
Feasible Automatic Reconfigurations of Real-Time Tasks

Hamza Gharsellaoui1, Mohamed Khalgui2,3, Samir Ben Ahmed1

1National Institute of Applied Sciences and Technologies, INSAT, Tunisia
2Martin Luther University, Germany

3Xidjian University, China

Abstract

The paper deals with Reconfigurable Uniprocessor
Real-Time Systems to be classically implemented by dif-
ferent tasks that we suppose independent, synchronous
and periodic. Two forms of automatic reconfigurations
are assumed to be applied at run-time: Addition-Remove
of tasks or just modifications of their temporal param-
eters: WCET and/or Periods. We define an Intelligent
Agent that automatically checks the system’s feasibility af-
ter any reconfiguration scenario to verify if all tasks meet
the required deadlines. It provides otherwise for users
new temporal parameters of tasks when deadlines are vi-
olated. The tool RT −Reconfiguration is developed to
support the useful agent’s services.

1 Introduction

Nowadays in Industry, new generations of embedded
control systems are addressing new criteria as flexibility
and agility. To reduce their cost, these systems should
be changed and adapted to their environment without dis-
turbances. Several interesting academic and industrial re-
search works have been made last years to develop recon-
figurable systems [1]. We distinguish in these works two
reconfiguration policies: static and dynamic reconfigura-
tions where static reconfigurations are applied off-line to
apply changes before the system cold start [2], whereas
dynamic reconfigurations are applied dynamically at run-
time. Two cases exist in the last policy: manual recon-
figurations applied by users [3] and automatic reconfigu-
rations applied by Intelligent Agents [4, 5]. We are inter-
ested in this paper in automatic reconfigurations of real-
time embedded control systems that should meet dead-
lines defined in user requirements [6]. These systems are
implemented by sets of tasks that we assume independent,
periodic and synchronous (e.g. they are simultaneously
activated at t = 0 time units). We assume also that the
deadline of each task is equal to the corresponding pe-
riod. According to [7], we characterize each task by a
period to be denoted by T equal to the deadline denoted
by D and by a Worst Case Execution Time denoted by
C. We define an automatic reconfiguration as any opera-
tion allowing additions-removes or updates of tasks at run-

time. Therefore the system’s implementation is dynami-
cally changed and should meet all considered deadlines
of the current combination of tasks. Nevertheless, when
a reconfiguration is applied, the deadlines of new and old
tasks can be violated. We define an agent-based architec-
ture that checks the system’s evolution and defines useful
solutions for users when deadlines are not satisfied after
each reconfiguration scenario. Two cases of suggestions
are possible to be provided by the agent: modification of
periods (equal to deadlines) or modification of worst case
execution times of tasks. The users should choose one
of these solutions to re-obtain the system’s feasibility. A
tool RT − Reconfiguration is developed and tested in
our laboratory to support the agent’s services. We present
related works in Section 2 and some real-time concepts
in Section 3. The agent-based architecture is proposed
in Section 4 before presented analysis in Section 5. We
conclude the paper with conclusions and presentation of
future works in Section 6.

2 Related Works

We analyze previous related works dealing with static,
manual and automatic reconfigurations of systems, before
we present thereafter the real-time scheduling.

2.1 Reconfiguration of Systems
Nowadays, rich research works have been proposed to

develop reconfigurable systems. The authors propose in
[2] reusable tasks to implement a broad range of systems
where each task is statically reconfigured without any re-
programming. This is accomplished by updating the sup-
porting data structure, i.e. a state transition table, whereas
the executable code remains unchanged and may be stored
in permanent memory. The state transition table consists
of multiple-output binary decision diagrams that represent
the next-state mappings of various states and the associ-
ated control actions. The authors propose in [3] a com-
plete methodology based on the human intervention to dy-
namically reconfigure tasks. They present in addition an
interesting experimentation showing the dynamic change
by users of tasks without disturbing the whole system.
The authors use in [8] Real-time-UML as a meta-model
between design models of tasks and their implementation
models to support dynamic user-based reconfigurations of



control systems. The authors propose in [9] an agent-
based reconfiguration approach to save the whole system
when faults occur at run-time. Finally the authors pro-
pose in [5] an ontology-based agent to perform system’s
reconfigurations that adapt changes in requirements and
also in environment. They are interested to study recon-
figurations of control systems when hardware faults occur
at run-time. We are interested in this paper in feasible au-
tomatic reconfigurations of real-time systems where addi-
tions and removes of real-time tasks are applied at run-
time. We define an agent-based architecture to propose
new parameters for tasks when deadlines are violated in
order to re-obtain the system’s feasibility.

2.2 Real-Time Scheduling
Real-time scheduling has been extensively studied in

the last thirty years [6]. Several Feasibility Conditions
(FC) for the dimensioning of a real-time system are de-
fined to enable a designer to grant that timeliness con-
straints associated to an application are always met for all
possible configurations. Different classes of scheduling
algorithm are followed nowadays: (i) Clock-driven: pri-
marily used for hard real-time systems where all proper-
ties of all jobs are known at design time. (ii) Weighted
round-robin: primarily used for scheduling a real-time
traffic in high-speed, (iii) Priority-driven: primarily used
for more dynamic real-time systems with a mixture of
time-based and event-based activities. Among all priority-
driven policies, Earliest Deadline First (EDF) or Least
Time to Go is a dynamic scheduling algorithm used in
real-time operating systems. It places processes in a prior-
ity queue. Whenever a scheduling event occurs (task fin-
ishes, new task released, etc.) the queue will be searched
for the process closest to its deadline. This process is the
next to be scheduled for execution. EDF is an optimal
scheduling algorithm on preemptive uniprocessors in the
following sense: if a collection of independent periodic
jobs characterized by arrival times equal to zero and by
deadlines equal to corresponding periods, can be sched-
uled by a particular algorithm such that all deadlines are
satisfied, then EDF is able to schedule this collection of
jobs.

3 Known Concepts in The EDF Theory

We present the following well-known concepts in the
theory of real-time scheduling [7]:

• A periodic task i (Ci;Ti;Di) is an infinite collection
of jobs that have their request times constrained by a
regular inter-arrival time Ti, a Worst Case Execution
Time (WCET) Ci and a relative deadline Di,

• A real-time scheduling problem is said feasible if
there is at least one scheduling policy able to meet
the deadlines of all the considered tasks,

• A set of tasks is schedulable with a given scheduling
policy if and only if no jobs of this set miss their
deadlines,

• A task is valid with a given scheduling policy if and
only if no jobs of this task miss their deadlines,

• An idle time t of a processor is defined as a time
where no tasks released before time t are pending at
time t. An interval of successive idle times is classi-
cally called an idle period,

• A busy period is defined as a time interval [a, b) such
that there is no idle time in [a, b) (the processor is
fully busy) and such that both a and b are idle times,

• In the case of independent, periodic and synchronous
tasks (e.g. simultaneously activated at t = 0), the
verification of the system’s schedulability is possible
to be done in a hyper period [0, lcm] where lcm is
the Least Common Multiple [7],

• U =
∑n

i=1
Ci

Ti
is the processor utilization factor. In

the case of synchronous, independent and periodic
tasks such that their deadlines are equal to their pe-
riods, U ≤ 1 is a necessary and sufficient condition
for the EDF-based scheduling of real time tasks.

4 Agent-based architecture for Reconfig-
urable Embedded Control Systems

We define in this section an agent-based architec-
ture for reconfigurable real-time embedded systems that
should classically meet different deadlines defined in user
requirements. The agent controls the system’s evolution
and provides solutions for users when deadlines are vio-
lated after any reconfiguration scenario. Let Sys be such
system to be classically composed of a set of real-time
tasks that support different functionalities. We mean in
this paper by an automatic reconfiguration any operation
that adds, removes or also updates tasks at run-time. Au-
tomatic updates of tasks mean modifications of their tem-
poral parameters e.g. Periods and Deadlines, or modifica-
tions of their Worst Case Execution Times. Let SSys be
the set of all tasks that can possibly implement the sys-
tem, and let us denote by CurrentSys(t) the set of tasks
implementing the system Sys at t time units. These tasks
should meet all deadlines defined in user requirements.
In this case, we note that Feasibility(CurrentSys(t)) ≡
True.

Running Example1: Let us suppose a first real-
time embedded system Sys1 to be initially implemented
by 5 characterized tasks in Figure 1. These tasks are
feasible because the processor utilization factor U =
0.94 < 1. We suppose that a reconfiguration sce-
nario is applied at t1 time units to add five new tasks
6, 7, 8, 9, 10. The new processor utilization becomes U =
1.85 > 1 time units. Therefore the system is unfeasible
Feasibility(CurrentSys1(t1)) ≡ False.

2



Sys
 C
 T
 D


1


2


3


4


5


2


1


2


3


1


7


8


9


13


12


7


8


9


13


12


6


7


8


9


10


4


2


1


3


2


15


13


10


14


11


15


13


10


14


11


Figure 1. Implementation of the Sys1 by
Real-Time Tasks

Sys
 C
 T
 D


1


2


3


4


5


35


25


30


22


32


150


130


140


125


180


150


130


140


125


180


6


7


8


9


10


40


25


30


36


28


100


90


120


180


165


100


90


120


180


165


Figure 2. Implementation of the Sys2 by
Real-Time Tasks

Running Example2: Let us suppose a second real-
time embedded system Sys2 to be initially implemented
by 5 characterized tasks in Figure 2. These tasks are feasi-
ble because the processor utilization factor U = 0.99 < 1.
We suppose that a reconfiguration scenario is applied at t2
time units to remove the tasks 3, 4, 5 and to add five new
tasks 6, 7, 8, 9, 10. The new processor utilization becomes
U = 1.72 > 1 time units. Therefore the system is unfea-
sible Feasibility(CurrentSys2(t2)) ≡ False.

4.1 Agent’s Principal
Under different conditions, the embedded system Sys

is reconfigurable at run-time by changing its implemen-
tation to delete old or to add new tasks. The proposed
agent should check after any reconfiguration scenario the
system’s feasibility that can be affected when tasks violate
deadlines. In this case, the agent should propose useful so-
lutions for users to re-obtain the system’s feasibility. Two
cases of solutions exist:

• the agent proposes a new period (e.g. equal to the

corresponding deadline) for particular new and old
tasks that compose CurrentSys(t),

• or it proposes a new Worst Case Execution Time (e.g.
WCET) for the same tasks.

4.2 Formalization
By considering synchronous real-time tasks, the

schedulability analysis should be done in the Hyper-
Period hp = [0,lcm], where lcm is the well-known Least
Common Multiple [6]. Let n be the number of tasks in
CurrentSys(t). The reonfiguration of the system Sys
means the modification of its implementation that will be
as follows at t time units:

CurrentSys(t) = ξnew ∪ ξold

Where ξold is a subset of old tasks which are not af-
fected by the reconfiguration scenario (e.g. they imple-
ment the system before the time t), and ξnew a subset of
new tasks in the system. We assume that an updated task
is considered as a new one at t time units. By consid-
ering a feasible system Sys before the application of the
reconfiguration scenario, each one of the tasks of ξold is
feasible, e.g. the execution of each instance is finished
before the corresponding deadline:

∀i ∈ ξold,∀j ∈ IN (e.g. instance j of task i) such that
j ∗ Ti ≤ t

Ei,j ≤ Di,j

Where Ei,j is the time when the execution of the in-
stance j is finished. When the reconfiguration scenario is
applied at time t, two cases exist:

• If tasks of CurrentSys(t) = ξnew ∪ ξold are feasible,
then no reaction should be done by the agent,

• Otherwise, the agent should provide different solu-
tions for users in order to re-obtain the system’s fea-
sibility. We define the following steps allowing such
services:

– First Step: the agent tries to modify the
periods (equal to deadlines) and execution
times of tasks belonging to ξnew in order to
meet all deadlines that correspond to tasks of
CurrentSys(t),

– Iterative Second Step: the agent tries to con-
sider old tasks of ξold as new tasks to be intro-
duced in ξnew. A computation of periods, dead-
lines and WCET of these tasks with the new
tasks is applied.

Let n1 and n2 be the number of tasks respectively in
ξold and ξnew. By assuming an unfeasible system at t time
units, the following formula is satisfied:∑n

i=1
Ci

Ti
> 1

3



We propose to add the tasks of ξold to a linked list Lold

that we sort in the decreased order of the processor times.
Let j be the first j tasks of Lold.

• Approach. For each j ∈ [0, n1],

Add the first j tasks of Lold to ξnew. Two different
solutions exist for the feasibility of the system:

Comments. If j = 0, Then no tasks to be add to
ξnew.

– Solution 1: Modification of Periods

The agent proceeds as a first solution to change the
periods of tasks of ξnew. To obtain a feasible system,
the following formula should be satisfied;

∑n1−j
i=1

Ci
Ti +

∑n2+j
i=n1−j+1

Ci

Ti+θi
= 1

−→
∑n2+j

i=n1−j+1,
Ci

Ti+θi
= 1−

∑n1−j
i=1 , Ci

Ti

Let the constant βj be Ti + θi,

−→ 1
βj

∑n2+j
i=n1−j+1 Ci = 1−

∑n1−j
i=1

Ci

Ti

−→ βj = ⌈
∑n2+j

i=n1−j+1
,Ci

1−
∑n1−j

i=1

Ci
Ti

⌉ = constante

The new period of tasks of ξnew is therefore deduced
from βj .

– Solution 2: Modification of Worst Case Exe-
cution Times

The agent proceeds now as a second solution to mod-
ify the Worst case Execution Times of tasks of ξnew.
To obtain a feasible system, the following formula
should be satisfied:

∑n1−j
i=1

Ci

Ti
+

∑n2+j
i=n1−j+1

Ci+αi

Ti
= 1

−→
∑n2+j

i=n1−j+1
Ci+αi

Ti = 1−
∑n1−j

i=1
Ci

Ti

−→
∑n2+j

i=n1−j+1
αi

Ti = 1 −
∑n1−j

i=1
Ci

Ti
−∑n2+j

i=n1−j+1
Ci

Ti

−→
∑n2+j

i=n1−j+1
αi

Ti
= 1−

∑n2+j
i=1

Ci

Ti

Let γj be the following constant: γj = αi =
Constant,

−→ γj = ⌈
1−

∑n2+j

i=1

Ci
Ti∑n2+j

i=n1−j+1

1
Ti

⌉ = constante

The new WCET of tasks of ξnew is therefore deduced
from γj .

4.3 Algorithm
We present the algorithm of the agent to help users and

to allow correct parametrizations of feasible tasks.
Algorithm Reconfigure(Task List Lold,

New Tasks ξnew, int n1)

• Check Feasibility(Lold, ξnew);

• For j from 0 to n1 step by step,

– βj ← Compute Beta(Lold, ξnew, j);

– γj ← Compute Gamma(Lold, ξnew, j);

– Display Parameters(Lold, ξnew, βj , γj);

End of Algorithm.
We note that the complexity of the proposed algo-

rithm is O(n2). We implemented a prototype RT −
Reconfiguation to give helps and indications for users
when automatic reconfigurations of real-time embedded
systems are applied at run-time. The simulator Cheddar
[10] is used for the schedulability analysis of the consid-
ered tasks.

Running Example1. In the first example of Sys1, the
agent should react to propose useful solutions for readers
in order to re-obtain the system’s feasibility. We note that:

ξnew = {6, 7, 8, 9, 10}

Lold = {1, 4, 3, 2, 5}

The agent computes the constant values βj and γj (j ∈
[0, 5]) as follows:

• β0 = 227 time units where Lold = {1, 4, 3, 2, 5} and
ξnew = {6, 7, 8, 9, 10},

• β1 = 95 time units where Lold = {4, 3, 2, 5} and
ξnew = {1, 6, 7, 8, 9, 10},

• β2 = 54 time units where Lold = {3, 2, 5} and
ξnew = {4, 1, 6, 7, 8, 9, 10},

• β3 = 33 time units where Lold = {2, 5} and ξnew =
{3, 4, 1, 6, 7, 8, 9, 10},

• β4 = 27 time units where Lold = {5} and ξnew =
{2, 3, 4, 1, 6, 7, 8, 9, 10},

• β5 = 21 time units where Lold = ∅ and ξnew =
{5, 2, 3, 4, 1, 6, 7, 8, 9, 10},

• γ = −2 higher that the minimal value of WCET of
tasks belonging to ξnew. Therefore, the agent de-
duces that modifications of execution times cannot
solve the problem.

We present in Figure 5 the new temporal parameters
of the considered tasks. The user can choose one of
these solutions to have a feasible system. We present in
Figure 4 the results given by the developed tool RT −
Reconfiguration that provides new solutions by using

4



Figure 4. Presentation of results described by the developed tool RT − Configuration

Figure 3. New temporal configuration of
Sys1

the simulator Cheddar in order to re-obtain a feasible sys-
tem Sys1.

Running Example2. In the second example of Sys2
where a reconfiguration scenario is applied to delete the
tasks 3, 4, 5, the agent should react to propose useful solu-
tions for readers to re-obtain the system’s feasibility. We
note that:

ξnew = {6, 7, 8, 9, 10}

Lold = {2, 1}

The agent computes the constant values βj and γj (j ∈
[0, 2]) as follows:

• β0 = 277 time units where Lold = {1, 2} and ξnew =
{6, 7, 8, 9, 10},

• β1 = 240 time units where Lold = {1} and ξnew =
{2, 6, 7, 8, 9, 10},

• β2 = 219 time units where Lold = ∅ and ξnew =
{1, 2, 6, 7, 8, 9, 10},

• WCET = 7 for each task of ξnew = {6, 7, 8, 9, 10},

• WCET = 6 for each task of ξnew =
{2, 6, 7, 8, 9, 10},

• WCET = 5 for each task of ξnew =
{1, 2, 6, 7, 8, 9, 10} (Figure 6),

We present in Figure 5 the new temporal parameters of
the considered tasks. The user can choose one of these
solutions to have a feasible system.

5 Analysis of Results

We evaluate the proposed approach by considering the
systems Sys1 and Sys2 defined in the running exam-
ple. By applying the first solution, we find that the pe-
riod of tasks of ξnew is decreased each time an old task
is removed from Lold (Figure 7). This reduction can al-
low more reactive and also feasible systems. This advan-
tage can be important in many cases where critical control
tasks should be intensively executed in small periods of
time. We want also to compare the proposed solutions
for the same system Sys2. By applying the first solution,
the utilization factor U is equal to 1 in the three different
scenarios generated by the tool RT −Reconfiguration,
whereas it takes lower values when we apply the second
solution dealing with modifications of WCET. Let Area
be the area of the rectangle delimited by the first curve
that corresponds to the first solution, and let WCET (t)
be the simulation curve corresponding to modifications of
execution times for feasible reconfigurations of real-time
systems. The performance of Solution 2 is as follows:

performanceSolution2 =
(
∫
Scenario1,Scenario2,Scenario3

WCET (t).dt)/Area =
0.6139

Therefore, the second solution is 39% more efficient
than the first that deals with modifications of periods.

5



Figure 5. New temporal configuration of Sys2

Figure 6. A possible implementation of Sys2

6 Conclusion

The paper deals with reconfigurable systems to be im-
plemented by different tasks that should meet real-time
constraints. We assume in this work independent, peri-
odic and synchronous tasks. We define a reconfiguration
scenario as a dynamic operation allowing additions, re-
moves or updates of tasks at run-time. When a recon-
figuration scenario is automatically applied, the system
can become unfeasible because some tasks violate corre-
sponding deadlines. We define an agent-based architec-
ture where an agent is proposed to provide new parame-
ters of unfeasible tasks in order to re-obtain the system’s
feasibility. We plan in future works to study reconfigu-
rations of asynchronous tasks to be released in different
times, and we plan also to study reconfigurations of dis-
tributed real-time tasks.

References

[1] A.-L. Gehin and M. Staroswiecki, “Reconfiguration Anal-
ysis Using Generic Component Models”, in IEEE Trans-
actions on Systems, Machine and Cybernetics, Vol.38, N.3,
2008.

[2] C. Angelov, K. Sierszecki, and N. Marian, “Design mod-
els for reusable and reconfigurable state machines”, in
L.T. Yang and All (Eds): EUC 2005, LNCS 3824, pp:152-
163. International Federation for Information Processing.,
2005.

[3] M. N. Rooker, C. Sunder, T. Strasser, A. Zoitl, O. Hum-
mer, and G. Ebenhofer, “Zero Downtime Reconfiguration
of Distributed Automation Systems : The εCEDAC Ap-
proach”, in Third International Conference on Industrial
Applications of Holonic and Multi-Agent Systems, 2007.
Springer-Verlag.

[4] M. Khalgui, “NCES-based modelling and CTL-based ver-
ification of reconfigurable embedded control systems”, in
Computers in Industry. 61(3), 2010.

[5] Y. Al-Safi and V. Vyatkin, “An ontology-based reconfigu-
ration agent for intelligent mechatronic systems”, in Third

6



Scenarios


Solution1
 Solution2
 Solution3
 Solution4
 Solution5
 Solution6


277


95


54

33


21


P
er

io
d

s


Sys1


Sys2


Figure 7. Decrease of new periods in Sys1
and Sys2 by applying the proposed algo-
rithm

Scenarios


Solution1
 Solution2
 Solution3


Modification of WCET in Sys2


Modification of Periods in Sys2


U
ti

liz
at

io
n

 F
ac

to
r 

U



1


0.277


0.525


0.713


Figure 8. Comparison between the pro-
posed Solution1 and Solution2 for feasible
reconfiguration of Sys2

International Conference on Industrial Applications of
Holonic and Multi-Agent Systems, 2007. Springer-Verlag.

[6] S. Baruah and J. Goossens, “Scheduling Real-time Tasks:
Algorithms and Complexity”, in In Handbook of Schedul-
ing: Algorithms, Models, and Performance Analysis,
Joseph Y-T Leung (ed). Chapman Hall/ CRC Press, 2004.

[7] C. Liu and J. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment”, in Journal
of the ACM, 20(1):46-61, 1973.

[8] K. Thramboulidis, G. Doukas, and A. Frantzis, “Towards
an implementation model for FB-based reconfigurable dis-
tributed control applications,”, in Proceedings of 7th IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 193-200, 2004.

[9] R. W. Brennan, M. Fletcher, and D. H. Norrie, “A holonic
approach to reconfiguring real-time distributed control
systems”, in Book: Multi-Agent Systems and Applications:
MASA’01, 2001. Springer-Verlag.

[10] L. N. L. M. F. Singhoff, J. Legrand, “Cheddar : a Flexible
Real Time Scheduling Framework”, in ACM SIGAda Ada
Letters, volume 24, number 4, pages 1-8. Edited by ACM
Press, ISSN:1094-3641, 2004.

7


