
The TASTE Toolset: turning human designed heterogeneous
systems into computer built homogeneous software.

A. M.Perrotin1, E. Conquet1, P. Dissaux2, T. Tsiodras3, J. Hugues4

1: European Space Agency, Keplerlaan 1 - 2201 AZ Noordwijk - The Netherlands
2: Ellidiss Technologies, 24, quai de la douane, 29200 Brest, France

3: Semantix Information Technologies, K. Tsaldari 62, 11476, Athens, Greece
4: Toulouse University/ISAE at 1 place Emile Blouin, 31056 Toulouse, France

Abstract: The TASTE tool-set results from spin-off
studies of the ASSERT project, which started in
2004 with the objective to propose innovative and
pragmatic solutions to develop real-time software.
One of the primary targets was satellite flight
software, but it appeared quickly that their
characteristics were shared among various
embedded systems. The solutions that we
developed now comprise a process and several
tools ; the development process is based on the idea
that real-time, embedded systems are
heterogeneous by nature and that a unique UML-like
language was not helping neither their construction,
nor their validation. Rather than inventing yet
another “ultimate” language, TASTE makes the link
between existing and mature technologies such as
Simulink, SDL, ASN.1, C, Ada, and generates
complete, homogeneous software-based systems
that one can straightforwardly download and execute
on a physical target. Our current prototype is moving
toward a marketed product, and sequel studies are
already in place to support, among others, FPGA
systems.

Keywords: AADL, SDL, ASN.1, TASTE

1. Introduction

The area of software engineering has hardly evolved
in the past years. People often talk about the
increasing complexity of today's and tomorrow's
systems, as well as the fact that this complexity is
difficult to master; however, factually based very little
innovative methods have come out to propose
solutions that could beat the classical engineering
approach - consisting in capturing software
requirements using a good old word processor and
coding them on the fly. By chance, there are still
experienced coders who are capable of interpreting
system engineer's ambiguous wishes and make a
system that at the end does something. But it must
be said in the defence of software engineers that the
task is hard: they have to come out with means that
will be accepted both by system engineers – who
don't like tools, and software developers – who don't
like GUIs. A somewhat blind craze showed up for

graphical approaches that were sold as the ones that
would finally solve the so-called software chaos.
Unfortunately, and partly because of a lack of
thought on the nature of the systems under
consideration and on the needs in terms of
development and validation processes, this
approach quickly reached an impasse.

This paper presents various facets of the software
development methods that were explored by the
actors of the space domain in the scope of the
ASSERT project – a project that was co-funded by
the European Union and by about 30 industrial and
academic partners, and that ran from 2004 to 2007.
This project is still very active thanks to an initiative
from the European Space Agency to fund several
follow-up activities, forming what we call now
TASTE: The ASSERT Set of Tools for Engineering.
The principal results comprise a development
process, which is supported by the implementation
of a consistent tool-chain that offers novel
capabilities that are useful to cover the needs for
capturing a system's properties and derive from it a
distributed real-time software. We do not present this
solution as revolutionary ; we rather think that it is
federative, because it combines existing and mature
technologies, making a link where it was missing,
and bringing concrete, directly usable solutions to
real user needs.

2. The starting point

When we started this project, we first asked
ourselves if there was anything that was so typical to
our systems that could explain or justify why barely
any tool was used to support the development phase
- no modeling tool, no code generators, no formal
requirement capture. We have many standards
which are very demanding in terms of software
documentation and quality but operational projects
will hardly comply to requirements regarding the
need for early verification of the system based on
models. Then by looking closer to the existing tools,
and there are many on the market, we realized that
nothing really addressed our problems in a way that
was really improving the situation. Most of the tools

Page 1/10

do not care about building complete systems,
because they are not meant for engineers – actually,
their target users is rather unclear ; they will produce
nice drawings in the best case, and in the worst case
will bring a strong headache to its users. Let's be
fair! That's not entirely true: if we take a few tools
independently from each other, we can make nice
things: control laws, powerful state machines – but
not a single tool addresses our systems as a whole.

To explain this last statement, look at these
observations about our systems – and probably
yours: first the nature of embedded systems is
profoundly and fundamentally heterogeneous. This
heterogeneity goes over at least three axis:

1. the nature of the software capabilities that
are required

2. hardware buses and processors

3. industrial consortia making the systems

Inside a satellite, software realize various
functionalities that are very different one from each
other: control laws to move the spacecraft in orbit
and perform attitude manoeuvres, system mode
management, mission planning, thermal control,
communication protocols, etc. In order to achieve
these functions, project teams gather different
specialized skills from scientists and software
engineers.

In the hardware world,it is the same story: the
microprocessors we send in space are most often
derived from the SPARC architecture, in which the
internal data representation in different from the
ones of the standard PC used to control spacecrafts
from the ground. For this reason, it is for example
not an option to send a raw data to the ground
without doing a conversion to make sure it will be
interpreted correctly. On-board buses can
themselves have addressing schemes that require a
pre-processing to invert bits before using them. This
kind of manipulation, related to bit endianess, is of
course well known and frequent, but remains hard to
implement because programming languages do not
provide easy mechanisms for bit manipulation.

Third, in the space sector it is quite common that the
development of one on-board software involves
teams spread in several companies, from several
countries, each having its own way of working,
development environment, and so on.

It is therefore clear that our systems deal with
heterogeneity, and it is obviously also the case for
most embedded systems.

The second observation we made is that when we
build a new system – whatever system it is - what
counts most is what this system is thought for, its
goal. We want to make sure that the biggest effort is
made on what makes the system novel and different
from what has already been done in the past. For

instance, the orbit and the trajectory of a satellite are
central issues that require an important engineering
effort. During this phase, do we need, do we want to
be embarrassed with implementation details and
already introduce bulky software artifacts? If the
answer seems obvious, look at existing, real
software system specifications and count how many
times you find references to semaphores, binary
frame definitions, thread identifications at the very
first outline of a project. The temptation is strong
because it is important to occupy software engineers
early, when they have no direct knowledge of the
system, hence no real added value regarding its
definition. What we want to point out here is that
whatever solution we come with, it has to be related
to the system needs, and not to software issues.

A third observation ensues from this last points: skills
of software engineers in this context are often
misused ; it is a known problem: we ask to software
experts, whose aspiration is to solve technical
challenges (such as optimal resource usage) to
develop applicative code. This code, which is often
quite simple, consists in performing algorithms that
other people have conceived, as they are the
domain experts. At best, this generates a frustration,
and at worst the best software developers prefer
moving to pure software companies where they think
they can be more efficient. The space sector is
partially protected from this extreme situation, thanks
to its particular appeal but of course it is not always
the case. Then replacing experienced and valuable
people can become a real challenge now that many
schools and universities have given up with low-level
languages and concepts to privilege web-based
developers and Java.

3. Common solutions

In practice, very few solutions exist that address the
problems that we just exposed. In fact, for about 15
years, it is not exaggerated to say that an important
part of the software community simply ignored them,
favouring the solution that seemed to be accepted by
everybody: the UML language. Flouting all efforts in
formalizing both syntax and semantics that used to
be considered as so essential not only to
programming languages but also to most other
existing modeling languages (SDL, Lustre), UML
gave up with the idea that the development of
systems needed to be supported by a process, and
rather proposed a huge palette of sometimes
abstruse graphical editors. Nobody really understood
anything of these, so everybody started enhancing
the language by adding new concepts, new profiles
in an inconsistent manner. The unfortunate result is
that UML is mostly used only to help making
drawings for documentation, and that most tool
vendors have disappeared from the market. In
addition to this, companies feel that they have

Page 2/10

invested a lot in new technologies and that nothing
concrete came out if it, which of course had the bad
side effect to undermine the credibility of people
proposing alternate technologies, since in general
the arguments used by one of the other are very
close. In theory, modeling software is a major
evolution of the discipline – combined with powerful
tools, it can be a breakthrough in how we think and
develop systems, we have no doubt about that. But
decision makers now hardly believe it, and we
cannot completely blame them for that.

The idea that a unique language can address all the
facets of a software development is absurd and
unrealistic, as it amounts to denying the
heterogeneous nature of systems. In practice, who
has seriously thought of replacing Matlab or SCADE
by UML to design a control law?

4. What ASSERT/TASTE propose

The ASSERT process and tools propose a different
solution to address in a very pragmatic way the
problematic of capturing and implementing systems
using formal modeling techniques.

Systems being heterogeneous by nature, one issue
is to make them communicate, in other words
integrate the heterogeneous subsystems in the most
efficient and transparent way. What TASTE does is
to automate this integration phase in a way that it
replaces any manual (risky) intervention on the code.

Using formal languages early in the development
process allows to envisage on the models various
property checks, using specialized tools. TASTE
allows domain-specific experts to develop their part
of software in the language that they think is the
most appropriate for their need, without having to
care about any implementation constraints. The tool
takes care of the rest. Only the non-functional,
critical properties are captured at system level ; then
a sophisticated and evolutional machinery is invoked
that produces a consistent software set,
guaranteeing that the constraints imposed by the
system designers are respected at run-time. At the
end, TASTE generates complete real-time, possibly
distributed applications running either on top of a
real-time operating system combined with a
middleware, or simply on a native, non-real time
environment such as a Linux box. In addition to this,
many functionalities allow to put in place an efficient
and iterative development, facilitating tests and
analysis of results at runtime. All these features are
presented in the following parts of this paper.

To sum up the overall ASSERT process, we have
four major steps:

1. a system modeling phase, abstracting away
all purely software constraints,

2. a transformation phase, resulting in a real-
time software architecture containing tasks,
threads, and shared resources,

3. a feasibility analysis phase, verifying
statically that the user expected properties
are effectively attainable using the selected
physical architecture,

4. and finally a code generation phase,
putting all the individual blocks together and
finally generating a set of binary files that
can be directly executed on target ; all the
code that handles communication between
subsystems is produced here with no need
for any manual intervention.

The organisation of the following chapters is the
following: sections 5, 6 and 7 detail the bowels of the
TASTE technologies, explaining each step of the
process and tools to give the reader a complete
picture of what we have today. Then the last section
relates our first feedback from external users who
worked with TASTE, and the future of the toolset.

5. TASTE modeling process and tools

Overview

Figure 1 shows an overview of the global modelling
process that is proposed by TASTE. Prerequisites
consist in the availability of a preliminary software
system logical architecture, which we suppose
results from a joint work between system engineers
(who know what they want the system to do) and a
software architect. This phase is today out of our
scope. What we need is to know the main
capabilities of the system, preferably already
translated into a set of functional blocks. Our tools

Page 3/10

Figure 1: Process overview

then allow to capture this knowledge and make an
intensive use of this precious information.

The main idea is that we do not want to impose a
particular language or tool to implement the
functional blocks themselves: users can choose the
ones they consider to be the most appropriate for
each block, and let TASTE take care of the
integration. In practice, TASTE currently supports
Matlab/Simulink, SDL (ObjectGEODE and Real-
Time Developer Studio), C and Ada languages.

To support proper communication flows between the
functions, a common standard is used to specify
involved data types. In TASTE, the chosen data
modelling standard is ASN.1 from which it is easy to
automatically generate the encoding and decoding
procedures that are required for the final integration
of the application.

Another common language is used throughout the
whole tool chain as an architectural framework to
support the functional and non functional properties
of the system. The AADL has been selected to play
this role in TASTE. However, it is not required for the
end user to write AADL code at any time as it is
automatically generated by the various domain
specific tools that compose the TASTE tool chain.
But if user wants it, nothing is hidden in cumbersome
XML files and it is always possible to work at
language level – we think that development and
debugging are more efficient when information is
readable by human.

Interface view editor

The interface view editor is a graphical tool that aims
at describing the logical interactions between the
various functions of the system. In order to support
large scale architectures, functions can be grouped
into hierarchical containers.

Each function (represented by a blue box in figure 2)
is described by its provided and required interfaces.
Provided interfaces (blue triangles) are themselves
characterized by a set of non functional properties
and represent activation entry points of the function.

Figure 2: Interface view editor

Finally, connections can be defined between
required and provided interfaces to express the
logical functional dependencies inside the system.
The result of this modelling work is saved into an
AADL file for further use within the tool-chain.

Deployment view editor

The deployment view editor is another graphical tool
that is used to describe the hardware architecture of
the system and allocate the functions identified in the
interface view onto partitions located on a processor.

Figure 3: Deployment view editor

Inter processor communications can be specified
through buses and bus drivers. Each of these
modelling entities can be characterized by a set of
properties that are necessary for further code
generation. Like for the interface view, this modelling
work is stored in an equivalent AADL textual
representation.

Vertical transformation

The result of both interface and deployment views
edition can then be submitted to a “vertical
transformation” tool. The aim of this fully automated
activity is to produce a complete combined software
and hardware architecture encompassing all the
real-time and distribution properties of the system (in
particular a set of processes, threads, shared

Page 4/10

resources...). The output of the transformation is
another AADL specification that is called the
concurrency view.

Concurrency view editor

Although the concurrency view can be seen only as
an intermediate internal step within the tool chain, it
brings a unique opportunity to perform performance
analysis on the system at a model level.

Figure 4: Concurrency view editor

As the concurrency view is described as a complete
and legal AADL architecture, all the existing AADL
analysis tools can be used at that stage. The tools
that are currently integrated into the TASTE
concurrency view editor are Cheddar (see [4]) and a
dynamic simulator.

Code generation

The last step of the TASTE modelling process
consists in building the executable application from
the functional blocks, the glue code generated by
TASTE to handle transparent communication, and
the AADL architecture defining the hardware and
software interactions of the system.

The Ocarina (see [5]) tool is in charge of this task
and generates the complete compilable set of source
files while taking into accounts the run time
execution characteristics of the Ravenscar
Computation Model that has been selected for
TASTE. Then compilation and link are performed
automatically by the tool-chain orchestrator. Several
possible operating systems can be used: bare
systems using the Ada runtime (i.e. any operating
system having a an implementation of the GNAT
compiler), but also the RTEMS real-time operating
system (not depending on the Ada runtime), which is
a standard operating system in space and military
applications. Note however that using a C runtime
such as RTEMS prevents from the benefits of Ada

compiler checks (that can make sure the user does
not use forbidden constructs in his code).

We will now give some concrete example of what
you can find in TASTE models and what important
features it proposes.

6. Technology

With the work described in the previous section,
TASTE uses a high-level architectural view of the
system, that formally depicts the partitioning of the
overall system in distinct subsystems and their
interfaces. This information is expressed in the
Architecture Analysis and Design Language (AADL).

The following is an excerpt from an actual design:

TASTE_Properties::RCMoperation=>SUBPROGRAM
Packet_Router_Deposit;
TASTE_Properties::RCMoperationKind => sporadic;
TASTE_Properties::RCMperiod => 50 ms;
…
SUBPROGRAM Packet_Router_Deposit
 FEATURES
 Packet31 : in PARAMETER DataView::RequestGNC
 { TASTE_Properties::encoding => UPER;};
…
 PROPERTIES
 Source_Language => Simulink;
…

As seen in the example, the interface descriptions
include information about the

• execution profile of the interface – e.g.
timing information like period or worst case
execution time (WCET), call type (cyclic,
sporadic, etc)

Page 5/10

 SSystem A
(SDL/

ObjectGeode)

SSystem D
(Lustre/
SCADE)

SSystem B
(S imulink/

Matlab)

SSystem C
(Ada/C legacy
development)

SubSystem-
specific da ta

models
(automatical ly

derived from the
global system

model)

System
Architecture

and
Interface

Description

SDL/
ObjectGeode

data mode l

Simulink/
Matlab

data mode l

Ada/C data
structures

Lustre/
SCADE

data model

exp ressed in
AADL/
ASN.1

Figure 5: Technology overview

• implementation language/tool of the
interface (e.g. “Simulink”)

• naming and direction of the interface
parameters (e.g. “Packet31”, “in”)

• type of the interface parameters through
ASN.1 grammar specifications (in the
example above, “RequestGNC” is a type of
the ASN.1 module “DataView”).

• ASN.1 encoding specifications (e.g. “UPER”
stands for Unaligned Packed Encoding
Instructions, one of the many available
ASN.1 encodings).

The types of the interface parameters are described
in ASN.1 specifications. ASN.1 is an ISO/IEC and
ITU-T standard that allows for specification of data
structures, both from the semantic as well as the
encoding point of view. It is widely used in
telecommunication protocols, and has been selected
for use in TASTE. The following is the definition for
the example “RequestGNC” used above:

It includes all the semantic information about the
data carried across the interface’s invocation, as well
as the limitations (ASN.1 constraints) on the values
that are allowed to pass through. For example, the
first field (“small-source”) is an integer that must be
limited in the [0 .. 40] range.

The formal descriptions of interfaces (in AADL and
ASN.1) allow TASTE to automatically handle a
number of issues by using the provided information.

Model translations (“model to model” phase)

Based on the AADL/ASN.1 specifications TASTE
performs a model transformation that “targets” the
desired languages/tools where the subsystem is to
be implemented. Appropriately crafted parsers and
code generators identify the necessary information
from the AADL/ASN.1 models and create ready-to-
use project “skeletons” based on the subsystem’s
parameters (and their respective ASN.1 types).

This transformation is supported for a variety of
modelling tools (Simulink/RTW, ObjectGEODE,
Pragmadev RTDS, etc.) and implementation
languages (Ada, C/C++, SystemC/VHDL). Since it
works based on the AADL/ASN.1 model, it is always
guaranteed to generate the same semantic content
for the interface parameters, regardless of the
implementation tool/language – i.e. the “translated”
definitions of the ASN.1 types are semantically
equivalent in all the supported target
tools/languages.

Code translations (“model to code” phase)

When functional modeling is completed, the
modeling tools' code generators are invoked, and C
code is generated. Modeling tools generate code in
different ways, however – and even though (thanks
to the previous step) the data structures of the
generated code across different modeling tools are
carrying semantically equivalent information, the
actual code generated cannot interoperate as is:

Figure 7: Code generated by commercial tools

Therefore, integrating the code generated by
different modeling tools requires “data bridges” to be
built that translate (at run-time) the data structures
from one modeling tool to those of the other and vice
versa. Manually creating these data bridges would
be a very error-prone process, and would have to be
repeated if the messages were changed. In TASTE,
they are automatically built by our custom-made
code generators.

Automated GUIs and regression checking
Python scaffolding

In the overall AADL system design, the designer can
specify the subsystems for which a graphical user

Page 6/10

Figure 6: Skeleton file example generated for Simulink

interface should be created. The TASTE toolchain
reads the interface information of these subsystems
and automatically generates code for interactive
graphical user interfaces that operate on these
interfaces. These GUIs provide real-time access to
running systems, allowing information exchange,
e.g. invocation of telecommands or receiving real-
time telemetry.

The same information is also used in order to build
Python run-time bridges that allow real-time
interaction with a running system. Complex
regression checking suites can be written easily, with
the combined clarity and brevity (and developing
speed) of a ubiquitous scripting language.

Telemetry can then be piped to plotting and
monitoring applications, for easy real-time monitoring
and control of running systems.

Interface Control Documents (ICDs)

In order to support legacy development, one of the
TASTE tools (the ICD generator) automatically
creates an Interface Control Document that
describes all interface parameters as they get
encoded at the bit-level - from ASN.1 encoding. This
allows interoperating with other development teams
that choose – for whatever reason – to not use the
TASTE tools. Following the same philosophy as the
rest of the TASTE tools, the ICD generator allows
the designers to get free and immediate updates of
their ICD, without the cost (and potential errors) that
is involved in a manually-maintained ICD.

Figure 10: Auto-generated ICD

ASN1SCC and ACN (ASN.1 encoding Control
Notation)

Since the primary target of the TASTE process and
tools is the space domain, we created a custom
ASN.1 compiler (ASN1SCC) that generates code
specifically designed to be executed in limited-
resource environments. It involves no dynamic
memory, it uses no system calls, and is portable to
all the target architectures, including Leon (i.e. the
generated code includes no outside references to
“black-box” libraries).

To support legacy encodings and be able to
communicate with existing protocols and
implementations, the ASN.1 compiler was enhanced
with the ASN.1 encoding Control Notation (ACN) that
allows for direct control of the encoding – that is, the
binary format of the generated streams.

Page 7/10

Figure 8: Auto-generated GUI

Figure 9: Real-time plotting of multiple data

Support for HW development

The TASTE methodology and tools have been
recently upgraded to support development (and
automatic integration) of hardware components as
well. If a subsystem is marked with “VHDL” or
“SystemC” in the high-level AADL specification of the
interfaces, it automatically gets VHDL and SystemC
skeletons (in the “model-to-model” phase described
before) as well as the appropriate device drivers (in
the “model-to-code” phase) that communicate with
the chip at runtime.

7. The TASTE runtime

Modelling time and effort is a valuable asset that is
to be used and preserved down to the construction
of the final system. To do so, the TASTE tool-chain
integrates a set of code generation tools to map all
models down to source code targeting a dedicated
run-time environment. Let us describes it from a top-
down perspective.

From the full set of models (ASN.1 and AADL), we
have a complete description of the system: types
manipulated, interfaces of processes and threads,
connection topology and flow of information and
interaction. We rely on Ocarina code generation
facilities to generate optimized code for all entities
that can be optimised through a careful examination
of the architecture: communication buffers, structure
of requests, request marshalling/unmarshalling,
optimized task body so as to avoid dead code.

We have extended the Ocarina AADL-to-code tool-
chain to also integrate device drivers as model
artefacts. Such modelling allows seamless
integration of both functional code (as application
blocks), but also device drivers.

In the context of TASTE, functional code is the
output of the previous code generation steps: code
generated for marshalling ASN.1 data types
definition, or generated from other modelling
framework supported by TASTE: SDL, Simulink, …

Device drivers are integrated as functional models
with a specific interface for (1) initializing the driver
using dedicated API provided by the underlying
RTOS, (2) sending or receiving data. (2) is modelled
as any functional block using the same modelling
artefacts as the functional code for concurrency (e.g.
how to process data in parallel, etc.), and the call the
driver API to perform the actual send/receive. Such
approach greatly eases the integration of protocols
or drivers: they are seen at the same level as
functional block, and take advantage of the whole
TASTE tool-chain to combine functional blocks,
drivers and the generated code.

The PolyORB-HI runtime

Generated code is targeting the high-integrity run-
time infrastructure PolyORB-HI. This infrastructure
acts as a portably layer for the integration of multiple
languages (C or Ada), RTOS APIs (Ada Ravenscar,
RT-POSIX, RTEMS), but also for the integration of
device drivers (serial, Ethernet, SpaceWire).

PolyORB-HI acts as an AADL runtime: it provides
support for each model patterns defined at the
upper-level. Two variants of PolyORB-HI have been
implemented:

An Ada variant, that relies on the Ravenscar
Computational Model (RCM). It defines a set of
patterns for deterministic concurrency. It makes
provision for analyzability through the RMA and RTA
frameworks. Besides, great care has been taken to
ensure the code meets more stringent requirements
for High-Integrity: the compiler to ease code review,
and strengthen quality enforces restrictions that
forbid explicitly dynamic memory, object-orientation
or pointers. This variant runs either on native
systems, RTEMS, or on the bare-board ORK+ or
GNAT Pro for High-Integrity runtimes.

A C variant, that uses the same concepts from the
RCM, on top of the RTEMS operating system, or the
RT-POSIX. Although C provides less support to
check code quality, great care has been taken to
ensure a level of quality similar to the Ada variant.

The choice of one variant is mainly dictated by the
availability of specific device drivers (e.g. CAN, MIL-
1553, GPS receiver, etc.), or non-functional
properties like memory overhead of the RTOS, run-
time performance (such as WCET or jitter), and
analyzability features.

Current case studies did not evaluate in full depth
schedulability of systems. This is a current on-going
work. We evaluated the impact of each variant in
term of memory consumption. Ada on top of RTEMS
is obviously more demanding in term of memory,
then RTEMS/C and ORB+, which is a restricted
kernel. Let us note that ORK+ also provides better
safety capability thanks to the use of Ada, yet it lacks
driver support of RTEMS/C.

.text .data Total

ORK+/Ada 91’392 7’516 98’908

RTEMS/Ada 285’760 12’068 297’828

RTEMS/C 100’016 3’732 103’748

Table 1 Memory consumption (in Bytes)

Both variants provide the same level of support to
the application: the same patterns can be applied.
Besides, we are currently integrating more drivers to

Page 8/10

ORK+ to ensure both variants stand equal from the
designer perspective.

8. First user feedback and TASTE future

The complete development of TASTE required a
significant amount of work and time to reach the
level of a full working prototype with an appropriate
level of maturity. Most of the work was initially
concentrated on the development process that
TASTE is supporting as we consider it as more
important than the technologies to be used. Then,
we focused on the modeling languages and
integration issues to deliver something that requires
a small effort at the beginning but brings strong
benefits at the end, by automating most of the
development phases and ensuring system
consistency. When the initial prototype turned to be
an efficient product, we decided to give the system
and software designers a chance to experiment it.

As for any new product or technology, potential
users are first confused with the richness and
complexity of the proposed solution. Developers and
users have to play together with real open mind for
the experiment to succeed. The very first steps on
user side were carefully accompanied by a strong
support provided by tool developers. Questions
were asked and answered, comments were
processed and disagreements about the way
TASTE was dealing with the process were
expressed and discussed. Strong cooperation
between teams was essential to pass the first
blocking barriers and address the real topics.

Although we claim that TASTE was open to different
kinds of existing programming or modeling
languages that were familiar to software designers,
using the toolset requires the use of two additional
languages: AADL and ASN.1. But TASTE designers
were clever enough to ease the life of its user by
providing a graphical user interface that hide the
AADL description behind the scene. This clearly
speeds up the learning curve while keeping the
advantage of using a system design language
backstage for possible future property verification
and connection to additional tools. Using such an
approach keeps the benefit high with a limited pain
at system design level.

ASN.1 was somewhat newer to most of the users
but at the same time quite close to very well known
programming languages. The idea of having a data
model fully connected to a system design and
consistently used to produce full software by
ensuring the right integration of software
components, that was really new to many users. In
existing projects, data model are not formally
defined and nothing exist to ensure automatic
consistency from top to bottom, except the Interface

Control Documents but they are just papers. Most of
the users found ASN.1 very valuable up to the point
where they could envisage the use of this language
outside the TASTE environment.

Although the benefits were clearly identified (a user
even claimed he successfully generated a complete
software implementation that exhibits higher
performances than the manually coded version),
some limitations were found. A category of users
claimed they did not need such technology as they
usually do not have heterogeneous systems. In a
sense they were right when they see software
development as a pure programming activity, and
not as a combination of modeling and programming.
Another kind of users regretted the absence of key
support functions such as traceability management
tools, configuration management facilities or
document generation features. At least such
remarks prove that the core facilities offered by the
tool were found efficient up to the point where
people may envisage the full deployment of the tool.

The future of TASTE

Following the long and hard development phases of
TASTE, and having analysed the first user
feedbacks, we are now at a point where the future of
this technology shall be carefully defined. Part of this
future is made of technical perspectives; the rest is
dealing with the toolset itself as a potential
commercial product.

From the technical side, we see many open
opportunities related to the use of standard
languages or coming from user feedback. The wide
openness offered by AADL is clearly a strong
advantage as it ensures that TASTE can be easily
integrated into a system development process using
the language to capture and verify system designs.
The flexible tool architecture also guarantees the
future inclusion of additional languages in a way
similar to what we did for the currently supported
languages. User suggestions provided us a large set
of interesting ideas to improve the usability in a real
industrial environment (connection to process
support tools, extension of testing features, …).

TASTE in its current state is close to a commercial
product that would be usable in an industrial context.
Each underlying technology (AADL, ASN.1, …) can
be used independently with already a positive
impact in a standard development process, but
TASTE by itself is more than the sum of its
components and brings additional benefits when
used in its entirety: automatic design and code
generation, consistency insurance with the data
model, flexibility with respect to the various
development platforms. This led us to open
discussions with the development team and

Page 9/10

potential users to clearly identify the interest and will
and build a commercialization strategy for TASTE,
possibly outside the space domain.

Regarding licensing schemes, at the moment most
of the TASTE tools follow a GPL licence for non-
commercial use (see [2] for details).

Conclusion

The flexibility brought to digital systems by software
components is so high that it seems that there is no
limit to the functions those systems can handle. But
increasing system complexity is now pushing
software engineering to the limits of currently used
technologies and that convinced the initiators of
ASSERT to propose a new approach. The main
drivers of this new process are first to capture a
minimal set of inputs from the system designer, to
automate most of the software implementation tasks
and to constrain programmers to the use of rigorous
rules. As a positive result, a strong consistency is
preserved during system design, multiple
implementations can be generated from one unique
model and time from design to code is drastically
reduced.

This new approach is the result of initial efforts
partially funded by the European Commission under
the FP6 ASSERT Project and further completed by
ESA funding. TASTE is now a fully operational
toolset that captures the system architecture with
AADL, defines the data model with ASN.1, and
finally combines heterogeneous components into an
homogeneous software application to be uploaded
on different targets up to the flight model. Different
extensions are today on-going or planned by the
community with the financial and technical support
of ESA (Link to system modeling tasks, introduction
of hardware components, and connection to
development process support tools such as
configuration management tools).

The choice of standard languages such as AADL
and ASN.1, together with the wide openness of the
tool implementation leaves open many doors for
extensions to better cover all design steps from
system requirements capture down to software
deployment. First user feedback clearly indicates
that TASTE does not everything a system designer
may wish to have but provides a strong support to
ensure consistency down to software deployment
and reduces the risk of having tricky integration
difficulties that generally impact the development
schedule. The community born with ASSERT is now
contemplating the different options to disseminate
and possibly commercialize TASTE while keeping
the effort steady to extend its capacity: the main
goal is to push forward the current technological
barriers and release the system designer creativity

to develop new ambitious missions in the space
domain within acceptable budget and quality
envelopes.

7. References

[1] Project website: www.assert-project.net

[2] Project tools (download) and documentation:
www.semantix.gr/assert

[3] Ellidiss (ASSERT GUI): www.ellidiss.com

[4] Cheddar scheduling analyzer: http://beru.univ-
brest.fr/~singhoff/cheddar/

[5] Ocarina: http://ocarina.enst.fr/

9. Glossary

ASN.1: Abstract Syntax Notation One

SDL: Specification and Description Language

AADL: Architecture Analysis & Design Language

Page 10/10

http://www.assert-project.net/
http://ocarina.enst.fr/
http://beru.univ-brest.fr/~singhoff/cheddar/
http://beru.univ-brest.fr/~singhoff/cheddar/
http://www.ellidiss.com/
http://www.semantix.gr/assert

