
INTEGRATED

MULTI-PROCESSING

SYSTEMS

Stéphane Rubini, Frank Singhoff

Lab-STICC, UBO, Brest, France

AADL standards meeting, April 27th, 2015

Monday, April 27, 2015 S. Rubini, AADL standard meeting 1

Integrated Multi-Processing Systems

• Multi-core and many-core
• Freescale T4240: 12 Power ISA dual-threaded cores

• Kalray MPPA-256: 256 VLIW processors

• MPSoC (Multi-Processing System On Chip): integrate
processing units and devices (communication resources)

• Current trend to increase the computing performances
• Effort to increase sequential processor speed is high

• Adapted to SWAP requirements (Size, Weight and Power) of
embedded systems.

• Multi-processing execution platforms seem to be well adapted
to IMA requirements.

• But, barriers for using them in critical systems are:
• Hardware interference channels: processing units are not fully

isolated even if no software dependency exits.

• Documentation: lack of precise specifications and descriptions of the
internal of the chip.

Monday, April 27, 2015 S. Rubini, AADL standard meeting 2

Multi-processing: Architecture

Classification
Based on the communication
paradigm

1. Shared-memory, Unified
Memory Access (UMA)

Tightly coupled, communication
through variables or shared memory
segments

multi-cores

2. Distributed
Loosely coupled, messages,
communications through explicit
input/output operations

3. Shared-memory, Non Unified
Memory Access (NUMA)

Communication through variables or
shared memory segments
 many-cores

PU0 PU1

PU0

Mem_bus

if

network

PU1

Mem_bus

if

Mem_bus

if

network

Mem_bus

if

PU0 PU1 PU2 PU3

(1)

(2)

(3)

Monday, April 27, 2015 S. Rubini, AADL standard meeting 3

Outline

• Enumeration and identification of the processing units

• Processor characterization

• Software deployment

• Thread scheduling

• Processor groups

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations

• Further works

Monday, April 27, 2015 S. Rubini, AADL standard meeting 4

Enumeration of the processing units

• From the AADL standard : “A processor is an abstraction

of hardware and software that is responsible for

scheduling and executing threads and virtual processors

that are bound to it.”

• Additional semantics in multi-processing context

• A processor is able to execute zero or one sequential flow of
control at a time, and to store the architectural state associated to
this execution. The execution flow of a processor is called later
"physical thread".

• 0 or 1 software thread or virtual processor is executed at a time by
a physical thread. The scheduler or runtime of a processor is
responsible to select the current software thread to be executed by
the physical thread.

Monday, April 27, 2015 S. Rubini, AADL standard meeting 5

Multi-processing system modeling

• A physical thread, is modeled as an AADL processor. The

hardware supporting the execution of the physical thread

may be implemented as:

• a sequential mono-threaded processor;

• or a sequential mono-threaded core, part of a multi-core or many-
core processor;

• or a physical thread in a multi-threaded core or processor.

• A system component hierarchy captures the hardware

structure of the execution platform. A system contains the

processors and/or the processing sub-systems, and the

set of hardware resources they share (bus, memory,

device).

Monday, April 27, 2015 S. Rubini, AADL standard meeting 6

Example: Oracle OpenSPARC T2 (1)
• 8 multi-threaded cores

• 8 physical threads per core
• 2 groups of 4 threads

• One instruction per group may
be released at each clock cycle,
following a round-robin policy.

S. Rubini, AADL standard meeting 7

Pipeline

0

Pipeline

1

Context (registers)

threads 0 to 3

Context (registers)

threads 4 to 7

Instruction buffer

threads 0 to 3

Instruction buffer

threads 4 to 7

Monday, April 27, 2015

Example:

Oracle

OpenSPARC

T2 (2)

• 64 physical threads

• 2-level system
hierarchy

• The L1 caches are
shared by the physical
thread of a core

Monday, April 27, 2015 S. Rubini, AADL standard meeting 8

Additional properties

• Physical thread implementation

physical_thread_implementation : enumeration (physical_thread,

processor_core,

mono_core_processor,

hardware_acellerator);

• Physical thread Identification ?

Physical_Thread_Id: aadlinteger;

Consistency rule: the identifier is unique for the set of the processor
sub-components contained in a system component. (?)

Monday, April 27, 2015 S. Rubini, AADL standard meeting 9

Outline

• Enumeration and identification of the processing units

• Processor characterization

• Software deployment

• Thread scheduling

• Processor groups

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations

• Further works

Monday, April 27, 2015 S. Rubini, AADL standard meeting 10

Processor Characterization

• In multiprocessor scheduling analysis, a usual

classification distinguishes 3 kinds of systems:

1. identical processors: the capability and the speed of the
processors are the same;

2. uniform processors: they have the same capabilities (i.e. same
ISA), but their execution speed are different;

3. heterogeneous processors: they are not able to execute the
same code, their ISA is different.

P1

P2

P1

P2

P1

P2

Different speeds Different speeds

(depend on the job)

C: 1

C: 1

C: 1

C: 2

C: x

C: y

(1) (2) (3)

Monday, April 27, 2015 S. Rubini, AADL standard meeting 11

Processor Characterization: capabilities

• Capabilities
• Binary code compatibility

 new AADL property

Instruction_Set_Architecture: aadlstring
applies to (processor, virtual processor, thread, subprogram);

• Consistency rule: if defined, the Instruction_Set_Architecture of threads or
subprograms must be the same than the processor or the virtual processor used to
execute them.

• Memory space isolation
 New AADL property

• Define whether a processor may have its own private addressing space

• Related to the capability of hardware to isolate thread’s memory access flows (virtual
memory context, address space numbers, ?)

Implement_Runtime_Protection: aadlboolean applies to processor;

Implement_Runtime_Protection: inherit aadlboolean

applies to virtual_processor;

• Consistency rule: two processor components cannot be bound to different processes,
if runtime_protection is required by at least one of these processes and
Implement_Runtime_Protection is false for at least one processor.

Monday, April 27, 2015 S. Rubini, AADL standard meeting 12

Processor characterization: speed
• Speed performances

• Processor level

Clock_Period,: Time;

Clock _Period_Range: Time_Range

Reference_Processor: inherit classifier (processor);

Scaling_Factor : inherit aadlreal;

Intel Core 2

2.8 GHz,

SPECnt 2006 benchmark

What’s the “Intel Core 2” scaling factor? 12, 17, 25?

New property proposal:

Peak_MIPS: addinteger;

(This is the worst mean to express the speed of a processor, but everyone
knows the limit of that metric!)

Program Dell

motherboard

Intel

motherboard

diff

gcc 12.1 17.5 30 %

mcf 25.5 25.4 0 %

Monday, April 27, 2015 S. Rubini, AADL standard meeting 13

DVFS

example

The property Scaling_Factor
quantifies the slow down
due to a processor
frequency change

Monday, April 27, 2015 S. Rubini, AADL standard meeting 14

Processor Characterization: speed (2)

• Runtime/processor level:

Thread_Swap_Execution_Time: Time_Range;

Process_Swap_Execution_Time: Time_Range;

Clock_Jitter: Time;

• Thread level : binding specific execution time (in binding)

Compute_Execution_Time: Time_Range

• But, all these metrics are established for an “isolated

processor”, not for the case of multi-processing systems.

• Research topics: Interference-Sensitive WCET Analysis
(ECRTS’14)

Monday, April 27, 2015 S. Rubini, AADL standard meeting 15

Outline

• Enumeration and identification of the processing units

• Processor characterization

• Software deployment

• Thread scheduling

• Processor groups

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations

• Further works

Monday, April 27, 2015 S. Rubini, AADL standard meeting 16

Software Deployment

• Asymmetrical versus Symmetrical

• Asymmetric Multiprocessing (AMP): each processor runs

a separate OS/runtime.

• The whole system looks like a distributed one,

• Application codes create the communication channels.

• Symmetric Multiprocessing (SMP): A unique operating

system controls several processors.

• The SMP OS/runtime knows the parallel nature of the system.

Monday, April 27, 2015 S. Rubini, AADL standard meeting 17

AMP/SMP: scheduling point of view

• SMP – partitioned scheduling
Actual_Processor_Binding => reference(cpu.core0)

applies to app0.th0;

Actual_Processor_Binding => reference(cpu.core1)
applies to app0.th1;

Actual_Processor_Binding => reference(cpu.core2)
applies to app0.th2;

Scheduling_Protocol => RM

applies to cpu.core0, cpu.core1, cpu.core2;

SMP – global scheduling
Actual_Processor_Binding =>

reference(cpu.core0),

reference(cpu.core1),

reference(cpu.core2)

applies to app0;

Scheduling_Protocol => RM

applies to cpu.core0, cpu.core1, cpu.core2;

cor

core1

CPU

core0 core2

app0

th0 th1 th2

cor

core1

CPU

core0 core2

app0

th0 th1 th2

Monday, April 27, 2015 S. Rubini, AADL standard meeting 18

AMP/SMP: scheduling point of view

AMP(+SMP – global scheduling)
Actual_Processor_Binding =>

reference(cpu.core0), reference(cpu.core1)

applies to app0;

Actual_Processor_Binding => reference(cpu.core2)

applies to app1;

Scheduling_Protocol => RM

applies to cpu.core0, cpu.core1;

Scheduling_Protocol => HPF

applies to cpu.core2;

cor

core1

CPU

core0 core2

app0

th0 th1

app1

th2

Monday, April 27, 2015 S. Rubini, AADL standard meeting 19

Comments on SMP/AMP configurations

• An SMP OS has multiple instances of the same

configuration data in the set of processors that it controls.

• Ex: in global scheduling, Scheduling_Protocol is located in all
processors.

• Need for

• Either a consistency rule on some property values

• or a mean to factorize “SMP system scope” properties.

Monday, April 27, 2015 S. Rubini, AADL standard meeting 20

Outline

• Enumeration and identification of the processing units

• Processor characterization

• Software deployment

• Thread scheduling

• Processor groups

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations

• Further works

Monday, April 27, 2015 S. Rubini, AADL standard meeting 21

Processor Group

• Need for grouping processors.
• Shared features between all the units of a “processor chip” for

instance

• Definition of sets of processors dedicated to an application

• Using the processor component as a “processor
container”?
• Do the container have its own execution unit? Its own state? If not,

the solution leads to a contextual interpretation of the processor
component.

• What is the hyper-period of the system?

• Risk of virtual processor/“sub-processor” confusions.

• The current version of the standard explicitly describes this usage
for the system component (semantic rule 3).

• Systems-On-Chip integrate a lot of devices. “Chip” frontiers do not
help to structure the model.

Monday, April 27, 2015 S. Rubini, AADL standard meeting 22

“processor group” component?

• A processor group represents an organizational

component to logically group processors contained in

systems.

• Property associations of processor groups are inheritable

by the inner subcomponents.

• Usage

• SMP operating systems: set of controlled execution units.

• Global scheduling: set of a computing resources for the scheduler

• Physical implementation modeling (cores within the same
processor chip), physical threads in a same core

• Definition of global properties (scheduling protocol, clock frequency,
assign time)

Monday, April 27, 2015 S. Rubini, AADL standard meeting 23

Example: many-core Kalray MPPA-256

Cluster0

X 16

Data_NoC

Ctrl_NoC

part1 processors

Monday, April 27, 2015 S. Rubini, AADL standard meeting 24

Outline

• Enumeration and identification of the processing units

• Processor characterization

• Software deployment

• Thread scheduling

• Processor groups

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations

• Further works

Monday, April 27, 2015 S. Rubini, AADL standard meeting 25

Hardware Interference Channels
• In multi-processing systems, the hardware interference channels come from

the shared resources (memory, bus ,network, device).

• Memory hierarchy is the main interference channel in shared memory multi-
core.

• Modeling guideline of memory hierarchy
• The node’s children represent the entities that interact directly within that node

(shared resources).

26

Pi

Pj Pk

Mx

My

Processing units

Shared resources

system S

Mx: memory mem.i1;

Pi : processor pu.i1;

SSr : system mpu.i1;

end S;

system SSr

Pj : processor pu.i2;

Pk : processor pu.i2;

My : memory mem.i2;

end SSr;

SSr

Monday, April 27, 2015 S. Rubini, AADL standard meeting

Memory hierarchy modeling

• The memory entities used by a same set of processing units
are declared in a system component, as sub-components. If
the memory entity is unique, a single memory component may
be substituted to the system component.

• A system component groups, as sub-components, a memory
system, and the processors and upper level memory systems
which share the access to this memory system.

• For the sake of simplicity, levels of memory hierarchy
connected to only one processor, i.e. processor's private
caches, may be modeled as sub-components of this processor
component.

• The memory system associated to the root node contains at
least a memory component representing the main memory.

• TODO: integrate processor groups in the guideline. Are the
shared memories inside or outside the processor groups?

Monday, April 27, 2015 S. Rubini, AADL standard meeting 27

Outline

• Enumeration and identification of the processing units

• Processor characterization

• Software deployment

• Thread scheduling

• Processor groups

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations

• Further works

Monday, April 27, 2015 S. Rubini, AADL standard meeting 28

corL1

TSP configurations

ARINC653 mono-processor
« like » system

TSP on multi-processors

1-to-1 processor-partition binding

Private cache levels are also private
for partitions

L2 cache

core2

CPU

core1 core3

runtime1 runtime2

app0 app1 app2

runtime3

Monday, April 27, 2015 S. Rubini, AADL standard meeting 29

AMP configuration

• An ARINC653 OS controls
the core0

• Another mono-processor
OS is used on core1

• Interferences between
core1 and core0 ?

corL1

L2 cache

core1

CPU

core0 core2

runtime1 runtime2

app0 app1

app2

Monday, April 27, 2015 S. Rubini, AADL standard meeting 30

TSP configurations (2)

SMP partition

• Problem: A virtual processor does
not represent several execution
flows.

• How to model a “SMP runtime”?

Partition (runtime) migration

• How to distinguish SMP
runtime from runtime
migration?

Monday, April 27, 2015 S. Rubini, AADL standard meeting 31

TSP configurations (3)

Intra-partition processor binding

• How to bind a TSP
application to a physical
processor?

Multiple runtimes in one partition

• Need to change

Module_Schedule property

? ?

Monday, April 27, 2015 S. Rubini, AADL standard meeting 32

Outline

• Enumeration and identification of the processing units

• Processor characterization

• Software deployment

• Thread scheduling

• Processor groups

• Hardware interference channels

• Memory hierarchy modeling

• TSP configurations

• Further works

Monday, April 27, 2015 S. Rubini, AADL standard meeting 33

Further works

• Hardware platform modeling

• Bus (mutli-core) or Network-On-Chip (many-core systems)
characterization

• Hardware hypervisor (freescale TOPAZ)?

• NUMA access

• What are the useful parameters at the system design level?

• Work (or not) on the “processor group” component ?

Monday, April 27, 2015 S. Rubini, AADL standard meeting 34

