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Integrated Multi-Processing Systems

• Multi-core and many-core 
• Freescale T4240: 12 Power ISA dual-threaded cores

• Kalray MPPA-256: 256 VLIW processors 

• MPSoC (Multi-Processing System On Chip): integrate 
processing units and devices (communication resources)

• Current trend to increase the computing performances
• Effort to increase sequential processor speed is high

• Adapted to SWAP requirements (Size, Weight and Power) of 
embedded systems.

• Multi-processing execution platforms seem to be well adapted 
to IMA requirements.

• But, barriers for using them in critical systems are:
• Hardware interference channels: processing units are not fully  

isolated even if no software dependency exits.

• Documentation: lack of precise specifications and descriptions of the 
internal of the chip.
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Multi-processing: Architecture 

Classification
Based on the communication 
paradigm

1. Shared-memory, Unified 
Memory Access (UMA)

Tightly coupled, communication 
through variables or shared memory 
segments

multi-cores

2. Distributed
Loosely coupled, messages, 
communications through explicit 
input/output operations 

3. Shared-memory, Non Unified 
Memory Access (NUMA)

Communication through variables or 
shared memory segments
 many-cores
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Outline

• Enumeration and identification of the processing units

• Processor characterization 

• Software deployment

• Thread scheduling 

• Processor groups 

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations 

• Further works
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Enumeration of the processing units

• From the AADL standard : “A processor is an abstraction 

of hardware and software that is responsible for 

scheduling and executing threads and virtual processors 

that are bound to it.”

• Additional semantics in multi-processing context

• A processor is able to execute zero or one sequential flow of 
control at a time, and to store the architectural state associated to 
this execution. The execution flow of a processor is called later 
"physical thread".

• 0 or 1 software thread or virtual processor is executed at a time by 
a physical thread. The scheduler or runtime of a processor is 
responsible to select the current software thread to be executed by 
the physical thread.
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Multi-processing system modeling

• A physical thread, is modeled as an AADL processor. The 

hardware supporting the execution of the physical thread 

may be implemented as: 

• a sequential mono-threaded processor; 

• or a sequential mono-threaded core, part of a multi-core or many-
core processor; 

• or a physical thread in a multi-threaded core or processor. 

• A system component hierarchy captures the hardware 

structure of the execution platform. A system contains the 

processors and/or the processing sub-systems, and the 

set of hardware resources they share (bus, memory, 

device). 
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Example: Oracle OpenSPARC T2 (1)
• 8 multi-threaded cores

• 8 physical threads per core
• 2 groups of 4 threads

• One instruction per group may 
be released at each clock cycle, 
following a round-robin policy.
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Example: 

Oracle 

OpenSPARC

T2 (2)

• 64 physical threads

• 2-level system 
hierarchy

• The L1 caches are 
shared by the physical 
thread of a core
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Additional properties

• Physical thread implementation

physical_thread_implementation : enumeration (physical_thread,

processor_core, 

mono_core_processor, 

hardware_acellerator ); 

• Physical thread Identification ?

Physical_Thread_Id: aadlinteger; 

Consistency rule: the identifier is unique for the set of the processor 
sub-components contained in  a system component. (?) 
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Outline

• Enumeration and identification of the processing units

• Processor characterization 

• Software deployment

• Thread scheduling 

• Processor groups 

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations 

• Further works
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Processor Characterization

• In multiprocessor scheduling analysis, a usual 

classification distinguishes 3 kinds of systems: 

1. identical processors: the capability and the speed of the 
processors are the same; 

2. uniform processors: they have the same capabilities (i.e. same 
ISA), but their execution speed are different; 

3. heterogeneous processors: they are not able to execute the 
same code, their ISA is different. 
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Processor Characterization: capabilities

• Capabilities
• Binary code compatibility 

 new AADL property

Instruction_Set_Architecture: aadlstring
applies to (processor, virtual processor, thread, subprogram); 

• Consistency rule: if defined, the Instruction_Set_Architecture of threads or 
subprograms must be the same than the processor or the virtual processor used to 
execute them.

• Memory space isolation
 New AADL property

• Define whether a processor may have its own private addressing space

• Related to the capability of hardware to isolate thread’s memory access flows (virtual 
memory context, address space numbers, ?)

Implement_Runtime_Protection: aadlboolean applies to processor;

Implement_Runtime_Protection: inherit aadlboolean

applies to virtual_processor;

• Consistency rule: two processor components cannot be bound to different processes, 
if runtime_protection is required by at least one of these processes and 
Implement_Runtime_Protection is false for at least one processor.
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Processor characterization: speed
• Speed performances

• Processor level

Clock_Period,: Time;

Clock _Period_Range: Time_Range

Reference_Processor: inherit classifier ( processor );

Scaling_Factor : inherit aadlreal;

Intel Core 2 

2.8 GHz, 

SPECnt 2006 benchmark

What’s the “Intel Core 2” scaling factor? 12, 17, 25?

New property proposal:

Peak_MIPS: addinteger;

(This is the worst mean to express the speed of a processor, but everyone 
knows the limit of that metric!)

Program Dell 

motherboard

Intel

motherboard

diff

gcc 12.1 17.5 30 %

mcf 25.5 25.4 0 %
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DVFS

example

The property Scaling_Factor
quantifies the slow down 
due to a processor 
frequency change 
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Processor Characterization: speed (2)

• Runtime/processor level:

Thread_Swap_Execution_Time: Time_Range;

Process_Swap_Execution_Time: Time_Range;

Clock_Jitter: Time;

• Thread level : binding specific execution time (in binding)

Compute_Execution_Time: Time_Range

• But, all these metrics are established for an “isolated 

processor”, not for the case of multi-processing systems.

• Research topics: Interference-Sensitive WCET Analysis 
(ECRTS’14)
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Outline

• Enumeration and identification of the processing units

• Processor characterization 

• Software deployment

• Thread scheduling 

• Processor groups 

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations 

• Further works
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Software Deployment

• Asymmetrical versus Symmetrical

• Asymmetric Multiprocessing (AMP): each processor runs 

a separate OS/runtime.

• The whole system looks like a distributed one, 

• Application codes create the communication channels. 

• Symmetric Multiprocessing (SMP): A unique operating 

system controls several processors. 

• The SMP OS/runtime knows the parallel nature of the system.
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AMP/SMP: scheduling point of view

• SMP – partitioned scheduling
Actual_Processor_Binding => reference(cpu.core0) 

applies to app0.th0;

Actual_Processor_Binding => reference(cpu.core1) 
applies to app0.th1;

Actual_Processor_Binding => reference(cpu.core2) 
applies to app0.th2;

Scheduling_Protocol => RM 

applies to cpu.core0, cpu.core1, cpu.core2;

SMP – global scheduling
Actual_Processor_Binding => 

reference(cpu.core0), 

reference(cpu.core1),

reference(cpu.core2) 

applies to app0;

Scheduling_Protocol => RM 

applies to cpu.core0, cpu.core1, cpu.core2;

cor

core1

CPU

core0 core2

app0

th0 th1 th2

cor

core1

CPU

core0 core2

app0

th0 th1 th2
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AMP/SMP: scheduling point of view

AMP(+SMP – global scheduling)
Actual_Processor_Binding => 

reference(cpu.core0), reference(cpu.core1) 

applies to app0;

Actual_Processor_Binding => reference(cpu.core2)

applies to app1;

Scheduling_Protocol => RM 

applies to cpu.core0, cpu.core1;

Scheduling_Protocol => HPF 

applies to cpu.core2;

cor

core1

CPU

core0 core2

app0

th0 th1

app1

th2
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Comments on SMP/AMP configurations 

• An SMP OS has multiple instances of the same 

configuration data in the set of processors  that it controls.

• Ex: in global scheduling, Scheduling_Protocol is located in all 
processors.

• Need for 

• Either a consistency rule on some property values

• or a mean to factorize “SMP system scope” properties.
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Outline

• Enumeration and identification of the processing units

• Processor characterization 

• Software deployment

• Thread scheduling 

• Processor groups 

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations 

• Further works
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Processor Group

• Need for grouping processors.
• Shared features between all the units of a “processor chip” for 

instance

• Definition of sets of processors dedicated to an application

• Using the processor component as a “processor 
container”?
• Do the container have its own execution unit? Its own state? If not, 

the solution leads to a contextual interpretation of the processor 
component.

• What is the hyper-period of the system?

• Risk of  virtual processor/“sub-processor” confusions.

• The current version of the standard explicitly describes this usage 
for the system component (semantic rule 3).

• Systems-On-Chip integrate a lot of devices. “Chip” frontiers do not 
help to structure the model.
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“processor group” component?

• A processor group represents an organizational 

component to logically group processors contained in 

systems.

• Property associations of processor groups are inheritable 

by the inner subcomponents. 

• Usage

• SMP operating systems: set of controlled execution units.

• Global scheduling: set of a computing resources for the scheduler

• Physical implementation modeling (cores within the same 
processor chip), physical threads in a same core

• Definition of global properties (scheduling protocol, clock frequency, 
assign time)
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Example: many-core Kalray MPPA-256

Cluster0

X 16

Data_NoC

Ctrl_NoC

part1 processors
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Outline

• Enumeration and identification of the processing units

• Processor characterization 

• Software deployment

• Thread scheduling 

• Processor groups 

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations 

• Further works
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Hardware Interference Channels
• In multi-processing systems, the hardware interference channels come from 

the shared resources (memory, bus ,network, device). 

• Memory hierarchy is the main interference channel in shared memory multi-
core.

• Modeling guideline of memory hierarchy
• The node’s children represent the entities that interact directly within that node 

(shared resources).

26

Pi

Pj Pk

Mx

My

Processing units

Shared resources

system S

Mx: memory mem.i1;

Pi : processor pu.i1;

SSr : system mpu.i1;

end S;

system SSr

Pj : processor pu.i2;

Pk : processor pu.i2;

My : memory mem.i2;

end SSr;

SSr
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Memory hierarchy modeling

• The memory entities used by a same set of processing units 
are declared in a system component, as sub-components. If 
the memory entity is unique, a single memory component may 
be substituted to the system component.

• A system component groups, as sub-components, a memory 
system, and the processors and upper level memory systems 
which share the access to this memory system. 

• For the sake of simplicity, levels of memory hierarchy 
connected to only one processor, i.e. processor's private 
caches, may be modeled as sub-components of this processor
component. 

• The memory system associated to the root node contains at 
least a memory component representing the main memory. 

• TODO: integrate processor groups in the guideline. Are the 
shared memories inside or outside the processor groups? 
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Outline
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corL1

TSP configurations

ARINC653 mono-processor 
« like » system

TSP on multi-processors

1-to-1 processor-partition binding

Private cache levels are also private 
for partitions 

L2 cache

core2

CPU

core1 core3

runtime1 runtime2

app0 app1 app2

runtime3
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AMP configuration

• An ARINC653 OS controls 
the core0

• Another mono-processor 
OS is used on core1 

• Interferences between 
core1 and core0 ? 

corL1

L2 cache

core1

CPU

core0 core2

runtime1 runtime2

app0 app1

app2
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TSP configurations (2)

SMP partition

• Problem: A virtual processor does 
not represent several execution 
flows.

• How to model a “SMP runtime”?

Partition (runtime) migration

• How to distinguish SMP 
runtime  from runtime 
migration?
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TSP configurations (3)

Intra-partition processor binding 

• How to bind a TSP 
application to a physical 
processor?

Multiple runtimes in one partition

• Need to change 

Module_Schedule property

? ?
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Outline
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Further works

• Hardware platform modeling

• Bus  (mutli-core) or Network-On-Chip (many-core systems)
characterization

• Hardware hypervisor (freescale TOPAZ)?

• NUMA access

• What are the useful parameters at the system design level?

• Work (or not) on the “processor group”  component ?
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