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Abstract In recent times Formal Techniques have been strongly recommended in
the engineering life-cycle of safety -critical systems. With this, Architecture Analy-
sis & Design Language (AADL) is a widely spectrum accepted architecture model-
ing language that can be wrap with Formal Modeling techniques, that proficiently
helps in the design of a safety-critical system and circumscribes various analytical
features for modeling the hardware and software architecture/s, against the required
as per the guidelines set aside in RTCA DO-178C (333- Formal Based Modeling).
This paper discusses the use of architecture modeling language along with formal
based techniques for the analysis of RTOS architecture which is important in the
correct implement of the given requirements. The architecture of the RTOS is ex-
pressed and analyzed using AADL. A suitable case study such as Stall Warning
System/Aircraft Interface Computer (SWS/AIC), RTOS scheduler is modeled and
analyzed. The analysis of results are mapped to the workflow prescribed in RTCA
DO-178C for generating the certificate artifact and establishing the effectiveness of
architecture based design analysis in the software engineering process.

Keywords Safety-Critical system - Multi-function - RTOS - Formal method -
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1 Introduction

Avionics architecture means set of various electronics operated in aircrafts.
Since 70’s avionics architecture is composed of several digital and communication
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systems which support more and more avionics applications such as flight con-
trols, and flight management system’s to name a few. Over the years as the de-
mand is increasing, the avionics system architecture is becoming complex and
central component of an aircraft. In case of civil aerospace 30 to 40 % of devel-
opment cost is due to avionics system whereas in case of military it goes to 40 to
50% [1]. The higher cost of avionics system is because it involves more R&D
work for each and every system that has been installed in aircraft. This cost can be
reduced if we analyze the system earlier in the phase i.e. before the design level
which is the Architecture level. Architectural analysis not only helps in detecting
the design flaws earlier but it also helps in understanding the system requirements.

RTOS plays a critical role in realizing the real time functionalities of the Safe-
ty-Critical Systems. The scheduling feature of the RTOS provides the timeliness
of the embedded systems. In this paper, we propose an approach to analyze the
architecture of the RTOS. Analysis of RTOS helps in identifying potential risks of
the scheduler against the requirements [2]. Developing a reliable RTOS architec-
ture for a complex system is a critically important step for ensuring that the system
satisfies its principal objectives. Examples of safety critical RTOS includes QNX,
VxWorks, DEOS, and LynxOS [3].

The paper provides an approach to analyze the RTOS scheduler. This is done
by means of a case study of the SWS/AIC RTOS scheduler. The RTOS scheduler
is modeled using the AADL using the OSATE plug-in in Eclipse IDE. The sche-
duler timeliness, processor utilization and response time features are analyzed as
per the project requirements. The analysis results are mapped to the RTCADO-
178C/ DO-333 workflow to establish certification of RTOS using formal methods.

2 Literature Survey

2.1 Complex Safety-Critical Systems

Advanced avionics systems are computer centric systems which are used to
achieve the desired functionality. Failure in these systems endangers the human
life and large scale of economics [5][6]. Functionality within the avionics software
continues to expand. Additional software capabilities bring many more lines of
code, and generate opportunity for error. As the complexity requirements and
criticality of avionics software grow, innovative tools are used to test, verify and
secure the architecture of such systems." Safety-Critical Systems has to be bug
free, and it has to work according to specifications”, that’s where the FAA’s
RTCA DO-178B(C) standards comes in. Static analysis software tool analyze
source code to derive properties that can helps in detecting the errors that might
not be apparent to the programmer, while dynamic analysis tool helps in showcas-
ing which code is executed by the test suite. "All have their place in safety critical
development”, for a complex safety critical avionics software, the requirements
for testing and validation are higher than most of other software [7][8][9][10][11].
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2.2 RTOS

Real-Time Operating Systems (RTOS) are required to provide a predictable plat-
form for the execution of multiple software tasks on single microprocessors.Every
RTOS has a kernel, which serves as its core. The core is surrounded by shell lay-
ers, which provide protection and access authorizations. The RTOS manufacturer
provides a set of APIs, which are used to access this kernel to perform tasks. The
kernel contains a scheduler to execute these threads in a sequential manner.
RTOSs are of three types; Hard real-time, Firm real-time and Soft real-time. In a
hard real-time system the tasks and interrupt requests must be completed within
their required deadlines. Failure to meet a single deadline may lead to a critical
catastrophic system failure. Firm-real time system tolerates the missing of a few
deadlines; however, missing more than a few may lead to complete disaster. A
soft real-time system is one in which deadlines are mostly met, but this constraint
is not very stringent. RTOS must have sufficient number of priority levels and
must avoid priority inversion. RTOS Scheduler is the most critical component as it
ensures the timeliness of the tasks as per the requirements [3].

2.3 Formal Methods

Nowadays the advantages of formal methods for the development and certification
of safety-critical software are widely recognised by both Software Engineering
community and standard organisations [18]. Some safety critical domains specific
standards explicitly either highly recommend or mandatory require the use of
formal methods. The specific benefit recognised to formal methods is that they
allow "complex behaviour" to be analysed (by means of proofs or state explora-
tion), reviewed, and analysed in their totality, rather than merely sampled as by
testing or simulation. Thus, the major benefit derives from a double application of
formal methods that is by formal requirements specification coupled with formal
verification. From the certification point of view, formal methods are recognised
to increase the degree of confidence in achieving software of high integrity levels
[23]. Formal methods that are able to address real-time issues offer a unique op-
portunity for the specification of such time critical operating systems[20].The ad-
vantage of using formal methods in avionics software is because of

e  Reduced Cost : Early detection/Elimination of defects
e [Increase Confidence: Complete examination of models and requirements
e Satisfy certification Objectives: RTCA DO-178C [19]

3 Proposed Methodology

3.1 RTOS Kernel Overview

In this paper we propose a methodology to validate the RTOS architecture of a
proven safety-critical system, Stall Warning System / Aircraft Interface Computer
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(SWS/ AlC)kernel architecture. The proven system is selected in order to prove the
effectiveness of architecture analysis and its certification impact with respect to the
civil aerospace software standard RTCA DO-178C [16].

SWS/AIC system kernel is known asAPM2000 kernel. The scheduler schedules
and dispatches the application tasks as per their grouping into fast, slow, and
background tasks[21]. The complete processing of application is carried out
through foreground and background tasks. The foreground task consists of fast,
and slow tasks, fast task is executed every 25 msec. The slow task is executed
every 100 msec. The fast task has higher priority than the slow task and back-
ground task. Background task has the least priority. At the startup sequence, the
software manages all the interrupts to schedule and execute the application. The
scheduling of SWS/AIC kernel is shown in Figure 1.
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Fig. 1 Scheduling in the Stall Warning System

Note - FT: Fast Task; ST: Slow Task, BG: Background Task

In order to model the SWS/AIC kernel architecture as per the requirements we
use AADL based architecture analysis approach. To design the kernel architecture
detailed understanding of the FT, ST& BG was performed.

3.2 Fast Task Requirements and AADL Implementation

Fast task is given control by the kernel when the 25ms RTC interrupt occurs. This
task has a higher priority than the slow and background task. The maximum task
duration for the foreground task is 25msec. Only 60% of the foreground task will
be utilized which is 60% of 25msec = 15msec. The design for the fast task dura-
tion is 80% of the 15msec, which is 12msec.In the fast task, excessive context
switch and associated over-head is reduced by limiting the nesting of calls. The
fast task utilization is such that the processor throughput is not affected. The activ-
ities in the Fast task include: Acquire inputs, CCDL Tx/Rx, ARINC output
processing, Compute FT, Average Time, Discrete data validation, PTT on
ground/air, WDT Kernel call, CBIT and Shaker stall Validation. These tasks are
shown in Figure 2. The AADL model of the Fast Task is shown in Figure 3.
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Fig. 3 AADL representation of fast task

3.3 Slow Task Requirements and AADL Implementation

Slow task in the foreground is given control by the kernel when the 100ms RTC
interrupt occurs. This task has a higher priority than background task but lower
than the fast task. The design for slow task duration is about 20% of 15msec =
3msec. The Fast Task interrupt can preempt this 100ms slow task. The slow task
utilization is such that the process or throughput is not affected. The tasks in the
slow task are: Output validation, output processing, Compute average time, & aic
algo. These tasks are shown in Figure 4 and the AADL representation of slow task
is shown in Figure 5.
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Fig. 5 AADL representation of slow task

3.4 Background Task Requirements and AADL Implementation

Background task is given control by the kernel after Power On and during the
initialization of the system. It remains in this task until the 25ms fast task or
100ms slow task interrupt occurs. The fast task has the higher priority than
the slow task. After the execution of fast task the kernel passes the control to
slow task. After the completion of slow task, if no fast task/ slow task interrupt
occurs only then the kernel passes the control to the background task. The tasks in
the background task are: PBIT startup, CBIT, and Failed mode. The tasks are
shown in Figure 6 and the AADL representation of background task is shown in
Figure 7.
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Fig. 7 AADL representation of Background task

4 Kernel Scheduler Simulation and Analysis

The representation of the architecture using AADL becomes easier to understand
and implement as compared to the manual approach which gets finalized after
multiple reviews.

The analysis of the AADL architecture provides model, application and execu-
tion statistics. The modeling and analysis using AADL is carried out using the
OSATE Tool, Version 2.2[4].

The entire SWS/AIC kernel architecture is justified with evaluation of metrics
such as: The model statistics, application statistics, and execution platform. Model
statistics involves various aspects of model such as the component types, their
declaration instances, and data flow types. The application statistics provides brief
description about the software architecture involving thread instances, process
instances, semantic connections between them, and end-to-end flow instances. The
execution platform statistics provides clarification about the hardware instances
involved in supporting the execution of the above justified instances such as pro-
cessors and memory units that are bound during the execution of the software
instances. The metrics generated by the tool is shown in Figure 8.
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Fig. 8 Model Statistics of SWS/AIC Kernel Architecture

4.1 Kernel Scheduling Analysis

Analysis is the art of planning your activities so that you can achieve your goals
and priorities as per the project requirements. Analysis helps in:

e Understand what you can realistically achieve with your time.
e Make sure you have enough time for essential tasks.

The kernel scheduling analysis using AADL Inspector provides cheddar schedula-
ble table, Theoretical schedulable test and simulation schedulable test. Cheddar
schedulable table provides the scheduling analysis of each and every task. The
cheddar schedulable table for the SWS/AIC scheduler is in Figure 9.
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Fig. 9 Scheduling analysis of SWS/AIC Kernel

In Figure 9: Orange color represents thread is in ready state, Black color
represents thread is in running state, Solid black line represents thread is in sus-
pended state, and Green color represent process is in running.

Theoretical scheduling provides report on processor utilization factor with pe-
riod & worst case task response time. The theoretical scheduler for the SWS/AIC
is shown in Figure 10

test entity result
B @ processor utilization factor roct.me Can not apply the feasibility test on processor utilization factor on this scheduler.
base periad all 100.00000 '
processor utilization factor with deadline  all 0.73000
processor utilization factor with period all 0.73000
=] @ worst case task response time reot.me All task deadlines will be met : the task set is schedulable.
response time raot.mebgt.ot_chk_phitfm 22,00000
response time root.me bgt.o_chi_pbit.c_bit 21.00000
response time root.mc.st.icomp_st_avgtime 20,00000
response time root.me.st.st_op_proc 19.00000
response time rootmestst op valid 18.00000

Fig. 10 Theoretical Scheduling of SWS/AIC Kernel

n i l
Processor Utilization:U = Z % <n(2n—1)
i=1 Pi

n = No. of Tasks; C;= Execution Time i" task; P; = Period of i" task.

Fast task has C=15 msec, P = 25 msec; Slow task has C=5 msec, P = 100 msec;
Background task C = 2msec, P = 25 msec; So U= 0.73 &B = n.(21/“-1) =0.77
since U <B deadline will be met[24].
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Simulation scheduling provides task response time computed from simulation,
number of preemption and number of context switches. The simulation scheduler
for the SWS/AIC is shown in Figure 11.

test entity result
B @I’ask response time computed from simulatio  roat.mc No deadline missed in the computed scheduling : the task setis schedulable if you co
Mumber of preemptions root.me 0
Mumber of context switches root.mc 72

Task response time computed from simulatio  root.mcbgt.ot chk_pbit.c bit  worst = 21, best = Dand average = 13.80000
Task response time computed from simulatio  root.me.bgt.ot_chk_pbit.fm worst = 22, best = D and average = 1460000

Task response time computed from simulatio  root.me.ft.aroptpro waorst = 11, best = D and average = 880000
Task response time camputed fram simulatio  root.me ft.comftavgt waorst = 10, best = D and average = 800000
Task response time computed from simulatio roat.meft.ddv warst = 7, best = 0 and average = 5.60000
Task response time computed from simulatio  root.me.ft.fcbit warst = §, best = 0 and average = 4.00000
Task response tirne computed from simulatio  roat.mc ft.fteedind waorst = 6, best = 0 and average = 480000

Fig. 11 Simulation Scheduling of SWS/AIC Kernel

Worst Case Response Time: W = C; + Z (9) .G

jehp(i) \Fi
C;= Execution Time i™ task, P; = Period of i"task, P; = period of high priority task,
Cj= Execution time of priority task, hp(i)=the set of tasks which have a higher

priority than task i.
W,'=15, W,'=5,W,'=8, W,?=9.8 W;’=2, W;'=4 W;°=5.. .. .etc[24].

The cheddar schedulable table, theoretical scheduling and the simulation sche-
duling for the SWS/AIC system satisfies the requirements and can be used as a
proof for certification.

5 Mapping of Kernel Architecture Analysis to Certification
Artifacts as per RTCA DO-178C Workflow

Architecture analysis not only helps in understanding the requirements better
and uncovering the design flaws earlier in the process but it also helps in the ad-
dressing the certification issues. RTCA DO-178C[16][17] is the civil aerospace
software engineering guideline. The ADDL analysis report can be used to address
the objectives provided in the 178C guidelines. The objectives addressed by this
analysis are:

e Software architecture is compatible with high level requirements.
e Software architecture is consistent.

e Software architecture is compatible with target computer.

e Software architecture is verifiable.

e Software architecture is conforms to standards.

e Software partitioning integrity is confirmed.
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In our case study, the software for SWS/AIC system is designed, developed and
qualified as per the highest criticality level of the 178C guidelines. With the
AADL approach for the kernel architecture, 6 objectives of the 71 objectives are
addressed. Out of 71objectives, 6 are related to software architecture, in which 3
are independent. Table 1 shows the software criticality and the architecture level
objectives.

Table 1 The objectives related to software architecture based on criticality level.

Criticality Failure Objectives With
Level condition independence
A Catastrophic 6/71 3/33
B Hazardous 6/69 0/21
C Major 4/62 0/8
D Minor 0/26 0/5
E No Safety Effect 0/0 0/0

The analysis results by using AADL Inspector can be mapped to satisfy the ob-
jectives as shown in Table 1. Analysis report generated by the tool can be used as
an artifact to verify the effectiveness of the scheduler as per the functional, opera-
tional and safety requirements.

6 Conclusion and Future Scope

The work focuses on the importance of RTOS architecture analysis in case of
safety critical system and mapping the analysis to RTCA DO-178C compliance.
AADL based architecture analysis helps in analyzing the RTOS architecture in
terms of model statistics, resource allocation with respect to processor/s and
threads, latency analysis & scheduling analysis of various processes and threads.
This is demonstrated using the case study of the proven SWS/AIC kernel architec-
ture. AADL-based approach proposed helps in developing the confidence of the
kernel architecture for its functionality, operation and safety. The analysis out-
come provides evidence which can be mapped to the certification objectives of
RTCA DO-178C. Hence incorporating the AADL based approach in the engineer-
ing process make the process effective as it will uncover the requirements and
design flaws earlier in the life cycle and increase the safety feature of the software.

Future work involves implementation of this approach for certification of
highly complex RTOS used in the advanced avionics systems, such as Integrated
Modular Avionics which uses the hard-real time space and times partition
operating system.
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