78

CHAPTER 4

SCHEDULING USING NON-UNIFORM LAXITY AS A
SLACK DISTRIBUTION MEASURE

While scheduling tasks using the modified proportionate fairness
strategy, tasks are scheduled using minimum resource, leaving a large amount
of resource unutilized. This unutilized resource is cumulated and stored as
slack. Slack is the additional resource available which can be utilized to
schedule tasks that arrive at a later point of time with inadequate resource.
This slack may be distributed among the needy tasks based on a suitable slack
distribution measure. The second scheduling approach proposed in this thesis
is a non-uniform laxity based slack distribution measure to ensure that all

tasks get slack in proportion to their actual requirement.

The chapter is organized as follows: Section 4.1 explains how non-
uniform laxity is obtained. Section 4.2 explains the algorithm with an
example. Section 4.3 discusses the simulation results using Cheddar and

SESC. Section 4.4 concludes this chapter.

4.1 NON-UNIFORM LAXITY

The unutilized portion of resources after scheduling tasks by the
modified proportionate fairness strategy is cumulated as slack. The slack is
distributed among tasks based on their requirement using a slack distribution
measure. In this work, a new slack distribution measure, namely, non-uniform
laxity has been proposed. The laxity of a task is made proportionate to the

share of resource actually utilized by the task using a weight measure.



79

The weight of the task is given by

execmin(task)
WCET(task)

Wt(task) = { j xcorecost 4.1)

where, execmin (task) is the minimum execution time, WCET (task) is the
Worst Case Execution Time and corecost is the computation cost involved to
execute the task on the core. Laxity is a measure of the flexibility available

for scheduling a task.
The laxity of the task is given by
Lax (task) = (Deadline (task)-(Arrivaltime (task) + execmin (task) 4.2)

where Lax (task) is the laxity, Deadline (task) is the deadline and execmin

(task) is the minimum execution time of the task.
Non-uniform laxity of the task is given by
nlax (task) = (Lax (task) x Wt (task)) 4.3)

The task utilization based on the non-uniform laxity is obtained using the

relation

nlax(task)
Deadline(task)

U, (task) = (4.4)

The total task utilization (Wen et al, 2007) is computed using the equation
Ut = 1.5 + | Upax-0.5] (4.5

where umax is the maximum utilization of the task set under consideration.
The modified task utilization is obtained as a product of U, (task) and Uy,

The slack to be granted to each task is given as a product of modified task

utilization and non-uniform laxity.



80

The different constraints to be taken into account while carrying out

the scheduling analysis is discussed in the next section.
4.1.1 Constraints for Non-Uniform Laxity

e For a system with less than two cores, complete
schedulability of all task within the task sets can be obtained
by evaluating the following constraint (Chao et al 2006)

Uit <= (z+1) 12 (4.6)

where, U, is the total task utilization and z is the number of

Corces.

e For a system with more than two cores, complete
schedulability is given by the following constraint (Chao et al,
2006)

Usot < (2 = ((Z -1) X Umax)) (4.7)

where U, is the total task utilization, z is the total number of

cores and u,,,, is the maximum task utilization.

e  When the non-uniform laxity of a task becomes 0, the task set
will be completely schedulable, if and only if the total task
utilization is less than L. (Chao et al, 2006). The factor L is

given by

L:(zx(l-(%)D (4.8)

where, z is the number of cores and ¢ is Euler’s number.

The tasks execution status is analysed based on the following non-

uniform laxity conditions.



4.1.2

81

Scheduling Analysis based on Non-Uniform Laxity

When the non-uniform laxity is positive, tasks are stored in a
holding queue and are not dispatched for execution.

When the non-uniform laxity approaches zero, the tasks are
prioritized in a queue for execution.

When the non-uniform laxity becomes zero, tasks are urgently
dispatched for execution whether they are in the holding
queue or in the execution queue.

When the non-uniform laxity becomes negative, tasks are
discarded from the holding or execution queue, as these tasks
will surely miss their deadline. The scheduling analysis
eliminates the condition of non-uniform laxity turning out to
be negative as far as possible, by monitoring the non-uniform

laxity periodically.

The algorithm and an example to illustrate the working of the

same are discussed in the next section.

4.2

ALGORITHM

The expressions used in the algorithm are given below:

L= (zx(l—(ljjj, z 1is the total number of cores and e is
e

Euler’s number

Weight of task is given by

execmin(task)

Widtask) = (( WCET(task)

J X COTE COS tj where execmin (task)

is the minimum execution time, WCET (task) is the worst
case execution time and corecost is the computation cost for

the task to be executed on the core.



82

e  Laxity of the task is given by Lax = (Deadline — (arrival time
+ execmin)), where execmin is the minimum execution time

of the task.
e  Non-uniform laxity is given by nlax = (Wt x Lax)

e  Task utilization of EDF algorithm is given by Ugpgp=

(execmin / Deadline)

e  Task utilization of Non-uniform laxity algorithm is given by

U, iax = (nlax / Deadline)

° Total task utilization is given by Uy = 1.5 + |upa — 0.5,

where u,,,, isthe maximum task utilization
° Modified task utilization MU is given by = (U X Ujjax)

. Slack granted to tasks SI. = (MU x nlax)

The algorithm is outlined below:

) For all cores do
e  For all tasks do
e Start scheduling tasks using EDF

e Define two queues namely holding (H) and execution

queue (X) for performing operations on tasks

e Compute factor L, original task utilization,
modification factor, modified task utilization, weight

of tasks, laxity and non-uniform laxity
o If (modified task utilization <((z+1)/2)) then

o Append task to execution queue

fi



83

. If (modified task utilization <2) then
o Append task to holding queue H
fi
e  If(modified task utilization >=2) then
o Append task to execution queue X
fi
¢ Execute the tasks on the respective cores
o If (non-uniform laxity >0) then

o Append task to holding queue

fi
o [f ((non-uniform laxity =0) & (modified task utilization <2))
then
o Urgently remove task from holding queue and

append to execution queue
fi
. If ((non-uniform laxity =0) & (modified task utilization >=2))
then
o Remove task from holding queue and append to
execution queue
fi
. If (modified task utilization <2) then
o Execute task on next core
fi
. If ((non-uniform laxity<0) & (modified task utilization > L))
oDeclare task has missed its deadline
oDiscard the task from the holding queue H
fi
od
od
End the procedure



4.2.1

four cores. The core speeds of all the cores are assumed to be 1 GHz. The task

parameters are indicated in Tables 4.1 and 4.2.

Example

A task set comprising of six tasks is assumed to be scheduled on

Table 4.1 Task parameters

Task Arrival time exi‘glil‘;ii(‘)‘l‘l“t‘i“me Ex;’l:tsltoﬁf;e Dead line (d)
T1 5 10 20 35
T2 26 11 22 53
T3 49 20 40 91
T4 7 30 60 76
TS 68 25 50 126
T6 20 28 56 100

[Upmax — 0.5, where ug,,, = 0.4 (as indicated in table 4.2), the maximum task

The total task utilization of the task set is given by Uy = 1.5 +

utilization of the task set. Hence, U, = 1.5+ 0.1 =1.6.

Table 4.2 Calculated parameters

Task Slack
Non- Task utilization | Modified ranted
Task Weight Laxity uniform e due to task g
. utilization e to tasks
laxity nlax utilization SL
(Unlax)
T1 0.5 20 10.0 0.3 0.3 0.5 4.6
T2 0.5 16 8.0 02 0.2 0.2 1.9
T3 0.5 22 11.0 02 0.1 0.2 2.1
T4 0.5 39 19.5 04 0.3 0.4 8.0
T5 0.5 33 16.5 02 0.1 0.2 35
T6 0.5 52 26.0 0.3 0.3 0.4 10.8




85

Core 3

Core 4

Figure 4.1 Conventional EDF Schedule without slack time measures

In Figure 4.1, tasks are scheduled based on conventional EDF in
increasing order of deadlines. Task utilization of individual cores can be
computed based on the entire allocated time. The sum of the task utilizations
on any core is less than 1. The sum of task utilizations on core 1, core 2, core

3 and core 4 are 0.5, 0.6, 0.3 and 0.2 respectively, which is less than 1.

The EDF schedule is modified by incorporating the non-uniform

laxity component. This is accomplished by modifying the task utilizations.

The modified task utilizations on core 1, core 2, core 3 and core 4 is
0.7, 0.6, 0.4 and 0.2 respectively, as shown in Figure 4.2. The maximum task
utilization is 0.39 when tasks are scheduled with minimum resource allocated.
Hence, the total task utilization is 1.5 +|0.4 — 0.5] = 1.6. For task 1, the laxity
is (35 — (5+10)) = 20 as shown in Table 4.2. The weight of task 1 is given

by (%] x 0.33=0.2 . The modified task utilization of task 1 is 0.2. The slack to

be granted to task 1 is 0.5. Similarly, slack for all other tasks are computed.



86

For all tasks to be schedulable, the factor L is given

by[4 x [1 - [217)}} = 2.5. The modified task utilizations on core 1, core 2,

core 3 and core 4 are 0.7, 0.6, 0.4 and 0.2 respectively. As the modified task

utilizations is less than L, all tasks in the task set are schedulable.

: i
c1 ! . | Exec time | |
: Excc timme H :ﬁ'—: Slack
] i H :
T ! == E i
I ] ] T T T | T [ T 1
(] = 10 i1s 20 25 30 35 Q40 45 S50 55 a0
Slack
c= Exec time =
xec time
B — E o 5 T Slack
. :-—--iq
T4 | | TS | E
I | I | ! | I [ 1 [ | I 1
(o] 10 20 30 40 S50 [sle] FO 20 a0 100 1310 120
cs Exec time
. -/— Slack
TS H
I 1 I I I I I I ] I [ ] 1
Lo ] 10 20 30 40 S50 [=1e] TO B0 f=l0 100 110 120
ca
Exec time e Slack
-
TS HI
I [ T I 1 I T 1 1 T 1 | 1
o 10 20 30 40 50 [=1e] el 80 Q0 100 110 120

Figure 4.2 Modified EDF Schedule incorporating non-uniform laxity

4.3 SIMULATION RESULTS

The algorithm has been simulated by varying the number of cores
up to 100 and tasks up to 150. The algorithm has been simulated using
Cheddar, a real time scheduling tool and SESC, an architectural simulator.
The performance of the algorithm is evaluated based on the resource
utilization and task schedulability. The simulations have been carried out by
comparing the EDF based non-uniform laxity approach with conventional

EDF approach. The non-uniform laxity based approach has been compared



87

against existing laxity based approaches, namely, Least Laxity First, Zero

laxity and Uniform laxity approach (Cirinei and Baker 2007).

4.3.1 Resource Utilization

The EDF based non-uniform laxity approach has been compared
against existing scheduling approaches like EDF, Least laxity, Zero laxity and
Uniform laxity based approach using Cheddar. Cheddar gives the schedule for
the tasks. Based on the schedule arrived using Cheddar, the algorithm is
simulated on SESC to observe the execution of tasks on cores. Table 4.3
compares EDF, Least laxity, Zero laxity and Uniform laxity based approach
using Cheddar. For example, when 6 tasks are scheduled on 4 cores, the
conventional EDF based non-uniform laxity approach utilises 69.0 units,
whereas the EDF, Least laxity, Zero laxity and Uniform laxity approaches
utilise 56.0 units, 51.0, 48.0 and 51.0 units respectively . It can be observed
from table 4.3, that the EDF based non-uniform laxity approach gives better
results compared to the other laxity based approaches. The EDF based non-
uniform laxity approach is then simulated on SESC. The EDF based non-
uniform laxity approach improves resource utilization, compared to EDF, Least
laxity, Zero laxity based approach and Uniform laxity based approach by 31%,
44%, 34% and 37% respectively. The results are also illustrated in Figure 4.3.



88

TLe 6'€E vy TIe 9'sy ree 9'€€ L'1€ T's€ ase.Ay
6'8¢ 91¢ sy 'Ly Y4 81 61 Ll LT 0sT 001
6Tk ¥o¢ 6Ty 143! 0¢ 1c 4 1c 9T 96 ¥9
0oy L0T 8'sy 9'6C 133 Y4 6T ¥C LT 8Y [43
06T 9Ll '8y 0'sT oF 53 143 LT [43 ¥C 91
STy L8y 9Cs 8'9¢ 8¢ 8% 6¢ 8¢ LE 81 Cl
6'1¢ (%44 607 91T 9 Ly 94 a4 s Cl 8
£5¢e 8cy £se Tee 69 s 8Y s 9¢ 9 ¥
(xequ) Suxey | (xeqn) ey (12) 1D
fyxeg ULIOJIUN-UO N uLIoyru) A)xe] 0097 Xe[ }SBIT aaw aqaa
: £)Ixe 0197 SA AIxe] 358 SA AQd sA
QM_MM%M_%MWG qaeoadde Aixey qaeo.adde Aixe| qaeo.adde Aixe| syse} $3.109
1 el ULIOFIUN-UO N ULIOJIUN-UO N ULIOJIUN-UO N Jo J_dquInN Jo JdquInN
ULIOJIUN-UO N
du Jorududsoadwy | Jojuwdwdaoaduwry | yojudwdAoxdury
JO judtIaAo.Ldiy UOPEBZINN IXIN0SIY
1eppay) suisn-yoeoadde paseq A)IXe[ ULIOJIU[) PUE A)}IXE[ 0137
Jmhﬂ %ﬁ%n& S8 a_.m—ﬁ—mH SA SQNO&Q&N %amxnﬁ uLojiun-uou yyum g 40j uonezijnn 3danosaa ul aﬂOE?thQEH € ¥ 9qe L,




89

80
70
§
prar}
8 50 - W EDF
%
v 40 - M Least laxity
§ 30 Zero laxity
L]
e 20 m Uniform laxity
10 - m Non-uniform laxity
0 -
4 8 12 16 32 64 100
Number of cores

Figure 4.3 Resource utilization of EDF based non-uniform laxity Vs
EDF, Least laxity, Zero laxity and Uniform laxity based
approach-using Cheddar

The EDF based non-uniform laxity approach has been compared
against conventional EDF approach using SESC. The results are tabulated in
Table 4.4. For example, when 6 tasks are scheduled on 4 cores, the
conventional EDF based non-uniform laxity approach utilises 71.0 units,
whereas the conventional EDF approach utilises 56.0 units. The EDF based
non-uniform laxity approach improves resource utilization, compared to
conventional EDF approach by 33%. The results are also illustrated in

Figure 4 4.



Table 4.4

90

Improvement in resource utilization for EDF based non-

uniform laxity approach Vs conventional

using SESC

EDF approach-

Resource utilization
Number of cores Number of tasks EDF based non- Improvem];;l)tFnl;x EDF
EDF (EDF) uniform laxity (nlax over (*4)
EDF)
4 6 56 71 26.8
8 12 51 65 275
12 18 37 46 243
16 24 32 46 43.8
32 48 27 36 333
64 96 26 36 385
100 150 17 23 353
Average 35.1 46.1 32.8
&0
70 -
'5 60 -
=]
5 50
E
3 40 HEDF
=
3 30 -
E W EDF based non-uniform
20 laxity
10 +
0 -
4 8 12 16 32 61 100
Number of cores

Figure 4.4

Improvement in resource utilization of EDF based non-

uniform laxity Vs conventional EDF approach-using SESC




91

4.3.2 Task Schedulability

The EDF based non-uniform laxity approach has been compared
against existing scheduling approaches like EDF, Least laxity, Zero laxity and
Uniform laxity based approach using Cheddar. Cheddar gives the schedule for
the tasks. Based on the schedule arrived, the algorithm is simulated on SESC
to observe the execution of tasks on cores. Table 4.5 compares EDF, Least
laxity, Zero laxity and Uniform laxity based approach using Cheddar. For
example, when 6 tasks are scheduled on 4 cores, the EDF based non-uniform
laxity approach schedules 5 tasks, whereas the EDF, Least laxity, Zero laxity
and Uniform laxity approaches schedule 3, 4, 3 and 4 tasks respectively . The
EDF based non-uniform laxity approach is then simulated on SESC. The EDF
based non-uniform laxity approach improves task schedulability, compared to
EDF, Least laxity, Zero laxity based approach and Uniform laxity based approach
by 59%, 42%, 44% and 21% respectively. The results are also illustrated in
Figure 4.5.



92

60T 9'ey (384 v'6s 8F ¥ LE 143 €€ aferaay
91 ol 1ee ¥'8C 1 or1 0T 0¢l1 ST STl 6T 11 143 911 0sT
§Te 66T (44 9LL 6 L8 ST 1L 6T L9 94 €< Ly oF 96
6°LI £€¥9 ¥oL 98¢ [ 9 6 6¢ 0T 8T 1T LT 61 6C 8F
T SLe L9Y T'LS [ < 9 81 8 91 6 ST 01 4! ¥C
¥1c 8°0¢ LTy 0oL 1 L1 ¥ ¥1 S €1 9 [t 8 01 81
T T'LS e T'LS 1 11 € 6 S L € 6 S L [t
0'sT L'99 154 L99 1 S [ ¥ € € [ ¥ € € 9
passim pa[npayos passim panpayas passiux panpayos passim panpayds passim panpayos
) syse, yse ], Syse ], SYSeL, SYSeL, SYSeL, SYSeL, SYSeL, syse, syse,
(%) 1N 1080 | (%) TZ 1240 | (%) TT 40 o
I3A0 se
XVINJO XVINJO XVINJO R o Anxe Awwoq%z._s (10) A1xe] wiopun (12) Anxe 007 (1D Anxerysea] a4 w_.o«
juduwdaoaduy | jusuwdsoaduy | jusurdaoadury XVINS el N N JOrON
judwdsoadwy
Annqempayos yse,

1eppay) suisn — saydeoadde paseq Ayxe[ wLiojiu) pue AIxe|

0497 ‘Ayixe] 15831 “Add SA Yyoroadde Aixe| uniojiun-uou paseq JqH - AM[Iqe[MpPayYds yse) ul yudwdroxduy

SV 9lqeL




93

160
140
o
3
3120
2
» 100 M EDF
£ .
g 80 m Least laxity
b .
g 60 Zero laxity
'E 40 m Uniform laxity
3
= ) .
20 m Non-uniform laxity

6 12 18 24 48 96 150

Total number of tasks

Figure 4.5 Improvement in task schedulability - EDF based non-
uniform laxity approach Vs EDF, Least laxity first, Zero
laxity and Uniform laxity based approach — using Cheddar

The EDF based non-uniform laxity approach has been compared
against conventional EDF approach using SESC. The results are tabulated in
Table 4.6. For example, when 6 tasks are to be scheduled, the EDF based non-
uniform laxity approach schedules 5 tasks, whereas the conventional EDF
approach schedules only 3 tasks. The EDF based non-uniform laxity approach
improves task schedulability by 58%, compared to conventional EDF

approach. The results are also illustrated in Figure 4.6.



94

Table 4.6  Improvement in task schedulability - EDF based non-
uniform laxity approach Vs conventional EDF - using SESC

Task schedulability
Improvement of
Number of | Number of EDF EDF modified with nlax EDFonlas over
cores tasks EDF (%)
Tasks . Tasks .
scheduled Tasks missed scheduled Tasks missed
4 6 3 3 3 1 66.7
8 12 7 5 10 2 429
12 18 10 8 17 1 70.0
16 24 14 10 21 3 50.0
32 48 29 19 46 2 358.6
64 96 49 47 94 2 91.8
100 150 116 34 146 4 259
Average 33 48 58.0
160
- 140
w
3 120
4]
=
S 100
v
F 80 mEDF
L
s
°© eU
a 10 M EDF based non-uniform
g laxity
= 20
U -
5] 12 18 24 48 96 150
Total number of tasks

Figure 4.6 Improvement in task schedulability - EDF based non-

uniform laxity approach Vs conventional EDF-using SESC




95

4.4 SUMMARY

This chapter has proposed a new laxity based approach to distribute
slack resource proportionate to the requirement and priority, thus preventing
wastage of resources. The simulation results show that non-uniform laxity

based approach improves resource utilization and task schedulability.

The non-uniform laxity discussed in this chapter is effective in
slack distribution as long as the scheduling parameters can be estimated
precisely. However, in real time situations, where there is lack of precise
knowledge of these parameters, the scheduler still has to distribute slack, so as
to ensure that no task misses its deadline and all tasks get their entitled share

of slack resource. These issues are addressed in the next chapter.



