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ABSTRACT 
 
This paper details the implementation of a rate-based task scheduler into the VxWorks real-

time operating system, intendedto enhance resource allocation for distributed real-time 

systems, such as IoT and embedded devices. Rate-based scheduling dynamically adjusts 

task execution rates based on system demand, providing a flexible and efficient approach to 

meeting real-time constraints. The scheduler was integrated into VxWorks and evaluated 

using the Cheddar scheduling analysis tool and the VxWorks VxSim simulator. Initial 

results demonstrate improved deadline adherence and resource management under varying 

loads compared to traditional schedulers. Future work includes porting the scheduler to 

single-board computers to assess its performance on resource-constrained IoT hardware 

and extending it to support resource sharing between tasks to address real-time 

coordination challenges. This research emphasizes the potential of rate-based scheduling 
for IoT applications, offering a scalable solution for managing the complexity of 

distributed, real-time environments in future embedded systems. 
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1. INTRODUCTION 
 

Many applications used in aerospace, automotive systems, industrial control, and embedded 

devices rely on a real-time operating system (RTOS) to manage the strict deadlines that can mean 
the difference between success and failure. Task scheduling is a critical component of the RTOS 

as it ensures that tasks are executed within specific time constraints, providing system 

determinism. Static priority scheduling is a common approach used in real-time embedded 
operating systems to manage tasks and meet timing constraints. In static priority scheduling, each 

task is assigned a priority level, and tasks with higher priority levels are given preference in 

execution over tasks with lower priority levels. Static priority scheduling in real-time systems 
offers several advantages, making it a popular choice for real-time applications. 

 

One of the primary benefits of static priority scheduling is its predictability. The execution order 

of tasks is known in advance, allowing for better analysis and guaranteeing that tasks with a 
higher priority will be scheduled before those with a lower priority. This predictability is crucial 

for meeting strict timing constraints in real-time systems. Static priority scheduling also provides 
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deterministic behavior, meaning that the system's response time and task execution order are 
known and repeatable. Deterministic behavior is another benefit that is essential in real-time 

systems, where meeting deadlines is often critical for the system's correct operation. 

Additionally, static priority scheduling is simple to implement, tends to have lower overhead 

costs, and simplifies system behavior analysis. For these and other reasons, virtually all 
commercial real-time operating systems support static priority scheduling. 

 

While static priority scheduling has advantages, it is not ideally suited for some real-time 
systems. For instance, distributed real-time systems and signal processing applications have 

shown that they do not adequately fit into the traditional static priority model due in part to the 

amount of jitter in the invocation time of the real-time task [1]. The issue is that the priority value 
does not always map directly to significant task constraints; another issue is addressing the 

problem of dealing with unknown or varied task execution times.  Additional shortcomings 

include graceful performance degradation during processor overload and ensuring full resource 

utilization in tightly constrained embedded systems. For example, critical embedded systems are 
considered unsafe if resource utilization exceeds 50%, requiring system designers not to exceed 

this threshold. This utilization threshold mandates that processing elements meet the required 

computing demands, causing an increase in the system's overall size, weight, and power (SWaP). 
Therefore, the standard design goal in resource-constrained devices is to reduce the SWaP 

footprint to reduce costs and ensure that the systems can be integrated into compact, portable, and 

power-constrained environments. 
 

To solve these and other limitations, we are investigating the implementation of rate-based 

resource allocation methods into an RTOS for use in distributed real-time systems. According to 

authors [2-5], the rate-based allocation method more naturally models the actual implementation 
of distributed real-time embedded systems. In a rate-based system, a task specifies its requested 

progress rate related to the number of computed events within a specified time interval. Examples 

of rate specifications in a distributed system could include processing n packets per second or m 
video frames per second. According to the rate-based approach, a task is guaranteed to progress 

at its specified rate when adequate resources are available. On the other hand, if adequate 

resources are unavailable for a task to make the desired progress, the scheduler will either 

negotiate with the RTOS for a reduced rate of progress or require the task to wait for sufficient 
resources to become available. This reduction in resource allocation is done by either the user 

explicitly specifying a reduced rate of progress or the RTOS reducing the task resource 

requirements when the system identifies that the process is using fewer resources than initially 
requested. 

 

For this work, we implemented a rate-based scheduling mechanism into VxWorks, a widely used 
RTOS known for its robustness and reliability. It is used extensively in various industries, 

including aerospace, automotive, and telecommunications. VxWorks is highly customizable and 

has multiple development tools, making implementing and managing a complex scheduling 

algorithm easier. This customization is highly beneficial for implementing a new scheduling 
algorithm as it allows for fine-tuning task priorities and scheduling policies. 

 

This paper describes the motivation for using a rate-based scheduling mechanism in a real-time 
system, the implementation in the VxWorks RTOS and key performance outcomes. The outline 

of the paper is as follows: Section 2 covers the related work including gaps in current solutions, 

Section 3 describes the design and integration of the rate-based scheduler, Section 4 details the 
implementation into VxWorks, Section 5 provides details on the experimental setup and testing 

of the scheduling mechanism, Lastly, Section 6 summarizes the paper including a short 

discussion on future work. 
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2. BACKGROUND AND RELATED WORK 
 
Traditional static priority scheduling techniques in an RTOS are based on the concept of a 

discrete periodic or sporadic task. The task is scheduled such that it completes execution before a 

predefined deadline. Most real-time execution models are based upon the periodic task model [6], 

defined by Liu and Layland, or the sporadic task model [7], defined by Mok. In both models, the 
execution of the task must be finished before the next instance of the task is scheduled for 

execution. The challenge is that a priority value must be assigned to each task so that each 

execution instance is completed before their respective deadlines. The most common priority 
assignment policies include rate-monotonic (RM) scheduling [6], where tasks that run at a higher 

rate have a higher priority over tasks that run at a lower rate, and the deadline monotonic (DM) 

policy [8], where tasks are assigned priorities according to their respective deadlines. Using the 

DM policy, the task with the shortest deadline is assigned the highest priority. 
 

With RM or DM scheduling policies, mapping deadlines to priorities can be straight-forward for 

tasks with explicit timing constraints. However, it becomes challenging for complex tasks such as 
a video processing system whose requirement is to receive frames from a remote device at n 

frames per second. While the overall task of processing n frames per second has precise timing 

requirements, it is uncertain how to prioritize the receiving of each individual packet since a 
single frame is made up of multiple network packets. The problem is that prioritizing a task is 

based on assigning a value for the network processing. However, since there is no inherent value 

for this processing a more conservative (i.e. shorter response time) priority value is often selected 

resulting in reserving more computing resources than may be necessary. 
 

Another issue with static priority-based resource allocation is that assumptions about the 

environment where the tasks are executed must be made. Specifically, the resources required for 
task execution, such as processor time, must be known apriori. Issues arise if the actual task 

execution time exceeds the amount that was initially estimated. The problem is that 

these“misbehaving” tasks can block all lower-priority tasks indefinitely. Static priority 
scheduling lacks the mechanisms to isolate the misbehaved tasks from disrupting the execution of 

lower priority well-behaved tasks. 

 

An extension of the task isolation problem mentioned previously is the issue of ensuring graceful 
performance degradation during periods of overload where a set of misbehaving tasks causes 

increased compute processing and missed deadlines. In these task overload situations, managing 

graceful task performance degradation is essential. Unfortunately, under overload conditions, 
static priority scheduling only allows one form of degradation where higher priority tasks are 

usually executed. In comparison, lower-priority tasks are executed at a reduced rate or not at all. 

 

2.1. Rate-Based Resource Allocation Models 
 

The concept of rate-based resource allocation is nothing new and was initially designed to 
support multimedia computing along with other soft real-time applications. Researchers [9] have 

identified three broad classes of rate-based allocation models: server-based allocation, fluid-flow 

allocation, and rate-based generalization of the periodic model. 

 

2.1.1. Server-Based Allocation 

 

The sever-based allocation model was derived to manage the problem of scheduling aperiodic 
tasks in a real-time system. The idea of server-based allocation is based on the creation of  a 

server process invoked periodically to service any aperiodic requests that may have arrived. 
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Associated with the server is the server’s execution time capacity, which gets depleted as the 
aperiodic task is executed. The aperiodic task is suspended once the capacity has been exhausted 

until the next server innovation time. The effect is that aperiodic tasks can be modelled as 

periodic tasks, ensuring aperiodic processing progresses at a well-defined and uniform rate. 

Server-based algorithms are considered to be rate-based allocations because the execution of the 
server is not directly connected to the arrival of an aperiodic task. Several server algorithms are 

described in the literature [10,11,12], with the most familiar being the constant bandwidth server 

(CBS), which has been included in the Linux kernel since version 3.14. It is called the 
SCHED_DEADLINE scheduler. 

 

2.1.2. Fluid-Flow Allocation 
 

Fluid-flow allocation models, rooted in bandwidth allocation schemes used by the networking 

community, are concerned with allocating the processor in a fair manner, with each process 

receiving its fair share of the processor. Algorithms such as the generalized processor share 
(GPS) [13] have been instrumental in this area, leading to the development of numerous fair 

fluid-based allocation algorithms [14,15,16] that form the foundation for building real-time 

services. 
 

2.1.3. Rate-Based Allocation 

 
A rate-based generalization of Liu and Layland’s periodic task model have been developed to 

allow more flexibility in how a scheduler responds to events that arrive at a uniform average rate. 

Examples include the (m,k) allocation model that requires only  m out of every k events be 

processed [17] in real-time; the window-based allocation (DWYQ) method, which ensures a 
minimum number of events are processed in real-time within the context of a sliding window 

[18]; and the rate-based execution (RBE) model [1], which adjusts the priorities of events that 

arrive at higher than expected rates. For this work we leverage the RBE model which defines the 
rate specification of a task as (x, y, d) where each task is ensured to process at least x events every 

y time unit and each event j will be processed before the deadline d. The specific deadline for 

processing the jthevent for task𝑡𝑖 is determined by the following recurrence: 

 

 𝐷𝑖(𝑗) = {
𝑡𝑖,𝑗 + 𝑑𝑖𝑖𝑓 1 ≤ 𝑖 ≤  𝑥𝑖

max(𝑡𝑖,𝑗 + 𝑑𝑖𝐷𝑖(𝑗 − 𝑥𝑖) + 𝑦𝑖) 𝑖𝑓𝑗 > 𝑥𝑖
  (1) 

 

Under this function, task requests that arrive at a faster rate than x arrivals every y time unit will 

have their deadlines postponed until the time they would have been assigned had they arrived at 
the rate of exactly x arrivals every y time units [1]. 

 

2.2. Alternative Real-Time Scheduling Approach 
 

Rate-based allocation models, like RBE, has received significant attention in the research 

community but has yet to see adoption into commercially available RTOSs.  While time-based 
scheduling algorithms, like round-robin or pre-emptive priority scheduling, are well-established 

the actual implementation of rate-based schedulers remains confined to experimental kernels and 

are not incorporated into commercial RTOS deployments. Research prototypes typically focus on 
multimedia or network traffic management applications but often lack the robustness needed for 

widespread adoption.Commercial RTOS platforms like VxWorks scheduling models are well-

understood, easy to understand and effective for many real-time applications. However, at this 

time there is no rate-based scheduler that has been fully integrated into the RTOS kernel. Some 
specialized systems that focus on media applications (e.g. video pro-cessing or 
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telecommunications) have adopted versions of rate-based scheduling concepts to manage the 
real-time demands of the application. Though, these systems are custom-built for specific 

applications and not designed for platforms like VxWorks. Additionally, certain Linux-based 

real-time multimedia systems use rate-based scheduling, but these systems are not equivalent to 

the timing guarantees provided in hard real-time systems. 
 

Although rate-based scheduling has not been incorporated into commercial RTOS platforms, 

there is a growing interest for dynamic and adaptive scheduling mechanisms related to the 
increase in complex applications such as the Internet-of-Things (IoT) or autonomous systems. 

These applications often require schedulers that respond dynamically to task execution changes, 

which could provide the motivation for the widespread adoption of rate-based models. Some 
operating systems are starting to investigate mixing scheduling models that combine traditional 

fixed-priority mechanisms with rate-based scheduling. This hybrid approach could serve as a 

bridge toward integrating more flexible scheduling schemes into commercial RTOS systems. Our 

work contributes to bridging this gap by in incorporating a rate-based scheduler into a traditional 
RTOS environment and providing a practical demonstration of how rate-based scheduling can 

coexist with more traditional methods, potentially encouraging further exploration in this 

direction. This work stands out because it provides a real-world prototype that could be extended 
and optimized for broader adoption in various embedded and IoT applications. 

 

3. RATE-BASED TASK SCHEDULER DESIGN 
 

In rate-based scheduling, the focus is not strictly on task priority but rather on ensuring that tasks 
are scheduled at regular intervals, according to their rates. This aligns closely with concepts of 

time-triggered scheduling, where the timing behavior of the system is predetermined and 

controlled according to periodic task executions. Rate-based scheduling combines the theoretical 
principles of periodic scheduling with practical real-time constraints, ensuring tasks are executed 

according to their temporal requirements in embedded and time-critical applications. 

 

3.1. Rate-Based Allocation Model 
 

The rate-based allocation model is based on the concepts defined in real-time scheduling theory, 
specifically RM and DM scheduling policies, but with some modifications to focus more on the 

rate and frequency of a task as opposed to the priority. In the rate-based model a real-time system 

is defined as a set of tasks{𝜏1, 𝜏2, … 𝜏𝑛}where each task consists of infinite or finite instances of 

jobs or requests which must be completed by the deadline (depending upon the criticality of the 
task). Each real-time task is defined as either hard real-time (HRT) or soft real-time (SRT). Each 

task 𝜏𝑖 is characterized by its worst-case execution time 𝐶𝑖, relative deadline 𝐷𝑖, period 𝑃𝑖, and 

the resource rate of the task 𝑈𝑖 =  𝐶𝑖 𝑃𝑖⁄ . How tasks are allocated is defined by the task type, 
HRT or SRT, and constrained by the overall system utilization where: 

 

 𝑈 =  ∑ 𝐶𝑖 𝑃𝑖⁄𝑛
𝑖=1  (2) 

 

A third aperiodic non-real-time task (NRT) type can also be defined for resource allocation based 
on reserving a minimum amount of utilization for the NRT tasks. Allocation for HRT tasks are 

guaranteed rates that are equal to the task’s required rate. SRT task allocation is based on the 

system load. If the system is underloaded (U ≤ 1) then the SRT task is assigned to its requested 

rate. If the system is overloaded (U > 1) then an SRT task may be assigned resources that is less 
than what is requested. Allocation of SRT tasks involves employing a weighted-proportional 

resource allocation approach that is used to assign SRT tasks to available resources. For NRT 
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tasks a minimum resource utilization is calculated which is proportional to the number of NRT 
tasks. The formula [1] to calculate NRT utilization is provided below: 

 

 𝛽 =
𝑁𝑅𝑇𝑛

𝑁𝑅𝑇𝑛 +𝑆𝑅𝑇𝑛  × 𝑆 × (1+𝑈𝑠𝑟𝑡)2  𝑥 (1 − 𝑈𝑠𝑟𝑡) (3) 

 

Where 𝑁𝑅𝑇𝑛defines the number of NRT tasks, 𝑆𝑅𝑇𝑛  represents the number of SRT tasks, S  
indicates the scale factor (based on the relative importance of the SRT and NRT tasks in the 

system), 𝑈𝑆𝑅𝑇 is the resource rate (utilization) of all SRT tasks in the system and 𝑈𝐻𝑅𝑇is the 

resource rate of all HRT tasks in the system. For SRT tasks the actual utilization is defined as (4) 
and the actual NRT utilization is defined as (5).  

 

 𝑈𝑆𝑅𝑇
′ = 𝑚𝑖𝑛{𝑈𝑆𝑅𝑇, 1 −  𝑈𝐻𝑅𝑇 −  𝛽} (4) 

 𝑈𝑁𝑅𝑇
′ = 1 − 𝑈𝐻𝑅𝑇 −  𝑈𝑆𝑅𝑇

′  (5) 

 

It is important to note that SRT task starvation is possible if the system is overloaded. To reduce 

the potential for SRT task starvation a proportional allocation policy [19] can be adopted where 

each SRT task would receive a percentage of available resources that is proportional to its desired 
resource rate. In this way the actual resource rate of each SRT task would be lowered so that total 

system utilization is U ≤ 1. However, this approach does not guarantee that any SRT task will 

actually meet their initial deadlines since none will receive their requested rates. For this work all 
the SRT tasks have the same priority to their required resources so resources are allocated using a 

proportional allocation policy where each SRT task receives a utilization amount proportional to 

their desired rate. The proportional allocation formula [1] is provided below: 
 

 𝑤𝑈𝑆𝑅𝑇𝑖
=  

𝑈𝑆𝑅𝑇𝑖

∑ (𝑈𝑆𝑅𝑇𝑖
) 

𝑆𝑅𝑇𝑛
𝑖=1

 × 𝑈𝑆𝑅𝑇
′  (6) 

 

The resource allocation policy would be invoked when a new HRT or SRT is scheduled or when 

an HRT or SRT task completes execution. Changes to NRT task utilization β will also invoke 
changes to the SRT resource rate. 

 

3.2. Rate-Based Scheduling 
 

The rate-based task set is scheduled by using the earliest deadline first (EDF) algorithm with 

additional support for dynamically adjusting the task’s rate or period, known as a mode change. 
While EDF is based on proven real-time scheduling policies where task utilization and period are 

fixed it has been shown that under certain conditions EDF can still guarantee deadlines even 

when there are dynamic mode changes. The EDF algorithm defines a feasible schedule as 𝑈 ≤ 1 
which can support arbitrary period changes considering the utilization of a departing task can be 

thought of as 1 −  𝑢𝑖 when the task deadline is reached. Therefore, a modified task with 

utilization factor ≤ (1 −  𝑢𝑖) can also be considered schedulable. 

 
More specifically a task that has gone through as mode change has either increased its rate and/or 

period or decreased its rate and/or period. The question is how a feasible EDF schedule can still 

be maintained while dynamically adjusting the task constraints? Researchers who developed 
similar models have provided proofs to the correctness of the EDF when adjusting task 

constraints. Readers are encouraged to review the detailed proofs [20, 21] for additional 

information 
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3.2.1. Rate-Based Mode Change 
 

When the system becomes overloaded this invokes a mode change by reducing the resource rate 

of SRT tasks so that total utilization is 𝑈 ≤ 1. The rate-based scheduling mechanism adjusts the 

relative deadline of all SRT tasks based upon the weighted resource allocation policy. The goal is 
to extend the relative deadline of each SRT task while leaving WCET unchanged. There is a case 

when a task WCET will need to change based upon a user’s inaccurate estimation of the WCET. 

By progressively extending the deadline and adjusting the WCET of a task such that 𝑈 ≤ 1  by 
definition a feasible schedule can be obtained. The effect of increasing or decreasing the rate of a 

task is shown in Figure 1. At time t, the utilization of a task increase from u to u’ and 

subsequently the effect of decreasing the rate of a taskis shown at time t'. The value of d 

represents the initial deadline while d’ represents the extended deadline and d’n defines a 
calculated compressed deadline for the next deadline while d’’ defines the subsequent deadline 

for the next period. Additionally, p represents the initial task period where  p’or p’nrepresent the 

calculated and next period similar to how the deadlines are calculated. 
 

 
 

Figure 1: Task Rate Utilization 

 

Mode changes triggers the weighted proportional allocation method mentioned above to ensure 
no deadlines are missed after the mode change. To facilitate a mode change, the rate-based 

scheduler extends the previous task rate. The extended period is calculated as follows: 

 

 𝑃𝑆𝑅𝑇𝑖

′  =  
𝐶𝑆𝑅𝑇𝑖

𝑤𝑈𝑆𝑅𝑇𝑖

 (7) 

 

here 𝑃𝑆𝑅𝑇𝑖

′ defines the new period, 𝐶𝑆𝑅𝑇  defines the wcet for a SRT task and 𝑤𝑈𝑆𝑅𝑇the new task 

rate for the SRT task. Extending the task period also requires extending the next deadline of the 
SRT task. The extended SRT deadline is calculated below: 

 

 𝐷𝑆𝑅𝑇𝑖

′ =  𝐷𝑆𝑅𝑇𝑖
+ 𝑃𝑆𝑅𝑇𝑖

′  (8) 
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where 𝐷𝑆𝑅𝑇𝑖

′ defines the new calculated period. To account for tasks that still need to be scheduled 

in the current period they also need to consider the period changes during subsequent deadlines. 
In the case where idle time is generated for an SRT task that is still using the previous deadline at 

its release time (which is before the current release time), the following mechanism is applied: 

 

 𝐷𝑆𝑅𝑇𝑖

′ = max {𝑡 + 𝐶𝑆𝑅𝑇𝑖
, 𝐷𝑆𝑅𝑇𝑖

+ 𝑃𝑆𝑅𝑇𝑡

′ } (9) 

 𝑃𝑆𝑅𝑇𝑖
=  𝐷𝑆𝑅𝑇𝑖

−  𝑃𝑆𝑅𝑇𝑖

′  (10) 

 
In the case when there is no idle time, but tasks experience deadline jitter; the previous period, 

then a temporary one is factored in before the newly extended period is calculated. The following 

formula calculates the period starting from the current time but not the release time. 

 𝐷𝑆𝑅𝑇𝑖

′ = max {𝑡 + 
𝐶𝑆𝑅𝑇𝑖

𝑤𝑈𝑆𝑅𝑇𝑖

, 𝐷𝑆𝑅𝑇𝑖
+ 𝑃𝑆𝑅𝑇𝑡

} (11) 

 𝑃𝑆𝑅𝑇𝑖

′ =  𝐷𝑆𝑅𝑇𝑖

′ − 𝑡 (12) 

 

3.2.2. Rate-Based Scheduling for Non-Real-Time Tasks 
 

While HRT and SRT have deadlines NRT tasks are not considered to have any deadlines 

associated with them. In order to schedule an NRT task with EDF the idea is to assign an 

artificial deadline for each NRT task (Note: Other aperiodic event-driven tasks, may have hard or 
soft, real-time requirements and would be assigned artificial deadlines as well for their respective 

task type (i.e. HRT | SRT)). All NRT tasks share the percent utilization reserved for them at 

system startup. Like SRT tasks, NRT tasks are allocated resources based on a proportional 
average which is computed as follows: 

 

 𝑤𝑁𝑅𝑇𝑖 =  
max {𝛽,1− 𝑈𝐻𝑅𝑇− 𝑈𝑆𝑅𝑇}

𝑁𝑅𝑇𝑛
 (13) 

 

where 𝑤𝑁𝑅𝑇𝑖 represents the new utilization average, 𝑈𝐻𝑅𝑇 is the total utilization for all HRT 

tasks and 𝑈𝑆𝑅𝑇 defines the total utilization of SRT tasks, 𝑁𝑅𝑇𝑛 represents the number of NRT 

tasks while β defines the bandwidth reservation for all NRT tasks. The artificial period for an 

NRT task is done by assigning an artificial WCET to each NRT task.  

 

 𝑃𝑁𝑅𝑇𝑖
=  

𝐶𝑁𝑅𝑇𝑖

𝑤𝑈𝑁𝑅𝑇𝑖

 (14) 

 

The period of an NRT task remains fixed at run time while the task WCET may be adjusted to 

achieve optimal response times for each NRT task. The period remains fixed to reduce the 
overhead of continued weighted resource allocation computations because of the transitory nature 

of NRT tasks. 

 
To illustrate how tasks are scheduled during a rate-based mode change consider the following 

example. Tables 1 and 2 represent a nominally loaded and overloaded taskset where overloaded 

means that 𝑈 > 1. 
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Table 1: Rate Based Task Set (nominal) 

 
Task Type WCET PERIOD DEADLINE 

HRT 2 10 10 

HRT 3 15 15 

SRT 3 20 20 

SRT 5 50 50 

NRT 4 (pseudo) - 80 (pseudo) 

 
Table 2: Rate-Based Task Set (overloaded) 

 
Task Type WCET PERIOD DEADLINE 

HRT 2 10 10 

HRT 3 15 15 

SRT 3 20 20 

SRT 5 50 50 

NRT 4 (pseudo) - 80 (pseudo) 

 

Figure 2a and 2b shows the scheduling of rate-based tasks. Figure 2a details how each task type 
is scheduled without needing mode changes since the system is underloaded.  The NRT task is 

treated as a sporadic task with a pseudo wcet of 8 as well as a pseudo period of 80. The pseudo 

values are calculated using a fixed rate 0.1 for the NRT task.  Note that the NRT task(s) could 
receive more than the pseudo wcet if there is slack in the schedule. Figure 2b illustrates what 

happens to the allocation of the SRT tasks when the system is overloaded. The HRT tasks are still 

allocated their target resource rate. If any HRT task cannot be allocated its requested target rate, it 

will not be admitted. The NRT task(s) are always allocated their reserved bandwidth, but multiple 
NRT tasks would have to share that bandwidth. As indicated in Table 2, the task set is overloaded 

so that the SRT tasks will require proportional allocation per equation 6. For this example, the 

first SRT period is extended from 20 to 25, and the second SRT task’s period is extended from 50 
to 65, as shown by the arrows in Figure 2b. 

 

 
 

Figure 2: Rate-Based Scheduling Example 
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3.2.3. Rate-Based Design Considerations 
 

A rate-based scheduler dynamically allocates CPU time based on task execution rates requiring 

frequent calculations and adjustments which introduces additional overhead. In contrast, fixed-

priority schedulers have minimal overhead since the task priorities are static and do not require 
additional calculations. To minimize CPU overhead HRT tasks are considered static and do not 

require additional calculations. Additionally, a pseudo wcet is calculated, using eq. (14),  to be a 

fixed value at run time. This avoids the significant additional overhead of resource allocation that 
is triggered by the weighted resource allocation process defined by eq. (6) when an NRT process 

enter or leave the system. Other design considerations involves the scalability of multiple tasks 

with varying execution times and system loads. As the number of tasks increases, the complexity 
of maintaining rate guarantees also increases, which may cause performance degradations due to 

the increased overhead in managing the task list. However, unlike typical Linux based platforms 

which could host hundreds of tasks, most embedded processing involves a much smaller task 

load.  While there is no specific limit on the number of tasks admitted, the assumption is that the 
task load will be on a much smaller scale as opposed to a Linux based system. 

 

Balancing the fairness of CPU allocation of tasks is also an important consideration. While rate-
based scheduling offers better fairness compared to priority-based approaches there is a tradeoff 

when implementing fairness. If the system is overloaded with HRT tasks, then SRT or NRT tasks 

could suffer from starvation. Fairness is adjusted by using the weight-based model (i.e. eq. 6) so 
higher weight tasks may not be starved.   

 

3.2.4. Rate-Based Scheduler RTOS Design 

 
In VxWorks, the design of a rate-based scheduler fits into the overall RTOS architecture by 

interfacing with some core kernel components, including task management, interrupt handling, 

and time management. The rate-based scheduler is integrated into the task management system, 
which handles task creation, deletion, and creation. For each new task, additional attributes are 

added to the task control block (TCB), including the task rate set during task creation.The tick 

timer is used in VxWorks to generate periodic interrupts, measure time, and schedule tasks. The 

rate-based scheduler uses the tick timer to manage task execution times and schedule tasks 
according to their rates. For example, if a task were to run every 20 milliseconds, the timer would 

interrupt the scheduler to invoke the task after that interval. In VxWorks, the system clock is used 

for the timer interrupts and, by default, is set to 60 ticks per second, which translates to 
approximately 16.67 milliseconds. If a higher resolution tick count is needed, VxWorks will 

provide a function to change the default tick rate. For this work, we typically set the tick rate to 

100 ticks or 10 milliseconds. VxWorks allows higher resolution tick rates if needed, but the 
higher the rate, the higher the overhead in that every clock tick represents a potential context 

switch. 

 

Like all RTOSs, a task is placed in a task queue based on priority. The rate-based scheduler 
modifies this queue by maintaining a list of tasks sorted by their execution rates, dynamically 

reordering the queue based on the execution rates. In this way, tasks would be selected for 

execution based on their rate, which requires modifications to the TCB to track the following 
execution times. Fortunately, VxWorks provides built-in mechanisms for extending the TCB. 

The algorithm for creating a rate-based task into the RTOS is illustrated by the pseudo code 

provided below: 
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Algorithm1 Task RB Create 

 
Procedure taskRBCreate(struct tcb tcb) now 

← tickGet() 
If taskInQueue(tcb) then return 
End if 
if type = TASK TYPE NON REALTIME then 
 if tcb.weight = 0 then 

tcb.weight←1 
else 

tcb.weight←nrtTaskWeights 
end if 
usrSchedBlk.u nrt ← usrSchedBlk.u nrt + tcb.weight usrSchedBlk.n nrt 

← usrSchedBlk.n nrt + 1 

tcb.deadline ← tcb.period ← usrSchedBlk.current.nnrt - sysClkGet() 

tcb.releasetime ←  now 
qReadySort() 

else if type = TASK TYPE SOFT REALTIME then usrSchedBlk.u srt 

← usrSchedBlk.u srt + srtActUtil(tcb) usrSchedBlk.n srt ← 

usrSchedBlk.n srt + 1 
else if type = TASK TYPE HARD REALTIME then usrSchedBlk.u 

hrt ← usrSchedBlk.u hrt + hrtTgtUtil(tcb) usrSchedBlk.n hrt ← 

usrSchedBlk.n hrt + 1 
else 

return 
end if 
if usrSchedBlk.u hrt + usrSchedBlk.u srt + BETA >1.0 then resourceAllocation(tcb) 

end if 
if tcb.release time <now then 

kernelPanic(”Releasedinthepast!”) 
endif 
dcb.etime←0 
qReadyInsert(dcb) 

end procedure 

 

The taskRBCreate algorithm is designed to manage the scheduling of tasks in a real-time 
operating system. It starts by obtaining the current system tick count and checking if the task is 

already in the ready schedule queue. If the task is not in the queue, it updates various counters 

and parameters based on the task type (non-real-time, soft real-time, or hard real-time). It adjusts 
the task’s weight for non-real-time tasks and updates the scheduler’s non-real-time utilization and 

task count. It updates the respective utilization, and task counts for soft and hard real-time tasks. 

The algorithm ensures the scheduler is not overloaded by checking the total utilization against a 
threshold. If the task’s release time is past, it triggers a kernel panic. Finally, it resets the task’s 

execution time and inserts it into the ready queue. Additionally, during task creation, the resource 

allocation algorithm determines the utilization for each task type to ensure that tasks are 

appropriately scheduled, and their resource requirements are managed efficiently. 
 

 

Algorithm2 resource Allocation 

Function resource Allocation(struct tcb tcb) 
Int util 
if type = TASKTYPEHARDREALTIME then 

util ← utilHRT(tcb) 
else if type= TASKTYPESOFTREALTIME then 

util ← utilSRT(tcb) 
else if type =TASK TYPEBEST EFFORT then 

util ← max(()BETA,(usrSchedBlk.uhrt-usrSchedBlk.usrt)* 
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tcb.weight)usrSchedBlk.unrt 
tcb.period ← usrSchedBlk.nnrt*sysClkGet( ) 
tcb.deadline←tcb.period 

else 
return-

1 end if 
return util 

end function 

 
The resource allocation algorithm is designed to determine the utilization of a task based on its 

type and update its scheduling parameters accordingly. It first checks the type of the task: if it is a 

hard real-time task, it calculates the utilization using the utilHRT function; if it is a soft real-time 
task, it uses the utilSRTfunction. For best-effort tasks, it calculates the utilization using a formula 

that considers the maximum of a constant BETA and the difference between hard and soft real-

time utilizations, scaled by the task’s weight and normalized by the non-real-time utilization. It 

then sets the task’s period and deadline based on the number of non-real-time tasks and the 
system clock. Finally, the calculated utilization is returned. 

 

4. VXWORKS IMPLEMENTATION 
 
For this work, we adopted a hybrid rate-based scheduling policy where rate-based tasks are 

allocated separately, but the traditional kernel scheduler is used for intra-kernel resource 

allocation. Rate-based scheduling manipulates the ready queue by changing task priorities and 

activating or suspending tasks. This hybrid approach was taken for a couple of reasons. One is 
that researchers noticed mixed results [2] when applying a single rate-based resource allocation 

policy to the problems of kernel and application processing. The second reason is that 

implementing a unified custom scheduler is a relatively complex task compared with 
manipulating the ready queue. While a custom scheduler framework is provided, VxWorks 

cautions that the operating system is not guaranteed to function as expected if a custom scheduler 

is used. In addition, there are no guarantees about the compatibility of a custom scheduler across 
different VxWorks releases, as the scheduler interface may be changed. 

 

Figure 3 illustrates the implementation of rate-based tasks into VxWorks. The Rate-Based Ready 

queue is managed by the function responsible for scheduling the tasks. Monitoring the execution 
time of a task is performed as follows: whenever a task starts executing, it sets an absolute time 

(in ticks) for when the task’s wcet is met. This time is added to a task event queue, which triggers 

an event when a task is met. If another rate-base task pre-empts a rate-based task, the remaining 
execution time is updated by subtracting the time that has passed since the last release.  
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Figure 3 Rate-Based Task Implementation in VxWorks 

 
The rate-based scheduler is implemented as an extension to the traditional scheduler that uses the 

tickAnnounceHookAdd( ) function to register a hook function that is called at each tick interrupt. 

The hook function is responsible for manipulating the ready queue as well as changing their 
priorities according to the rate-based scheduling policy. The following code example illustrates 

the hook use: 

 
/* task interrupted by tick */ 

void usrTickHook TASK_ID tid) 

{ 

/* statistic information */ 

/* call kernelRateBasedHook() */ 

if (_func_kernelRateBasedHook != NULL) 

_func_kernelRateBasedHook(tid); 

 

/* other work */ ... } 

 
Tasks are characterized by the following attributes:  {type, wcet, period,  deadline}. The 

arguments specific the task type (HRT, SRT, NRT), the worse-case execution time, the period 

and the relative deadline. The resource rate is defined as 𝑤𝑐𝑒𝑡 𝑝𝑒𝑟𝑖𝑜𝑑⁄ . HRT tasks are 

guaranteed to receive an actual resource rate (𝑢𝑎𝑐𝑡) equal to the target rate (𝑢𝑡𝑔𝑡) if sufficient 

CPU resources is available; otherwise, the process will not be admitted as a real-time process. A 

SRT task receives (𝑢𝑎𝑐𝑡)  less than or equal to (𝑢𝑡𝑔𝑡) depending on available resources. NRT 

tasks receive a predefined utilization percentage (β) in proportion to their weights as described in 

section 3.4.  To support  rate-based tasks a new kernel function call is provided to allocate and 

initialize a task without activation.  
 

TASK_ID taskRBCreate 

   ( 

    char         *name, /* name of new task */ 

   RB_TASK_TYPE  type  /* type of task (HRT,SRT, NRT) */ 

  Int       wcet; /* execution time (in ticks)  */ 

  int           period;  /* task period */ 

    int           deadline,/* relative deadline */ 
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    int           options,   /* task option word */ 

    size_t        stackSize, /* stack size needed */ 

    FUNCPTR       entryPt,   /* entry point of task */ 

    _Vx_usr_arg_t arg1,      /* task argument one */ 

    _Vx_usr_arg_t arg2,      /* task argument two */ 

    _Vx_usr_arg_t arg3,      /* task argument three */ 

    _Vx_usr_arg_t arg4,      /* task argument four */ 

    _Vx_usr_arg_t arg5,      /* task argument five */ 

    _Vx_usr_arg_t arg6,      /* task argument six */ 

    _Vx_usr_arg_t arg7,      /* task argument seven */ 

    _Vx_usr_arg_t arg8,      /* task argument eight */ 

    _Vx_usr_arg_t arg9,      /* task argument nine */ 

    _Vx_usr_arg_t arg10      /* task argument ten */ 

    ) 
 

The rate-based scheduler for VxWorks is designed after the prototype rate-based earliest deadline 

scheduler presented by authors in [21] with modifications.  
 

5. EXPERIMENTAL SETUP AND TESTING 
 

We integrated our rate-based scheduler prototype into the Cheddar [22] open-source GNU GPL 

real-time scheduling simulator/analyzer for the initial testing. By leveraging Cheddar, we could 
model and analyze our scheduler's timing behavior in a controlled environment. This approach 

allowed us to identify potential issues and optimize performance early in development. In our 

Experimental Setup, we created various task scenarios and workloads to simulate real-world 
conditions. Cheddar provided detailed insights into the scheduler's performance, helping us fine-

tune parameters and ensure it met all real-time constraints. This pre-implementation testing phase 

was instrumental in validating our design, ultimately saving development time and reducing the 
risk of costly errors when deploying the scheduler in VxWorks. 

 

For our testing, we created a task set consisting of five tasks. This task set was designed to 

represent a typical workload in a real-time system. We included two HRT tasks, two SRT tasks, 
and one NRT task to simulate an event-based sporadic task. The initial task workload was 

configured with a total system utilization of 70%. We then randomly modified the execution 

times of each task, except for the NRT task which remained constant, to increase the workload up 
to 110% in increments of 5%. The purpose of these modifications was to test the scheduler's 

performance under varying workloads. The periods of each task were not modified, except by the 

SRT tasks in the rate-based scheduler to compensate for utilization overload. We used three 
scheduling algorithms: Rate-Monotonic (RM), Deadline Monotonic (RM), and Earliest Deadline 

First (EDF) for comparative analysis of the Rate-Based (RB) scheduler. To simulate the non-real-

time task, we implemented it as a periodic task in RM and a sporadic task in DM and EDF. The 

task wcet and period were calculated using an overall system utilization of 10%, which represents 
the β factor used by the RB scheduler. 
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Figure 3a: RM Scheduling 

 
 

Figure 3b: Deadline Monotonic Scheduling 

 

 
 

Figure 3c: Earliest Deadline First Scheduling 
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Figure3d: Rate-Based Scheduling 

 

Figure 3a illustrates the RM scheduling, which represents how the different task types perform 

under rate-monotonic scheduling. Notice that the hard real-time tasks are unaffected, while 
around 85% of the NRT real-time response times grow increasingly worse. This is expected as 

the utilization increases since the NRT tasks are assigned a lower priority than the other task 

types. Additionally, the SRT tasks experience rapidly increasing response times around 100% 

utilization. This is also expected because as utilization increases, the HRT tasks will be allocated 
their targeted resource rate, delaying resources to the SRT and NRT tasks. The DM scheduler 

depicted in Figure 3b performs better because it assigns priorities based on the task’s deadline, 

not the period. Also, notice that with DM, the SRT and NRT task response times increase at a 
slower rate than those using RM scheduling.  Compared to RM and DM, the EDF scheduler 

performs better if the total utilization is less than or equal to 100%. Notice that as soon as the 

utilization exceeds 100%, all task types experience significant increases in response times. This, 
too, is to be expected because of the cascade effect in Earliest Deadline First (EDF) scheduling, 

which occurs when a single task missing its deadline causes subsequent tasks to miss their 

deadlines.  This leads to a cascade effect where delayed tasks push back the execution of 

subsequent tasks, causing a chain reaction of missed deadlines and increased response time. 
Clearly, the RB algorithm is superior for a rate-based task set. While the average response time is 

higher for NRT tasks and slightly higher SRT, no HRT tasks miss their deadlines, and both SRT 

and NRT task types maintain relatively uniform response times even after the systems become 
overloaded.  Figure 4 depicts the number of deadline misses suffered by the RM, DM, and EDF 

algorithms. 
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Figure 4: Task Deadline Miss Rate 

 

For implementation into an actual RTOS platform we used VxWorks 7 along with the VxSim 

simulator to implement and integrate the rate-based scheduler. VxSim simulates the VxWorks 
environment on a host machine, providing a virtual platform for testing and evaluating 

applications without the need for physical hardware. It supports full network capability and can 

simulate multiple instances, making it ideal for comprehensive testing of distributed applications. 
We executed tasks in VxWorks using the fixed priority pre-emptive scheduler and our integrated 

rate-based scheduler for our tests. We used a sample task set to compare the schedulers indicative 

of real-time and non-real time processing likely to be performed on an IoT device. The sample 

real-time task workloads consisted of the following tasks: 
 

1. HRT: Sensor Data Processing: The task that involve reading data from sensors at regular 

intervals, such as temperature monitoring systems or motion detectors. 
2. SRT: Multimedia Streaming: Handling audio or video streams where data packets need to 

be processed and delivered at a consistent rate to ensure smooth playback. 

3. HRT: Control Systems: Tasks in industrial automation where control signals must be sent 
to machinery at precise intervals to maintain proper operation. 

4. SRT: Network Packet Processing: Managing network traffic where packets need to be 

processed at a certain rate to maintain network performance and avoid congestion. 

5. NRT: Periodic Data Logging/Aggregation: Recording data from various sources when 
available. 

 

Except for the NRT process, each task performed an infinite loop consisting of a read()or write()  
operation on a UDP socket or virtual device using  VxBus followed by a computation phase with 

a known execution time. In addition, we configured message generators to send and receive data 

with the desired size and rate to the corresponding sending/receiving task. The goal was to 

evaluate how rate-based allocation performed compared to VxWorks's traditional priority-based 
method. Similar to how it was evaluated with the Cheddar simulator, we modified the 

computation phase of each task to simulate overall system utilization. 

 
Tables 3 and 4 provide the overall minimum, average, and maximum response times for the fiver 

real-time tasks described above. The response time is measured in ticks, each tick can be from 1- 

1.99 milliseconds depending upon when the tick value was acquired. 
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Table 3: Fixed Priority Scheduler (VxSim) 

 
 Task Utilization~ 0.65 Task Utilization ~1.0 Task Utilization ~1.1 

Task Type Min Avg Max Miss Min Avg Max Miss Min Avg Max Miss 

Sensor 

Data 

Processing 

6.0 6.0 6.0 0%. 16.0 16.0 16.0 0% 50.0 59.0 24.0 0% 

Multimedia 

Streaming 

6.0 7.2 12.0 0% 8.0 11.4 24.0 20% 5.0 6.5 29.0 5% 

Control 

Actuation 

1.0 1.0 1.0 0% 3.0 3.0 3.0 0% 3.0 3.0 3.0 0% 

Network 
Packet 

Processing 

15.0 16.2 20.0 0% 29.0 39.4 50.0 40% 13.0 21.3 58.0 2.5% 

Data 

Logging 

35.0 36.2 37.5 0%. 37.0 42.5 45 0% 166.0 180.0 400.0 25% 

 
Table 4: Rate-Based Scheduler (VxSim) 

 
 Task Utilization ~0.65 Task Utilization ~1.0 Task Utilization ~1.1 

Task Type Min Avg Max Miss Min Avg Max Miss Min Avg Max Miss 

Sensor 

Data 

Processing 

12.0 16.0 20.0 0%. 54.0 64.0 74.0 0% 50.0 59.0 74.0 0% 

Multimedia 

Streaming 

6.0 6.0 6.0 0% 8.0 8.4 8.0 0% 5.0 6.5 8.0 5% 

Control 

Actuation 

1.0 1.0 1.0 0% 3.0 3.0 3.0 0% 3.0 3.0 3.0 0% 

Network 

Packet 

Processing 

15.0 15.0 15.0 0% 29.0 29.0 29.0 0% 13.0 21.3 27.0 0% 

Data 
Logging 

37.0 37.0 37.0 0%. 200.0 200.0 200.0 0% 166.0 180.0 187.0 0% 

 

The results are mixed when the overall system utilization is nominal the traditional fixed priority 

scheduler performs better regarding Vresponse times though the response times for HRT tasks in 
the rate-based scheduler are comparable to the fixed-priority scheduler. While the SRT tasks 

response times are increased in the rate-based scheduler both SRT and NRT response times are 

more uniform as compared the fixed-priority scheduler.Additionally, rate-based scheduling 
experienced no task deadlines misses with there was a heavy or overloaded task load. 

 

6. CONCLUSIONS AND FUTURE WORK 
 

Rate-based resource allocation mechanisms provide a dynamic approach to managing 
computational resources, that stand out for their ability to adjust task execution rates based on 

system demands. Their unique advantage lies in their suitability for real-time systems, where 

meeting strict deadlines and ensuring resource efficiency are paramount. This is especially true in 
environments with fluctuating workloads like distributed IoT networks.  The implemented 

scheduler was thoroughly evaluated using the Cheddar scheduling analysis tool, enabling 

theoretical verification of schedulability and timing performance. Additionally, the VxWorks 

VxSim simulator was used to verify the scheduler's practical performance in a controlled 
environment, mimicking real-world execution. Initial results indicate that the rate-based 
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scheduler successfully manages task execution under varying system loads, improving deadline 
adherence compared to traditional fixed-priority and round-robin scheduling techniques. This 

work underscores the potential for a rate-based scheduling approach as an efficient solution for 

ensuring predictable and reliable performance in real-time distributed systems, offering an 

alternative to existing scheduling mechanisms in real-time operating systems like VxWorks. 
 

For future work, we have a clear plan to extend the implementation of the rate-based scheduler to 

run on a single-board computer (SBC), such as the Raspberry Pi orSTM32L4 IoT node. This step 
will allow us to assess the scheduler's performance and adaptability on resource-constrained 

devices commonly used in IoT and embedded applications. By transitioning from a simulated 

environment to actual hardware, we aim to identify any hardware-specific challenges and 
optimize the scheduler to better handle the constraints of SBCs, such as limited memory, 

processing power, and energy efficiency. The detailed plan for future work provides a roadmap 

for the research, helping the reader understand the next steps and the potential impact of the 

research. Another key area for future work involves expanding the scheduler's capabilities to 
support resource sharing among cooperating tasks. In real-time systems, tasks often need to share 

resources such as memory, communication channels, or sensors, which introduces the potential 

for contention and blocking, leading to missed deadlines. We plan to incorporate resource-
sharing mechanisms that maintain the predictability and efficiency of the rate-based scheduler 

while preventing priority inversion and reducing the likelihood of deadlocks. This will involve 

integrating priority inheritance or priority ceiling protocols and dynamically developing 
techniques for managing shared resources based on the rate-based task execution model. Such 

enhancements will make the scheduler more robust and adaptable for real-world applications that 

require coordination between multiple interdependent tasks. 
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	If taskInQueue(tcb) then return
	else
	end if
	qReadySort()
	else (1)
	end if (1)
	endif

