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Abstract

This paper deals with low power dynamic reconfigurations of real-time embedded
systems. A reconfiguration scenario means the addition, removal or update of tasks in
order to save the whole system at the occurrence of hardware/software faults, or also
to improve its performance at run-time. When such a scenario is applied, the energy
consumption can be increased or some real-time constraints can be violated. An
agent-based architecture is defined where an intelligent software agent is proposed to
check each dynamic reconfiguration scenario and to suggest for users useful technical
solutions that minimize the energy consumption. It proposes first of all to modify
periods, or to reduce execution times of tasks or finally to remove some of them. Users
should choose one of these solutions in order to guarantee a low power consumption
satisfying limitations in capacities of used batteries. We developed and tested a tool
supporting all these services to be evaluated in the research work.

Keywords: Embedded Real-Time System, Reconfiguration, Low Power,
Agent-based Architecture.

1 Introduction

Nowadays, the minimization of energy consumption is an important criterion for the devel-
opment of real-time embedded systems due to limitations in the capacity of their batteries,
in addition to their tasks which become more and more complex than ever. These systems
should provide optimal real-time services with low power consumptions. Several interest-
ing studies have been proposed in recent years for their real-time and low power scheduling
[1, 2, 3, 4, 5]. Although these rich and useful studies provide interesting results, they do
not address dynamic adaptations with low power consumptions of a system such that
real-time solutions are automatically calculated for users when the system’s behavior is
dynamically changed. The new generations of embedded systems are addressing new crite-
ria such as flexibility and agility. To reduce their cost, they should be changed and adapted
to their environment without disturbances. Several interesting academic and industrial
efforts have been made in recent years to develop reconfigurable embedded systems [6].

We distinguish in the existing research two reconfiguration policies: static and dynamic
reconfigurations. Static reconfigurations are applied off-line to apply changes before a
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system starts [7], whereas dynamic reconfigurations are dynamically applied at run-time.
Two cases exist in the latter: manual reconfigurations applied by users [8] and automatic
reconfigurations applied by Intelligent Agents [9, 10]. This research focuses on the dynamic
reconfigurations of real-time embedded systems that should meet deadlines defined in user
requirements [11].

These systems using CMOS-based processors [12], are implemented by sets of tasks
that are assumed independent, periodic and synchronous (i.e., they are simultaneously
activated at t = 0 time units). Each set is executed when a particular reconfiguration
scenario is applied at run-time. According to the work in [13], each task is characterized
in this study by a functional priority defining its static priority in the system, a period
equal to the deadline, and a Worst Case Execution Time (WCET). We define an automatic
reconfiguration as any operation allowing additions-removals or also updates of tasks at
run-time. Therefore the system’s implementation is dynamically changed and should
meet all considered deadlines of the current combination of tasks. In addition, the energy
consumption should not be increased but should be stable or decreased after each possible
reconfiguration in order to satisfy the battery’s capacity.

To reach this goal, an agent-based architecture is defined where an intelligent software
agent is proposed to check each dynamic (manual or automatic) reconfiguration scenario
to be applied at run-time, and to help users for feasible and low power reconfigurations.
If some tasks of the new execution model violate corresponding deadlines, or if the power
consumption is increased, the agent proposes new solutions for users in order to re-obtain
the system’s feasibility with low power consumption.

The agent proposes first of all to modify periods and deadlines of tasks in order to
decrease the processor speed. It suggests as a second solution to modify execution times
of tasks in order to decrease the processor utilization. Finally it proposes for users to
remove some of them according to their static priorities or also according to their processor
utilizations. The minimization of the energy consumption is computed for each solution.
Users should decide in this case which one to apply such that all tasks (new and old) meet
deadlines with a low power consumption.

This original work is useful in industry to allow feasible real-time reconfigurable tasks
with low power consumptions. Due to the work in [2], it is assumed that the processor
utilization in this present paper is proportional to the processor speed. Therefore, it will
be useful to keep the energy consumption stable or to minimize it. In order to guarantee
feasible low power reconfigurations, users should decide which solution to apply into the
real-time embedded system where all tasks (new and old) meet all deadlines and allow
the minimization of the energy consumption. A tool was developed at Xidian University,
Xi’an, China, to support all the services offered by the agent. The minimization of energy
consumption is calculated for each solution to be offered by the agent. These services are
useful and precious for users at run-time when reconfiguration scenarios violate deadlines
of tasks or increase the energy consumption without any consideration of capacities of
batteries.

In the next section, we analyze previous works on low power and real-time scheduling
as well as reconfigurations of embedded architectures, before we formalize reconfigurable
real-time systems in Section 3 and we evaluate the power consumption of such systems in
Section 4. We define in Section 5 the agent-based architecture for low power reconfigu-
rations of real-time embedded systems. This architecture is implemented, simulated and
analyzed in Section 6. Finally, we conclude and present our future works in Section 7.

2 Related Work

We present related works dealing with reconfigurations, real-time and low-power schedul-
ing of embedded systems.
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2.1 Reconfigurations of Embedded Systems

Nowadays, a fair amount of research has been done to develop reconfigurable embedded
systems. The work in [7] proposes reusable tasks to implement a broad range of systems
where each task is statically reconfigured without any re-programming. This is accom-
plished by updating the supporting data structure, i.e., a state transition table, whereas
the executable code remains unchanged and may be stored in permanent memory. The
state transition table consists of multiple-output binary decision diagrams that represent
the next-state mappings of various states and the associated control actions.

Rooker et al. propose in [8] a complete methodology based on the human intervention
to dynamically reconfigure tasks. They present in addition an interesting experimentation
showing the dynamic change of tasks by users without disturbing the whole system. The
authors in [14] use Real-time-UML as a meta-model between design models of tasks and
their implementation models to support dynamic user-based reconfigurations of control
systems. The research in [15] proposes an agent-based reconfiguration approach to save
the whole system when faults occur at run-time. Developed in [10] is an ontology-based
agent to perform system’s reconfigurations that adapt changes in requirements and also
in environment. They are interested in studying reconfigurations of control systems when
hardware faults occur at run-time.

As far as the authors know, no work is reported to address the problem of dynamic
reconfigurations under real-time and low power constraints. We are interested in this
original study in feasible low power dynamic reconfigurations of real-time systems where
additions and removals of real-time tasks are applied at run-time. In this case, we aim to
minimize the energy consumption after any reconfiguration scenario.

2.2 Real-Time Scheduling

Real-time scheduling has been extensively studied in the last three decades [11]. Several
Feasibility Conditions (FC) for the dimensioning of a real-time system are defined to enable
a designer to grant that timeliness constraints associated with an application are always
met for all possible configurations. Different classes of scheduling algorithms are followed:
i) Clock-driven: primarily used for hard real-time systems where all properties of all jobs
are known at design time. ii) Weighted round-robin: primarily used for scheduling a real-
time traffic system in high-speed, and iii) Priority-driven: primarily used for more dynamic
real-time systems with a mixture of time-based and event-based activities. Among all
priority-driven policies, EDF or Least Time to Go (LTG) is a dynamic scheduling algorithm
used in real-time operating systems. It places processes in a priority queue. Whenever
a scheduling event occurs (a task is finished or a new task is released) the queue will be
searched for the process closest to its deadline. This process is the next to be scheduled
for execution. EDF is an optimal scheduling algorithm on preemptive uniprocessor in
the following sense: if a collection of independent periodic jobs characterized by arrival
times equal to zero and by deadlines equal to corresponding periods, can be scheduled by
a particular algorithm such that all deadlines are satisfied, then EDF is able to schedule
this collection of jobs.

We present the following well-known concepts in the theory of real-time scheduling
[13]:

• A periodic task τi (Ci;Ti;Di) is an infinite collection of jobs that have their request
times constrained by a regular inter-arrival time Ti, a WCET Ci and a relative
deadline Di,

• A real-time scheduling problem is said feasible if there is at least one scheduling
policy able to meet the deadlines of all the considered tasks,
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• A set of tasks is schedulable with a given scheduling policy if and only if no jobs in
this set miss their deadlines,

• A task is valid with a given scheduling policy if and only if no jobs in this task miss
their deadlines,

• An idle time t of a processor is defined as a time where no tasks released before time
t are pending at time t. An interval of successive idle times is classically called an
idle period,

• A busy period is defined as a time interval [a, b) such that there is no idle time in
[a, b) (the processor is fully busy) and such that both a and b are idle times,

• In the case of independent, periodic and synchronous tasks (e.g., simultaneously
activated at t = 0), the verification of the system’s schedulability is possible to be
done in a hyper period [0,LCM] where LCM is the Least Common Multiple, and

• U =
n∑

i=1

Ci

Ti

is the processor utilization factor of a system composed of n tasks. In

the case of synchronous, independent and periodic tasks such that their deadlines
are equal to their periods, U ≤ 1 is a necessary and sufficient condition for the
EDF-based scheduling of real time tasks.

We present an example of preemptive periodic tasks with EDF simulated by Cheddar
[17] in Fig. 1, which contains 5 synchronous periodic tasks. All of them release at time
equal to zero time unit. The first task, taska, with period/deadline equal to 4 time units
and WCET Ca equal to 1 time unit. The second one, taskb, with period/deadline equal to 5
time units and Cb equal to 1 time units. The third one, taskc, with period/deadline equal to
8 time units and Cc equal to 1 time units. The forth one, taskd, with period/deadline equal
to 10 time units and Cd equal to 2 time units. The fifth one, taske, with period/deadline
equal to 20 time units and Cd equal to 2 time units. In this figure, we can see that taskd

and taskd are preemptive, the processor utilization of the tasks set is 0.875, and all tasks
respect their deadlines. The LCM is 40 time units.

In our current work, it is assumed that dynamic priority of real-time tasks can be re-
configured at run-time. In this case, the energy consumption should be controlled after any
reconfiguration scenario adding-removing-updating tasks consider about the limitations of
capacity in the used batteries.

2.3 Low Power Scheduling

Several interesting research works have been proposed for low power and real-time schedul-
ing of real-time embedded systems. Under the well-known FPP Policy, Shin and Choi [1]
present a simple run-time strategy that reduces the energy consumption. Their work in
[2] proposes an optimal algorithm with exponential complexity. Yun and Kim [3] prove
that the problem of computing the voltage schedule for real-time tasks under FPP is NP-
hard and propose an approximate solution to resolve the problem. If the well-known EDF
policy is applied, Yao et al. in [4] propose an off-line algorithm to find a voltage schedule
for independent tasks.

Over the past several years, many methods and techniques for low power consumption
of real-time embedded systems have been reported [18, 19, 20]. Power-reduction techniques
can be in general classified into two categories [21]: static and dynamic.

Dynamic techniques are generally easy to implement and applied at run-time. Exam-
ples of such techniques include those in [1, 22, 23, 24, 25, 26, 27]. We note also that several
static power management policies have been investigated [4, 30, 28, 29]. Previous investi-
gations on the voltage scheduling problem have focused mainly on real-time jobs running
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Figure 1: An example of periodic tasks

under dynamic-priority scheduling algorithms such as the EDF algorithm [33, 28, 31, 32].
Although all these related studies are interesting, our current research addresses low power
reconfigurations of real-time embedded systems when dynamic additions-removals-updates
of tasks can be applied at run-time to save or improve the performance of the system. An
original agent-based architecture is defined where an intelligent agent supervises the sys-
tem’s evolution and provides useful solutions for users after any reconfiguration scenario
when deadlines are violated or also when the energy consumption is increased and does
not consider the limitation of batteries. The agent proposes modify periods and WCETs
or possibly to remove tasks. An original tool is developed that supports all these services
which are precious for users at run-time.

3 Formalization of Reconfigurable Real-Time Systems

Recent developments show that dynamic reconfigurations of embedded real-time systems
are useful technical solutions to save the whole software/hardware architecture when faults
occur at run-time, or also to improve the system’s performance under well-defined con-
ditions. A reconfiguration scenario is assumed to be an operation allowing the addition-
removal-update of tasks from/to the system. Nevertheless, each scenario should be applied
while reducing the energy consumption which is a very important criterion. Indeed, when
a scenario is dynamically applied such that new tasks are added to the system, the energy
consumption should be stable or decreased. It is assumed in this research work that a
real-time embedded system Sys composed of a set of tasks that should meet real-time
constraints defined in user requirements: Sys = {τ1, τ2, . . . , τn}. When a reconfiguration
scenario is applied, a subset of tasks can be added/removed to/from the system.

Each task τi of Sys describes: i) a function Fi defining its function, ii) the static
priority Si among all the system’s (new and old) tasks, iii) the release time Ri defining the
execution start time of the task, iv) the WCET Ci, v) the period Ti, and vi) the deadline
Di. It is assumed in addition that a) all the system’s tasks are periodic and synchronous,
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i.e., all release times are equal to zero time units, and b) the period of each task is equal
to the corresponding deadline.

We also assume in the following that the system Sys is dynamically reconfigured at
run-time such that its new implementation is Sys = {τ1, τ2, . . . , τn, τn+1, . . . , τm}. The
subset {τn+1, . . . , τm} is added to the initial implementation {τ1, τ2, . . . , τn}. The processor
utilization before and after the reconfiguration scenario is as follows:

Ubef =

n∑

i=1

Ci

Ti

(1)

Uaft =

m∑

i=1

Ci

Ti

(2)

4 Power Consumption of Reconfigurable Embedded Real-

Time Systems

This section evaluates the new energy consumption after a reconfiguration scenario. In
the literature, the power consumption (P ) of a processor following the CMOS technology
is determined by two components: static and dynamic power consumptions [12]. The
static power consumption (PS) is the product of the device leakage current and the supply
voltage. It is assumed to be negligible in this research. The dynamic power consumption
(PD) is composed of two parts: Transient power consumption (PT ) and capacitive-load
power consumption (PL). P , PT , and PL can be expressed as follows:

P = PD = PT + PL (3)

PT = Cpd × V 2
CC × fI × NSW (4)

PL =
∑

(CLn × fOn) × V 2
CC (5)

where

• Cpd is the power consumption capacitance (F),

• fI is the input frequency (Hz),

• fOn represents the different output frequencies at each output, numbered 1 through
n (Hz),

• NSW is the total number of outputs switching,

• VCC is the supply voltage (V), and

• CLn represents the different load capacitances at each output, numbered 1 through
n.

Accordingly, we have

P = [(Cpd × fI × NSW ) +
∑

(CLn × fOn)] × V 2
CC (6)

Eq. (6) indicates that the energy consumption (P ) of a CMOS-based processor is
quadratically dependent on supply voltage VCC and proportional to (Cpd × fI × NSW ) +∑

(CLn×fOn). In this case, reducing VCC is an effective technique to minimize the energy
consumption. In this study, we are interested in the influence of VCC and the influence of
(Cpd × fI × NSW ) +

∑
(CLn × fOn) is ignored. We hence have
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P ∝ V 2
CC (7)

By [16], the voltage VCC can be modified appropriately according to the processor
speed Sp. Similar to [2], it is assumed that Sp is proportional to the VCC , i.e.

VCC ∝ Sp (8)

The work in [1] assumes that the change of the processor speed Sp due to the utilization
(to adopt processor computational requirements) can save more energy, keep the processor
work at the maximum speed (i.e., under the maximum supply voltage), and then bring
it into a power-down mode. If the processor utilization is stable or decreased after any
dynamic reconfiguration scenario, then the power will be stable or decreased. The full
processor speed is assumed equal to 1. Suppose that Sp corresponds to processor utilization
U . We have

VCC ∝ Sp = U (9)

Substituting Eq. (9) into Eq. (7) leads to

P = kU2 (10)

Eq. (10) shows that energy consumption is quadratically dependent on processor
utilization U . This is interesting and will be used to generate low power reconfigurations
of embedded real-time systems.

Proposition 1 Let Uaft and Ubef denote the processor utilization after and before a re-
configuration scenario is applied, respectively. If Uaft ≤ Ubef , then the processor speed
after the reconfiguration scenario can be adjusted to be no greater than that before. In this
case the power will be stable or minimized.

Proof: By Eq. (10), the energy consumption is quadratically dependent on U . If
Uaft ≤ Ubef , substituting it into Eq. (10) leads to Paft = kU2

aft ≤ kU2
bef = Pbef . Then

the power will be stable or minimized.

5 Agent-based Architecture for Low Power Reconfigura-

tions of Embedded Systems

An agent-based architecture is defined for dynamic low power reconfigurations of an em-
bedded real-time system. When automatic or manual reconfigurations are applied at run-
time to add, remove or update tasks, the agent should check if the power consumption
is increased. In this case, it should propose useful functional (remove tasks) or temporal
(change their parameters) solutions for the minimization of energy consumption. Three
technical solutions are proposed by the agent: i) modification of periods (e.g., deadlines)
of tasks, ii) modification of their WCETs, and iii) removal of some tasks. In this case, the
users should decide a new low power configuration of the system by these solutions.

5.1 Modification of periods and deadlines

When a reconfiguration scenario is dynamically applied at run-time to add new tasks, the
processor utilization of the system will be certainly increased. If the new utilization Uaft

is greater than 1, then the system is not feasible. The agent proposes as a first technical
solution to modify the periods and deadlines of tasks in order to decrease the processor
utilization Uaft to be lower not only than 1 but also Ubef . For the reconfigured system,
we have
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Uaft =
m∑

i=1

Ci

T ′

i

(11)

where T ′

1, T ′

2, . . ., and T ′

m are the modified periods for m tasks. It is assumed that
T ′

1 = T ′

2 = . . . = T ′

m = T ′.
In order to minimize the energy consumption, based on Eq. (10), the processor uti-

lization should be minimized.

Uaft =

m∑

i=1

Ci

T ′
≤ Ubef (12)

where

T ′ ≥

m∑
i=1

Ci

Ubef

(13)

Since each period and deadline should be an integer, Eq. (13) becomes Eq. (14):

T ′ = ⌈

m∑
i=1

Ci

Ubef

⌉ (14)

In Eq. (14), T ′ is the modified period of each task. The processor utilization after
reconfiguration of the processor is as follows:

Uaft =

m∑

i=1

Ci

T ′
(15)

From Eq. (10), the new energy consumption is

Paft = kU2
aft (16)

Similarly, the initial energy consumption can be expressed as:

Pbef = kU2
bef (17)

5.2 Modification of WCETs

For the low power reconfiguration of embedded systems, the agent proposes as a sec-
ond technical solution to reduce the WCETs of tasks in order to decrease the processor
utilization Uaft. Eq. (12) leads to the truth of the following result:

Uaft =

m∑

i=1

C ′

i

Ti

(18)

where C ′

1, C ′

2, . . ., and C ′

m are the new WCETs of tasks.
Suppose that C ′

1 = C ′

2 = · · · = C ′

m = C ′. In order to make Uaft ≤ Ubef , we can get:

Uaft =
m∑

i=1

C ′

Ti

≤ Ubef (19)

where

C ′ ≤
Ubef
m∑

i=1

1

Ti

(20)
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Since each WCET should be an integer, Eq. (20) turns into Eq. (21):

C ′ = ⌊
Ubef

m∑
i=1

1

Ti

⌋ (21)

In Eq. (21), C ′ is the modified WCET of each task. The actual utilization of the
processor is as follows:

Uaft = C ′ ×

m∑

i=1

1

Ti

(22)

Eq. (16) can be used to calculate the total energy consumption.

5.3 Removal of Tasks

The third solution proposed by the agent allows the removal of tasks in order to minimize
the energy consumption after any reconfiguration scenario of an embedded system. Two
policies are proposed: the agent suggests removing tasks by their functional priorities or
according to their processor utilization. This solution is useful in many scenarios.

5.3.1 First Policy: Functional Priority Criterion.

By defining for each task τi a static priority Si, the agent suggests removing tasks with
lower static priorities because their removal can be useful for a low power reconfiguration
of the system. Let List be the list of tasks of Sys in descending order of static priorities.
The most unimportant tasks should be removed to keep the new utilization of the system
Uaft lower than Ubef . Specifically, we have

Uaft =

k∑

Fi=1

Ci

Ti

≤ Ubef (23)

where m − k is the number of removed tasks with k ≤ m.
The agent should look for the highest value of Uaft such that Uaft ≤ Ubef . The total

energy consumption can be calculated by Eq. (16).

5.3.2 Second Policy: Processor Utilization Criterion

It is similar to the first. Their difference is that the second policy does not arrange tasks
due to their static priorities, but due to their processor utilization. In this case, the
List is the list of tasks of Sys in ascending order of processor utilization of each task τi.
If the system is not feasible or consumes more energy, the tasks with highest processor
utilizations should be removed to keep as many tasks as possible remaining in the system.

6 Experimental Studies

This section presents an experimental study applying low power reconfigurations of em-
bedded real-time systems. We present first of all the implementation of the agent-based
architecture, before showing the simulations and analysis that are made to evaluate the
benefits of our contributions.

10



6.1 Implementation of the Reconfiguration Agent

It is presented that the agent’s implementation is to check dynamic (automatic or manual)
reconfiguration scenarios, and suggest useful solutions for the minimization of the energy
consumption. Each solution is generated as an input file from the agent to the well-known
model simulator Cheddar [17] to check its feasibility. This implementation is tested in our
research laboratory at Xidian University by assuming several cases of systems.

Eqs. (1), (10), (14), and (21) can be used to calculate Ubef , Pbef , T ′, and C ′, respec-
tively. According to Eqs. (11) and (19), it can be calculated that the utilization U1

aft after

the modification of periods (and deadlines), and the utilization U2
aft after the modifica-

tion of WCETs, respectively. U3
aft and U4

aft correspond to the utilization after tasks are

removed by the two fixed policies, as shown in Eq. (23). We use P 1
aft, P 2

aft, P 3
aft, and

P 4
aft to indicate the power consumption after periods (and deadlines) modification, after

WCET modification, after tasks removal by static priorities, and after tasks removal by
utilizations, respectively. All of them can be calculated by Eq. (10).

The power reduction PR and power decrease PDi of each technical solution in Algo-
rithm 1 are as follow:

PRbef = 1 − Pbef (24)

PRi
aft = 1 − (P i

aft)(for : i = 1, 2, 3, 4) (25)

PDi = PRi
aft − PRbef (for : i = 1, 2, 3, 4) (26)

In the first two technical solutions, the algorithm’s complexity is O(n), and in the third
one, it is O(n2).

6.2 Simulations

This section presents simulation results by applying low-power reconfigurations of an em-
bedded real-time system that is initially composed of 50 tasks and dynamically reconfig-
ured at run-time to add 30 new ones. We assume the following temporal characteristics
of the system under consideration:

• Initial System’s Tasks: All the following initial tasks of the system are in the
file “system.txt” (Fi defines the function. Ri, Ci, Ti, and Di define the temporal
parameters of each task, as shown in Fig. 2).

• Added Tasks: All the added new tasks are described in the file “add.txt” (Fi

defines the function. Ri, Ci, Ti, and Di define the temporal parameters of each task,
as shown in Fig. 3).

• Static priorities: All the functional priorities of the system’s tasks are defined
in the file “priority.txt” (Fi and Si define function and static priority of each task,
respectively, as shown in Fig. 4).

Several simulations are performed to apply the proposed technical solutions for low
power reconfigurations of the system. The initial processor utilization Ubef is 0.91224. If
only the task AA1 is added in the system, the processor utilization Uaft becomes 0.926874
which is less than 1. The system is still feasible where all deadlines are satisfied. Never-
theless, the energy consumption is increased (Ubef ≤ Uaft) which is not usually accepted.
By applying the first solution where periods and deadlines of tasks are modified to be 355,
the processor utilization becomes Uaft = 0.909859. By Eqs. (24) and (25), the power
reduction before and after the automatic reconfiguration is as follows:
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Algorithm 1 Low-Power Reconfigurations

input “system.txt” file;
// the system initial configuration
input “add.txt” file;
// addition of new tasks
input “priority.txt” file;
// functional priorities of tasks
compute (Ubef );
calculate period T ′;
// solution1 to compute the new period of tasks
for (i = 1, i = size(sys) + size(add), i + +)
// to compute the new utilization when periods are modified

Ui = Ci/T
′;∑

U1
aft+ = Ui;

endfor;
Evaluate energy(Ubef , U1

aft);
calculate execution time C ′;
// solution2 to compute the new WCET of tasks
for (i = 1, i = size(sys) + size(add), i + +)
// to compute the new utilization when execution times are modified

Ui = C ′/Ti;∑
U2

aft+ = Ui;
endfor;
Evaluate energy(Ubef , U2

aft);
Sort all the tasks by a descending order based on their static priorities;
Loop1 remove tasks priority (Sysnew1);
// solution3 to remove possible tasks (first criterion)
for (i = 1, i = size(Sysnew1), i + +)
// to compute the new utilization when tasks are removed (first criterion)∑

U3
aft+ = Ui;

endfor;
keep minimal(U3

min aft);
EndLoop1

Evaluate energy(Ubef , U3
min aft);

sort all the tasks by a ascending order based on their utilization;
Loop2 remove tasks utilization(Sysnew2);//solution 3 to remove possible tasks (second
criterion)
for (i = 1, i = size(Sysnew2), i + +)//to compute the new utilization when tasks are
removed (second criterion)∑

U4
aft+ = Ui;

endfor;
keep minimal(U4

min aft);

Evaluate energy(Ubef , U4
min aft);

EndLoop2

end;
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Figure 2: Initial System Tasks

Figure 3: Added Tasks

PRbef = 1 − 0.912242 = 16.7819% (27)

PRaft = 1 − 0.9098592 = 17.2156% (28)

Fig. 5 shows a software package for Algorithm 1 to compute the new periods as well
as the new processor utilization. Due to Eq. (26), the decrease of the energy consumption
PD is as follows:

PD = PRaft − PRbef = 0.433749% (29)

Similarly, the second and third solutions are applied to decrease the energy consump-
tion of the system. By modifying the execution times, the energy consumption decreases
by 2.45583%. It decreases also in the third case by 3.77711% and by 3.37665% when we
remove tasks according to their static priorities and their utilizations, respectively.
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Figure 4: Static Priorities

Figure 5: Developed Software

Table. 6 shows the initial utilization Ubef , the utilization Uaft including the task AA1,
the utilization after the reconfiguration scenario Urec, the power reduction before the
reconfiguration scenario PRbef , the power reduction after such scenario PRaft, and the
energy consumption decrease PD. The parameters MP, MW, RP, and RU, correspond to
the modification of periods, the modification of WCETs, the removal of tasks according to
static priorities, and the removal of tasks according to processor utilizations, respectively.

Table 7 shows the useful solutions for low power reconfigurations of the system when
the first 10 tasks are added. If all the 30 tasks are added, the solutions are shown in Table.
8.

All the experimental data of simulations on maintaining or decrease of the energy
consumption are shown in the Appendix of this present paper.

6.3 Analysis

We present some analysis that prove the advantages of the different proposed solutions.
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Figure 6: Low power reconfiguration after the addition of AA1

Figure 7: Low power reconfiguration after the addition of the first ten tasks

Figure 8: Low power reconfiguration after the addition of the thirty new tasks

6.3.1 First Solution

Due to Eqs. (14) and (16), the power minimization is proven to be dependent on the
WCETs. If all the 30 tasks are added, their WCETs are equal to 165. We made several
simulations for

∑
Ci = 3, 4, 5, . . . , 165. The results are shown in Fig. 9 in which we

find a decrease of consumption between 0 and 0.45%. The energy reduction is piecewise
approximately linear depending on the

∑
Ci = 3, 4, 5, . . . , 165.

Figure 9: Power save by change periods
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6.3.2 Second Solution

From Eqs. (22) and (16), the power minimization is proven to be dependent on periods.

If all the 30 tasks are added, the value of
30∑
i=1

1/Ti is equal to 0.131684. Simulations are

made for subsets of tasks with the range of
∑

1/Ti between 0 and 0.131684. The results
are shown in Fig. 10 where the minimization of the energy consumption is between 0
and 35%. This simulation result proves the benefits of the second solution more than
the first. Nevertheless, sometimes, the modification of periods is more simpler than the
minimization of WCET. It is unclear whether the second solution is definitely better than
the first.

Figure 10: Power save by change WCETs

6.3.3 Third Solution

In the third solution where tasks are removed at run-time to minimize the energy con-
sumption after reconfiguration scenarios, several simulations are applied to evaluate the
benefits. In Fig. 11, the continuous line presents the first policy where the priority func-
tion is used as a criterion to remove tasks. In this case, the number of removed tasks is
equal to or greater than the added one: the tasks remaining in the system are less than
50. The dotted line corresponds to the removal of tasks due to their processor utilizations.
The number of removed tasks is smaller to that added. This second policy is more use-
ful than the first. Fig. 12 shows the minimization of the energy consumption when the
first (continuous line) and the second (dotted line) policies are applied. It present that
the energy consumption remains to be minimal when we apply the second solution where
WCETs of tasks are modified.

7 Conclusion

The paper deals with low power and real-time dynamic reconfigurations of embedded
systems to be implemented by sets of tasks that should meet real-time constraints while
satisfying limitations in the capacity of batteries. A reconfiguration scenario means the
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Figure 11: Comparing the number of removed task between two remove strategies

Figure 12: Comparing power save between two remove strategies

addition, removal or update of tasks in order to save the system when faults occur or to im-
prove its performance. The energy consumption can often increase or real-time constraints
can often be violated when tasks are added. To allow a stable energy consumption before
and after the application of each reconfiguration scenario, an agent-based architecture is
defined where an intelligent software agent is proposed to check each dynamic reconfigu-
ration scenario and to suggest for users effective solutions in order to minimize the energy
consumption. It proposes to modify periods, reduce execution times of tasks or remove
some of them. A tool is developed and tested to support all these services. In our future
work, we plan to study low power and real-time reconfigurations of asynchronous tasks
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that can be loaded in a uniprocessor or can be distributed on different calculators.
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Figure 13: New Configuration of the System (1)

21



Figure 14: New Configuration of the System (2)
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