
Real-Time Embedded Software Modeling and Synthesis using
Polychronous Data Flow Languages

Matthew W. Kracht

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Sandeep K. Shukla, Chair
Chao Wang

T. Charles Clancy

February 7, 2014
Blacksburg, Virginia

Keywords: Synchronous Languages, Real-Time Systems, Schedulability Analysis
Copyright 2014, Matthew W. Kracht

Real-Time Embedded Software Modeling and Synthesis using
Polychronous Data Flow Languages

Matthew W. Kracht

(ABSTRACT)

As embedded software and platforms become more complicated, many safety properties are
left to simulation and testing. MRICDF is a formal synchronous language used to guarantee
certain safety properties and alleviate the burden of software development and testing. We
propose real-time extensions to MRICDF so that temporal properties of embedded systems
can also be proven. We adapt the extended precedence encoding technique of Prelude and
expand upon current schedulability analysis techniques for multi-periodic real-time systems.

This work is partially supported by the US Air Force Research Laboratory grant FA8750-
11-1-0042, and the US Air Force Office for Scientific Research (grant FA8655-13-1-3049).

Contents

1 Introduction 1

1.1 An Illustrative Case Study . 3

1.2 Contributions of this Thesis . 5

2 Background 7

2.1 MRICDF . 7

2.1.1 Preliminaries . 7

2.1.2 The MRICDF Formalism . 9

2.1.3 Epoch Analysis . 12

2.1.4 Uses of MRICDF . 15

2.2 The PRELUDE Framework . 16

2.2.1 Periodic Clocks . 16

2.2.2 PRELUDE Language Details . 17

2.2.3 Task Set Representation . 20

2.2.4 Precedence Encoding . 22

2.2.5 Evaluation of Prelude . 27

3 Real-Time EmCodeSyn 29

3.1 MRICDF Extensions for modeling of Real-Time Constraints 29

3.2 Model Restrictions . 32

3.2.1 Conditional Task Graph Construction 33

3.3 Task Set Refinement . 41

iii

3.4 Schedulability Analysis . 55

3.5 Code Synthesis . 57

4 Conclusion 63

4.1 Results . 63

4.1.1 Discussion on Complexity . 63

4.1.2 Coverage . 65

4.2 Conclusion . 66

Bibliography 68

iv

List of Figures

1.1 Location Estimation Unit . 3

1.2 Location Estimation Unit EDF Schedule . 5

1.3 Location Estimation Unit Sub-Schedules using EDF 6

2.1 MRICDF Primitive Actors . 11

2.2 Example Clock-Tree for Model M . 14

2.3 Variety of ops rate transitions between flows f and g 19

2.4 Examples of Extended Precedence Relations and Data Dependencies c 24

2.5 Examples of ∆ops . 25

2.6 A Task Graph for a simplified Collision Avoidance Controller 27

3.1 An Example Task, t, in MRICDF with ports and actors 31

3.2 An Example Weakly-Hierarchic Model . 33

3.3 Weakly-Hierarchic Clock Tree with Synchronization 34

3.4 MRICDF model of Location Estimation Unit 35

3.5 Example of defined tasks within MRICDF 38

3.6 Real-Time EmCodeSyn Compilation Process 39

3.7 The Conditional Task Graph of Location Estimation Unit 41

3.8 An Example of off path inputs to task Loc Est from the LEU 45

3.9 Additional Compilation steps for Real-Time Models 56

3.10 Real-Time Linux Scheduler [1] . 58

3.11 ChronOS Scheduler . 58

v

3.12 Pseudo code for MRICDF tasks . 60

3.13 Pseudocode for Synchronization Thread . 62

vi

List of Tables

1.1 Rate Monotonic Scheduling for LEU . 4

2.1 MRICDF Actors and Epoch Constraints . 11

2.2 MRICDF Actors and Boolean Clauses . 12

2.3 Epoch Relations and given implications between Signals 15

2.4 Rate Transition Operators for Prelude . 18

2.5 Real Time Characteristics and Deadline Adjustments for Figure 2.6 27

3.1 General Form of Inter-Task Communication 37

3.2 LCU Dependency Branches . 43

3.3 Paths in LEU, T = {Loc Est} . 51

3.4 Paths in LEU, T = {GPS Acq, Speed Acq, Angle Acq} 52

4.1 Increasing number of Activations of one Node 65

4.2 Increasing Branches of a total Process . 65

4.3 Comparison of Worst Case Schedules . 66

vii

Chapter 1

Introduction

Embedded systems are becoming increasingly prevalent within our world and are being
used for ever more important tasks from avionics to control within motor vehicles. With
this wide spread proliferation of embedded systems comes the need for software that has
certain guarantees whether it is safety, response time, or performance. Specifically, safety-
critical applications require these characteristics. This introduces the need for programming
languages that have formal semantics and can provide the ability to analyze and verify
software systems for these applications. In the past, software designers were forced to used
imperative languages that were more closely bound to the hardware and offered no or little
formal semantics. This lack of formal languages and verification techniques resulted in many
failures such as the case of the Mars Climate Orbiter, which could have been otherwise
prevented through extended type checking [2]. Although formally defined languages are
important in verifying safety-critical embedded systems there exists a group of systems that
are real-time. Such systems require safety properties to guarantee correct operation, but
also require timing guarantees. In this thesis we look at real-time systems and how formal
languages can be used to verify both safety and timing requirements.

Real-Time Systems

Real-time systems are usually reactive systems, meaning they continually receive stimuli
from the physical environment and keep producing response. Examples of such systems
span anti-lock brakes to large scale SCADA systems. Reactive systems read inputs and
compute reactions within known bounds of time. The reason real-time systems are often
sample-driven is because these types of systems are easier to analyze [3]. Having a known
time interval between reactions greatly simplifies schedulability analysis.

Sample-driven reactions denotes the inputs to a system being read at certain time intervals
but real-time systems have even more timing constraints. Not only must they conform to

1

Matthew W. Kracht Chapter 1. Introduction 2

input constraints but they must also compute each reaction within a certain amount of time,
referred to as a deadline. These deadlines can be categorized into hard and soft deadlines.
Hard deadlines are those where a reaction not computed by that deadline, leads to a fatal
error. An example of this might be the computation of a reaction for an ABS system within
a car. A soft deadline is one where a reaction not computed in time does not lead to a
complete failure. The behavior of the system is defined by the developer to handle these
missed deadlines but overall the system is able to continue. Often times these types of
deadlines are given to tasks that are background or maintenance tasks within a system [4].

Often times in practice it is difficult to construct one monolithic real-time task with one
deadline for one reaction. Instead, systems are broken down into a set of smaller tasks
each with their own characteristics such as deadline and period. These tasks define smaller
reactions and can communicate with one another through a variety of constructs. In order to
manage these tasks, real-time systems often utilize a real-time operating system, or RTOS.
There are a variety of such RTOSs and they offer varoius features from determining which
tasks are able to run to handling how communication is handled between tasks. RTOSs
are also optimized to reduce latencies between events, which helps guarantee timings for
operating system events such as context switches or interrupts. One key role of an RTOS
is to determine which tasks are allowed to execute and when. This is known as scheduling,
and we will discuss a few such schemes.

Real-Time Scheduling

When discussing real-time systems it is important to also discuss algorithms by which tasks
are scheduled within such systems. In 1973, Liu and Layland wrote about two such algo-
rithms: Rate Monotonic, RM, and Earliest Deadline First, EDF [5]. There are many more
algorithms that exist but these two are cornerstones within commercial and academic RTOS
so they are the two algorithms that we focus on in this document.

Rate Monotonic is an algorithm that uses static priorities. This means that priorities are
assigned to tasks prior to run-time. Priorities are assigned inversely according to period and
there is a simple test to verify that a task set is indeed schedulable [5]. Because priorities
are not changed at run-time and it is preverified that tasks will meet deadlines, the overhead
required for implementing such a scheduler has been seen as minimal with respect to other
such scheduling schemes [6]. RM is then used for many commercial RTOS because of this
reduced overhead [6]. Another benefit of RM is that it is an optimal static priority algo-
rithm, meaning that if any other static scheduling algorithm can meet deadlines then RM is
guaranteed to also meet all deadlines [5].

Unlike RM, Earliest Deadline First is a dynamic priority scheduling algorithm. Priorities are
updated inversely with respect to deadlines of all currently executing tasks [5]. Where RM is
optimal amongst static schedulers, EDF is optimal amongst any preemptive schedulers [6].
This means that if any preemptive scheduler can meet all task deadlines for a system then

Matthew W. Kracht Chapter 1. Introduction 3

so can EDF. While EDF allows for greater utilization of processing resources it comes with
complexity overhead for RTOS and their schedulers. Because of this, EDF has not been as
widely adopted amongst commercial RTOS [6]. For our work, we used the ChronOS RTOS
which has many possible schedulers but most importantly contains implementations of both
RM and EDF [7].

1.1 An Illustrative Case Study

To better understand the types of systems targeted in this work and to briefly explain the
optimizations that will be the basis of this work, we present an example embedded control
system in Figure 1.1. We will refer to this system as LEU, or Location Estimation Unit.
The LEU is a sampled system where at periodic intervals inputs are read, a reaction is
computed and actuators or outputs of the system drive an external response. In the figure,
the frequency, f , deadline, D, and execution time, E are given for each task and the offset
of each task is assumed to be 0ms. These characteristics will be discussed in detail in later
sections but they define the execution behavior and processing needs of a task. For instance,
task LCU will need to execute ten times per second, given f = 10Hz, and will need to execute
for a maximum of ten milliseconds on the CPU, given E = 10ms, and each execution must
finish in 100ms from when the task can sample its input, given D = 100ms.

Figure 1.1: Location Estimation Unit

The LEU has two acquisition modes: obtaining multiple velocity vectors from direction and
speed sensors (Angle Acq and Speed Acq tasks) for computing an estimated position, or

Matthew W. Kracht Chapter 1. Introduction 4

directly obtaining GPS coordinates (GPS Acq task) for a more precise location. The LocEst
task then uses whichever data was obtained to calculate a location and sends that value to
the Loc Out task which outputs the value. Loc Est also determines the error inherent in the
measured value and returns that value to LCU. In order to determine which acquisition mode
should be used the LCU uses the error value stored in a buffer from LocEst to determine if the
current uncertainty value ∆Pos has crossed a threshold given as ∆max and GPS Acq must
be triggered to return the uncertainty of the estimated location to a safe level. Conditional
communication between tasks is represented on the edges of the task graph.

Using the task set of LEU, we can attempt to create a schedule for both rate monotonic, RM,
and earliest deadline first, EDF. In Table 1.1, we show the utilization for each task and the
assigned fixed priority for the RM schedule. It is also worth noting that the deadlines of the
tasks have been adjusted due to the data dependencies within the task graph. This ensures
that the dependencies are followed during the run-time execution of such a system. We will
discuss how this is deadline adjustment is done in Section 2.2. There is a utilization bound
for a set of tasks to be schedulable with RM. If the utilization of a set of tasks is lower than
the utilization bound it is guaranteed to be schedulable. This bound is B(n) = n(

n√
2− 1),

where n is the number of tasks [5]. From the table, the total utilization of these tasks is .8
which is greater than the utilization bound for six tasks, B(6) = .734 [5]. The utilization of
a task is the ratio of execution time to period and the total utilization of a model is the sum
of all task utilizatinos. This means that a valid RM schedule does not exist for this task set.

Table 1.1: Rate Monotonic Scheduling for LEU

Task Execution Period Deadline Priority Utilization
LCU 10 100 15 1 .1
GPS Acq 25 100 44 4 .25
Angle Acq 5 20 20 2 .25
Speed Acq 2 20 20 3 .1
Loc Est 4 50 48 5 .08
Loc Out 1 50 50 6 .02

Even when using a dynamic priority scheduling algorithm, such as EDF, the utilization is
under one, so we may be able to determine a valid schedule. For brevity we present the
execution of this task set using EDF in Figure 1.2. It shows that some tasks will miss their
deadlines. Specifically Loc Est and Loc Out will miss their first deadline at 50ms. Even
though the utilization is under one, the execution of the GPS Acq task must occur before
Loc Est and Loc Out due to the dependencies, thus they are unable to meet their specified
deadlines:

Matthew W. Kracht Chapter 1. Introduction 5

Figure 1.2: Location Estimation Unit EDF Schedule

1.2 Contributions of this Thesis

In the real-time system presented above, the system was not schedulable by a fixed priority
algorithm, RM, or a dynamic priority scheme, such as EDF. This is not due to the weakness
of the scheduling algorithms but in how the real-time system is modeled and what schedule
is being verified. In the LEU system, it is obvious from a user perspective that not all
tasks will execute every time. Specifically the data acquisition tasks are mutually exclusive.
This insight though is not currently captured in formal languages that are targeted toward
verification and synthesis of real-time systems.

In this thesis, we show how to leverage the analysis of both the real-time modeling language,
Prelude, and the polychronous formal language, MRICDF, in order to better analyze
real-time software execution. The MRICDF formalism, and any polychronous language,
is specialized in order to determine the relative ordering of events within a system. This
specialization can be combined with a sample-triggered formal language such as Prelude
to help determine under what conditions, task precedence, or data dependence relationships
are present between tasks. This allows us to further refine the task set that is used for
schedulability analysis since it may be that in each computation round only a subset of the
originally task set can actually execute.

Applying this idea to the LEU example will allow us to know exactly when precedences are
active between LCU, GPS Acq, Angle Acq and Speed Acq. We will be able to determine
the two possible executions within this system: either sampling from the GPS, or estimating
location via angle and speed acquisitions. When looking at these two possible task sets it is
obvious that this system is in fact schedulable using RM or EDF. These two sub-schedules
are shown in Figure 1.3 where EDF is used as the scheduling algorithm. When looking
at these two task sets, it is clear that the angle and speed acquisitions tasks carry the
highest utilization and total execution time thus this task set is worst case and is used for
schedulability analysis. Since this task set is schedulable for EDF and RM then the whole
system can be shown to be schedulable.

We will also present how real-time code can be synthesized from MRICDF models. For
code generation steps our target OS is ChronOS, a real-time operating system based on the
real-time Linux kernel. This way code can be easily ported and tested on any Linux capable
platform [7].

Matthew W. Kracht Chapter 1. Introduction 6

Figure 1.3: Location Estimation Unit Sub-Schedules using EDF

The rest of this thesis is organized into three sections. We will discuss background works of
both Prelude and MRICDF. We will then present our real-time extensions to MRICDF
including how real-time systems are modeled, analyzed and then synthesized into code within
an MRICDF modeling and synthesis environment. Finally we will present some results as
well as discuss possible improvements and future work.

Chapter 2

Background

2.1 MRICDF

Multi-Rate Instantaneous Channel connected Data Flow, MRICDF, is a formal data-flow
language similar to SIGNAL [8]. With MRICDF, inputs to a system can be seen as infinite
streams. A data flow network represents the computation needed in order to produce the
outputs of the system which are also infinite streams [9]. Using the SIGNAL terminology,
each such infinite data stream in called a signal. MRICDF models are used to synthesize
correct-by-construction embedded code using a polychronous model of computation. In a
polychronous model, the model time is relatively relaxed when compared to a synchronous
model. The polychronous timing model allows for streams to be computed asynchronously
to one another which fits very easily to a multi-threaded environment [10]. In order to
understand MRICDF as well as its compiler and development framework EmCodeSyn
[11] we will present some preliminary definitions, the formal language, and finally the epoch
analysis for MRICDF models.

2.1.1 Preliminaries

Within a MRICDF specification there are individual synchronous blocks called actors which
contain a set of input and output ports. Actors represent a computation which completes
instantaneously because of the synchrony hypothesis. The synchrony hypothesis states that
the reaction of a system can be seen logically instantaneous with respect to the latency
between subsequent inputs on any of the input streams. Actors are interconnected using
channels, which pass data instantaneously between the ports of actors. The different signals
can have different rates, which are allowed given the polychronous model of time. The basic
entity in a polychronous language is an event. Events may denote any change of value within
the system: input ports, output ports, variables, etc.

7

Matthew W. Kracht Chapter 2. Background 8

Definition 2.1. (Event). An event is an occurrence of a new value. We denote the set of
all events in a system by Ξ.

The relative occurrences of events can then be represented using a binary relations, over Ξ.
Such relations define whether or not an event happened before, simultaneously to, or after
another event in the system, or if their relative occurrences do not matter. These relations
are defined below:

Definition 2.2. (Precedence, Preorder, Equivalence). Let ≺ be a precedence relation be-
tween events in Ξ. It is defined such that ∀a, b ∈ Ξ, a ≺ b if and only if a occurs before b.
The relation � defines a preorder on Ξ such that ∀a, b ∈ Ξ, a � b if and only if a occurs
before b or a, b occur logically simultaneously, or their order does not matter. Finally the
equivalence relation ∼, is defined on Ξ such that a ∼ b = a � b∧ b � a, meaning that a and
b are equivalent only if they occur simultaneously or their order does not matter. Thus ∼
represents synchronicity of events.

Even though plainly an instant means a specific point in time, we think of an instant as
a maximal set of events such that all events in the set are related by ∼, meaning that all
events in an instant are synchronous. An instant can also be seen as a maximal set of events
that occur in reaction to any one or more events [12].

Definition 2.3. (Logical Instant or Instant). The set of all instants is denoted by Υ. Each
instant in Υ can be seen as an equivalence class obtained by taking the quotient of Ξ with
respect to ∼ such that Υ = Ξ/ ∼. For each set S ∈ Υ, all events in S will have the property
∀a, b ∈ S, a ∼ b, and ∀a, b, (a ∈ S1 ∧ b ∈ S2 ∧ S1 6= S2 ∧ S1, S2 ∈ Υ→ a � b.

Because all instants are equivalence classes, a precedence relationship can be drawn between
instants. We define the relationship ≺ between two sets in Υ such that, S, T ∈ Υ, S ≺ T if
and only if ∀(s, t) ∈ S × T, s ≺ t [12]. Each instant contains events on signals. If a signal
has no event in an instant then it is considered absent.

Definition 2.4. (Signal) Let T by the domain of values that a signal can take and let ⊥
denote a special absent value such that T⊥ = T∪ ⊥; then a signal can be defined as a total
function of type Υ→ T⊥. This means that for each instant in Υ, a value or absence of value
is implied on a signal x. We denote the set of all events in a signal x as E(x).

Proposition 2.5. A signal is a set of events that is totally ordered.

Proof. If a signal contains two synchronous events, then a signal has been updated twice in
an instant but that is not possible by definition.

We denote a specific value of a signal x by function x(t) where t ∈ N and t represents the
tth instant in the totally ordered set of instants where signal x has a value different from ⊥.
x(t) thus returns the tth event value in the signal x.

Matthew W. Kracht Chapter 2. Background 9

Definition 2.6. (Epoch, Clock) The epoch, σ(x), of a signal x is the maximum set of instants
in Υ where for each instant in σ(x), x takes a value from T . The clock of the signal x is
a characteristic function that tells whether or not an event in x is absent or is in the set
T . Clock is a function of type Υ → [true, false] such that for a signal x it returns another
signal x̂ defined by x̂(t) = true if x(t) ∈ T .

Note that not all inputs and outputs are present or computed during every instant in Υ
which means that not all signals have the same epoch or clock. This gives the multi-clocked
or polychronous behavior. Using the above definitions and characteristics, three possible
relationships can be drawn between any two clocks x and y: equivalent, sub-clocked, or
unrelated. If the clocks of x and y are true for the exactly the same set of instants, x̂ = ŷ,
then it is said that these two clocks are equivalent, and the corresponding signals are also
synchronous. If the clock of a signal x is true for a subset of instants where the clock of y is
true then it is said that x is a sub-clock of y. If the clocks of x and y are not equivalent or
subset or superset of the other then the clocks are said to be unrelated [10]. It is obvious
that some specific subsets of relationships may be drawn from clocks that are unrelated. One
type of relationship is mutual exclusion, meaning that x(t) = true if and only if y(t) =⊥
and y(t) = true if and only if x(t) =⊥. These relationships are stored in a structure called
a clock tree and will be presented in Section 2.1.3.

2.1.2 The MRICDF Formalism

As was previously mentioned, an MRICDF model consists of modules called actors that
are interconnected via instantaneous channels [11]. An actor can be of two different types:
primitive and composite. Primitive actors are of four types, function, buffer, merge, and
sampler, which are denoted by Tp ∈ {F (n,m), B,M, S}, while composite actors are hierar-
chic compositions of primitive actors [11], whose type is denoted as Tc. Regardless of whether
an actor is primitive or composite it can be represented by A = 〈T, I, O,N,G〉 where I, O
are the set of input signals and output signals respectively, T is the type where T ∈ {Tc, Tp}.
N is the set of internal actors, which for primitive actor types is an empty set, and G denotes
the graph created by the channel connections. A primitive actor can then be described by
A = 〈Tp, I, O,∅, G〉 [12].

Definition 2.7. (Primitive Actor,Composite Actor) A primitive or composite actor is graph-
ically represented by a geometric shape and can also be represented by A = 〈T, I, O,N,G〉.
Each actor has a set of input and output signals, I, O, which associate input and output
signals with the actor. T represents the type; for primitive actor T ∈ Tp while T ∈ Tc for a
composite. N is the set of internal actors which for a primitive actor is null and G denotes
the data flow graph created by interconnected channels.

Definition 2.8. (Primitive Actor Port) Each primitive actor has a set of input and output
signals, I and O respectively. Graphically a primitive actor is represented by a geometric

Matthew W. Kracht Chapter 2. Background 10

shape with a set of input ports PI and a set of output ports PO of which the input and
output signals of the actor are associated. In Figure 2.1, a sampler actor can be seen with
input ports i 1,b and output port o. In MRICDF, the port names and corresponding signal
names are the same.

Definition 2.9. (Composite Actor Port) Composite actors are interconnected graphs of
primitive actors and/or other composite actors, the ports of a composite actor are defined
recursively:
For primitive actor A:

A set of input ports PA
I

A set of output ports PA
O

A composite actor C consisting of a set of actors A:

PC
I = (

⋃
A P

A
I)− Pint

PC
O = (

⋃
A P

A
O)

Pint =
⋃

(A,B)∈A((PA
I ∩ PB

O) ∪ (PA
O ∩ PB

I))

Note that the output ports of a composite actor is not disjoint with the internal set Pint
because any output port can be read from the outside but an input port that is internal
cannot be driven from the outside.

All models when fully expanded, meaning composite actors are replaced by their sub-actors,
N , and graph, G, consist of only primitive actors. Each primitive actor also gives implicit
constraints for the clocks of the input and output signals. The primitive actors are described
in detail below and their implicit clock constraints are shown in Table 2.1.

1. Function : < m >= F (n) : A function actor contains n inputs and m outputs. A
function actor’s operation is defined by the user to handle any functional computation.
A function constrains its input and output signals to all be synchronous; all inputs
must arrive on the same logical instant and the outputs must be computed in that
same logical instant.

2. Buffer: B : A buffer actor is a single input single output synchronous actor. A buffer
can be initialized with n number of delay values. A value then takes n instants to pass
from input signal to output signal, and the first n output values are taken from the
initial delay values.

3. Sampler: S : A sampler actor can be thought of as a filter. It has two inputs and one
output. The first input can be of any type and the second input type must be Boolean.
If the first input signal is present while the second input signal is present with a true

Matthew W. Kracht Chapter 2. Background 11

value then the value of the first signal is passed to the output signal. If not, the output
signal is absent. The two inputs must occur at the same logical instant, and if the
second input carries the Boolean value true then at the same logical instant an output
occurs.

4. Merge: M : A priority merge actor has two inputs and a single output. If the first
input, or priority input, signal is present at a logical then the value of that signal is
passed to the output port at the same logical instant. If the priority input signal is
absent and the second input signal is present, then the value of the second input is
passed to the output. If neither input signals are present then the output signal is
absent at that logical instant.

(a) Function Actor (b) Sampler Actor

(c) Merge Actor (d) Buffer Actor

Figure 2.1: MRICDF Primitive Actors

Table 2.1: MRICDF Actors and Epoch Constraints

Actor SIGNAL expression Epoch Relations
Function (o 1, ...,o m) := F (i 1, ...,i n) σ(o 1) = ... = σ(i n)
Buffer o :=i 1$n init v1, ..., vn σ(o) = σ(i 1)
Sampler o =i 1 when b σ(o) = σ(i 1) ∩ σ([b])
Merge o =i 1 default i 2 σ(o) = σ(i1) ∪ σ(i2)

The implicit clock constraints along with exogenous constraints, meaning epoch relations
explicitly given in the model, can be used to determine all possible epoch relations between
signals of an MRICDF model [11]. These epoch relations can be translated to the Boolean
domain in terms of Boolean clauses of the model. These Boolean constraints are used to

Matthew W. Kracht Chapter 2. Background 12

determine an ordering for the clocks within a model. This technique is epoch analysis and
will be described in the next section.

2.1.3 Epoch Analysis

The goal of MRICDF is to create executable reactive software from model specifications.
In order to do this, the model must be implementable, meaning that the logical instants can
be mapped to real computation while respecting all of the temporal relationships between
events in the model. In order to schedule these events, a reference signal must be found
called the master trigger. The master trigger is a signal in the process such that the epochs
of all other signals in the process are subsets of the master trigger’s epoch. This means that
the master trigger initiates each round of computation that happens at each logical instant
in the model [11]

In order to perform epoch analysis, a Boolean theory must be constructed for the model.
This Boolean Theory consists of a set of variables BM and a set of clauses TM . Each Boolean
variable in bx ∈ BM denotes if a signal x has an event at an arbitrary instant. The clauses
represent all relations that can be derived between events in M . For each actor, specific
Boolean clauses are derived. These clauses can be seen in Table 2.2. For any instantaneous
channel in M connecting two ports x and y, the respective signals sx and sy are synchronous.
Therefore, for all such channels in M , there exists Boolean clause bx = by in TM .

Table 2.2: MRICDF Actors and Boolean Clauses

Actor Boolean Clauses
Function bo 1 = ... = bi n
Buffer bo = bi 1
Sampler bo = bi 1 ∧ [b]

bi2 = [bi2] ∨ [¬bi2]
[bi2] ∧ [¬bi2] = false

Merge bo = bi1 ∨ bi2

Sequential Implementation

The master trigger of a process can be determined by using the Boolean theory representation
of a model M . Let BM be the set of all Boolean variables, let TM be the set of Boolean
clauses, the master trigger, MT, can be defined as follows:

Definition 2.10. (Master Trigger) The master trigger of a process is the signal correspond-
ing to the Boolean variable bMT in BM , such that ∀bi ∈ BM , (bMT = false) → ¬b. This

Matthew W. Kracht Chapter 2. Background 13

means that if the master trigger does not have an event at an instant then no other signals
in M will have an event at that logical instant. The Boolean variable bx represents if a signal
x has an event at an instant. Hence a signal x can be a master trigger if bx is a unitary
prime implicate of the Boolean theory [11].

In [10], the computing of the master trigger involves passing the Boolean theory of the model
to an SMT solver, Yices [13], and to assign potential master trigger values to false and check
whether the theory is satisfiable. There exists a trivial solution to the Boolean theory of any
model: assigning all variables to be false. This solution has no consequence in determining
the master trigger so the following clause is added to the Boolean theory remove such a
solution:

∨
bi∈BM

bi

Given the Boolean theory, an SMT solver is used to determine if there exists a unitary prime
implicate, or master trigger. If that is the case an iterative approach is used to determine
sub-clock relations among the clocks of all signals within a model. A clock tree is formed by
determining all sub-clock relations of clocks within M . If every clock relation is known, then
the presence or absence of every signal can be determined for every instant of the master
trigger. This means that M is deterministic and is endochronous [8].

The property of endochrony in Signal [8] is similar to sequential implementability in
MRICDF [12], and this property guarantees that the order in which inputs must be read is
known by the program and that there is a total ordering over the set of instants within the
model.

It may be the case, that a model is not sequentially implementable or endochronous. In this
particular case, exogenous constraints must be added to the model in order to force it to
conform to this property. From this ordering of instants as well as the data dependencies
found in the model graph, a schedule for the actors can be found and from this deterministic
sequential code can be generated [11].

Clock Tree

Regardless of whether a model is sequentially implementable or concurrently implementable,
the process for determining the precedence relations amongst the epochs of the model is the
same. In [10], an SMT based method for determining the epoch relations are stored in
an acyclic structure called a clock tree. If a model is sequentially implementable then the
corresponding clock tree is singly rooted. If a model is concurrently implementable then the
clock tree is multi-rooted, creating a forest instead of a single tree. The root of any tree is
the master trigger of the model, if sequentially implementable, or the master trigger of the
sub-model, if concurrently implementable. All clocks under the root represent sub-clocks

Matthew W. Kracht Chapter 2. Background 14

of the master trigger. A single tree and data dependencies give a total order of all signals
within a model and a forest of trees gives a partial order of all signals within a model.

The Polychrony tool constructs the clock tree by partitioning all clocks within a process
according to clock relations seen in Table 2.1 [14]. For example a Boolean signal’s clock ŝ can
be partitioned into [s] ∧ [¬s]. They take all such clock partitions of a model and fuse them
together in a way that maintains compactness and constructs a much larger tree containing
all partition sets. Within this tree, any clock ŝ that is a child of p̂, carries the relation
ŝ ⊆ p̂. The clock tree in MRICDF is similar but is built in a top down approach using
SMT equations to determine relations [10]. Here each node of the tree is an equivalence
class of clocks. Each edge between nodes represents the ⊆ relation as in Polychrony but
also contains a Boolean predicate. This Boolean predicate defines exactly at which instants
of the parent clock the child node clocks are present. An example clock tree can be seen in
Figure 2.2.

Figure 2.2: Example Clock-Tree for Model M

In Figure 2.2, there are two sub-models M1 and M2 in M . The master triggers of M1 and
M2 are clocks {â, ô} and {ŝ} respectively. The clock of any signal s in M can be described
in terms of the Boolean predicates required to traverse the tree from master trigger nodes to
the node that contains s. For example, ŵ = ˆ[a], ˆ[a] ⊆ â, ˆ[¬a] ⊆ â, ĉ = ˆ[w] ⊆ ŵ, ĥ = ˆ[s]∨ ˆ[¬a],
etc.

The clock tree gives a compact representation of all clock relations that have previously been
discussed. These relations as well as mutual exclusivity can be informally determined via
the tree structure:

1. Synchronous: =, Two signals, s1 and s2 are synchronous if their clocks are contained

Matthew W. Kracht Chapter 2. Background 15

within the same node.

2. Sub-Clock: ⊆, A the clock of signal s1 is a subclock of the clock of signal s2 if the
graph can be traversed from s2 to s1.

3. Mutually Exclusive: ⊕, Two signls, s1 and s2 are mutually exclusive if ŝ1 ∩ ŝ2 = ∅,
and if the conjunction of all Boolean predicates from s1 and s2 to their respective root
clocks is false.

Given these relationships it is possible to draw implication relationships between signals.
These implications can help determine which signals in a model must be present in an instant,
as well as what conditions cause certain signals to be present. Given the two signals, s1,s2,
a Boolean predicate B, and the instant t ∈ Υ, the implications for each type of relationship
can be seen in Table 2.3.

Table 2.3: Epoch Relations and given implications between Signals

Relation Implications
s1 = s2 ŝ1(t)↔ ŝ2(t)
s1 ⊆ s2 ŝ1(t)→ ŝ2(t)

(ŝ2(t) ∧ [B])→ ŝ1(t)
(ŝ2(t) ∧ ¬[B])→ (ŝ1(t) =⊥)

s1 ⊕ s2 ŝ1(t)↔ (ŝ2(t) =⊥)
Unrelated ∅

The clock tree is a pivotal structure that is created within the compilation process of
MRICDF regardless of whether a model is sequentially implementable or concurrently im-
plementable. Being able to determine relationships between clocks of signals statically via
the clock tree is useful especially when determining possible ways a model may execute in
one instant.

2.1.4 Uses of MRICDF

MRICDF allows to create data-flow models visually and enables algorithmic synthesis if
the model satisfies implementable properties. Because it is a polychronous language, it is
well suited for expressing systems with concurrency. This means that MRICDF is able to
synthesize deterministic code for a larger subset of all models, than synchronous languages
such as Lustre [15] or Esterel [16]. It also offers safety checks such as deadlock detection,
causal loop detection, and a typing system [11] [17].

Matthew W. Kracht Chapter 2. Background 16

Although the language is well suited for describing concurrently implementable systems,
there is currently no ability to model real-time systems within its development framework
EmCodeSyn. There is a formalism, SynDEx, that targets multi-component distributed
real-time systems and can accept Signal models as task definitions. This language is mostly
concerned with the specification of distributed systems and finding optimal schedules for
multi-task partitioned systems [18]. There are other data flow languages such as Simulink
that allow for the targeting of real-time systems but lacks formally defined semantics [19].
Formally defined synchronous languages such as Esterel have been extended to include some
real-time capabilities [20]. These languages though impose greater temporal restrictions
by forcing models to be synchronous which may not be well suited for implementing large
multi-periodic real-time software systems.

2.2 The PRELUDE Framework

Prelude is a formal language used in the development of real-time embedded systems. It is
in the family of data-flow languages such as Signal [8] and MRICDF [11], but specifically
focuses on defining of software architectures for multi-rate, multi-periodic systems while
allowing users to import software functionality from C or from synchronous languages such
as Lustre [21]. The Prelude language and tool set offers not only the ability for users
to define such systems but also the ability to do schedulability analysis as well as generate
executable code. In order to understand work to be presented later, we now discuss some of
the major aspects of the Prelude tool set including periodic clocks, task set representation,
and schedulability analysis.

2.2.1 Periodic Clocks

The Prelude synchronous real-time model relies on the Tagged-Signal Model [3]. In this
model, similar to other synchronous languages, variables and expressions are represnted as
flows. A pair, (vi, ti)i∈N, where vi is a value in the domain V and ti is a date in Q,∀ti ∈
Q, ti < ti+1, can be used to represent the value of a variable or expression at a specific date
ti. A flow is then a sequence of these pairs and represents a variable or expression value over
the set of all dates. The clock of a flow is then a set of dates in Q in which the value vi must
be computed, and the value vi must be computed in [ti, ti+1[, or in one logical instant. This
means that flows may have different dates for when vi must be computed, and thus can have
different clocks as well as different instant durations. With different clocks comes different
relations that can be defined between such clocks and flows such as equivalence; two clocks
are equivalent if they are active for all of the same dates. Prelude focuses on a specific
subset of clocks called strictly periodic clocks [22].

Definition 2.11. (Flow, Flow Clock, Flow Instant) A flow f is a sequence of pairs, (vi, ti)i∈N,

Matthew W. Kracht Chapter 2. Background 17

where vi is a value in the domain V and ti is a date in Q, ∀ti ∈ Q, ti < ti+1. The flow clock,
ck(f), is the set of dates in Q where one value vi must be computed. A flow instant is one
date in the flow clock.

Definition 2.12. (Strictly periodic clock). A clock h = (ti)i∈N, ti ∈ T , is strictly periodic if
and only if:

∃n ∈ Q, ∀i ∈ N, ti+1 − ti = n
where n is the period of h, denoted π(h), and t0 is the phase of h, denoted ϕ(h).

Strictly periodic clocks are then able to define a flow’s instants in terms of a rational valued
real time clock, by giving the period and phase, while the Boolean clock of a flow gives
the activation condition of a flow for a specific instant. Strictly Periodic clocks offer a
way to compare and transform different clocks that are not offered with Boolean clocks
alone. Strictly periodic clocks can be compared via their period and phase characteristics.
Transformations on these clocks can be done as well to alter their characteristics. Three
strictly periodic clock transformations are defined [3]:

Definition 2.13. (Periodic clock division). Let α be a strictly periodic clock and k ∈ Q.
”α/.k” is a strictly periodic clock such that:

π(α/.k) = k ∗ π(α), ϕ(α/.k) = ϕ(α)

Definition 2.14. (Periodic clock multiplication). Let α be a strictly periodic clock and
k ∈ Q. ”α ∗ .k” is a strictly periodic clock such that:

π(α ∗ .k) = π(α)/k, ϕ(α ∗ .k) = ϕ(α)

Definition 2.15. (Phase offset). Let α be a strictly periodic clock and k ∈ Q. ”α→ .k” is
a strictly periodic clock such that:

π(α→ .k) = π(α), ϕ(α→ .k) = ϕ(α) + k ∗ π(α)

2.2.2 PRELUDE Language Details

A Prelude process is defined as a hierarchy of nodes. A node simply defines its output
flows in terms of its input flows, where both inputs and outputs are given by the user. The
node can be an imported process (C or Lustre), or can be hierarchic where the flows are
defined by a series of data flow operators [21]. The node in Prelude is a synchronous block
that defines a task, commonly used when referring to real-time software architecture and the
period of that task is taken from the period of the input/output flows. For each flow of both
input and output ports of a node must eventually be defined in terms of a strictly periodic
clock where the characteristics, period and phase, can be given by the user or attempted to
be inferred at compile time. Because Prelude is used to target real-time systems, it must
also offer a way to define real-time constraints within the language. This is done through user
defined periodicity constraints and deadline constraints. Periodicity constraints are defined
on input and output flows and are given as the period and phase of an offset. The deadline

Matthew W. Kracht Chapter 2. Background 18

constraints are defined on output flows and specify at what specific date a specific value in
a flow must have been computed. Given an output flow with a deadline constraint c, the
original instant of the flow would be [ti, ti+1[, where vi must be computed by ti+1, but the
deadline constraint forces the instant to be [ti, ti + c[; the next instant still beginning at ti+1.
Deadline constraints do not change the clock of any flow and are only used when scheduling
a process [3]. Through the defining of nodes and real-time constraints on flows, users are
able to define a set of multi-periodic tasks.

Rate Transition Operators

In order to model larger subsets of real-time software, communication between tasks is
required. Within multi-periodic processes, this creates situations where flows may not have
equivalent periodic clocks but must pass information between each other. In order to do this
Prelude defines rate transition operators, which are based on the strictly periodic clock
transformations. These rate transition operators allow for users to define communication
patterns between tasks or nodes in such a way that the communication will always be
deterministic [3]. The basic rate transition operators are given in Table 2.4 where f is a
flow and k ∈ N and q ∈ Q [21].

Table 2.4: Rate Transition Operators for Prelude

Operator Description
Produces a flow with a period k times shorter than that of

f ∗∧ k f where each value in f is duplicated k times
Produces a flow with a period k times longer than that of

f/∧k f where only each kth value in f is kept
f ∼> q Produces a flow with the same period as f but the phase is q ∗ π(f)

(Delay Operator) Produces a flow with the same clock as f
const fby f but values are delayed by one instant and the first value is const

From these basic operators, users can write more complex communication schemes between
the ports of nodes. While these transition operators define a way to make strictly periodic
clocks equivalent, a more detailed description of the communication patterns is needed. In
order to have deterministic communication between tasks, the data dependency relationship
must be known for all instants of each task within a system. Prelude defines this through a
function gops(n). Let f be a producer flow that is writing to a consumer flow g, the transition
operator ops is required on f in order to equate the two clocks. gops(n) then returns the
specific instant of g that consumes value at the nth instant of f . The gops(n) function for
basic rate transition operators is defined inductively below:

Matthew W. Kracht Chapter 2. Background 19

g∗∧k.ops(n) = gops(kn)
g/∧k.ops(n) = gops(dn/ke)
g∼>q.ops(n) = gops(n)

gfby.ops(n) = gops(n+ 1)
g(n) = n

When two clocks are equivalent there is no transition operator necessary; shown as g(n) = n.
This means that the nth instant of the producer flow f is consumed by the nth instant of
the consumer flow g, or f(n) = g(n). Other transitions are defined in terms of this basic
function. For example, if flow g has a period that is half that of f the rate transition is
∗∧2 and g∗∧2(n) = 2n, or f(n) = g(2n). Every other instant of g consumes an instant
of f because of the difference in periods. A few examples of different rate transitions and
corresponding gops(n) functions between flows f and g can be seen in Figure 2.3.

(a) g∗∧3(n) = 0,3,6,9,... (b) g/∧2(n) = 0,1,1,2,...

(c) gfby(n) = 1,2,3,4,... (d) g∼>1/2(n) = 0,1,2,3,...

(e) g∗∧3/∧2(n) = 0,2,3,5,...

Figure 2.3: Variety of ops rate transitions between flows f and g
J. Forget. A Synchronous Language for Critical Embedded Systems with Multiple

Real-Time Constraints. PhD thesis, Universit’e de Toulouse - ISAE/ONERA, Toulouse,
France, November 2009.

Used under fair use, 2014

Using the above definitions, more complex rate transitions can be constructed using the
composition of the basic operator and the gops(n) function can still be determined. The
deterministic communication patterns given by the above functions will also be used for
determining data dependencies between tasks in future sections.

Matthew W. Kracht Chapter 2. Background 20

Boolean Operators

Besides the strictly periodic clock operators, which only affect the period and phase of a clock,
there are special operators which affect strictly the Boolean clock of the flow, which controls
at which instants the flow is present. Specifically, Prelude offers two such operators: when
and whennot. These operators are used to under-sample flows. For example, given the flow
f and the Boolean flow c, the flow g = f whennot c is going to have a clock that is only
present when the clock of f and c are present and the value of c in that instant is false. This
then creates a under-sampling relation between the clock of g and the the clocks of f and
c. Although these operators are included in the syntax and have formally defined semantics
within Prelude, they are not treated any differently when it comes to data dependencies
and task communication. In [22], it is shown that the gops(n) function for these operators
are merely over approximated using the following functions:

gwhen.ops(n) = gops(n)
gwhennot.ops(n) = gops(n)

This over-approximation is because of the inherent complications they present for static
analysis. The Boolean conditions of these operators, and therefore communication patterns,
can only be determined run-time in some cases. For static analysis purposes these conditions
must be over-approximated as is done in Prelude. While over-approximation removes such
Boolean operators for static analysis, these operators are still used in the synthesized code
[3].

2.2.3 Task Set Representation

In order to perform static schedulability analysis, the hierarchy of nodes present in the user
defined Prelude process must be translated into a task graph. A task graph is a collection
of vertices, where each vertex represents a task, and each edge represents a precedence, or
data dependence, relationship between two tasks. The first step, to create a task graph is to
expand the original process. This is done recursively by replacing intermediate nodes with
equivalent equations until the only nodes left are user defined or imported nodes, which were
the original leaf nodes of the process hierarchy [3].

In [3], the authors provide the details of translating the expanded program into an inter-
mediate graph and then how they reduce the intermediate graph into the final task graph.
For our purposes it will suffice to understand the structure of the Prelude task graph. A
Prelude process can be represented with a graph g = (V,E) where V is a set of vertices
or tasks and E is a set of edges or precedences. Each vertex vi ∈ V contains a set of char-
acteristics (ini, outi, fi), where ini is the set of task inputs, outi is a set of task outputs, and
fi is the relation between the inputs and outputs. Precedences or edges occur when there is
a variable v such that v ∈ outi, v ∈ inj and the precedence is represented as ti → tj.

Matthew W. Kracht Chapter 2. Background 21

A vertex vi represents a task ti which has real-time characteristics. These are represented
as (Ti, Ci, ri, di). Tasks are treated as synchronous blocks, all inputs and outputs have the
same periodic clock, pcki. This clock can be used to derive the period, Ti = π(pcki), as
well as the release date or phase, ri = ϕ(pcki), of the task ti. The other two characteristics
Ci, worst case execution time, WCET, and di, deadline, are derived from user specifications
for nodes. There is no analysis done to determine the WCET of a task. Instead the user
provides this value by specifying execution times within the process. The deadline, di, is by
default di = Ti but if the user has specified a deadline for any output in outi then di is the
minimum specified deadline for all outputs in outi [3].

There are two different types of precedences, or edges, in the graph g: simple and extended.
Simple precedences, ti → tj, occur between tasks that have equivalent periodic clocks, pcki =
pckj. This type of precedence does not require a rate transition. Extended precedences,

denoted ti
ops→ tj, occur between tasks that do not equivalent periodic clocks. The precedence

requires a rate translation operator ops in order to equate the two clocks pcki and pckj.

Another characteristic of a task in Prelude is its activation condition. An activation
condition, condi, is a Boolean formula describing the conditions under which the task ti will
execute. This is important when there are Boolean operators on rate transitions such as
when and whennot. The definition of condi, where pck is a periodic clock and c is a Boolean
condition, can be seen below:

cond(pck) = true
cond(pck when c) = cond(pck) ∧ c = c
cond(pck whennot c) = cond(pck) ∧ !c =!c

The activation for the activation condition of task ti is then the disjunction of cond() for
every input clock:

condi =
∨
ck∈insi cond(ck)

This means that for any task with at least one input that does not contain a Boolean operator
will always be active. Otherwise the task may be inactive depending on Boolean conditions.
This activation condition is used to define when tasks should execute which is particularly
important to determine when generating executable code from such models. While Prelude
uses this activation condition during code synthesis, there is deviation during schedulability
analysis. For schedulability analysis, Boolean operators are over-approximated which causes
the activation condition condi to always be true, thus the analysis is sound but not complete.
These altered function definitions can be seen below [22]:

cond(pck) = true
cond(pck when c) = cond(pck) = true

cond(pck whennot c) = cond(pck) = true

Matthew W. Kracht Chapter 2. Background 22

2.2.4 Precedence Encoding

Common scheduling policies such as Earliest Deadline First (EDF) or Rate Monotonic (RM)
are not suited to handle task sets with precedences. This makes it particularly challenging to
perform code generation as well as to verify the schedule of the task set. In order to handle
this, Prelude uses a technique of encoding task precedences into the characteristics of each
task which is extended from simple precedences in [23] to handle multi-periodic precedences
inherent in Prelude. This allows for the system to retain the same deterministic execution
while creating a task set that is completely independent. This independent task set is
then easily handled by common real time schedulers and schedule verification techniques
[3]. Another benefit to the precedence encoding approach is that it does not require the
use of semaphores or synchronization in order to maintain determinism. In [21], the authors
cite that the communication between a producer task and a consumer task maintain two
properties: the producer must complete before the consumer begins, and that the produced
data must be available as long as the consumer requires it. The first of these properties will
be assured through the precedence encoding and the second property is handled during the
code synthesis via buffering protocols [3].

Simple Precedences

The explanation of the precedence encoding technique is best given through the explanation
of encoding of task precedences within the context of a simple precedence, meaning ti → tj
where tasks ti and tj have equivalent periodic clocks, pcki = pckj. In order to respect the
communication model, ti must complete its computation before tj can begin its computation.
This means that ti must complete its computation in time for tj to perform its computation
and still meet its deadline dj. The adjusted deadline for ti then becomes d∗i = min{di, dj−Cj}
and the adjusted release time for tj becomes r∗j = max{rj, ri + Ci} [23]. From the work
presented in [23], a precedence encoding can be determined for any task with only simple
precedences. The definitions are as follows where pred(ti) gives the set of predecessor tasks
of ti and succ(ti) gives the set of successor tasks of ti:

d∗i = min{di, d∗j − Cj}∀tj ∈ succ(ti)
r∗j = max{rj, r∗i + Ci}∀ti ∈ pred(tj)

Extended Precedences

In [3], the authors extends the work of [23] to handle the case of extended precedences.

Extended precedences, denoted ti
ops→ tj, are any precedence relations where the periodic

clocks of two tasks are not equivalent, pcki 6= pckj, and the rate transition ops is needed to
equate these clocks. It is possible to apply the simple precedence encoding to an extended

Matthew W. Kracht Chapter 2. Background 23

precedence. The extended precedence will require a different encoding for every task instant.
This is because of the differences in release dates of task instants that are dependent. In the
simple precedence there is only one case: both tasks release during the same point in time.
In an extended precedence the number of cases that need to be encoded varies. If a simple
precedence encoding is used for each of these cases then the extended precedence will be
encoded. This can create a situation requiring many simple precedence calculations but the
number of calculations is bounded due to the periodic nature of the communication. The
hyper-period, HP, determines this bound. The HP of a task set is the least common multiple
of the periods of every task within the set. This is the bound due to the fact that the model
will repeat release dates in the HP interval over the execution of the process[24]. The issue
with encoding extended precedences this way is that it causes a large deal of computation
overhead since task sets and HPs can become quite large; the authors present a method to
encode such precedences without unrolling the task set over the HP [3].

To encode extended precedences, the dependency relationships need to be known between all
instants of both tasks within the extended precedence. These data dependencies are given
with the gops() function, which was previously discussed in Section 2.2.2. Using this function,

for the extended precedence ti
ops→ tj, ∀n, ti[n] → tj[gops(n)] [3]. A variety of extended

precedences can be seen in Figure 2.4. Note that in these examples more dependencies exist
than ti[n] → tj[gops(n)]. This happens in a case of over-sampling, meaning tj is consuming
data produced by ti at a faster rate than ti is producing, or Tj < Ti. When tj begins in
instant and new data hasn’t been produced by ti, a new instant of ti hasn’t been computed,
tj must consume the previous value of ti. These data dependencies are shown in Figure 2.4
but are redundant. By definition an instant t of pckj must be completed before instant t+1.
Therefore if the dependency ti[n]→ tj[gops(n)] is respected, meaning ti[n] is computed before
tj[gops(n)] begins, so will any dependency that exists ti[n]→ tj[m] where m > gops(n).

Using gops the authors in [3] define another function ∆ops(n, Tj, rj) which represents the
difference, in continuous time, of release dates of related instants of an extended precedence
relation. Given that each task ti contains a set of release dates Ri and the relation ti

ops→ tj,
the function ∆ops is given below:

Definition 2.16. [3] Let ∆ops(n, Tj, rj) = gops(n)Ti−nTi+rj−ri. Given Ri[n] is the release
date for the nth instant of task ti, we have:

Rj[gops(n)] = Ri[n] + ∆ops(n, Tj, rj)

In Figure 2.5, the value of ∆ops can be seen for different rate translations for the extended

precedence ti
ops→ tj. The value of ∆ops for a specific instant n in pcki gives the continuous

time different between the release of that instant and the dependent instant m in pckj. The
value of m = gops(n). This value can be seen is a slack or extra time an instant n in pcki has
to be computed before that data value must be present for tj.

The function ∆ops is ultimately periodic and some examples can be seen in Figure 2.5 [3].
This periodic pattern allows for the adjusted deadlines for tasks with extended precedences

Matthew W. Kracht Chapter 2. Background 24

(a) ti
∗∧3→ tj (b) ti

/∧2→ tj

(c) ti
fby→ tj (d) ti

∼>1/2→ tj

(e) ti
∗∧3/∧2→ tj

Figure 2.4: Examples of Extended Precedence Relations and Data Dependencies c
J. Forget. A Synchronous Language for Critical Embedded Systems with Multiple

Real-Time Constraints. PhD thesis, Universit’e de Toulouse - ISAE/ONERA, Toulouse,
France, November 2009.

Used under fair use, 2014

to be represented as ultimately periodic as well [3]. In order to perform deadline calculus,
or adjusting the deadlines to encode extended precedences, the task deadline characteristics
must be translated into deadline words, w. Deadline words are used to express the sequence
of unitary deadlines, d, and they have the following syntax:

w = u.(u)ω

u = d|d.u

Given a deadline word w = u.(v)ω, u is the prefix and (v)ω is the sequence of deadlines
that is repeated infinitely. Furthermore, w[n] gives the nth unitary deadline in the sequence
of deadlines [3]. Using deadline words, the deadline word for task ti, given as wi, can be

computed for the given precedence relation ti
ops→ tj:

wi ≤ Wops(wj) + ∆ops(Tj, rj)− Cj

The function Wops(wj) is a deadline word where Wops(wj)[n] = wj[gops(n)] and where
∆ops(Tj, rj) is word representation of the ∆ops sequence, ∆ops(Tj, rj)[n] = ∆ops(n, Tj, rj)

Matthew W. Kracht Chapter 2. Background 25

(a) For ti
∗∧3→ tj (b) For ti

/∧2→ tj

(c) For ti
fby→ tj (d) For ti

∼>1/2→ tj

(e) For ti
∗∧3/∧2→ tj

Figure 2.5: Examples of ∆ops

J. Forget. A Synchronous Language for Critical Embedded Systems with Multiple
Real-Time Constraints. PhD thesis, Universit’e de Toulouse - ISAE/ONERA, Toulouse,

France, November 2009.
Used under fair use, 2014

[3]. This gives the deadline word for a task with a single successor task. In order to deter-
mine the deadline word for a task with multiple successors the least deadline date required
by any successor task is taken for each instant of the given task. The deadline word for any
task is as follows:

w∗i = min{wi,∆ops(Tj, rj) +Wops(wj)− Cj}(∀tj, ti
ops→ tj)

In order to adjust the deadline for a task ti and encode the precedence relationships originat-
ing from ti, the deadline calculus for all tasks tj, tj ∈ succ(ti) must be computed first. This
means that to adjust all deadlines within a graph g, a topological sort is needed starting
with tasks that do not have successors and then ending with tasks that do not have prede-

Matthew W. Kracht Chapter 2. Background 26

cessors. The algorithm for adjusting all task deadlines within a graph g returning a set of
independent tasks q is given in Algorithm 1 [3].

Algorithm 1: Prelude Deadline Adjustment for Precedence Encoding [3]

Input: Task graph g
Output: Independent Task Set q
q ← ∅;
forall the ti ∈ g do

if ti has a user defined deadline di then
wi ← (di)

ω;
else

wi ← (Ti)
ω;

end

end
S ← List of tasks without successors;
while S! = ∅ do

Remove head tj of S;
q ← q • tj;
forall the ti, ti

ops→ tj do
wi = min(wi,∆ops(Tj, rj) +Wops(wj)− Cj) ;

Remove ti
ops→ tj from g;

if succ(ti) = ∅ then
S ← S • ti;

end

end

end
return q

For an example of the precedence encoding, the task graph of a simplified version of a
collision avoidance controller is given in Figure 2.6. This task graph contains a mixture of
simple and extended precedence. The deadline of the task Speedo is not adjusted because
it doesn’t have any successors. The deadlines of all other tasks are then adjusted through a
backward traversal of the graph. The characteristics of each task within the graph as well
as the final adjusted deadlines can be seen in Table 2.5.

Given an independent task set q, it is easy to verify the schedulability using different algo-
rithms such as EDF and RM. Prelude previously used a third party tool, Cheddar [25],
for schedule verification [26]. They have since shifted the schedulability analysis to their
complementary real-time operating system (RTOS) SchedMCore [21]. SchedMCore is
also the RTOS that is targeted for code generation which creates a top to bottom tool set
for the specification and implementation of multi-periodic real-time embedded systems.

Matthew W. Kracht Chapter 2. Background 27

Figure 2.6: A Task Graph for a simplified Collision Avoidance Controller

Table 2.5: Real Time Characteristics and Deadline Adjustments for Figure 2.6

Task Period Execution Deadline Release Adjusted Deadline
Rangei 50 5 50 0 (36, 50)ω

Speedi 50 5 50 0 (36, 50)ω

Posi 50 3 50 0 (43, 50)ω

CU 100 3 100 0 (42)ω

CAS 50 5 50 0 (47)ω

Comms 50 1 50 0 (48)ω

Eff 100 5 100 0 (48)ω

Speedo 50 2 50 0 (50)ω

ACU 100 3 100 0 (39)ω

2.2.5 Evaluation of Prelude

Prelude provides a novel approach to the design of multi-periodic real-time embedded sys-
tems. They offer a language that abstracts away from a strict task graph to allowing users to
create a software architecture in terms of node hierarchies with deterministic execution and
communication. They are then able to translate this abstraction into a task graph which can
be more easily used for schedulability analysis and code generation. They extend task prece-
dence encoding to cover multi-periodic communication in a compact and efficient manner
which allows for the tool to cover more use cases since it does not require synchronization
primitives such as semaphores. The language also offers some safety property techniques
such as a typing system as well as causal loop detection that are not discussed here.

Although Prelude presents a novel way for the specification and analysis of multi-periodic
systems, there are still improvements that are possible for the analysis of this set of real-

Matthew W. Kracht Chapter 2. Background 28

time systems. Specifically, improvements can be made with respect to schedulability analysis
and verification. The over-approximation of the Boolean clock operators such as the when
operator could result in processes being rejected as unschedulable when in fact they are
schedulable. In Prelude, the Boolean clocks of periodic clocks are forced to be always
present during schedule analysis because the value of a Boolean clock operator cannot always
be determined statically. This is true that these values cannot be determined statically but
it could be the case where these Boolean conditions create clocks that are mutually exclusive.
Consider the following periodic clocks:

Definition Analysis Simplification
f = a when c f = a

g = a whennot c g = a

In this example it may not be possible to determine the exact value for f or g statically but it
would be possible to determine that such periodic clocks were mutually exclusive. This case
can be present in different control software where certain tasks are executed conditionally
based on the mode or state of a system. In this situation it would be possible to represent
such mutual exclusion with a conditional task graph, where precedence relations contain
conditions under which the precedence occurs. It would then be possible to refine the final
task set that is used in Prelude for schedule verification. Instead of all tasks executing
every instant, a subset of that task set would be the worst possible execution for the process
and if that subset is schedulable then the entire process would be schedulable.

In this thesis, a solution to scheduling real-time tasks with conditional behaviors will be
presented. The Prelude style multi-periodic real-time systems will be combined with
MRICDF and EmCodeSyn will be extended to allow users to specify tasks as well as their
real-time characteristics. We will then use the semantics of MRICDF as well as periodic
clock translations to build a conditional task graph from a specification. This conditional
task graph will allow us to refine the worst possible execution and reduce the number of
systems incorrectly determined as being unschedulable.

Chapter 3

Real-Time EmCodeSyn

Real-Time EmCodeSyn aims to combine the modeling of real-time embedded system soft-
ware within the framework of a polychronous language MRICDF. The goal of Real-Time
EmCodeSYn is to extend the data-flow network formalism of MRICDF with real-time task
constructs to combine the code synthesis capabilities of MRICDF with schedulability anal-
ysis and code generation of real-time software. In this chapter, we present all requirements
to achieve this goal.

We begin by explaining the extensions that we made to the EmCodeSyn environment to
allow for real-time system modeling. This includes how users will define tasks and char-
acteristics as well as how the communication between tasks is defined. This leads us to
discussing what types of models are valid with respect to the different timing characteristics.
For instance, we are only be able to perform analysis on endochronous models which are
sequentially implementable in absence of timing constraints.

We show how conditional task graphs are constructed with a specific example using the
Location Estimation Unit presented in Chapter 1.1. This example will also be used to show
our two methods for refining the worst case execution of an MRICDF model. Each method
attempts to achieve a refinement of the execution through different approaches: one used
for better refinement and the other for performance. Finally we show how real-time code is
synthesized from a schedulable model.

3.1 MRICDF Extensions for modeling of Real-Time

Constraints

Within the MRICDF formalism there were no constructs for defining a real-time task. Be-
cause MRICDF is a visual data-flow language, we developed the constructs for defining
tasks within the MRICDF based framework, EmCodeSyn. By implementing the task

29

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 30

definitions within EmCodeSyn, there is a separation between the data-flow model and the
task-graph abstraction for real-time tasks. This allows users to alter the real-time char-
acteristics for the software based on the target platform, without changing the underlying
model.

Definition 3.1. (Task) A task, ti, is given as ti = 〈Ac, I, O,H, ci, Bi〉 where Ac is a composite
actor, I and O are sets of input and output signals respectively, and H is the set of real-time
characteristics of the task. ci is a strictly periodic clock such that π(ĉi) = Ti, and ϕ(ĉi) = ri,
where Ti is the period of the task and ri is the release time of the task as denoted in the
task characteristic H. Bi is a set of dependency branches.

In Prelude, the user supplies periods and phases to variables within a process and also
specifies deadlines. Instead of interpreting characteristics from the variables, our tool allows
the user to specify the characteristics directly when defining a task. This allows the user to
have more direct control over how the tasks are defined and formed instead of abstracting the
characteristics into certain variable definitions, such as due keyword used to specify deadline
within Prelude. The task characteristics are defined below:

Definition 3.2. (Task Characteristics) A task characteristic, H = 〈Ti, di, ri, Ci〉, is defined
as a tuple: period (Ti), deadline (di), offset (ri), and worst-case execution time (WCET)
(Ci). These are defined in terms of number of milliseconds.

• Period: Ti : The interval of time over which one instant of the task must be computed.

• Deadline: di : The amount of time from when a task is released to when that task
must be computed. By default di = Ti and if di is user defined di ≤ Ti.

• Offset: ri : The amount of time the release of the task is shifted within the interval
of the period. ri must specified to be less than di.

• WCET: Ci : The maximum amount of time it will take for the task to be computed
on the target platform.

A task is an extension of a MRICDF composite actor. A user can select a set of actors,
forming Ac, which creates a task ti within a MRICDF model. From this set of actors the
set of input and output signals are derived. These input and output signals are determined
based on the input and output ports of the actors that have been selected. The set of actors
in Ac and data-flow connections imply a set of task ports. A task port is either an input or
output of a task and the associated signals of these ports are task signals.

Definition 3.3. (Task Port) Each task, ti, contains a composite actor Ac where each actor
a ∈ Ac contains a set of input ports P a

I and a set of output ports P a
O. The set of task input

ports P ti
I and a set of output ports P ti

O given:

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 31

P ti
I = (

⋃
Ac
PAc
I)− Pint

P ti
O = (

⋃
Ac
PAc
O)− Pint

Pint =
⋃
a,b∈Ac

((P a
I ∩ P b

O) ∪ (P a
O ∩ P b

I))

In Figure 3.1, we show a basic MRICDF task. This task contains three actors and each
actor contains a set of input and output ports. For instance, P S

I = (p3, p4) and P S
O = (p5).

To determine the input and output ports of the entire task the internal ports must be defined.
An internal port is any port that is contained in output port of an actor within the task and
also within an input port of an actor within the task. Simply, it is a port that connects the
output and input of two actors within the task. In the example, we have Pint = (p3, p4).
The input ports of the task, P t

I , is the collection of input ports to actors within the task that
are not internal; in the example P t

I = (p1, p2). The task output ports, P t
O, is the same idea

except for output ports that are not internal, P t
O = (p5).

Figure 3.1: An Example Task, t, in MRICDF with ports and actors

Definition 3.4. (Task Input Signal, Task Output Signal, Open Signal) Each task, ti, has a
set of input ports, P ti

I , and a set of output ports, P ti
O . Task input signals, I, and task output

signals, O, are the associated signals of these ports. An open signal is a signal such that it’s
associated port is an input or output port of an MRICDF model that receives input from
its environment.

The input and output signals of a task are defined by strictly periodic clocks. This concept is
derived from Prelude, where a signal’s epoch is defined both by its Boolean clock, which is
the clock in MRICDF, as well as the associated strictly periodic clock. Any strictly periodic
clock, h, has a period, π(h), as well as a phase, ϕ(h). In Prelude, these are defined by
the user but in our tool, these values are taken from the task that the signals are associated
with. This means that every input and output signal of a task have the equivalent periodic

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 32

clocks but does not mean that they have equivalent Boolean clock. This means that two
signals may have a period of 20ms but may be present independently of each other within the
instants defined by the periodic clock. The distinction made between the strictly periodic
clock and the Boolean clock allows for the MRICDF model to remain unaltered even when
real-time characteristics are added or changed by the user.

In order for a task set T for a MRICDF model M to be well formed, T must conform to
the following properties:

∀ actors a ∈M,∃! ti ∈ T, a ∈ ti
∀ti ∈ T, di ≤ Ti∧

ri < di∧
Ci ≤ di − ri

In other words, if a task graph is to be well formed all actors must be associated with a unique
task and each task characteristic must not automatically exclude T from being schedulable.
Each task in T can be seen as its own model where it computes a reaction for each set of
inputs it receives. However, within the scope of the entire MRICDF model multiple of these
reactions can be contained within the total model reaction. E is the set of edges between
the vertices.

3.2 Model Restrictions

Before constructing any task graph from a real-time specification using MRICDF, the clock
tree of such model must be constructed. The clock tree will be used to determine all con-
ditional relationships within the graph: all ’sample’ operators. The clock tree also gives
information about whether or not a process is endochronous, weakly-hierarchic or not com-
pilable. There are certain clock tree conditions that when they occur make it impossible to
guarantee real-time deadlines.

When looking at the ordering of logical clocks within a MRICDF model, there is one key
characteristic that creates issues with respect to the real-time execution of a system. This
characteristic is a synchronization within a weakly-hierarchic process. In terms of the clock
tree, a synchronization is an intersection of two trees. At a synchronization point, the two
independently timed clock trees must synchronize for that specific instant and there are
conditions under which this occurs.

In Figure 3.2 a weakly-hierarchic model is shown. In this model there are two inputs X
and Y whose clocks are unrelated to each other. When X = 10, the clock of A is present
and carries the value 10. When Y = 20 the clock of B is present and carries the value 20.
Both A and B are inputs to the same function actor which means Â = B̂. The two inputs
are allowed to arrive at complete different instants but when X = 10 or Y = 20 the two

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 33

Figure 3.2: An Example Weakly-Hierarchic Model

unrelated clocks must synchronize. This is because the function actor requires both A and B
to be present. The clock tree of this model is shown in Figure 3.3. Here the synchronization
can be seen in the node that contains the synchronous clocks of A and B.

In a run-time execution of this model, Task 1 and Task 2 can execute in two different threads
independent of each other. This is due to their unrelated clocks. Whenever a thread reaches
a synchronization condition, either X = 10 or Y = 20, it must wait for the other thread to
also reach its synchronization condition. These conditions must occur in the same logical
instant which is dictated by the fact that A and B are synchronous. This means a thread
cannot begin to compute the next instant until the function in Task 3 has executed and thus
may be blocked for some indefinite period of continuous time.

In terms of a real-time model, the blocking that may occur at run-time is detrimental to a
system that must execute according to predefined periods and deadlines. In most cases it
is impossible to guarantee or determine that the synchronization points of a model will not
cause a deadline to be missed. This is why we reject any model that has a synchronization
point in its clock tree during compilation. Although we cannot currently accept weakly-
hierarchic models with synchronizations we can accept some weakly-hierarchic models. In
the case of a parallel endochronous models we can guarantee that they are non-blocking.
These are models with multiple clock trees but none of the clocks intersection or have syn-
chronizations.

3.2.1 Conditional Task Graph Construction

The precedence encoding methods available in Prelude take a task graph g and return an
independent task set q. This independent task set represents every task executing its WCET

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 34

Figure 3.3: Weakly-Hierarchic Clock Tree with Synchronization

every period, which is defined by the strictly periodic clocks of the task. This is because of
the over-approximation of Boolean rate operators such as when and whennot [26]. This
over-approximation could easily lead to schedulable models being rejected on the basis that
hard deadlines within the model would be violated. It may be the case that only a subset
of q needs to execute during run-time, and among these subsets, the one that has the worst
slack is called the worst-case execution, q′.

In order to better explain how this q′ is determined we refer back to the Location Estimation
Unit case study. Figure 3.4 gives the MRICDF representation of the real-time system. All
blue shapes are MRICDF actors, while all orange boxes are system inputs and green boxes
are constants. There are particular groupings of actors that correspond to the tasks within
the LEU model. Figure 2.1, defines all actors in terms of their shapes where all circular
actors are functions, all triangle are samplers, all squares are buffers, and all trapezoids are
merge actors. This convention is followed within Figure 3.4.

Each task is defined by a tuple containing the period, execution time, deadline, and offset
in that particular order. For instance, LCU’s deadline and period are defined to be 100ms
while the execution time is 10ms and the offset is 0ms. Also defined are the rate operators
used in inter-task communication. Note that there are no when rate operators present. This
is because MRICDF clock tree analysis is used to determine the if and what conditions are
needed in order for that communication to occur.

In order to find q′, we retain the Prelude concept of the activation condition. Each task,
ti, has its own activation condition, which can be represented as a Boolean signal ci. Let Iti
be the set of input signals of task ti, the activation condition is given below:

[ci] =
⋃
s∈Iti

ŝ

The clock of ci, denoted ĉi, is a strictly periodic clock such that π(ĉi) = Ti, and ϕ(ĉi) = ri.
The activation condition is computed for every possible task release date, which is also every
possible reaction of the corresponding task. If the activation is true at the release date, [ci],
then a reaction is computed. We refer to the set of all task release dates as task instants.

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 35

Figure 3.4: MRICDF model of Location Estimation Unit

Definition 3.5. (Task Instants) Each task ti has an activation condition signal ci. The set
of totally ordered task instants, Υi, is equivalent epoch of ci. A task instant is every possible
point in time when a reaction may be computed.

The maximum amount of time that any task reaction will take to be computed with preemp-
tion is given by the WCET of that task. We refer to any logical instant where the activation
condition signal is true, to be a task activation and a computational block of WCET duration
must be scheduled at this point in time.

Definition 3.6. (Task Activation)Let Υi be the set of task instants, which represents the
set of logical events where a reaction for task ti may be computed. The tth instant in Υi

where ci(t) = true, is a task activation, denoted [ci(t)]. The set of all activations of ti is

denoted [ci]. ˆ[ci] ⊆ Υi.

To better explain task instants and task activations we refer to the LEU in Figure 3.4. The
GPS Acq task has a period of 100ms and a release offset of 0ms. That means that given LEU
begins executing at time = 0ms it may be computed at 0ms,100ms,200ms,etc. Each one of
those points in time represents a GPS Acq task instant. GPS Acq however cannot compute
a reaction unless it receives an input from LCU. Thus the task activations of GPS Acq are
the instants where there is also an input received from LCU.

For a task ti, there are a finite number of task instants that are of concern. This number of
instants is determined by the hyperperiod, HP, of the MRICDF model.

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 36

Definition 3.7. (Hyperperiod) The hyperperiod of a model is the least common multiple
of all task periods within the model. Over this time interval, the relative release dates of all
tasks begin to repeat.

If M is schedulable over the HP then it is also schedulable over any period of time greater
than HP. This means that only a finite number of activation conditions of a task need to be
determined, hp(ci). We will use the function hp(s) to represent the number of instants of a
signal s. Thus, hp([ci]), is the number of task activations of ti within a HP. In the case of the
LEU, the hyperperiod is 100ms so we only consider five instants of Speed Acq, Angle Acq,
one activation of LCU, etc.

All tasks within M are composed of a set of actors and ports within M . Any task ti can be
seen as a sub-model, Mi ⊆ M . All signals within a task must have the same periodic clock
as ĉi and also must have an epoch that is a subset of the epoch of ci. Because of this, ci
can be seen as the master trigger of the sub-model Mi and the set task instants of ti, Υi, is
equivalent to the epoch of that master trigger.

Even though each task can be seen as its own sub-model computing reactions based on
inputs, there still exist dependencies between tasks. For instance, GPS Acq computes a
reaction whenever its activation condition is met; yet the activation condition is dependent
on the reaction of LCU. We use a conditional task graph to represent these dependencies
between task activations. A conditional task graph represents each task as a node and each
dependency between activation conditions of tasks as edges. We perform the Prelude
precedence encoding prior to creating the task graph so all task characteristics have already
been adjusted accordingly.

Let C = 〈V,E〉 represent a conditional task graph where V is the set of tasks from a given
MRICDF model and E a set of task dependencies. E is a subset of (V × V). E is a set of
dependencies between task activations and not simply a set of task precedences. Precedences
are due to a specific data dependency but do not fully represent how different task activations
are related. Each dependency can either be a forward dependency or a backward dependency
and is annotated with operators that define how the activation conditions are related. A
forward dependency is an edge in E that is taken from an original precedence relation within
the MRICDF model. Forward dependencies represent that if a producer task executes then
under what conditions does the consumer task receive that output; they are output signal to
input signal dependencies. A backward dependency is an edge in E where the dependency
is from a consumer task to one of its input producing tasks. This dependency represents
that if a consumer tasks has an activation, what inputs must it have received and thus what
producer tasks must also have had an activation.

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 37

Table 3.1: General Form of Inter-Task Communication

Case General Form
Buffered ops = const fby ∗∧ l/∧m ∼> n
Non-Buffered ops = ∗∧l/∧m ∼> n

Forward Dependencies

Forward dependencies are easily determined via the data-flow of the MRICDF model, M .
If there is a port in M that is shared between two different tasks, then there is a forward
dependency in C. The ops function can then be built from the task characteristics and the
Boolean condition statements can be inferred from the MRICDF clock tree.

The rate operator for any edge e ∈ E is defined using four basic operators which in turn
also defines the communication pattern between tasks. These operators are inferred in our
tool. Given that a task set T is well formed, it is possible to use the data-flow model M to
determine which ports are shared between tasks and thus where there is a data dependence.
Given that task ti’s input and output ports cannot be connected via a channel to any other
signal associated with ti then there are only two data-flow cases from which to infer an edge
e in the conditional task graph C. Let ti and tj be tasks and let P ti

I and P ti
O be ports of each

respective task, the cases are given below:

• A port in P ti
O is also in P

tj
I and this port is not contained in the input or output ports

of any buffer actor. An edge can be drawn between ti and tj in C with the operator
∗∧l/∧m ∼> n.

• If port in P ti
O is also in P

tj
I and is also the input or output port of a buffer actor

in ti or tj, then an edge can be drawn between ti and tj in C with the operator
ops = const fby ∗∧ l/∧m ∼> n.

For every edge in C, the characteristic functions given in Table 3.1 must be specified. This
is done by using the task characteristics given. Given an edge ti → tj in C, regardless of
whether or not the communication is buffered, the values for l,m and n are determined in
the same manner. Given that the least common multiple of the periods of ti and tj is denoted
LCMi,j = LCM(Ti, Tj) and rj is the release date of tj; the formulas for l,m and j are given
below:

l = LCMi,j/Tj
m = LCMi,j/Ti

n = rj/Tj

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 38

From the above formulas and the buffer actors used to create a buffered edge, the rate
operators for all edges within C can be defined. If there is a buffer actor b used in a buffered
edge, the value const in the rate translation operator is given by the delay values of b.

In Figure 3.5, there are two edges that require the characteristic function to be determined:
A→ B and A→ C. The task characteristics are shown within each task, 〈Ti, di, ri, Ci〉.

Figure 3.5: Example of defined tasks within MRICDF

For the edge A → C we know that A executes at four times the rate of C. This means C
must sample one fourth the inputs provided to it, l = 40/40, m = 40/10. The characteristic
function is then /∧4. For the edge A → B, B is execution twice as fast as A and has a
2ms delay on its release, l = 10/5, m = 10/10, n = 2/5, where the characteristic function is
∗∧2 ∼> 2

5
.

While the rate operators determine the relative timings of producing and consuming data
between tasks, they do not determine the Boolean clock of the output signal. The Boolean
clock determines whether or not data is passed and whether the input signal of the dependent
task is present. Lets assume we have an output signal si of LCU communicating to the input
signal sj of GPS Acq. In order to determine the Boolean clock of si, the MRICDF clock
tree must be used. The clock of any signal in an endochronous MRICDF model, M can
be described in terms of the master trigger. Every signal’s clock is either synchronous to
the master trigger of a subset of master trigger. The subset relationship is determined via
Boolean inputs of samplers which allows us to determine a when operator. In the case of
the LCU and GPS Acq, LCU outputs to GPS Acq when ≥ ∆max, shown in Figure 3.4.
We can then define both the rate translation and the Boolean condition for each forward
dependency.

One special case to note is that we exclude all buffered edges within our conditional task
graph. While these dependencies are important for code synthesis they can also be used to
refine worst-case task sets. Instead we overapproximate and assume that any buffered edge

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 39

Figure 3.6: Real-Time EmCodeSyn Compilation Process

supplies an infinite stream of inputs to any consumer task.

Backward Dependencies

Backward dependencies in the set E are not taken from the MRICDF data flow as with
forward dependencies. The idea of the backward dependency is that if a task activation of
ti is known to be true for an instant of ti then what are the possible combinations of inputs
that caused that activation. We can draw which activations of producer tasks must have

also occured for those inputs to be present. We denote a backward dependence as ti
[cj]→ tk:

if an activation of ti is caused by the activation of tj, [cj], then task tk must also have had
an activation.

To better explain this we look at the Loc Est task within LEU in Figure 3.4. It has three
inputs which we will call GA, AA, and SA, where GA is from GPS Acq, AA from Angle Acq,
etc. Both AA and SA must be synchronous because they are inputs to the same function.
This means that if Loc Est has an activation and SA is present then so must AA. The
other signal, GA, is an input to a merge actor which does not relate its two inputs. This
means that sGA is present then Loc Est will have an activation but it does not require the
other two inputs to be present. In this case we would have two backward dependencies:

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 40

Loc Est
[cSpeed Acq]→ Angle Acq, and Loc Est

[cAngle Acq]→ Speed Acq. These dependencies read
”if Loc Est has an activation and Speed Acq was known to provide an input then Angle Acq
must also provide an input for that activation.”

Algorithm 2: Conditional Task Graph C

Input: An MRICDF model M
Output: Conditional Task Graph C = 〈V,E〉
Let V be the set of tasks in C and E be the set of dependencies in C
V ← {}; E ← {};
foreach ti ∈M do

V ← V ∪ ti;
end
Let e be a dependency;
Let mt be the master trigger of M ;
foreach (ti, tj) ∈ V do

if ∃ port p ∈M, p ⊆ P ti
O ∧ p ⊆ P to

I then
Let s be signal associated with p, and mt be the master trigger of the model;
Let condss be the Boolean signal such that mt when [condss]

∧ = ŝ;
Lets ops be the computed rate operator;

e = ti
ops when condss−→ tj

E ← E ∪ e;
end

end
foreach ti ∈ V do

Let sj, sk be input signals of ti, and let tj, tk to be the tasks communicating via sj and
sk respectively, (tj, tk) ∈ pred(ti);
foreach (sj, sk) ∈ Iti do

if ŝj ⊆ ŝk and ∃(tk, ti) ∈ V, tk → ti then

e = ti
[cj]−→ tk;

E ← E ∪ e;
end

end

end
return C;

In Algorithm 2, the steps to create the conditional task graph C from the MRICDF model
is given. The first step is to create all tasks in C and then to build forward dependencies
from those tasks. Finally, backward dependencies are added using the clocks of input signals.
It can be seen that no dependencies are drawn for any precedence or data relation where
there is a buffer. This is an over-approximation in order to make calculating the execution
simpler. We assume that for all inputs receiving a buffered signal that these inputs are

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 41

always present. This allows us to only have to calculate the execution of M over one HP
because there are no delays.

When dealing with the graph C, we denote two helpful functions succ(t) and pred(t) which
return successor and predecessor tasks for a specific task, t. The function succ() returns
the set of all tasks such that ∀tj ∈ succ(ti),∃ti|ti → tj ∈ C. In other words it returns all
tasks that are dependent on ti. The function pred() returns the set of all tasks such that
∀tj ∈ pred(ti),∃ti|tj → ti ∈ C, meaning all predecessors of ti produce an input to ti.

Figure 3.7: The Conditional Task Graph of Location Estimation Unit

The final conditional task graph of the Location Estimation Unit is presented in Figure 3.7.
You will notice all of the forward dependencies are there with the exception of the buffered
communication between Loc Est and LCU. We do this to reduce the complexity of task set
refinement and instead assume that the buffer always provides an input to any consumer
task. By doing this we are able to limit the period of time that we must explore the execution
of any model to the HP of that model. The only backward dependencies that exist are those
between Loc Est and Angle Acq or Speed Acq, which were discussed previously.

For this conditional task graph we have two methods that can be used to refine the worst-case
task set of a model in order to gain a more accurate understand of it’s schedulability.

3.3 Task Set Refinement

The goal of task set refinement is to reduce the task set q returned by the Prelude task
precedence encoding to a task set q′, the worst case task set of the MRICDF model M . The
worst case task set is the subset of q that has the least amount of slack in scheduling that

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 42

does not break any of the dependencies within the task graph C. While q′ is the worst case
task set we are able to ascertain it may not be the true worst-case task set that would execute
on a real system. This could be due to unknown input relations, buffer over-approximations
and many other factors. Instead, q′ should be the least upper bound of possible schedules
of the MRICDF model such that if q′ is schedulable then all other possible subsets of q are
schedulable. The closer q′ is to the true worst-case execution of M the fewer number of false
negatives will occur during schedulability analysis.

Dependency Branches

In order to refine q, the conditional task graph C is primarily used to determine which tasks
may have activations that are mutually exclusive. Because activations of a task are deter-
mined by the tasks activation clock, ˆ[ci], which is determined by the inputs that task receives,
then the easiest way to determine mutually exclusive task activations is to understand the
relationships between the clocks of task output signals.

Every task ti in C has a set of output signals, O. These output signals may or may not
be present during the same task activations, meaning they can have different clocks. The
relationship between the output clocks can be determined via the clock tree. We will use an
example to explain how this can be done. Let’s assume we have three output clocks, â, b̂,
and ĉ, with the relationships: â ⊂ b̂, ĉ ⊂ b̂, â ∩ ĉ = ∅. Cleary b̂ is a maximal clock, â and ĉ
are minimums of the set, and â and ĉ are mutually exclusive. We need to determine what
combinations of outputs are possible from these output signals in order to determine task
activations of successor tasks. There are possible combinations of outputs at an instant t:
[b̂(t)], [b̂(t)] ∧ [â(t)], and [b̂(t)] ∧ [ĉ(t)]. Each of these sets is a signal branch and the set of
corresponding dependencies in the conditional task graph which must occur based on these
signals being present is a dependency branch.

Definition 3.8. (Signal Branch) A signal branch, sb, is a set of output signals of a task that
can be present during one possible reaction of that task.

Definition 3.9. (Dependency Branch, Branch Activation) A dependency branch, b = 〈E, br〉,
of a task ti is a set of dependencies, E originating from the output signals of a signal branch,
sb. E is simply a translation of signals in sb to their corresponding dependencies in C.
Within sb there is a signal l such that ∀s ∈ sb, l̂ ⊆ ŝ. The branch activation, br of b, is a

Boolean Signal such that b̂r
∧

= ĉi, [br] ⊆ [ci], ˆ[br]^=l̂. br denotes for which activations of a
task ti the dependencies E of branch b are present.

Every task ti contains a set of output signals, O. Let Oind be the set of distinct clocks of
the output signals in O: ∀ĉ ∈ Oind, ∃s ∈ O, ŝ^=ĉ ∧ @d̂ ∈ Oind, d̂ = ĉ. For each of the clock
ĉinOind, a set of output signals, sb, must be present during each instant that the clock is
true: ∀s ∈ sb, ŝ ⊆ ĉ. The set of signals, sb, is a signal branch. For every output signal in

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 43

the signal branch there is a set of data dependencies that original from that output signal.
These data dependencies are present within C in the form of forward dependencies. The
dependency branch, b, is then the set of all forward dependencies in C that are due to the
signals in sb. The branch activation of b, br, is true during each instant of ĉn, where ĉn was
previously denoted as the minimal clock of all signals within sb.

To explain signal branches and dependency branches we will refer to the conditional task
graph of LEU in Figure 3.7. For task LCU there are two output signals, labeled o1 and o2
whose clocks are ô1^=[¬S], and ô2^=[S]; S is a Boolean signal that determines the output of
the samplers within the LCU task. In this case there are two mutually exclusive clocks and
thus two minimums: ô1, and ô2. The signals that must be present when ô1 = true are only o1
and vice versa for ô2. This means that the set of all signal branches from LCU is {o1}, {o2}.
For output signal o1, there is only one forward dependency, LCU → GPS Acq, within C.
For output signal o2, there are two forward dependencies in C: LCU → Angle Acq, and
LCU → Speed Acq. These groupings of dependencies are then the dependency branches of
LCU:

Table 3.2: LCU Dependency Branches

Dependencies Branch Activation
LCU → GPS Acq br = ¬S
LCU → Angle Acq br = S
LCU → Speed Acq

From this point forward when we refer to a task’s branches, denoted Bi, we will be referring
to its dependency branches. We show both signal and dependency branches in order to
clarify how the dependency branches are formed based on the output signals of a task.
These branches allow us to express which task activations may be mutually exclusive. For
instance, the two branches from LCU show that one reaction of LCU cannot produce an
input for both GPS Acq and Angle Acq.

Method 1

For the first method, all total combinations of branches and task activations must be ex-
plored. From a given task ti in C, one can use dependencies and branches of ti to determine
what activations of successor tasks of ti are dependent on which activations of ti. If we take
the task LCU in our LEU task graph we can determine all possible activations of LCU’s
successor tasks. LCU has one task instant per hyperperiod, which gives two possibilities for
the task activations of LCU: [¬cLCU(0)] or [cLCU(0)]. We will consider the case of one task
activation. This activation can either produce an output for GPS Acq, [¬S(0)], or both An-
gle Acq and Speed Acq, [S(0)]. We know this because of the branches of LCU. We can then

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 44

trace dependent activations through the successors of GPS Acq, Speed Acq, or Angle Acq,
and continue until there are no more successors to iterate through. This is how we construct
a path, π.

A path is a set of activations both task activations and branch activations. A path, πi is
always denoted in terms of its starting task, which is ti for πi. The path will describe a set
of independent activations, which are the task activations for ti and the branch activations
for all branches within ti. In the previous paragraph, the independent activations would
have been [¬cLCU(0), [cLCU(0)], [¬S(0)], or [cLCU(0)], [S(0)]. A path will also contain a set
of dependent activations, which are both task and branch activations that must occur in all
tasks in the fanout from ti, meaning successors, successors of successors, etc.

Definition 3.10. (Path, Path Set) A path is denoted πi = 〈I,D,R〉. A path has a set of
independent activations of ti , I, and the set of dependent activations of successor tasks, D.
R is a set of tuples, 〈[cj(t)], tk〉, where [cj(t)] is an activation in D and tk is a task that must
provide an off path input. A path set, Πi, is a collection of paths that all originate from the
same task, ti.

While there can be multiple paths from a single task, the clocks of the activation conditions
are not required to be the same. Assume two paths, π0

i and π1
i . Both paths must contain

the same activation signals of ti, but they represent different ways the task can execute so
[c0i]
∧ 6= [c1i]. This is an important distinction. We use the same signals within paths but each

path represents an execution in an undefined time interval so they are not required to have
the same clock.

The set R in a path is used to determine what off path task activations are necessary. These
off path inputs are formed by looking at the backward dependencies of tasks within the path.
A path starts with a set of independent activations I and the dependent set D is formed
from the fan out of these independent activations. These dependent activations are created
by traversing forward dependencies. Some tasks within the path may require more inputs
for an activation than the ones that are represented in the path. R is used to represent the
necessary backward dependencies that much be satisfied for the path to be feasible.

In the LEU example, there are paths which have required off path inputs. If we look at a path,
πSpeed Acq, from the Speed Acq task it will contain independent activations of Speed Acq, and
will contain dependent activations of both Loc Est and Loc Out. There exists the backward

dependency Loc Est
[cSpeed Acq]−→ Angle Acq in the conditional task graph of LEU. It is already

known that Loc Est receives an input from Speed Acq based on the path. The backward
dependency signifies that in order for this path to be legal it requires an input from Angle Acq
as well. The tuple in R of the path is then equal to 〈[cLoc Est(t)], Angle Acq〉. This tuple
determines which activations of on path tasks require inputs from which off path tasks but
it does not stipulate from which activation of an off path task that input must be produced.

A time line of independent activations of Speed Acq, SA, is shown in Figure 3.8. The
independent activations are for the 0th and the 1st instants of SA. These are shown with solid

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 45

lines. In order to determine the dependent activations of Loc Est, LE, in this path we use
gops() and the rate operators of this dependency. We get g∗∧2/∧5(0) = 0 and g∗∧2/∧5(1) = 1.
This is shown in the graph by which instants of LE the arrows from instants in SA are directed
toward. The required off path inputs in this example are 〈[cLE(0)], AA〉, 〈[cLE(0)], AA〉. This
means we need at least one activation of AA to provide an input to the 0th and the 1st instants
of LE. We show this in the graph as dotted lines from GA. We once again use the gops()
function to determine which activations of GA would be able to provide the necessary inputs
to LE.

In this example we know that SA and AA must execute during the same instants because
speed and angle are both required to build a velocity vector. However if we had no knowledge
of this, the off path inputs would not force them to be synchronous. It merely requires that
they both provide an input to a certain activation of a successor but does not specify which
independent activation that must be.

Figure 3.8: An Example of off path inputs to task Loc Est from the LEU

There can be many paths from one single task. To refine the worst case task set of an
MRICDF model we must explore all possible paths from every task within C. This is done
in our first method. We begin by simply exploring the possible independent activations
within each task, or the initial path set of each task. If we know all possible independent
activations of all tasks then all of the possible task sets of a model can be easily found.
Combining one path from every Path Set of each task gives one possible task set; all of these
combinations for a model give all task sets. The behavior defined in the MRICDF model
restricts some of these combinations. The first method will utilize the conditional task graph
to reject combinations that are not feasible.

Definition 3.11. (Initial Path Set) The initial path set, denoted Π′i, of task ti is a collec-
tion of paths with the same independent task and branch activations of ti. However the
combination of instants over which these activations occur must be unique. ∀πki ∈ Π′i, π

k
i =

〈{[cki], [brk0], ..., [brkn]},∅,∅} and ∀πli ∈ Π′i, k 6= l,∃ one activation [si], [ski]
∧ 6= [sli].

The first method is presented in Algorithm 3. It computes all possible paths for every task in
q. In order to simplify computation, the paths are computed through the backward traversal

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 46

Algorithm 3: Compute the Refined Task Set q′

Input: Conditional Task Graph C
Output: A Refined Task Set q′

Let L be the set of tasks in C, ∀ti ∈ L, succ(ti) = ∅;
Let F be the set of tasks in C, ∀ti ∈ F, pred(ti) = ∅;
Let P be a set of path sets, ∀ti ∈ C, ∃!Π′i ∈ P ;
foreach ti ∈ L do

P ← P • computePathSet(ti, P, C);
end
//Every Path from every task has now been explored. Combine input task paths
Let Final be an empty set, which will eventually contain all global paths;
Let Π be a set of paths that contains every unique combination task activations for tasks in
F ; foreach π ∈ Π do

Final← Final • recurse(π, F, P);
end
Final← confirm(Final, C);
Let πw be a path;
foreach Path π ∈ Final, Rπ = ∅ do

if WCET(π) > WCET(πw) then
πw = π;

end

end
Let q′ be the set of all independent and dependent task activations in πw;
return q′;

of C. The set of all tasks in C that do not contain any forward dependencies is denoted as
L. The paths of these tasks are computed first. Every possible path from tasks in L is given
in its initial path set due to the fact that they cannot have dependent activations. We then
compute any task whose successor paths are completely explored. This eases computation
since all possible dependent activations are contained in the path sets of successors and the
method is shown in Algorithm 4. This continues until every task in C has a completely
explored path set. The final tasks whose path sets will be computed are those tasks that
do not have predecessors. We denote this set of tasks as F . The tasks in F represent the
tasks which receive strictly environment inputs or buffered inputs; the refined task set q′ is
a combination of paths from the path sets of these tasks.

In Algorithm 4 the initial path set of a task is expanded into the path set that explores
every activation of that task and tasks in its fanout. The first thing done is defining the
successor task activations. Then these activations are used to expand the initial path shown
in Algorithm 5.

As we compute path sets for each task, we must make sure that all off path inputs are either

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 47

Algorithm 4: computeCompletePathSet()

Input: ti, a task within C and a set of path sets, P
Output: P ′, a new set of path sets
Πi is the path set of ti in P ;
Let Π be a path set;
Π← {};
foreach Path πni ∈ Πi do

D is the set of dependent activations in πni ;
R is the set of required off path inputs in πni ;
foreach Branch bq ∈ Bi do

foreach ti
ops when s−→ tj ∈ brmq do

[brq] is the branch signal of bq;
[cj] is the activation condition of tj;
∀t ∈ [0, hp(ci)), [cj(gops(t))] = [brq(t)]; D ← D • [cj];

end

end
//D now contains the set of dependent activations of all tasks t ∈ succ(ti);
foreach [cj] ∈ D do

foreach tj
ti−→ tk ∈ C do

R← R • 〈[cj], tk〉;
end

end
//R now contains the set of off path inputs for all tasks t ∈ succ(ti);
Π← Π • recurse(πni , succ(ti), P);

end
P ′ = P − Πi + Π;
P ′ ← confirm(P ′, C);
return P ′;

still unknown or have been satisfied with our current path. We use the function confirm(),
presented in Algorithm 6, to make sure every completed path set does not contain any off
path input violations. As more tasks are traversed eventually off path inputs will become
part of a path. When this happens all of the off path inputs in R must be satisfied. This
is shown in the LEU example. The path sets of Angle Acq and Speed Acq have required
off path inputs. When building the path set from LCU, these are no longer off path. When
combining paths of Angle Acq and Speed Acq to build the path set of LCU, these off path
inputs must be satisfied. If the off path inputs are not satisfied, then the path is invalid.

Once all complete path sets are determined for the set of input nodes F in Algorithm 3, the
path sets of these tasks are combined to determine the task sets for the entire model. This
final combination of paths is a merger of path sets. It is a set of paths and not a path set

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 48

Algorithm 5: recurse()

Input: A path π, a set of tasks T , and a set of path sets P
Output: Path Set Π
Π′ ← {};
Let ti be an element of T ;
Let Πa and Πb be path sets from ti;
T ← T − ti;
if T 6= {∅} then

Πa ← recurse(π, T, P);
end
[ci] is the task activation of ti in π;
Πi is path set of ti in P ;
Πb ← {∅};
foreach πni ∈ Πi, [c

n
i]∧ = [ci] do

Πb ← Πb + π;
end
if T = {∅} then

return Πb;
end
foreach πa ∈ Πa do

foreach πb ∈ Πb do
Π′ ← Π′ • 〈Iπ, Ia ∪ Ib ∪Da ∪Db, Ra ∪Rb〉;

end

end
return Π′;

since it does not originate from a particular task. The independent activations of the paths
in the final set are strictly task activations for tasks in F . If any paths in this set still have
any off path input requirements, they are not considered to be a valid and are removed. Of
the remaining paths, the worst-case execution times for each path is compared to determine
which execution time is greatest. The function WCET (π) where π is a path returns the
total amount of processor time the path will take. This is accomplished by taking the sum
of the WCET of all activations in the path; the WCET of an activation is the same as the
WCET of the corresponding task. The task activations in the path with the greatest WCET
are then the refined worst case task set q′.

Method 2

The second method improves upon the first method by reducing the total number of paths
that are explored. The trade-off for this improvement is a loss in granularity with respect

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 49

Algorithm 6: confirm()

Input: A set of paths Π, task graph C
Output: Set of paths Π′

Let T be a set of tasks, ∀ti ∈ T,∃π ∈ Π, [ci] ⊆ (Iπ ∪Dπ);
Π′ = Π’
foreach πn ∈ Π do

foreach r = 〈[ci(t)], tj〉 ∈ Rπn do
if tj ∈ T then

Let tj
ops when s−→ ti be dependency in C;

if @u ∈ [0, hp(cj)), [c
n
j (u)] ∧ gops(u) = t then

Π′ ← Π′ − πn;
end
else

Let πm be in Π′, πm = πn; Rπm − r;
end

end

end

end
return Π′;

to task activations. Instead of determining precisely which task activations occur for the
worst case execution, only the total number of activations for each task is determined. We
use a technique to over-approximate the number of activations in order to retain soundness
but gain significant performance increase, which make the technique more viable during the
compilation process.

Previously, we have discussed how the ops function can be used to determine dependencies
between specific task activations. In the case of the second method, a new function must
be used that expands beyond ops. Specifically, the method requires a function that can
take the number of activations of an independent task and return the maximum number of
activations of the dependent task within a data dependency. We will refer to this function
as Gops(n, i), where n is the number of independent task activations and i is the number of
task instants of the independent task, n ≤ i. The argument i defines a time window over
which the number of activations n can occur. This window is (0, i∗Ti] where Ti is the period
of the independent task.

Let ni
∗∧2/∧3−→ nj be an dependency within C. The function g∗∧2/∧3(n) = 0, 1, 2, 2, 3, 4, 4, ... for

an increasing n. Using this function, the 3m and 3m−1 activations of ti provide inputs to the
same instant of tj for any integer m. If we look at three instants of ti, the possible G() values
are: G∗∧2/∧3(0, 3) = 0, G∗∧2/∧3(1, 3) = 1, G∗∧2/∧3(2, 3) = 2, and G∗∧2/∧3(3, 3) = 2. There is
no change between n = 2 and n = 3 because when there are two activations of ti, tj is already

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 50

achieving its maximum activations for the number of dependent task instants. This means
that the third activation is guaranteed to not cause another activation of tj because of the
overlap dependent activations in tj. The reason the second argument is required for Gops()
is that depending on the time window, the third activation of ti may cause an activation in
tj. If we double the interval to six instants, then G∗∧2/∧3(3, 6) = 3 because there are four
instants of tj in this window and the overlap is not guaranteed to occur until n = 5. In
actuality this overlap may occur n > 1. This depends on which instants of ti are activations.
However, we are concerned with the worst case number of activations, so Gops() returns the
max activations and these non-guaranteed overlap cases are ignored.

We can simplify the different communication cases that must be handled by Gops(). When a
buffer is used there is no dependency that exists in C. When the phase shift operator, ∼>,
is used the gops() function is unaffected. This then means that there is no effect in Gops()
since it is a function based on the grouping of instants returned by gops(). This means that
the only case over which Gops() must be defined is ops = ∗∧l/∧m. If there are no activations
for the independent task, Gops(0, i) = 0. The definition of the function given n > 0 follows:

G∗∧l/∧m(n, i) =
n−1∑
j=1

⌈
i∗l
m
− j
i

⌉

In the second method we lose some granularity of task execution in order to increase per-
formance. We also make changes to how the general method traverses the task graph. In
the first method we built paths from a single task and included off path inputs to describe
how certain unknown tasks must execute. In the second method we use a frontier based
traversal of the graph. A frontier is a set of tasks, T , within the graph that represent a set of
independent tasks where every possible combination of task activations are known for every
task that is a successor of any task in the frontier. We build a set of paths, P , where the set
of independent activations, I, is comprised of the branch and task activations of tasks in T ,
and the set of dependent activations, D, is comprised of activations of previously traversed
tasks. The frontier is initially the set of all tasks in C, ∀t ∈ T, succ(t) = ∅. The frontier
is updated every time a task, ti, in the frontier is traversed. This means that the set of in-
dependent activations in the path will no longer contain [ci], but instead ∀tj ∈ pred(ti), [cj].
This traversal ends when the frontier is comprised of only the tasks in C that do not contain
predecessors. At the end of the traversal the set of paths, P , will contain the worst case
number of activations for all tasks within C. We present this method in Algorithm 7.

The frontier is propagated through the tasks of the graph through the traverse() method
presented in Algorithm 8. A traversal of a task means replacing the activations of that task
with activations of its predecessors for every path in P . We will refer to this as splitting.
Before splitting, there is a set of activations [cni] ∈ I for any path πn ∈ P . There are a
number of combinations of task activations and branch activations that can cause the task
activation [cni]. Again, we use the forward dependencies to determine which combinations

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 51

Algorithm 7: Compute the Refined Task Set q′

Input: A conditional task graph C
Output: A Refined Task Set q′

Let L be the set of nodes in C such that ∀ni ∈ L, succ(ni) = ∅;
Let F be the set of nodes in C such that ∀ni ∈ F, pred(ni) = ∅;
Let P be a set of paths and let m, ..., n denote the set of tasks in L;
∀(hp([cm]), ..., hp([cn])) ∈ (Π′m, ...,Π

′
n), ∃!π = 〈{[cm], ..., [cn]},∅,∅〉 ∈ P ;

Let T be a set of nodes, T ← L;
while T 6= F do

foreach ti ∈ T do
if ∀tj ∈ succ(ti), tj * T then

P ← purge(P, ti);
P ← traverse(P, ti, C);
T = T − ti + pred(ti);

end

end

end
foreach ti ∈ T do

P ← purge(P, ti);
end
Let πwcet be the path,πwcet ⊆ P ∧ ∀π ∈ Final, wcet(πwcet) ≥ wcet(π);
q′ ← deriveTaskSet(πwcet, C);
return q′;

are allowed based on the model. We use the task split of Loc Est from Figure 3.7 to clarify.
The frontier of the LEU model starts as Loc Out. It then traverses Loc Out to the only
predecessor, Loc Est. This means that all of the paths in P will have independent activations
of Loc Est and dependent activations of Loc Out. These paths are presented in Table 3.3.

Table 3.3: Paths in LEU, T = {Loc Est}

Independent {Loc Est} Dependent {Loc Out}
{hp([cLoc Est]) = 0} {hp([cLoc Out]) = 0}
{hp([cLoc Est]) = 1} {hp([cLoc Out]) = 1}
{hp([cLoc Est]) = 2} {hp([cLoc Out]) = 2}

When the splitting occurs Loc Est is replaced by GPS Acq, Speed Acq, and Angle Acq.
There are a total of 72 different combinations of number of activations for these three tasks
- hp([cGPS Acq]) ∈ [0, 1], hp([cSpeed Acq]) ∈ [0, 1, 2, 3, 4, 5], hp([cAngle Acq]) ∈ [0, 1, 2, 3, 4, 5].
Each of these combinations causes a specific number of activations of Loc Est determined

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 52

through Gops(). The number of activations of Loc Est is not a simple sum of Gops() for all
forward dependencies. In this case, the inputs received from Speed Acq and Angle Acq are
synchronous. This means that for one activation of Loc Est an input from both of these tasks
must be present. The number of activations is the sum of Gops() for all forward dependencies
going to Loc Est of each maximal input clock to Loc Est: GPS Acq and Speed Acq, or
GPS Acq and Angle Acq. The possible paths in P after the split are shown in Table 3.4.

Table 3.4: Paths in LEU, T = {GPS Acq, Speed Acq, Angle Acq}

Independent {GPS Acq,Speed Acq,Angle Acq} Dependent {Loc Est,Loc Out}
{hp([cGA]) = 0, hp([cSA]) = 0, hp([cAA]) = 0} {hp([cLoc Est]) = 0, hp([cLoc Out]) = 0}
{hp([cGA]) = 0, hp([cSA]) = 1, hp([cAA]) = 1} {hp([cLoc Est]) = 1, hp([cLoc Out]) = 1}
{hp([cGA]) = 0, hp([cSA]) = 2, hp([cAA]) = 2} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}
{hp([cGA]) = 0, hp([cSA]) = 3, hp([cAA]) = 2} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}
{hp([cGA]) = 0, hp([cSA]) = 4, hp([cAA]) = 2} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}
{hp([cGA]) = 0, hp([cSA]) = 5, hp([cAA]) = 2} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}
{hp([cGA]) = 0, hp([cSA]) = 2, hp([cAA]) = 3} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}
{hp([cGA]) = 0, hp([cSA]) = 3, hp([cAA]) = 3} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}

... ...
{hp([cGA]) = 0, hp([cSA]) = 4, hp([cAA]) = 5} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}
{hp([cGA]) = 0, hp([cSA]) = 5, hp([cAA]) = 5} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}
{hp([cGA]) = 1, hp([cSA]) = 0, hp([cAA]) = 0} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}
{hp([cGA]) = 0, hp([cSA]) = 1, hp([cAA]) = 1} {hp([cLoc Est]) = 1, hp([cLoc Out]) = 1}
{hp([cGA]) = 0, hp([cSA]) = 2, hp([cAA]) = 2} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}
{hp([cGA]) = 0, hp([cSA]) = 3, hp([cAA]) = 2} {hp([cLoc Est]) = 2, hp([cLoc Out]) = 2}

... ...

Some of the 72 combinations are not allowed given the specification. This is due to backward
dependencies. In Table 3.4, {hp([cSpeed Acq]) = 1, hp([cAngle Acq]) = 2} is not allowed. Any

backward dependency ti
cj−→ tk ∈ C dictates that ti must receive an input from tk for at

least the same activations as it does from tj. In the case of the second method this means
that Gops() of tk → ti must be greater than or equal to Gops() of tj → ti. In the case of
Speed Acq and Angle Acq, they must be equal because of the mutual backward dependency.

Every time there is a split from a task, a set of activations is appended to the paths for every
predecessor task. For any task with at least two forward dependencies there will occur a
situation where there are multiple task activations represented for that task within the path.
We account for this situation by merging the activations. This is shown in merge() in Algo-
rithm 9. To handle this situation we use the branch activations that are also present within
the path. The branch activations represent which forward dependencies receive outputs so
the only issue when merging is how to determine the number of activations of the task. Each

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 53

Algorithm 8: traverse()

Input: A set of paths P , a task ti, and conditional task graph C
Output: An adjusted set of paths P ′

Let P ′ be a set of paths and let m, ..., n denote the set of tasks in pred(ti);
∀(hp([cm]), ..., hp([cn])) ∈ (Π′m, ...,Π

′
n), ∃!π = 〈{[cm], ..., [cn]},∅,∅〉 ∈ P ′;

ΛS = P ′;
foreach πn ∈ P ′ do

foreach ti
cj−→ tk ∈ C do

Let opsk, opsj represent rate operators for {tk → ti, tj → ti} ∈ C respectively;
if Gopsk(hp([cnk]), hp(ck)) < Gopsj(hp([c

n
j]), hp(cj)) then

P ′ = P ′ − πn;
end

end

end
//Combine Paths of Λ and ΛS if legal;
foreach πn ∈ P ′ do

foreach πm ∈ P do
Let Si be an input set Si ⊆ Ii,∀(sj, sk) ∈ Si, ŝj * ŝk;
Let imp be the max number of activations of ti possible given πn, imp = 0;
foreach s ∈ Bi do

Let e = tj
opsj when condsj−→ ti be the forward dependency that supplies s;

Let br be the branch of tj, e ⊆ br;
imp = imp+Gopsj(hp([br

n]), hp(cj));

end
imp = min(imp, hp(ci)):
if hp([cmi]) = imp then

πn = 〈Iπn ∪ Iπm − [cmi], Dπm + [cmi],∅〉;
end

end

end
P ′ ← merge(P ′, C);
return P ′;

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 54

Algorithm 9: merge()

Input: A set of paths, P , task graph C
Output: A reduced set of paths P ′

P ′ = P ;
foreach π ∈ P ′ do

if ∃tj ∈ C, ([cnj], [cmj]) ⊂ Iπ then
[brn] is branch activations of branch n of tj in π;
Let BR be the set of branch activations of cj in Iπ;
if ∀([brn], [brm]) ∈ BR, brn ⊆ brm → hp([brn]) ≥ hp([brm]) then

Let C be the set of maximal branch activation clocks
∀ĉ ∈ C, @[brn] ∈ π, ˆ[brn] ⊆ c∀ ˆ[brn] ∈ π. Let [clj] represent a set of activations of
tj, hp([c

l
j]) = min(hp(cj), (

∑
hp(ĉ),∀ĉ ∈ C));

π = 〈Iπ − [cnj]− [cmj] + [clj], Dπ,∅〉;
end
else

P ′ = P ′ − π;
end

end

end
return P ;

branch activation is represented as a signal [br]. There is a set of branch activations S within
the independent activations of a path where S ⊆ Bi. Given any set of signals S, a set of
maximal clocks C of S is defined such that ∀ĉ ∈ C, @[brn] ∈ S, ĉ ⊆ ˆ[brn]. The number of
activations of ti, [ci], within a path being merged is [ci] = min(hp(ci), (

∑
hp(c)∀c ∈ C)).

The methods discussed thus far are used to traverse the conditional task graph and build
paths. In Algorithm 10 we present our method for reducing the set of paths during this
traversal. This reduction is based on the lack of off path inputs. In the first method we
propagated paths because we were waiting to merge the path with another path that satisfied
the off path inputs. In the second method we never have off path inputs. There are no off
path inputs for the initial frontier. Every time a split occurs all predecessors of a task, ti,
are added to the frontier and all inputs to ti are represented within the paths from the new
frontier. Before ti is split, all of its successors must be traversed based on Algorithm 7. This
requires all inputs to all successors of ti to be represented in set of paths from the frontier,
meaning there will be no off path inputs for any successors of ti. The paths from ti can be
condensed because we do not care about every possible path from ti but instead we only
want to know the worst possible path from ti for each number of activations of ti. That is
what is done in in Algorithm 10. In the first method we propagated paths so the number
of paths grew exponentially as each node was traversed. By using the frontier the number
of paths being considered is only dependent on the number of tasks in the frontier and the
number of times those tasks execute per hyper period. This is another source of performance

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 55

Algorithm 10: purge()

Input: A set of paths, P , a task ti
Output: A reduced set of paths P ′

foreach π ∈ P do
π = 〈Iπ −Bi, Dπ,∅〉;

end
foreach πn ∈ P do

if ∃πm ∈ P, ∀c ∈ I, hp([cn]) = hp(cm) ∧ wcet(πm) ≥ wcet(πn) then
P = P − πn;

end

end
return P ;

increase for the second method besides the reduction of state space when only considering
number of activations.

When the frontier has propagated to the first tasks, F , of the model the number of paths
should only be determined by the number of possible executions of each task in F . If we look
at the first method, this what is done once the path sets of all first tasks are constructed. We
treat the model as one monolithic block instead of considering every possible path amongst
a set of blocks. We determine the worst case path set in P by taking the total of number
of activations of each task and their corresponding worst case execution times. A notable
difference between the methods is that once the task set is determined in the second method,
the specific activations must be assigned given the number of task activations. We do this
in Algorithm 7. It is a somewhat arbitrary assignment due to the fact that this worst case
task set is an over-approximation of what is done in the first method. There are a variety
of options on how to assign specific task activations but we simply fill activations from front
tasks and propagate backwards to successors using gops(). From this point, regardless of
method, the worst case task set can be sent to a schedule verification tool to determine
whether or not the task set is in fact schedulable.

3.4 Schedulability Analysis

Regardless of which method is used to attain the refined schedule q′, the schedule is exported
to Cheddar for verification [25]. This tool offers a variety of analysis options from simu-
lation to verification for many different schedules including both rate monotonic (RM) and
earliest deadline first (EDF). We export our worst-case execution to Cheddar and utilize
its capabilities to give feedback on whether or not the task list we determined is schedulable.

We also have two different methods that offer differing positive and negative aspects. The
first method has the highest resolution with respect to activations and their dependencies.

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 56

However this comes at a major complexity cost for the number of paths possible through
the conditional task graph. The second method attempts to prevent this path explosion,

but in doing so, loses some of the resolution. Let ni
ops when conds−→ nj be a conditional data

dependency. When the second method determines the number of activations of tj for the ac-
tivations of ti it must over-approximate this value. This value is determined using Gops(n, i).
This over-approximation leads to inaccuracy and thus a less refined q′ than produced with
the first method.

Figure 3.9: Additional Compilation steps for Real-Time Models

In order to take advantage of the second method’s speed and also retain the first method’s
resolution we use both methods during the compilation process. These additional steps are
shown in Figure 3.9. Here we append this steps to the traditional MRICDF compilation.
We perform the precedence encoding and then build the conditional task graph of the model.
From here we determine q′ using the second method and if it is schedulable then we are able
to synthesize code for the model. If this task set is not schedulable then we determine a new
q′ using the first method. This comes at a longer compilation time but in some cases can
offer some reduction in task set.

In most of the models we encountered, the second method was able to determine a task
set q′ that was very close to the first method. We show these results in Chapter 4.1. This
means that in most cases the second method will be able to determine whether the model is
schedulable or not and not introduce the performance cost of also running the first method.
If a schedule can be determined for either method, code will be synthesized for the model.

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 57

3.5 Code Synthesis

If a model is determined to be schedulable, then code is automatically generated for the given
model. The current implementation targets ChronOS, a real-time operating system built
around the Linux kernel with real-time extensions [7]. ChronOS relies on the original Linux
primitives for all system tasks from timers, file-systems, interrupts, etc. Where ChronOS
departs from the original Linux kernel is that is expands upon the original O(1) scheduler
to implement a real-time scheduler that can run a variety of single and multi-processor
algorithms [7].

We utilize the original Linux kernel to maintain all of our program integrity. This means
managing the process memory as well as managing synchronization mechanisms in between
threads. In order to make the generated code as flexible as possible, the POSIX API is used
to create and manage threads and synchronizations. We then utilize system calls within
ChronOS to define each task within a threads execution and then allow the chosen ChronOS
scheduling algorithm to determine execution order. The overall API can then be seen as
POSIX with the addition of the ChronOS system calls. Before covering the code structure
we will discuss some ChronOS scheduler specifics as well as the ChronOS system calls used.

A large distinction between Linux with real-time extensions and ChronOS is how schedul-
ing entities are defined. In a non-real-time environment these scheduling entities could be
referred to as tasks and they would be given processor time according to a round robin or
time sliced schedule. However in ChronOS, we must define which of these scheduling entities
have real-time requirements or not. In order to avoid confusion we will refer to scheduled
entities without real-time characteristics as threads and entities with real-time characteristics
as tasks.

Real-time extensions for Linux give an inverted priority scheduler. This scheduler creates a
queue of threads at each priority level and every thread in a priority queue will be scheduled
after all threads in lower priority queues are scheduled. This scheduler structure can be seen
in Figure 3.10 [7].

In ChronOS, they include the ability to define real-time tasks with periods, deadlines, prior-
ities, etc. With the addition of these tasks comes the ability to expand upon the basic Linux
scheduler. This is done by creating two queues at each priority level: the Linux run queue
and the new ChronOS run queue. The Linux run queue consists of all threads and tasks at
that priority level. The ChronOS run queue consists solely of references to real-time tasks
within the Linux run queue [7]. The order of the real-time tasks within the ChronOS queue
is dependent on the scheduler selected. For instance, if EDF is selected then the first task
will be the task with the nearest deadline. When Linux scheduler is to pick another entity
from queue it will first take the head of the ChronOS queue and if that is empty schedule
the first thread in the Linux run queue. The structure of this ChronOS additional queue can
be seen in Figure 3.11.

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 58

Figure 3.10: Real-Time Linux Scheduler [1]
About ChronOS Linux. URL http://chronoslinux.org/wiki/About ChronOS Linux.

Used under fair use, 2014

Figure 3.11: ChronOS Scheduler
About ChronOS Linux. URL http://chronoslinux.org/wiki/About ChronOS Linux.

Used under fair use, 2014

Although ChronOS adds this second queue to each priority level the original properties of
the Linux scheduler remain. Even if there are real time tasks that are to be scheduled, they
will be scheduled after any thread or task with a lower priority.

In order to fully discuss generated code we must also present how tasks are defined using
ChronOS system calls. The structure of the generated code contains a POSIX thread for
every task within the MRICDF model. Not every operation done within these threads are
related to the real-time task specification within the model. For instance, task initialization
is one such operation that must be completed but is not a real-time operation. In order to
maintain this distinction, we define a real-time section for each thread. We make ChronOS
system calls to enter and exit this section and during this section the thread is elevated to
a task within the scheduler. The system call wrappers for the real-time section are given

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 59

below [7]:

(1) begin rtseg basic(thread id, priority, deadline, period);

(2) end rtseg self();

The first function is used to define a task’s entry point into a real-time section. This system
call can be used by any thread to define another thread’s entry point, via the thread id field.
This will be important when discussing task synchronizations later on. The other three
arguments, priority, deadline, and period, are used to characterize the real-time task that is
beginning so that the ChronOS scheduler can properly determine task execution ordering.
The second function is called by a real-time task to notify the ChronOS scheduler that it is
leaving its real-time section. When this system call is performed it signals the scheduler to
select another task or thread for execution [7].

Now that we have discussed the APIs used in the generated code we will discuss the overall
structure of the code. Given a model with n number of tasks there will always be n + 1
threads created; one worker thread for each task in the Real-Time EmCodeSyn and one
lightweight synchronization thread. We will discuss the general structure of both types of
threads.

Worker Thread

For every task in the MRICDF model, one worker thread exists in the generated code.
Each worker thread initiates task variables, opens system input files, handles inter-task
communication, and also executes the real-time section defined in the MRICDF model.
The pseudo code for worker threads is shown in Figure 3.12.

The general structure of the worker thread consists of a while loop where every iteration of
the while loop represents one task instant. At the beginning of the instant, the thread pends
on a semaphore. This semaphore will be posted to once the release date for the associated
task has occurred. The thread does not make the ChronOS system call to promote itself
to a real-time task. Instead, this is done within the synchronization thread. However, once
a thread has gotten beyond the semaphore wait, it is guaranteed to be within its real-time
section.

All tasks within MRICDF are treated as synchronous blocks so all real-time sections within
the generated code share the same structure. Before each instant all input signals are read.
These input signals can be from system inputs in which case a file is read to get these
values. Input signals can also be the outputs of other tasks. For inter-task communication,
buffer structures are used similar to those found in the generated code of Prelude and
more information can be found in [3]. These input signals can be used to determine if the

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 60

activation condition of a task has been met. If it has, then the task instant is computed, if
not, then the task ends and waits for its next release date. When an instant is computed
all output signals are passed on to dependent tasks and then the task is demoted back to a
thread.

Overall the worker task is mostly comprised of the real-time section defined within the
MRICDF model. In the next section we will cover the synchronization thread which contains
subtleties to how the code structure works as a whole.

int threadN id ;

void ∗ taskN (void ∗arg){

i n i t i a l i z e t a s k () ;
threadN id = g e t t i d () ;

while (true){

sem wait(&taskN sem) ; //Wait to be r e l e a s e d

r e a d i n p u t s i g n a l s () ;

i f (a c t i v a t i o n c o n d i t i o n m e t ()){

// compute r e a c t i o n

w r i t e o u t p u t s i g n a l s () ;

t a skN ins tant++; // Next i t e r a t i o n i s next t a s k i n s t a n t

}

e n d r t s e g s e l f () ; // l e a v e rea l−t ime s e c t i o n

} }

Figure 3.12: Pseudo code for MRICDF tasks

Synchronization Thread

The synchronization thread is a thread that is used to manage the different release times of
tasks. This thread is not a scheduler but is needed to manage differences between how threads

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 61

are treated within the original Linux kernel and how tasks are treated within ChronOS.

The most important aspect of the synchronization thread is that the real-time Linux priority
of the thread is lower than the real-time Linux priorities of the work threads. This means
that whenever this synchronization thread needs to execute it will preempt all tasks that
may be executing. By having these priority differences we are able to guarantee that a
work thread release will not be blocked due to scheduling of threads versus tasks. For
instance, consider a system where there is no synchronization thread, two work threads A
and B, and the real-time scheduler is EDF. All work threads would call begin rtseg basic()
for themselves in order to switch their status to a real-time task. If thread A is currently
a ChronOS task and is executing and the release time comes for a thread B which a lower
deadline, then thread B will be blocked until thread A downgrades from a task to a thread.
This is incorrect behavior for EDF since we want thread B to become a ChronOS task as
soon as the release date arrives and we want it to preempt thread A. The synchronization
thread prevents this by preempting all work threads and elevating work threads to tasks
which forces the ChronOS scheduler to recalculate which task should be executing.

Each task thread pends on a semaphore for each instant of the task that will occur. The
synchronization thread not only posts on the semaphore to release the specific task but also
sets that thread as a real-time task in ChronOS by calling begin rtseg basic(). By changing
the thread status to a ChronOS task prior to posting the semaphore, it guarantees that all
code executed between the semaphore pend and the end rtseg self() call will have ChronOS
real-time task characteristics.

A pseudo code structure for the synchronization thread is given in Figure 3.13. The ba-
sic structure is a while loop where each iteration of the loop is one hyper-period for the
MRICDF model. Within each hyper-period there are a finite number of release dates for
every task in the model. The release date for each task is calculated using the period and
offset characteristics that were defined for the task by the user. At each discrete release date,
all worker threads are elevated to ChronOS tasks and allowed to execute their real-time seg-
ments. The synchronization thread then yields the processor, allowing the worker threads
to execute, until the next release date.

Another issue that the synchronization thread addresses is the fact that tasks may drift
over time. Without the synchronization thread, each task would have to calculate its own
next release date and then yield the processor for that amount of time after each instant.
If all tasks do this calculation independently there may be cases where over long periods of
time the tasks will drift from the global time of the system. By using the synchronization
thread we are able to calculate the release dates from one set time, which would be the
synchronization thread time. We cannot guarantee that this time will not drift but it will
keep the timings between each worker thread the same. This is largely helpful with intertask
communication where dependent tasks are need on other tasks to have completed in time so
they can read inputs for that task instant.

Matthew W. Kracht Chapter 3. Real-Time EmCodeSyn 62

int main (int argc , char∗ argv []) {

int HPs = 0 ;

s e t s c h e d u l e r (SCHED TYPE) ; // Set ChronOS s c h e d u l e r type
s e t p r i o r i t y (SYNC PRIORITY) ; // Set Lower P r i o r i t y

c r e a t e a l l t h r e a d s (THREAD PRIORITY) ; // Create MRICDF t a s k t h r e a d s

while (a l l t h r e a d s s c h e d u l a b l e ()){

// F i r s t Re lease date in HP
f o r e a c h (task N to be r e l e a s e d){

b e g i n r t s e g b a s i c (threadN id , pr io r , dead , per) ;
sem post(&taskN sem) ;

}
s l e e p u n t i l n e x t r e l e a s e d a t e () ;

. . .

// Last Re lease date in HP
f o r e a c h (task N to be r e l e a s e d){

b e g i n r t s e g b a s i c (threadN id , pr io r , dead , per) ;
sem post(&taskN sem) ;

}

HPs++; // Another HP passed

}

j o i n a l l t h r e a d s () ;

return 0 ;
}

Figure 3.13: Pseudocode for Synchronization Thread

Chapter 4

Conclusion

4.1 Results

In order to fully discuss the results of this work there are several facets which must be
covered. First we will cover the complexity of the algorithms. This will give a general sense
of how each method compares. It will also allow us to discuss what factors affect the number
of paths the most. This is important because the number of paths directly correlates to
compile times so reducing specific factors such as branches or hyper-period executions can
directly increase performance. We will also offer specific tests that were ran as well as timings
to show how the implementations of the two methods compare.

While understanding compilation time comparisons between different methods, the main
focus of this work is to increase the number of models which can be considered as schedulable.
Specifically, we do this through worst-case task set refinement of models. We will discuss
how our coverage of such models improves with respect to Prelude.

Finally we return to the case study presented in Chapter 1 of the Location Estimation
Unit. We will show how each algorithm computes the worst-case task set and also show the
generated code structure of the model.

4.1.1 Discussion on Complexity

The first method presented in Section 3.3, the number of possible executions per node is
exponentially increasing. The specific number of paths per node is shown below:

max∑
m=1

(C(max,m) ∗ (m ∗ n))

63

Matthew W. Kracht Chapter 4. Conclusion 64

In this equation max is the maximum number of activations per HP of a task and n is the
number of branches. Given m number of activations, there are C(max,m) combinations
that these activations can occur and (m ∗ n) number of branch activations that can occur.
This number must be determined for all possible m which is shown in the equation. Given
the two variables - maximum number of activations and number of branches - for a node,
the maximum number of activations is the most significant with respect to execution space
increasing. This can be seen in Table 4.1. The process used to collect these timings has 3
task, where the first task contains two branches, each branch going to one task. Leaving the
process the same and only changing the HP length produces the Method 1 timings in the
table. This clearly shows that the first method will cause unusable compile times as the HP
executions of a process increases. Because the HP of a process is the least common multiple
of the tasks’ periods, the HP of a process will in general increase as more tasks are added
to a process. This means that as processes become larger the compilation time will quickly
become unwieldy.

In the second method, we aimed to prevent this exponential increase in compile time by
reducing the rate of increase due to the max term. The max term was targeted because
the hyper-period of a model can become very large creating large numbers of activations
per node. On the other hand the number of branches m within a node is bounded by
EmCodeSyn at 10 and in no processes did we find a model that came close to this limit.

max∑
m=0

(C(m+ n− 1, n− 1))

In the second method the number of paths from one node is given as C(m + n − 1, n − 1),
where m is the number of total activations and n is the number of branches from the node.
This can be seen as the number of ways m objects can be partitioned into n possible groups
where a single group can receive 0 objects. For the same example process discussed in the
previous paragraph, where m = 2, the number of possible paths is only n, which is linearly
increasing. This is a vast improvement over the first method which must still consider the
max term. The improvement in compilation times between the first and second methods are
shown in Table 4.1.

The number of branches from one node is bounded, but the number of branches within a
process is not. With increasing number of branches in a process, an increase in the size of
the front can be expected. As front sizes become larger the performance of the algorithm
should deteriorate due to the number of combinations of possible paths to be quite high. To
look at this performance penalty, a process was created where the basic node contained one
activation and had two branches. In order to increase the number of branches and nodes in
the graph these would be connected in series, creating a tree like structure, where the size of
the fronts effect on timings could be seen. This is presented in Table 4.2. The both methods
perform slightly worse as the number of branches, which is also the maximum number of
nodes in front, increases. In order to determine if this performance penalty was significant

Matthew W. Kracht Chapter 4. Conclusion 65

Table 4.1: Increasing number of Activations of one Node

Branches = 2
Activ. Meth. 1 (ms) Meth. 2 (ms)

1 46.3 44.7
5 47.3 41.7
10 109.7 49.0
15 957.0 45.0
20 32037.0 53.7

Table 4.2: Increasing Branches of a total Process

Activations per Node = 1
Branches Method 1 (ms) Method 2 (ms)
2 1.0 1.3
4 1.0 2.0
8 1.3 4.3
16 3.3 8.7
32 6.3 24.0
64 17.7 66.7
64 340.3 70.0
64 32673.3 77.3

with respect to the penalty of increase the HP executions per node, the number of activations
in each node was increased. It is very clear that the performance of of the algorithm under
large numbers of activations affects the compilation time more significantly than the front
size.

The second method presents a much better approach with respect to speed of analysis but
will not always give as refined of a schedule as the first method which will be discussed next.

4.1.2 Coverage

The main goal of this work is to refine the worst possible execution of a hard real-time
process. By doing so, it would allow for developers to be able to implement larger and more
complex processes while still being able to guarantee the temporal properties within their
model. In Table 4.3 we show a few examples, giving both the overhead in our computations
as well as the worst case execution timing, WCET, determined for each model by our two

Matthew W. Kracht Chapter 4. Conclusion 66

Table 4.3: Comparison of Worst Case Schedules

Compile (ms) WCET (ms)
Model M1 M2 M1 M2 Prel.
Coll. Avoid 62.7 56.7 42 42 53
Switch 48.3 41.7 10 10 12
Loc Est. 110.7 64.3 90 90 110
MFG 2637.7 129.0 231 241 251
LCD Drive 160.7 88.7 65 65 79

methods and Prelude. As we have already compared the timings between our two methods,
the comparison of the worst case execution can be seen in the table. While the first method
tends to have higher compile times it does present a more refined worst case than the second
method for some examples. In implementation, the second method is used to create worst
case schedule quickly, and if that schedule is not feasible then the first method is used to
create a more refined schedule for analysis.

Also, we draw a comparison between our worst case schedule and the schedule given by
Prelude for the same model. The examples in the table all contain a task with at least
one branch which allows for a lower execution time of the worst case schedule, without a
branch in a process the schedules would be the same as Prelude. This lower execution time
may present a developer with opportunities to take advantage of the extra cycles that can
be found when modeling a real-time system using EmCodeSyn and MRICDF. Utilizing
this time could mean sampling inputs at a more frequent interval, or being able to include
more extensive computations to reduce error within the system.

4.2 Conclusion

We proposed extensions to the polychronous formal language MRICDF for the modeling
of real-time embedded systems. These extensions allow for the abstraction of real-time
systems as a collection of interdependent time driven tasks. Using the language semantics of
MRICDF as well as the real-time task abstractions we are were able to show that we could
verify more models to be schedulable than previous attempts and methods.

While we extended the MRICDF formalism, we also incorporated many ideas from the
Prelude language which is used strictly for defined synchronous real-time systems. Using
their extended precedence encoding techniques we were able to transform the task graph ab-
straction into a set of independent tasks which could more easily be analyzed with existing
schedulability analysis tools such as Chedddar [25]. We also incorporated some code gener-

Matthew W. Kracht Chapter 4. Conclusion 67

ation improvements such as buffer optimization techniques for inter-task communication.

Although we incorporated some ideas of the Prelude language, we leveraged the formal se-
mantics and compilation analysis of MRICDF to create a tool that was capable of modeling,
analyzing, and generating code for a wider range of models.

Bibliography

[1] About chronos linux. URL http://chronoslinux.org/wiki/About ChronOS Linux.

[2] Douglas Isbell. Mars climate orbiter team finds likely cause of loss, 1999. URL
http://mars.jpl.nasa.gov/msp98/news/mco990930.html.

[3] J. Forget. A Synchronous Language for Critical Embedded Systems with Multiple Real-
Time Constraints. PhD thesis, Universit’e de Toulouse - ISAE/ONERA, Toulouse,
France, November 2009.

[4] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Concepts.
Wiley Publishing, 8th edition, 2008. ISBN 0470128720.

[5] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20(1):46–61, January 1973. ISSN 0004-5411. doi:
10.1145/321738.321743. URL http://doi.acm.org/10.1145/321738.321743.

[6] GiorgioC. Buttazzo. Rate monotonic vs. edf: Judgment day. In Ra-
jeev Alur and Insup Lee, editors, Embedded Software, volume 2855 of Lec-
ture Notes in Computer Science, pages 67–83. Springer Berlin Heidelberg,
2003. ISBN 978-3-540-20223-3. doi: 10.1007/978-3-540-45212-6 6. URL
http://dx.doi.org/10.1007/978-3-540-45212-6 6.

[7] M. Dellinger, P. Garyali, and B. Ravindran. Chronos linux: A best-effort real-time
multiprocessor linux kernel. In Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, pages 474–479, 2011.

[8] Abdoulaye Gamati. Designing Embedded Systems with the SIGNAL Programming Lan-
guage: Synchronous, Reactive Specification. Springer Publishing Company, Incorpo-
rated, 1st edition, 2009. ISBN 1441909400, 9781441909404.

[9] B.A. Jose, J. Pribble, and S.K. Shukla. Faster software synthesis using actor elimina-
tion techniques for polychronous formalism. In Application of Concurrency to System
Design (ACSD), 2010 10th International Conference on, pages 147–156, 2010. doi:
10.1109/ACSD.2010.31.

68

Matthew W. Kracht Bibliography 69

[10] Julien Ouy Mahesh Nanjundappa, Matthew Kracht and Sandeep K. Shukla. A new
multi-threaded code synthesis methodology and tool for correct-by-construction syn-
thesis from polychronous specifications. 2013.

[11] B.A. Jose and S.K. Shukla. An alternative polychronous model and synthesis method-
ology for model-driven embedded software. In Design Automation Conference (ASP-
DAC), 2010 15th Asia and South Pacific, pages 13–18, 2010. doi: 10.1109/ASP-
DAC.2010.5419925.

[12] BijoyA. Jose and SandeepK. Shukla. MRICDF: A polychronous model for embedded
software synthesis. In Sandeep K. Shukla and Jean-Pierre Talpin, editors, Synthesis of
Embedded Software, pages 173–199. Springer US, 2010. ISBN 978-1-4419-6399-4.

[13] The yices smt solver - b. dutertre and l. de moura, http://yices.csl.sri.com/.

[14] Tochou Amagbegnon, Loc Besnard, and Paul Le Guernic. Arborescent canonical form
of boolean expressions. Technical report, 1994.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991. ISSN
0018-9219. doi: 10.1109/5.97300.

[16] Gérard Berry and Laurent Cosserat. The esterel synchronous programming language
and its mathematical semantics. In Seminar on Concurrency, Carnegie-Mellon Uni-
versity, pages 389–448, London, UK, UK, 1985. Springer-Verlag. ISBN 3-540-15670-4.
URL http://dl.acm.org/citation.cfm?id=646723.702721.

[17] B.A. Jose, A. Gamatie, J. Ouy, and S.K. Shukla. Smt based false causal loop detection
during code synthesis from polychronous specifications. In Formal Methods and Models
for Codesign (MEMOCODE), 2011 9th IEEE/ACM International Conference on, pages
109–118, 2011. doi: 10.1109/MEMCOD.2011.5970517.

[18] C. Lavarenne, O. Seghrouchni, Y. Sorel, and M. Sorine. The SynDEx software en-
vironment for real-time distributed systems, design and implementation. In Proceed-
ings of European Control Conference, ECC’91, Grenoble, France, July 1991. URL
http://www-rocq.inria.fr/syndex/publications/pubs/ecc91/ecc91.pdf.

[19] Simulink: User’s Guide. The Mathworks.

[20] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine.
Taxys = esterel + kronos - a tool for verifying real-time properties of embedded systems,
2001.

[21] Mikel Cordovilla, Frédéric Boniol, Julien Forget, Eric Noulard, and Claire Pagetti. De-
veloping critical embedded systems on multicore architectures: the Prelude-SchedMCore
toolset. In 19th International Conference on Real-Time and Network Systems, Nantes,
France, September 2011. Irccyn. URL http://hal.inria.fr/inria-00618587.

Matthew W. Kracht Bibliography 70

[22] J. Forget, F. Boniol, D. Lesens, and C. Pagetti. A multi-periodic synchronous data-flow
language. In High Assurance Systems Engineering Symposium, 2008. HASE 2008. 11th
IEEE, pages 251 –260, dec. 2008. doi: 10.1109/HASE.2008.47.

[23] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time tasks under
precedence constraints. Real-Time Syst., 2(3):181–194, September 1990. ISSN 0922-
6443. doi: 10.1007/BF00365326. URL http://dx.doi.org/10.1007/BF00365326.

[24] Joseph Y.-T. Leung and ML Merrill. A note on preemptive scheduling of periodic,
real-time tasks. Information processing letters, 11(3):115–118, 1980.

[25] F. Singhoff, J. Legrand, L. Nana, and L. Marc. Cheddar: a flexible real time scheduling
framework, 2004.

[26] Julien Forget, Frédéric Boniol, Emmanuel Grolleau, David Lesens, and Claire Pagetti.
Scheduling dependent periodic tasks without synchronization mechanisms. In Pro-
ceedings of the 2010 16th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS ’10, pages 301–310, Washington, DC, USA, 2010. IEEE
Computer Society. ISBN 978-0-7695-4001-6. doi: 10.1109/RTAS.2010.26. URL
http://dx.doi.org/10.1109/RTAS.2010.26.

