tool

@ Platypus is made of an EXPRESS modeling language
workbench implemented into Smalltalk.
@ A meta model is represented at two levels
e A set of Smalltalk classes (high level, programmability)
o A set of EXPRESS entities (Static types, constraints)

Code generators: either into EXPRESS or into Smalltalk.

/ Entity Buffer Sublype of (Generic_Object); /
/ cpu_name : String; f

/ roles : Buffer_Role_Table, /
/ End_Entiy; (/
/

Typing level

f‘ Generic_Object subclass: #Buffer
/‘ instanceVariableName: ‘epu_name roles” /‘

/ Prototyping level /

A. Plantec™, V. Gaudel™, S. Rubini™, F. Singhoff™ P. Dissaux*, Automatically adapt Cheddar to users need

The Platypus tool

An iterative design process

Platypus

Elaboration steps
with the verification
and the validation
of meta-models

Meta-model
under elaboration|

Code generation step
for the building
of the target system

Model
exchange

@ Prototype

. Target system

A. Plantec™, V. Gaudel™, S. Rubini™, F. Singhoff™ P. Dissaux* Automatically adapt Chedd

Evolution of -models
Domain

heduler
Evolution of the Cheddar tool Domain

pattern for feasibility tests

Two iteration steps

Platypus Ada code

Cheddar's
meta-models

Cheddar

Code generation step.
Meta-models en code generators elaboration steps.

Platypus

Cheddar's
meta-models

Cheddar
Meta-modefs and

meta-data
code generators %ﬁ?
elaboration

A. Plantec™, V. Gaudel™, S. Rubinit, F. Singhofft P. Dissaux*,

Automatically adapt Cheddar to users need

J’LIV‘

Evolution of the Cheddar tool oma S pattern for feasibility tests

Evolution of the Cheddar tool

Adaptations must be possible at all levels:
@ Architecture meta-models

e Very specific needs that imply very fine adaptations of
the Cheddar engines.

e Cheddar engines

e Specific schedulers.
o New patterns for the selection of feasibility tests.

A. Plantec™, V. Gaudel™, S. Rubinit, F. Singhofft P. Dissaux*, Automatically adapt Cheddar to users need

Evolution of the architecture meta-models
Domain le fic scheduler
Evolution of the Cheddar tool Domain le pattern for feasibility tests

Evolution of the architecture meta-models

These meta-models constitute the core of Cheddar:
@ An evolution requires manual Ada programming to
integrate the generated code.
e Example: adding of multi-core/cache management.

Pla typus Ta ¢ ed records
XML exchange
Processor
Task AAD'—
Buffer ... @ M

Real-time
£==architectures

e Validation with realistic AADL architectures.
@ Example: enforce domain constraints.

A. Plantec™, V. Gaudel™, S. Rubini™, F. Singhoff™ P. Dissaux*, Automatically adapt Cheddar to users need

Evolution of the architecture meta-models
Domain level: adding of a specific scheduler
Evolution of the Cheddar tool Domain level: adding a new pattern for feasibility tests

Adding of a specific scheduler

The new scheduler is first implemented into the Cheddar
language.
o It is first tested with the Cheddar interpreter then,
the corresponding Ada code can be generated and
integrated into Cheddar.

@ The result is a specific version of Cheddar.

New Ada
Platypus
automaton
Expression
Statement The new specific

Cheddar | | scheduler is
programmed and

tested into Cheddar

Automaton ...

The specific

meta-data

A. Plantec™, V. Gaudel™, S. Rubini™, F. Singhoff™ P. Dissaux*, Automatically adapt Cheddar to users need

Evolution of the architecture meta-models
Domain le adding of a specific scheduler
Evolution of the Cheddar tool Domain level: adding a new pattern for feasibility tests

Adding a new pattern for feasibility tests

The new pattern is first specified and tested into Platypus.

@ Applicability assumptions are designed as additional rules
that constraint further the generic layer.

@ Rules are translated to Ada, the result is a new version of

Cheddar.
New Ad
Platypus cutasd
tool
Applicability AADL
constraints Cheddar models
Real-time
chitectues e

A. Plantec™, V. Gaudel™, S. Rubini™, F. Singhoff™ P. Dissaux*, Automatically adapt Cheddar to users need

Current status
Possible developments

Conclusion

Current status

@ 30% of the Cheddar Ada code is automatically generated
(16500 lines).

@ This code is generated from the Architecture and the
Cheddar language meta-models (1650 lines).

@ We have an example (a running prototype) for the
Synchronous Data Flow and Ravenscar patterns. So, we
are ready to build a first version of the generator for the
design pattern tool.

Meta- Code
models generators

Architecture meta-models

Specific schedulers
Feasibility test patterns Current research

D works ! not finished

A. Plantec™, V. Gaudel™, S. Rubinit, F. Singhofft P. Dissaux*, Automatically adapt Cheddar to users need

Current status
Possible developments

Conclusion

Possible developments

@ The elaboration capabilities of Platypus are not used
enough
e Some structural issues remain
e No constraint in the Architecture and Cheddar language
meta-models.

@ Other part of Cheddar could be generated (User interface,
architecture and user input checking...)

A. Plantec™, V. Gaudel™, S. Rubinit, F. Singhofft P. Dissaux*, Automatically adapt Cheddar to users need

