# What is an AADL Subset ?

V. Gaudel<sup>†</sup>, P. Dissaux<sup>\*</sup>, A. Plantec<sup>†</sup>, F. Singhoff<sup>†</sup>, J. Hugues<sup>\*\*</sup>, J. Legrand<sup>\*</sup>

†University of Brest/UBO, Lab-Sticc, France \*Ellidiss Technologies, France \*\* Institut Supérieur de l'Aéronautique et de l'Espace/ISAE, France

February, 2013

æ

# Introduction (1/2)

### Rationale for the Subset annex (February 2012 Meeting)

- AADL is a rich Language.
- 2 Each verification/code generation may have specific requirements.
- Dools that are devoted for a given analysis usually support a subset of AADL.

#### Addressed problems

- Use of AADL may lead to some tool interoperability failures.
- Probably causes a limited use of some AADL tools.

### Objectives of the Subset annex (February 2012 Meeting)

- Increase tool interoperability.
- Increase confidence of users when they (try to) use tools.
- Ocrtification toolkits for subset: allow tool designers to check compliance with their products.
- Allow users to define constraints that are specific to their systems or overall development process.

Gaudel, Dissaux, Plantec, Singhoff, Hugues

What is an AADL Subset ?

# Introduction (2/2)

### Problems we try to answer (February 2012 Meeting)

- What is a subset?
- Output to express it?

### Proposition

- Investigate 3 examples of Subsets.
- Proposition of a superset from whom all subsets could be defined.
- Investigate the different kinds of constraints of those subsets.
- Proposition of an uniform way to describe constraints.

# Outline

### Subset Examples

- 2 Superset: an AADL Meta-Model
- Examples of cardinality constraints
- Mapping towards REAL and Prolog 4



-

# Subset Example 1: Marzhin V1

- Require: There is only one Processor component.
- Require: The property Actual\_Processor\_Binding must be specified.
- **Require**: For all processors, property Scheduling\_Protocol must have the following values: *POSIX\_Fixed\_Priority\_Scheduling\_Protocol*, *Rate\_Monotonic\_Protocol* or *Deadline\_Monotonic\_Protocol*.
- **Require**: The property Dispatch\_Protocol must have one of the following values: Periodic, Aperiodic, [...], Background.
- **Require**: Properties must be one of the following: *Dispatch\_Protocol*, Period, Deadline, Priority, *Compute\_Execution\_Time*

Gaudel, Dissaux, Plantec, Singhoff, Hugues

February, 2013 4 / 21

(日) (同) (三) (三)

# Subset Example 2: AADL-Light (BLESS Update of October 2012).

• Authorized: See AADL-Light Cheat Sheet.

- Forbid: There is no abstract component.
- Forbid: There is no subprogram call sequence.
- Forbid: There is no in-binding.
- Forbid: There is no contained property association.

• ...

# Subset Example 2: AADL-Light (BLESS Update of October 2012).

#### 4.1 AADL Specifications

AADL.specification ::= ( package\_spec | property\_set )

#### 4.2 Packages

package\_spec ::= package\_defining\_package\_name [ public package\_declarations ] [ private package\_declarations ] end\_defining\_package\_name ;

package\_declarations :== { name\_visibility\_declaration }\* { AADL\_declaration }\*

package\_name ::= package\_identifier

AADL.declaration ::= classifier\_declaration | annex\_library

dassifier\_declaration ::= component\_classifier\_declaration | feature\_group\_classifier\_declaration

component\_classifier\_declaration ::= component\_type | component\_implementation

feature\_group\_classifier\_declaration ::= feature\_group\_type

name\_visibility\_declaration ::= import\_declaration | alias\_declaration

import\_declaration ::= with ( package\_name | property\_set\_identifier ) { , ( package\_name | property\_set\_identifier ) )\* ;

alias\_declaration ::= defining\_identifier renames package package\_name ;

#### 4.3 Component Types

component\_type := component\_category defining\_component\_type\_identifier [features ( { feature }+ | none\_statement ) ]

#### Gaudel, Dissaux, Plantec, Singhoff, Hugues

#### AADL-Light Cheat Sheet (October 12, 2011)

software\_category ::= data | subprogram | thread | thread group | process

execution\_platform\_category ::= memory | processor | bus | device

composite\_category ::= system

unique\_component\_type\_reference ::=
[ package\_name :: ] component\_type\_identifier

#### 4.4 Component Implementations

component\_implementation :== component\_category implementation defining\_component\_implementation\_nume [subcomponents (subcomponent)+] [connections { connection }+] [properties (property\_subcolition )+] { annex\_subclause }\* end defining\_component\_implementation\_nume ;

component\_implementation\_name :: = component\_type\_identifier . component\_implementation\_identifier

unique\_component\_implementation\_reference := [ package\_name :: ] component\_implementation\_name

#### 4.5 Subcomponents

subcomponent :=defining\_subcomponent\_identifier : component\_category [ unique\_component\_classifier\_reference ] [ array\_dimensions [ array\_dement\_implement\_ation\_list ] ] [ ( { subcomponent\_property\_association } ^ h ] :

unique\_component\_classifier\_reference ::= { unique\_component\_type\_reference | unique\_component\_jimplementation\_reference }

array\_dimensions ::= { array\_dimension }+

array\_dimension ::= [ [ array\_dimension\_size ] ]

What is an AADL Subset ?

annex\_library :== annex\_annex\_identifier (\*\* annex\_specific\_reusable\_constructs \*\*);

#### 8 Features

feature :== ( port\_spec | bus\_access\_spec | data\_access\_spec | feature\_group.spec | parameter\_spec ) [ ( { ( feature\_property\_association }+ ) ] ;

#### 8.2 Feature Groups and Feature Group Types

feature.group.type := feature group ddming.jdentifier [features ( feature )+] [inverse of unique\_dstare.group.jype\_mference ] [properties ( feature.group.property\_association )+] ( annex.subclause )\* end ddming.jdentifier ;

feature\_group\_spec ::= defining\_feature\_group\_identifier : [ in | out ] feature group [ [ inverse of ] unique\_feature\_group\_type\_reference ]

unique.feature.group.type\_reference ::=
[ package\_name :: ] feature\_group.type\_identifier

#### 8.3 Ports

port\_spec ::= defin in g.port\_identifier : ( in | out | in out ) port\_type

port\_type ::== data\_port [data\_unique\_component\_classifier\_reference ] | event data\_port [data\_unique\_component\_classifier\_reference ] | event port

February, 2013

5/21

#### 8.5 Subprogram Parameters

parameter\_spec ::= defining\_parameter\_identifier : { in | out | in out ) parameter [ data\_unique\_component\_classifier\_reference ]

8.6 Data Component Access

data person nane ---

# Subset Example 2: AADL-Light (BLESS Update of October 2012).

• Authorized: See AADL-Light Cheat Sheet.

- Forbid: There is no abstract component.
- Forbid: There is no subprogram call sequence.
- Forbid: There is no in-binding.
- Forbid: There is no contained property association.

• ...

# Subset Example 3: Cheddar Subsets

- **Require**: For all threads: Dispatch\_Protocol must be set to Periodic.
- Require: All connections must be Data Port connections.
- Forbid: There is no data component.
- Forbid: All features must be Data Port.
- Forbid: For all Data port, property Timing must have the following values only: *sampled*, *immediate* or *delayed*.
- **Require**: If property *Concurrency\_Control\_Protocol* has the values *Priority\_Ceiling\_Protocol* or *Immediate\_Priority\_Ceiling\_Protocol*, Data Ceiling priority must be higher or equal to the maximum value of property Priority of all threads connected to the data component.

(日) (周) (三) (三)

# Different ways to define subsets:

### Subset: AADL-Light

- AADL Declarative Model
- Specifies Authorized/Forbidden parts
- Subsets: Cheddar, Marhzin V1
  - AADL instance model
  - Specifies Restrictions parts.

But of course, they have a common point: AADL Meta-model.

# Outline





- Examples of cardinality constraints
- Mapping towards REAL and Prolog



< ロ > < 同 > < 回 > < 回 > < 回 > < 回

# Rationale for the SuperSet Meta-Model

#### Superset: a meta-model common to all subsets

- Based on Appendix C for element identifiers
- And literal descriptions of entities' attributes
- Use of multiple inheritance
- What is in the superset?
  - Model of the declarative part of AADL.
  - Instance model can be deduced from this model.
  - Property sets and annexes are considered as parts of the superset.

# Meta Model Specification with Platypus

### Use of Platypus for prototyping

- Meta-environment based on ISO STEP technology.
- Enables to design, to verify and to validate meta-models written with EXPRESS.
- Enables to implement code generators for EXPRESS meta-model.
- Meta-model elaboration within Platypus
  - EXPRESS is readable
  - The model is checked and evaluated during design
  - Enables multiple inheritance
  - Platypus is already used for code generation with Cheddar
  - We can specify metrics
  - Definition of rules to implement consistency rules
  - Possibility of using this kind of rule for subset definition

# What could be a subset?

#### New Subset Model Proposal

- Superset is an EXPRESS Meta-model
- ② A subset constraint is modeled by an EXPRESS RULES on the superset
- 3 Then, each subset is declared as a set of EXPRESS RULES on the superset
- What we assume:
  - A constraint is a cardinality verification
  - Or a composition of cardinality verifications

# Graphical Excerpt of the superset meta-model



Gaudel, Dissaux, Plantec, Singhoff, Hugues

What is an AADL Subset ?

February, 2013 11 / 21

# Outline







Mapping towards REAL and Prolog

#### Conclusion

3

(日) (同) (三) (三)

### Summary of encountered constraints:

- There is no [model element]
- There must be [model element]
- The value/content of [model element] must be [...]
- [Some property] must be specified
- For all [model element], [constraint upon dependent model element]

#### There must be [model element]

• Forbid: There is no data component.

RULE No\_Data\_Instance FOR ( Data\_Instance ); WHEE R-TT-62 : SIZEOF ( Data\_Instance ) =0; END\_RULE;

Gaudel, Dissaux, Plantec, Singhoff, Hugues

#### There is no [model element]

• Require: There is only one Processor component.

```
RULE Only_One_Processor FOR ( Processor_Instance );
WHEME
RMI: SIZEOF ( Processor_Instance ) = 1;
END_RULE;
```

Gaudel, Dissaux, Plantec, Singhoff, Hugues

### For all [model element], [constraint upon dependent model element]

• **Require**: For all threads, the property dispatch protocol must be periodic.

Gaudel, Dissaux, Plantec, Singhoff, Hugues

February, 2013 15 / 21

For all [model element], the value/content of [model element] must be [...]

• **Require**: For all processors, property *Scheduling\_Protocol* must have the following values: *POSIX\_Fixed\_Priority\_Scheduling\_Protocol*, *Rate\_Monotonic\_Protocol* or *Deadline\_Monotonic\_Protocol*.

#### And so on ...

- **Require**: If property *Concurrency\_Control\_Protocol* has the value *Priority\_Ceiling\_Protocol*, data Ceiling priority must be higher or equal to the maximum value of property Priority of all threads connected to the data component
- **Require**: For each Data with *Concurrency\_Control\_Protocol* = *Priority\_Ceiling\_Protocol*, their Ceiling\_Priority must be higher or equal to the property Priority of all threads connected to the data.

And so on ...

• **Require**: For each Data with *Concurrency\_Control\_Protocol* = *Priority\_Ceiling\_Protocol*, their *Ceiling\_Priority* must be higher or equal to the property Priority of all threads connected to the data.

Gaudel, Dissaux, Plantec, Singhoff, Hugues

(日) (同) (三) (三)

# Outline

#### Subset Examples

- Superset: an AADL Meta-Model
- Examples of cardinality constraints
- 4 Mapping towards REAL and Prolog

#### Conclusion

э

- 4 同 6 4 日 6 4 日 6

# Mapping towards REAL and Prolog

### There is no data component

EXPRESS:

```
RULE No_Data_Instance FOR ( Data_Instance );
WHEFE
R-TT-C2 : SIZEOF ( Data_Instance ) = 0;
END.RULE;
```

### Prolog:

```
isSubcomponent(\_,\_,\_,\_,\_'DATA,\_,\_,\_) \rightarrow write('error R-TT-C2'); true.
```

### REAL:

```
theorem Check_R_TT_C2
foreach s in System_Set do
    check (Cardinal (Data_Set) = 0);
end Check_R5_2;
```

- Work in progress.
- Can be produced automatically (e.g. Platypus).

#### Conclusion

# Conclusion

- Problem:
  - What is a subset and how to express it?
  - Is there an uniform way to express the various examples of subsets/constraints?
- Approach:
  - Superset: an AADL meta-model to model the examples of subsets.
  - Can we express constraints of each subset as a cardinality constraint on superset?
- Results:
  - For the considered subset examples, we are able to express all their constraints as cardinality constraints on superset.
- Perspectives/roadmap:
  - Finalize translation of constraints in REAL and Prolog. Relationships with the constraint annex  $\Rightarrow$  next meeting?
  - Express other subsets with cardinality constraints? Oleg?
  - Cardinality may simplify ordering of subset: can we order proposed subsets?

# Acknowledgement

We would like to thank Ellidiss Technologies and Region Bretagne for their support to this project.