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Abstract�In hard real-time applications, WCET is used to check
time constraints of the whole system but is only computed at the
task  level.  While  most  WCET computation  methods  assume a
conservative  approach to handle  the processor state before the
execution of a task, the inter-task analysis of long effect hardware
facilities  should  improve  the  accuracy  of  the  result.  As  an
example, we developed an analysis of a direct-mapped instruction
cache behavior, that combines inter- and intra- task instruction
cache analysis to estimate more accurately the number of cache
misses due to task chaining by considering task Entry and Exit
states along the inter-task analysis. The initial tasks WCET can
be computed by any existing single-task approach that models the
instruction cache behavior.

Keywords � Worst Case Execution Time, Data Flow Analyses

I.I. INTRODUCTION

Checking the temporal behavior of critical hard real-time
systems requires sound and accurate timing analyses:  (1) an
underestimation  of  the  tasks  execution  time  may  cause
catastrophic  effects,  and  (2)  an  overestimation  may  waste
hardware resources. The Worst Case Execution Time (WCET)
analysis  is  a  part  of  the  timing  analysis  of  a  system.  It
computes  an  upper  bound  of  a  task  execution  time  for  a
specific run-time environment. 

In  the  last  decade,  an  extensive  research  has  developed
methods  and  techniques  for  evaluating  a  WCET
approximation based on static analysis approach [1, 2, 3, 4, 5,
6]. Usually, single-task based analyses manage the hardware
state in a conservative way, a usual example of such state is
the empty cache,  ensuring an overestimation of  the WCET.
Although they provide safe approximations, a lot of factors in
a multi-tasking system are not taken into consideration which
definitely  affect  the accuracy  of  such timing  estimates.  For
example, lots  of  works have been performed to analyze the
cache behavior inside tasks [1, 2, 3, 4] in order to predict their
timing properties but  very few to handle the cache between
tasks [5, 6, 15] and not directly for the sake of WCET.

In  this  paper,  we  present  an  approach  to  analyze  the
instruction cache behavior  of  tasks  as  well  as the inter-task
cache state in a real-time system with a static schedule of tasks
to give an approximation of cache hits due to task chaining.
This critical real-time system is made of a set of tasks that are
subject  to  real-time  constraints  (i.e.  deadlines)  and  that  are
sharing  processing  resources.  To  assert  hard  real-time
properties and WCET computability, we are considering tasks

running  in  a  non-interruptible  environment  and  statically
scheduled.

The results are obtained by analyzing the addresses that are
first loaded in the cache when executing a task. They are used
to reduce the miss count evaluation induced by conservative
approaches which leads to the optimization of the initial tasks
WCET.  These  initial  WCETs  can  be  computed  using  any
existing  timing  analysis  modeling  the  instruction  cache
behavior. To analyze the inter-task cache states, we use a cycle
of the static task schedule. A cycle is the sequence of tasks that
are  repeated  in  the  same  order  in  the  schedule  while  the
system  is  running.  This  sequence  contains  one  or  more
occurrences of each task according to their periods. 

The  remaining  of  this  paper  is  organized  as  follows.
Section  2  introduces  existing  cache  timing  analyses.  The
problem  is  analyzed  in  section  3.  Section  4  describes  the
characteristics of an Iterative Data Flow Analysis (DFA) and
the  details  of  the  intra-  and  inter-task  cache  analyses.
Experimental  results  are  shown  in  section  5  and  section  6
concludes the paper.

II.II. RELATED WORKS

Most  WCET  analyses  are  performed  at  the  task  level
where a task is a non-interruptible code sequence. Caches are
complicating timing analysis because their content depend on
the program control flow. They improve the average memory
access  time as  they are implemented with  a  faster  memory
than the main memory but they suffer from a smaller size due
to cost consideration. So, they only store a small part of the
memory  and  require  special  policies  to  select  dynamically
which part of the main memory to store and to wipe out during
the execution of the program. Consequently, their behavior is
control flow sensitive and hard to predict.

While both instruction and data caches have effects on the
WCET estimation, we only consider in this paper, like most of
WCET cache surveys, the instruction cache. The data cache
causes even worst WCET pessimism and is often managed by
direct program control [14].

Li and Malik [1, 2] propose a WCET analysis approach for
a  non-interruptible  task  called  Implicit  Path  Enumeration
Method  (IPET).  The  program  and  the  cache  behavior  are
modeled as a set of integer constraints and a function whose
maximization gives the WCET. They only consider inter-task
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cache  effects  by  taking  into  account  the  possibility  of  the
presence of the blocks in the cache before the  task starts.

F.  Mueller  [4]  presents  a  framework  to  handle  WCET
prediction. This static cache simulation method uses data-flow
information  to  categorize  instructions  according  to  their
caching behavior (always hit, always miss, first hit, first miss).
The  WCET is  computed  by  traversing  the  CFG  paths  and
propagating timing predictions  within a  tree in a  bottom-up
traversal. It seems there is no support for inter-task cache state
management.

Ferdinand  et  al. [3]  describe  semantics-based  analysis
methods  using abstract  interpretation that  predicts  the cache
behavior of programs.  MUST and a  MAY sets are provided to
compute  the  set  of  memory  blocks  that,  respectively,
must/may be in the cache at a given program point under all
circumstances.  These  sets  are  then  used  to  assign  to  each
memory reference one of the following categories: always hit,
always miss, persistent, not classified. To our knowledge, this
approach does not take in account the inter-task state.

All the aforementioned approaches focus on a single task
timing analysis. To ensure a conservative computation of the
WCET, they consider either an empty or an undefined cache
state before the task. Yet, they may miss some opportunities to
record hits  in the WCET computation due to persistence of
some blocks between different  activations of the same task.
This issue is discussed in [5, 6] that propose a timing analysis
approach to compute Worst Case Response Time for (WCRT)
in  preemptive  multi-tasking  systems  with  caches.
The approach  focuses  on  cache  reload  overhead  caused  by
preemptions. A path analysis is performed on the preempted
and preempting tasks. The WCRT of each task is estimated by
analyzing intra- and inter-task cache eviction.

Staschulat and Ernst, in [15], analyze the cache effects in a
multi-process real time systems with preemptive static priority
schedule  to  evaluate  WCRT.  They  conduct  experiments  to
quantify the cache effects and use the process response time
for comparison. The core execution time of each process is
simulated  with  an  empty  cache  at  startup  to  deliver
conservative  results,  then  the  response  time  for  multiple
preemptions  is  computed.  To  lessen  the  complexity  of  the
computation,  only  interruptions  at  basic  block bounds  were
considered.  Consequently,  the  response  time  is  computed
ignoring  basic  block  overlapping  causing  a  very
approximative  value  on  modern  pipelined  and  superscalar
processors.

[5, 6] and [15] computes the WCRT and not the WCET of
the tasks and hence the approaches are applied mostly to soft
real time systems and is bound to simple processors. 

In this paper, we propose a task timing analysis for a multi-
tasking  critical  real-time  system,  thus  assuming   no
preemption  between and inside tasks. As opposed to [1, 2, 3,
4], our analysis takes in account the execution context of the
tasks.  We compute  the inter-task cache  state  and the set  of
memory addresses that will be first loaded into the cache when
executing a task, in order to compute the hits count due to task
chaining.  The obtained results  are  straightforwardly used to
improve the estimated WCET. While the approach in [5, 6]
requires the computation of a list of sets for each instance of
the tasks in the schedule, our approach uses only five sets for

each task, four of these sets are computed once and used for
every instance of the same task in the schedule and whatever
the schedule. As opposed to [5, 6, 15], the simplicity of the
analysis makes it applicable to complex processors.

Our approach is bound to non-preemptive tasks as found in
usual  critical  industrial  real-time  systems  (avionics  for
example). So, we have experimented it with PapaBench [10], a
whole real-time application benchmark driving an Unmanned
Aerial Vehicle. On the contrary, the method presented in [5, 6]
and  the  simulations  in  [15]  were  tested  on  simple  tasks
configurations (two tasks for [15]) that (1) do not exhibit the
properties of a complete real-time system environment and (2)
do  not  provide  any  evidence  of  computation  complexity
scaling with bigger realistic systems.

Our  approach  guarantees  the  validation  of  the  system
timing  constraints  without  wasting  time  clearing  the  cache
memory .

III.III.PROBLEM DEFINITION

In this section, we detail the behavior of the cache all along
the execution of the control loop of a real-time system.

A.A. Context

Let be a real-time system composed of n non-interruptible
tasks named  T1, T2, ... Tn. Each task  Ti has a period  Pi.  Ti is
ready to run at the beginning of its period and the deadline of
Ti is at the end of its period. No constraint holds on the task-
scheduling  algorithm  apart  from  being  static,  that  is,  it
produces the schedule as a static table containing the order and
the activation date of the tasks before the system start. Usually,
the scheduling algorithm requires the period and the WCET of
each tasks. The latter parameter is estimated by the OTAWA
framework [8, 9] assuming a conservative hardware state at
the entry of the tasks, i.e. an empty cache.

According  to  the  static  schedule  of  the  real-time
applications,  we  will  analyze  the  instruction  cache  state
between tasks in order to reduce the pessimism induced by the
conservative  WCET computation.  To  this  end,  we  need  to
analyze  the  cache  behavior  inside  and  between  the  tasks.
According to the tasks period, a task may be activated many
times and each instance is named Ti.j, the jth instance of task Ti

in the control loop.

B.B. Cache Behavior in the task

We propose to improve the WCET of statically-scheduled
tasks  involved in  an  application by taking  into  account  the
hardware state between tasks. As the tasks may execute many
instructions, only the hardware features, whose state depends
on old  instruction executions, should be taken into account.
Consequently, we focus on the instruction cache.

Although  static  analysis  approaches  managing  the
instruction  cache  effects  only  apply  to  single  tasks,  they
provide an insight about the cache behavior in the task. We
face two problems (1) how to turn false miss induced by the
conservative state of the cache to hits and (2) how to use the
intra-task results to model the cache behavior all around the
application control loop. We have based our intra-task analysis
on the MAY / MUST method developed by Ferdinand [3].
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This approach is based on a Control Flow Graph (CFG )
which  describes  the  control  structure  of  each  task.  As  a
function may be called many times from different locations of
the program, every call is treated as an in-line during the CFG
construction. This improves the sensitivity to the context and
makes  easier  the  analyses  implementation.  A  CFG  is
considered as a pair (N, E) where the nodes, N, represent basic
blocks1 denoted  by  Bi and  the  edges  from  E, the  control
transfer between basic blocks.

The  execution  time  of  an  instruction  depends  upon  the
behavior of the instruction cache. Whether it has been recently
executed, it may be still stored in the cache, resulting in a fast
access called a cache hit, or it may have been wiped out from
the cache resulting in a long memory access called a cache
miss. Usually, the memory is composed of cache blocks of the
same size. Each cache block may be stored in one of the cache
lines. When a cache block is accessed, either it is already in
the cache, or a block in its matching line need to be wiped out
in  order  to  make  place  for  the  new block  loaded  from the
memory. In our experimentation, we are using direct-mapped
cache whose lines can only contains one cache block and do
not need any complex replacement policy.

As the cache memory accesses are performed by blocks of
constant size, we use the line-block unit, or simply l-block, to
consider the cache effects on the instruction execution time.
A l-block is  a  maximal  contiguous  sequence  of  instructions
contained in a basic block that are mapped to the same line in
the instruction cache. Two l-blocks that map to the same cache
line conflict with each other if the execution of one displace
the cache content of the other. Although a cache line can hold
one  cache  block,  this  one  may  be  composed  of  several
l-blocks. These l-blocks are mapped to the same cache line but
they  are  not  conflicting  with  each  others  because  they  are
contained  in  the  same  cache  block.  For  example,  figure 1
shows  a  CFG with  three  basic  blocks.  We  assume  that  the
cache  has  four  lines  and  suppose  that  a  basic  block  Bi is
partitioned into s l-blocks denoted by Bi,1, ..., Bi,s. The l-blocks
of each basic block mapping to the same cache line are painted
with the same pattern. One can remark that  B1.1 and  B3.1 are
conflicting l-blocks while B1.2 and B2.1 are not.

From  such  a  CFG  with  partitioned  basic  blocks,  the
algorithm provided in [3] computes by abstract interpretation
and for each point L of the program two sets:

· MUST(Bi):  list  of  l-blocks that must be in the cache
whatever the execution path, after Bi execution.

· MAY(Bi): list of l-blocks that may be in the cache for

1. A basic block is a maximum sequence of consecutive instructions which
control  flow enters  at  the  beginning  and  leaves  at  the  end  without  halt  or
possibility of branching except at the end.

one execution path at least, after Bi execution.

These sets may be used to categorize the  l-blocks and to
derive  cache  miss  count  and  the  time  penalty  for  each
instruction.

C.C. Cache behaviour between the tasks

For all single task based analyses, the cache are considered
empty at the start of the task to ensure an overestimation of
WCET. Yet, according the actual state of the cache before the
task, some hits have been considered conservatively as misses.
Now, we examine the cache state behavior between tasks in
order to remove these false misses.

We compute for  each task an interval  of  the number  of
cache hits which are considered as misses by the conservative
approaches. The upper bound of the interval is the maximum
possible number of hits (depending on the control flow of the
task) while the lower bound is the number of hits forgotten
whatever the real execution path of the task. To obtain such a
result, we need to estimate the cache state before each task,
which cache  blocks  of  this  state  may cause hits  and which
cache  blocks  stay  in  the  cache  after  the  task  execution
according to the schedule chaining.

· the cache state S before the task execution,

· the cache state S' after the task execution,

· Entry, the set of cache blocks that will be first loaded
in the cache when executing the task and 

· Exit, the set of cache blocks that will be in the cache
after the task execution. 

Entry and Exit are computed ignoring the inter-task cache
state and assuming an empty cache or an undefined cache state
at the start of the task. S' is a function of S and Exit. As S' is the
set  of  cache blocks  after  the task execution,  it  contains  the
cache blocks produced by the task (Exit) and the cache blocks
that were in the cache before the task execution and were not
replaced by the task cache blocks (which is a subset of S). The
Entry and  the  Exit sets  derive  from  the  intra-task  cache
analysis. However,  S and S' proceed from an inter-task cache
behavior  analysis.  We  need  to  compute  Entry and  Exit
separately because the intersection of Entry and S produces the
number  of  false  misses,  while  the  Exit set  is  prominent  to
compute S' that will be used as the input cache state (S) for the
next task in the schedule. 

Ferdinand  proposes  only  an  Exit analysis  in  [3]  that
predicts the cache behavior using  MUST and  MAY analyses.
Same as Ferdinand, we propose  MUST and  MAY analyses to
compute  the  Exit set.  However,  we  have  performed  our
computation using an iterative Data Flow Analysis (DFA) [13]
and we are only interested in the Exit set at the end of the task
execution and not to evaluate the WCET.

Figure 1. L-block construction
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Yet, we provide in this paper a MUST and a MAY analyses
for the task  Entry. The computed  MUST and  MAY Entry sets
holds the list  of  l-blocks that are (respectively may be) first
loaded in the cache when a task executes. The Entry analysis
was  not  considered  before  because  the  majority  of  WCET
computation  methods  are  single-task based.  We analyze the
Entry of a task T as only these task l-blocks are affected by the
task  chaining.  In  other  words,  we  have  conservatively
forgotten cache hits of l-blocks that are in the Entry set and in
the cache state before the execution of the task. The remaining
l-blocks of the task are only influenced by the l-blocks that are
loaded in the cache during execution of the task. 

Figure 3 exhibits several behaviors of instruction cache l-
blocks. It displays an example of an application tasks schedule:
the time runs from left to right. We focus on the internal CFG
of the task Ti  drawn horizontally.  According to the given  In
cache state, we can compute the  Out state after Ti execution
whatever the actual execution of the CFG. The l-blocks having
the same color are mapped to the same cache line and as we
consider  a  direct  mapped  instructions  cache  these  l-blocks
conflict with each other.

The l-blocks that are affected by the task chaining are {f, c,
g, r,  e,  h} because they are the first encountered  l-blocks in
their  own  cache  line. r and  g provides  very  simple  cases
(edge 4): they are never in the In state and consequently cause
ever a miss. Because f and c are first accessed in the CFG (2,
3), b and i are never affected by the task chaining. When Ti is
running, f evicts b from the cache generating a cache miss. As
opposed to c and  d,  b is found in the Out state because it is
reloaded after f eviction and no other l-block wipes it out (2).
On the other hand, c and e is ever in the In state so that a hit is
generated when the l-block c is accessed (3, 5): this is one of
the forgotten  hits  considered  as  a  miss  with  a  conservative
empty  cache  state.  Finally,  we  can  notice  that  the  line
containing  a is not  changed (1) by the task making the task
execution transparent for this line. The case of h (6) is trivial
too: it fills a non-used cache line.

As the Exit analysis, the Entry analysis does not model the
instruction cache behavior to compute the task WCET but is
dedicated to the evaluation of the forgotten hit  count  in the
start cache state  S.  The details  of  the  Entry,  Exit and cache
state analyses are shown in the following sections.

IV.IV.CACHE ANALYSES

We begin this section with a general overview of the used
Data Flow Analysis and then we explain the characteristics of
our intra- and inter-task cache analysis.

A.A. Data Flow Analyses

A Data Flow Analysis (DFA) is a process to collect run-
time  information  about  data  items  in  programs  without
actually  executing  them.  DFA  algorithms  are  frequently
defined  using  operations  on  control  flow  graphs  (CFG).
We use  an  Iterative  DFA  algorithm  that  combines  and
manipulates information, added to the CFG nodes and edges,
using a set of equations that relate information at a given node
to the information at other nodes. A typical equation is Out(n)

�=  (In(n)  -  Kill(n)   Gen(n),  which  can  be  read  as
�the information at the output of a node n is either generated in
n or it enters at the input and is not deleted in n�. In general
In(n) is a function that collects information from a subset of
neighbors of n, either the successors or the predecessors of  n
in the graph.

The DFA is a static program analysis and therefore, makes
an  approximation  of  the  program  behavior  and  performs  a
fixed-  point  computation  for  the  body  of  the  repetition
statements. Such a fixed point always exists because (1) the
data flow equations compute sets of variables in a monotonic
way and (2) there is only a finite number of variables available
since  we  consider  only  programs  with  finite  number  of
statements.  Therefore,  there  is  a  finite  upper  limit  to  the
number of elements of the computed sets which means that a
fixed-point always exists. Figure 4 shows the general Iterative
DFA algorithm. It consists of an initialization part where we
must initialize the set to compute (In and  Out) and the main
loop which iterates until the convergence of the  In sets (and
the  Out sets as a consequence). Therefore, we use a boolean
variable convergence that will not be set to true unless all the
Out sets  remain unchanged.  This  algorithm may be applied
forward or backward according the execution order depending
on the extracted information. Evaluation order of basic blocks
in the CFG has no effect on the result except to speed up the
convergence to the fix point.

B.B. Intra-Task Cache Analysis

In both Entry and Exit analyses, we use the function lines
(l-block set) that  returns the sets  of  all  l-blocks of  the CFG
mapped to the same line than an l-block of the considered set.
Let  LB be the set of the CFG  l-blocks and  line(l) computing
the cache line containing l-block l.  For each basic block Bi, we
use four sets:  In is the set of  l-blocks available at  Bi's entry,
Out is  the  l-blocks set  after  Bi execution,  Gen is  the set  of
l-blocks accessed by  Bi and  Kill.  Equations (1),  on the next
page, shows how Gen and Kill are computed for a basic Bi.

Figure 3. LBlock Traversal

/* Initialisation */

In [Bi ]=� ; /� B i
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/* Main Loop */

do { convergence = true ;

for B i do {
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OldOut=Out [B i]; Out [Bi ]=�In[B i]�kill [B i]��Gen[B i ];

if Out [Bi ]	 OldOut then convergence= faux ;}}

while � !convergence �

Figure 4. General DFA algorithm (A1)
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Gen [Bi ] = {l�Bi }

Kill [Bi ] = {l�LB / 
 l ' �B i . line �l �=line �l ' �}
         (1)

Same  as  Ferdinand,  we  propose  a  MUST and  a  MAY
analysis to compute the Exit set. However, we have performed
our  computation  using  an  iterative  DFA and  we  are  only
interested  in  the  Exit set  at  the  end  of  the  task  execution.
The MUST analysis provides the set of l-blocks that must be in
the  cache  after  the  execution  of  a  task  Ti while  the  MAY
analysis gives the set of l-blocks that may be in the cache after
the task execution. 

The CFG is traversed in a descending order starting
from B1. We use the algorithm A1 with the changes shown in
figure 5 for the MUST Exit analysis or with the changes shown
in  figure 6 for the  MAY Exit computation.  Note that the  Exit
analysis results are used to compute the cache state after the
task execution.

Then, we propose a MUST and a MAY analysis to compute
the task Entry set. The Must analysis gives the set of l-blocks
that must be first loaded in the cache when executing the task.
And the May analysis produces the set of l-blocks that may be
first loaded in the cache.

Having a CFG with n basic blocks, we apply the algorithm
A1 with the changes shown in in figure 7  for the Must analysis
and those shown in  figure 8 for the  MAY  Analysis.  A1 goes
through the CFG in an ascending order starting from the last
block  Bn and using a basic block iterator on the CFG.  Must
and the May analysis to compute the In and the Out sets using
an iterative approach. 

There are only a finite number of cache lines and for each
task, we have a finite number of memory blocks. Additionally,
the  union  (intersection)  operators  applied  to  decreasing
(increasing)  Out sets produce a decreasing (increasing) set at
each  iteration  of  the  main  loop.  This  guarantees  the

termination of the analyses.

C.C. Inter-Tasks Cache Analysis

Our  objective  is  to  compute  the  WCET of  a  complete
application  cycle.  Hence,  we  need  to  analyze  the  inter-task
cache effects to have a tight value of this WCET.

Previous section has shown how we can characterize the
behavior of the cache in the task using MUST and MAY cache
states on exit,  called respectively  MUSTExit and  MAYExit,  and
first accessed blocks on entry with sets called  MUSTEntry and
MAYEntry. Moreover, the cache state before the execution of a
task is the cache state after the execution of the previous task
in the schedule (as the task schedule produces a cyclic graph,
there is  always a  predecessor to each task).  To perform the
analyses  of  the cache  between tasks,  we  apply the iterative
DFA  algorithm  to  the  graph  formed  by  the  application
scheduling  whose  nodes  are  the  tasks  instances.  One  may
observe  that  this  graph,  formed  by  an  unterminated  loop
containing a sequence of nodes, is simpler than a usual CFG.

For each task Ti and each analysis, we use four sets: In is
the set of l-blocks available at Ti entry, Out is the l-blocks set
after  Ti execution,  Gen is the set of  l-blocks produced by Ti

and Kill is the set of l-blocks that were in the In set and were
replaced by Ti l-blocks. In the MUST analysis, Kill contains the
list of l-blocks that may be evicted, that is, the MAYExit l-blocks,
while  for  the  MAY analysis,  it  contains  the  list  of  l-blocks
evicted whatever the execution path as in the MUSTExit set. 

In the MUST analysis, the computed cache state holds the
l-blocks that  will  be  in  the  cache  whatever  the  execution
control flow of  Ti. The  Ti execution paths give different exit
sets. These sets includes at least the  MUSTExit set as it is the
minimal exit set. Hence, to build the MUST cache state after Ti

execution, we must evict the list of l-blocks that conflict with
the elements of the MAYExit set. In the other hand, to compute
the MAY cache state, holding the l-blocks that will eventually

/*Initialisation*/ Out[B1]=Gen[B1] ; In [B i ]=LB;

/* Main Loop */ In [B i ]=� Out[ p] ;// p�Predecessors [B i]

Figure 5.MUST Exit analysis

/*Initialisation*/ for Bi do { Out [B i ]=� ; In[Bi ] =� ;}

/*Main Loop*/ In [B i ] =�Out[ p] ; // p�Predecessor [Bi]

Figure 6. MAY Exit analysis

/*Initilisation*/

In[T 1] =� ;

Out initial[T i]= MayExit [T i ] ;

Gen[T i ]= MayExit [T i ] ;

Kill [T i ]= lines�Must Exit [T i]� ;

/*Main Loop*/

In[T i ]=�Out [T ] ; //T �Predecessors[T i ]=T i�1

Figure 9.  Cache State May Analysis

/*Initialisation*/ for Bi do { Out [B i ]=� ; In[Bi ] =� ;}

/*Main Loop*/ In [B i ]=�Out [ s] ; // s�Successor [B i ]

Figure 8. May Entry analysis

/*Initialisation*/

In[T 1]=� ;

Out [T i ]=Must Exit [T i ] ;

Gen [T i ]=MustExit [T i ] ;

Kill [T i ]=lines�MayExit [T i]� ;

/*Main Loop*/

In [T i ]=�Out[T ] ; //T �Predecessors [T i ]=T i�1

Figure 10: Cache State MUST Analysis

/* Initialisation */

Out [Bn ]=Gen [Bn] ; In [B i ]=LB ; / �B i

for Bi 	 Bn do Out [B i ]= LB�Kill[B i ];

/* Main Loop */

In [Bi ] =�Out [ s] ; // s�Successor [B i]

Figure 7. MUST Entry analysis
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be in the cache after  Ti execution, we must use the  MUSTExit.
Hence we must evict from the cache the  l-blocks conflicting
with its elements.

To perform the computation, we assume an empty cache to
initialize the input state In[Ti] of each task Ti. We use A1 with
the definitions shown in of figure 10  to implement the MUST
analysis or those shown in figure 9  for the MAY analysis.

V.V.EXPERIMENTAL RESULTS

Our approach aims to tighten the WCET of  tasks involved
in a complete application cycle taking into account the inter-
task instruction cache state. With such a scheme, the WCET of
each task depends on the task itself but also on its location in
the task chain. Therefore, a different WCET is computed for
each instance of the task in the application execution cycle.
To this end, we evaluate the lower bound of cache hits (from
the MUST analysis) used to fix the task WCET and an upper
bound (from the MAY analysis) that can be used to recompute
the WCET of  the  task in a  context-sensitive way.  We have
experimented  our  approach  on  a  real-time  benchmark
modeling a full application and the results are exposed here.

A.A. Benchmarks

To  get  objective  results  from  our  experimentation,  we
need a whole real-time application and we want also to avoid
unrealistic  benchmark made  of  unrelated benchmark pieces.
As no such a benchmark was existing to our knowledge, we
have derived one from an actual application driving an UAV,
called PapaBench [10].

ID Description Processor Period

T3 Receive MCU0 values MCU1 20Hz

T4 Transmit Servos MCU1 20Hz

T5 Check Failsafe MCU1 20Hz

T7 Stabilization MCU0 20Hz

T8 Send Data to MCU1 MCU0 20Hz

T9 Receive GPS Data MCU0 4Hz

T10 Navigation MCU0 4Hz

T11 Altitude Control MCU0 4Hz

T12 Climb Control MCU0 4Hz

T13 Reporting Task MCU0 10Hz

I1 Transmission Servos interrupt MCU1 20Hz

I2  SPI interrupt of MCU1 MCU1 20Hz

I4 SPI interrupt of MCU0 MCU0 20Hz

I5 Modem interrupt MCU0 10Hz

I6 GPS interrupt MCU0 4Hz

TABLEI. AUTOPILOT TASKS

PapaBench  has  13  tasks  and  6  interrupts.  We  use  an
AADL [12] model of this application assuming that tasks and
interrupts are periodic (consequently, in the following, we do
not distinguish explicitly between tasks and interrupts and use

the task term for both). The AADL models the benchmark as a
bi-processor architecture separating the radio/servo command
management,  handled  by  the  processor  MCU1,  from  the
autopilot task managed by the processor MCU0. Notice that
processor and their memory are independent and only linked
by  a  serial  interface :  actually,  PapaBench  contains  two
embedded real-time applications, one for each processor.

As  PapaBench  has  two  operation  modes,  we  choose  to
analyze the automatic mode as it exhibits the most critical part
of the application. Table I shows the task list of the automatic
mode  schedule  and  provides  for  each  one  an  identifier,  a
description,  the  corresponding  processor  and  a  period.
The deadline of a task is at the end of its period. As a sample
of  the  application  cycle,  each  time  T4  is  executed,  six
instances  of  interrupt  I1  are  also  executed  on  the  same
processor,  one  per  servo  and  the  execution  time  will  vary
between 1ms and 2ms.

We  analyze  the  task  scheduling  of  each  processor  alone
because  the  separation  of  tasks  execution  makes  the
propagation of tasks execution effects impossible between the
two processors. Hence, the cache behavior is only affected by
the list of tasks executed on the corresponding processor.

B.B. Tools

Our  cache  static  analysis  has  been  performed  in  the
OTAWA [8,  9]  framework.  In  this  tool,  the  WCET
computation is viewed as performing a chain of analyses that
use and produce annotations hooked to the code until getting
the WCET evaluation. We choose the Implicit Path Evaluation
Technique [1] in our experiments to compute the WCET and
the CAT approach  to  estimate the effects  of  the  instruction
cache on execution time. CAT is the adaptation of the Muller's
categorization  approach [4]  to  IPET.  To  perform this  work,
OTAWA builds  the  CFG of  the  tasks  and  performs  several
analyses  to  finally  represent  the  WCET  as  a  set  of  linear
constraints. The maximization of a cost function according to
the  constraints  by  an  Integer  Linear  Programming  solver
(lp_solve) gives the WCET value [1].

The static schedules of each processor tasks used in our
experiments  have  been  generated  by  CHEDDAR [11],  a
resource  requirements  analyzer.  It  provides  analytical  and
simulation performance analysis methods / tools and it focuses
on  tasks,  processors,  shared  resources,  buffers  and  task
dependencies. It fits well the requirement of our experiments
because  (1)  it  supports  AADL used  to  model  the  real-time
application of PapaBench and (2) it supports the task periods
and the precedence rules of the original application to perform
its schedule. 

We used a fixed-priority scheduling called �Posix Highest
Priority  First�  where  task  priorities  range  from  1  to  255.
The algorithm schedules the tasks according to their priority
and their  precedences. In the future, we plan to analyze the
effects  of  the  scheduling  protocols  to  the  cache  state.  So,
we will  consider  these  protocols  in  our  future
experimentations.

To perform the experimentation, we have tested different
instruction  cache  configuration  with  the  same  processor
pipeline. As our IPET approach uses processor simulation to
compute the times of program parts, we have chosen a generic
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four stages in-order pipeline with execution in-order. All
stages process two instruction by cycle with two ALU and two
float computation functional units. The used binary programs
was  compiled  for  a  PowerPC  ISA  but  the  used  generic
simulator  supports  any  architecture  available  on  OTAWA.
The program running on MCU1 processor has a code size of
320  Kb  while  the  program on  MCU0  is  a  bit  bigger  with
370 Kb.

C.C. Results

In our experiments, we analyze different configurations of
a direct-mapped instruction cache to evaluate their impact on
the WCET estimation with  our  method. The cache size and
the block size effects are taken into consideration.

First,  we have fixed the cache size to 64 Kb and tested
different block sizes: 8 bytes, 16 and 32 bytes. The results are
shown for the two programs in figure 11 and 13. Vertically, we
measure the average number of forgotten cache hits per task
instance, that is, the number of  l-block in the  MUST causing
hits whatever the execution path. Horizontally, we have the list
of tasks with one bar for each configuration. The number of
hits represents a lower bound of the pessimism in the WCET
evaluation with a conservative approach and, conversely, the
minimal gain of our approach.

The average count of hits � 1304 / 663 / 334 per block size

� is significant and enforces the interest in our approach. Then,
one may notice that little cache block size exhibits best inter-
task analysis results. Small cache basic blocks benefit from the
random distribution of code in memory and create less cache
block aliasing effect on cache wiping between tasks.

In  the second set  of  measures,  we have fixed the cache
block size to 16 bytes and we have performed our analysis for
different cache sizes: 8Kb, 64Kb and 128Kb.  Figures  12 and
14 use the same notation as previous figures. Notice that, in all
cases, the cache is much smaller than the code size of each
program inducing a realistic load on the cache use. First, both
cache sizes of 16 Kb and 32 Kb provide the same benefit in
number  of hits  whatever  the task. Yet,  the 8 Kb cache size
seems  to  be  too  much  small  for  the  MCU0 program,  20%
bigger than the MCU1 program where it produces the same
measures. While the cache size should improve the WCET of
the tasks, it seems to have very few effects on the inter-task
analysis.

Lastly,  we  have  computed  the  tasks  WCET  for  each
instruction cache configuration for the processor described in
the previous section with a miss penalty of 10 cycles.  Then
we have improved the tightness of the WCET with the results
of the hit count of our inter-task analysis by simply subtracting
10  cycles  by  each  forgotten  hit,  counted  as  a  miss  by  the
conservative  WCET analysis.  Indeed,  the  CAT method  just
counts the number of misses and add the resulting penalty in

Figure 13.MCU1 average hit count (cache size 64KB)Figure 11. MCU0 Hit count (cache size 64KB)

Figure 12: MCU0 average hit count (cache block size 16 B) Figure 14.MCU1 average hit count (cache block size 16 B)
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Figure 15. WCET Improvement
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cycles to the WCET.

Figure 15 shows  the  results  of  our  computation.
Horizontally, we have the list of tasks of MCU0 and MCU1
tasks while the vertical bars represent 100% of the WCET of
each task. The black part of each bar represents the number of
penalty  cycles  subtracted  to  the  conservative  WCET  and,
consequently,  the  gray  part  represents  the  WCET after  fix.
This figure shows that  our approach can tighten the  WCET
estimate by 20% over approaches that does not consider the
inter  task  cache  analysis,  and  this  is  only  the  minimum
improvement  ratio.  It  also  shows  that  the  amelioration  can
reach 40% for some tasks. 

In this experimentation, we have only used the results of
the  MUST analysis as it  is the improvement that we provide
and do not depend on the task flow execution. In the opposite,
the  MAY analysis  provides an upper bound of the inter-task
hits  but  it  depends  on the flow execution.  Yet,  this  kind of
information  should  be  useful  to  provide  a  non-empty
conservative  state  to  intra-task  instruction  cache  WCET
analyses.

VI.VI.CONCLUSION

In this paper,  we have presented an analysis of a direct-
mapped instruction cache behavior combining inter- and intra-
task instruction cache analysis to estimate the number of cache
hits due to task chaining. 

A MAY and a MUST analysis are provided to compute the
cache states between tasks. As the  MUST analysis gives the
lower and safe bound of the hit count due to task chaining, we
have presented its  results  considering that  the  MAY analysis
will  mostly  be  useful  to  tighten  the  WCET  intra-task
estimation. Although we consider the MUST bound a lowest it
is not insignificant, it  can tighten the WCET estimate by an
average of 20% over  approaches that  does  not  consider  the
inter-task cache analysis and the improvement can reach 40%
for some tasks. It is very important to mention that the initial
task WCET provided to our approach can be computed using
any  WCET computation  methods  bound  to  intra-task  cache
analysis. Our approach can be viewed as a lens filtering the
cache hits due to task chaining to reduce the WCET estimation
deduced from conservative methods.

There are many axes of improvement or extensions for our
method.  First,  we  are  going  to  extend  our  method  to  set-
associative  caches.  While  it  should  more  benefit  from  the
persistence of blocks in the cache, it could make fuzzier the
identification of blocks accessed at the entry of tasks. Another
improvement  would  be  to  use  the  results  of  the  intra-task
analysis, that is, the cache state at the entry of each task, to
improve  the  accuracy  of  instruction  cache  algorithms  to
perform  intra-task  WCET  computation.  As,  in  our  current
experiment, we have only exploited the  MUST analysis, this
would  allow to  benefit  from the  MAY analysis  results  too.

Then, in our experimentation, we have considered a static task
schedule that is not changed by the reduction of the WCET of
the  tasks.  In  a  first  time,  we  plan  to  experiment  different
scheduling policies with our inter-task analysis. Then, we want
to examine the impact of the WCET reduction on the schedule
and  the  back  effect  of  the  new  schedule  on  the  inter-task
analysis results. We hope to find a strategy to converge toward
a  static  schedule  with  a  minimal  overall  WCET  of  the
application. Moreover, it will be also interesting to experiment
our analyses on dynamic scheduling policies.

As a last word , we believe that it should be interesting to
adapt our approach to hardware devices with long time effects
whose behavior depends on the task schedule such as branch
prediction and data caches.

REFERENCES

1] Y.-T.  S.  Li,  S.  Malik.  �Efficient  Microarchitecture  Modeling  and  Path
Analysis  for  Real-Time  Software�.  16th  IEEE  Real-Time  Systems
Symposium, pp. 298-307, 1995.

2] Y.-T. S. Li, S. Malik. �Cache Modeling for Real-Time Software:Beyond
Direct  Mapped  Instruction  Caches�.  17th IEEE  Real-Time  Systems
Symposium, 1996. 

3] C. Ferdinand et al. �Applying Compiler Techniques to Cache Behavior
Prediction�.  ACM SIGPLAN Workshop  on Languages,  Compilers,  and
Tools Support for Real-Time Systems, pp. 37� 46, june 1997.

4] F. Mueller. �Timing analysis for instruction caches�. Real-Time Systems,
18(2/3):209�239, May 2000.

5] Y. Tan, V. Mooney. � Integrated Intra- and Inter-Task CacheAnalysis for
Preemptive  Multi-Tasking  Real-Time  Systems�.  8th  International
Workshop, SCOPES, in Lecture Notes on Computer Science, LNCS3199,
pp. 182�199, 2004.

6] Y. Tan, V. Mooney. � Timing Analysis for Preemptive Multi-Tasking Real-
Time  Systems  with  caches�.  Design,  Automation  and  Test  in  Europe
Conference and Exibition, Vol 2, pp. 1034 � 1039, 2004.

7] I.Wenzel,  B.Rieder,  R.  Kirner,  P.  Puschner.  �Automatic  Timing Model
Generation  by  CFG  Partitioning  and  Model  Checking�.  Design,
Automation and Test in Europe, Vol. 1, pp. 606-611, 2005.

8] H.  Cassé,  C.  Rochange,  P.  Sainrat.  �An  open  Framework  for  WCET
Analysis�.  IEEE Real-Time Systems Symposium-WIP session, pp. 13-16,
2004.

9] H.  Cassé,  C.  Rochange,  P.  Sainrat.  �OTAWA,  a  framework  for
experimenting  WCET  computations�.  3rd European   Congress  on
Embedded Real-Time, 2005.

10] F.Nemer, H. Cassé, P. Sainrat, J.P. Bahsoun, M. De Michiel. PapaBench: a
free real-time benchmark. 6th WCET Workshop, 2006.

11] F. Singhoff, J. Legrand, L. Nana. AADL resource requirement analysis
with CHEDDAR. LYSIC/EA 3883.

12] P.  Feiler,  D.  P.  Glush,  J.  J.  Hudak,  B.  A.  Lewis.  �Embedded  System
Architecture Analysis Using SAE AADL�, 2004.

13] A.V. Aho, R. Sethi, J.D. Ullman, �Compilers: Principles, Techniques, and
Tools�, Addison Wesley, 1986.

14] I. Puaut and D. Decotigny. Low-complexity algorithms for  static cache
locking in multitasking hard real-time systems.In Proceedings of the 23rd
IEEE Real-Time Systems Symposium (RTSS02), 2002.

15] J. Staschulat, R. Ernst. Cache Effects in Multi Process Real-Time Systems
with Preemptive Scheduling. Technical report, IDA, TU Braunschweig,
Germany, November 2003.

32


