
 Page 1�/6�

Validate implementation correctness
using simulation: the TASTE approach

Julien Delange1, Jérôme Hugues2, Pierre Dissaux3

1: European Space Agency, Keplerlaan 1, 2201AZ Noordwijk, The Netherlands
2. Toulouse University/ISAE, 10 Avenue Edouard Belin, 31055 Toulouse, France

3. Ellidiss Technologies, 24 Quai de la Douane, 29200 Brest, France

Abstract: High-integrity systems operate in hostile
environment and must guarantee a continuous
operational state, even if unexpected events
happen. In addition, these systems have stringent
requirements that must be validated and correctly
translated from high-level specifications down to
code. All these constraints make the overall
development process more time-consuming. This
becomes especially complex because the number of
system functions keeps increasing over the years.

As a result, engineers must validate system
implementation and check that its execution
conforms to the specifications. To do so, a traditional
approach consists in a manual instrumentation of the
implementation code to trace system activity while
operating. However, this might be error-prone
because modifications are not automatic and still
made manually. Furthermore, such modifications
may have an impact on the actual behavior of the
system.

In this paper, we present an approach to
validate a system implementation by comparing
execution against simulation. In that purpose, we
adapt TASTE, a set of tools that eases system
development by automating each step as much as
possible. In particular, TASTE automates system
implementation from functional (system functions
description with their properties – period, deadline,
priority, etc.) and deployment (processors, buses,
devices to be used) models.

We tailored this tool-chain to create traces
during system execution. Generated output shows
activation time of each task, usage of
communication ports (size of the queues, instant of
events pushed/pulled, etc.) and other relevant
execution metrics to be monitored. As a
consequence, system engineers can check
implementation correctness by comparing simulation
and execution metrics.

Keywords: AADL, TASTE, code generation,
instrumentation, GTKWave

1. Introduction

 High-integrity systems are operating in hostile
environment and must be designed to work safely
even if unexpected event happens. They also
perform mission- or life-critical operations so that a
failure may have catastrophic impacts (mission
abortion, loss of life, economic impacts, etc.).
 Thus, engineers must demonstrate
implementation correctness regarding its operating
and environment constraints. However, this is
difficult because the number of systems functions
increase significantly by the time and they also have
a large number of requirements that originate from
different domains (electric, physics, etc.).

One solution is to abstract system
representation and specify its properties and
constraints using models. Such abstraction level
may be used for different purposes: communication
(exchange of models between engineers from
different area of specialization), validation, etc.
Depending on their engineering domain and their
background, different languages and tools are used.

As such, model-based development (MBD)
is now a widely accepted solution to perform a whole
range of analysis prior to actually implement the
system. This “virtual” test-bench relies on a well-
defined set of concepts for modelling the building
blocks of a system (interfaces, associated types),
topology of connections and eventually links to
concrete software and hardware elements. This is
the path chosen by many tools like Simulink,
SCADE, and also standards like OMG/SysML[8],
OMG/MARTE [9] or the SAE AADL[11].

Companion tools support designer activities
when modelling and navigating its model, but also to
understand its actual behaviour through
simulation (e.g. model animation or execution of
scenarios step-by-step), verification activities
through complete enumeration of the model state
space (model checking techniques) and coupling
with observer like techniques. In addition, traceability
of model elements to requirements can be
performed. Hence, the designer can be convinced
his model is complete enough to faithfully represent
a potential solution to its initial objective.

 Page 2�/6�

2. Problem

 However, if models are accurate for
abstracting system, turning requirements into a
candidate solution and easing the communication
across development teams, several issues need to
be solved. In particular, one needs to translate
models into an implementation code and thus,
ensures that systems properties, requirements or
constraints demonstrated at model level are
correctly mapped or preserved. This step is usually a
manual translation from the models to source code.
This step is done based on the understanding of the
engineer, but also with target limits (particular API,
coding guidelines, etc.).
 This implementation method is error-prone:
source code correctness relies on the understanding
of a software engineer and additional testing. Thus,
implementation may contain bugs related to a
misunderstanding of the specification or error due to
the code itself. Furthermore, any change in the
specifications (requirements modification or issues
discovered when running the implementation code)
may cause a significant code reengineering.
 To address such issues, MBD toolchain now
proposes mechanisms to generate implementation
code from models. Existing tools can generate either
application or architecture code (task and
communication skeletons) from the system
architecture, automating the implementation of each
aspect of the system.
 However, even if these approaches
strengthen the overall development process, they do
not provide any guarantee on system behavior
correctness. In particular, it does not guarantee that
system execution at code-level is equivalent to the
model -level. As a consequence, validation of the
system is still done manually, which remains error-
prone and costly. Demonstrating such equivalence is
a challenge for both the industrial and academic
communities. As of today, only the SCADE tool
chain [10] demonstrated this equivalence, but for a
limited semantics based on the synchronous model
of computation.

3. Approach

 Early verification of real-time requirements of
an application firstly requires the use of a modeling
language that supports the same semantics as the
actual run time system.
Concretely, it means that the modeling language
must precisely define real-time concepts like:

• scheduling protocols (rate monotonic,
deadline monotonic, highest priority first, …)

• thread dispatch protocols (periodic,
sporadic, background, …)

• thread scheduling and execution states
(suspended, ready, running, …)

• thread real-time properties (period, deadline,
Worst Case Execution Time, …)

• inter-threads communication and
synchronization protocols (events, shared
data, subprogram calls, …)

The second step consists in developing new
analysis tools or adapting existing ones, so that they
can work on such models.

Finally, it must be ensured that the actual real-
time properties that are in use at the model
verification layer are compatible with those in place
in the actual run-time system that is operating for the
final application.

If all these constraints can be met, it becomes
realistic to consider performing an early verification
of real-time software at a model level. Such
verification activities may consist for instance of
schedulability analysis using analytical methods or
less deterministic approaches like non-exhaustive
simulation. It is then possible to compare execution
traces obtained while running these analysis tools
with the execution of the actual running software.

The Architecture Analysis and Design
Language (AADL) [11] fits these requirements and
tools such as Cheddar [6] for schedulability analysis
and Marzhin [4] for non-exhaustive simulation can
be used for early verification of AADL models.
Combined with code generation strategies
embedding trace generation, the designer can
simulate its design, but also extract execution traces
of its system and compare them. This is the
approach (illustrated in fig 1) presented in this paper.

4. Supporting the process

We implement this approach in the TASTE
tool-set [1,2], which is the outcome of the European
project ASSERT [1]. TASTE aims at providing
guidance to system developers by reducing manual
development efforts and detects potential errors as
early as possible during the design process. TASTE
imposes a stringent design process, inherited from
best practice mandated in space projects, from early
functional designs, mapping of the functions to
devices and finally code generation.

TASTE requires capturing application and
system concerns using a single modelling language,
AADL. It specifies both architecture (processor,
buses, devices) and application concerns (functions
to be called and their interaction) with respect to
their properties (tasks period, events inter-arrival
time, etc). The tool chain provides two tools that
produce AADL models from a graphical
representation: TASTE-IV (Interface View,
description of functions) and TASTE-DV

 Page 3�/6�

(Deployment View, description of target hardware).
These tools enforce separation of functional and
deployment concerns, possibly performed by
different teams. These AADL descriptions are then
combined and processed by dedicated tools to both
analyze requirements correctness and generate
system implementation. Interface and deployment
views are analyses and transformed into a
Concurrency View (CV) that represents the
combination of functions defined by the user and the
set of threads and communication buffers required to
run them on top of the embedded Operating System.

In that context, we tailored the TASTE tools

to check requirements by simulating the system or
by retrieving metrics during execution. Both
outputs (simulation/validation reports and execution
traces) are compared to check implementation
correctness with respect to validation (figure 1).

Figure 1- Application validation process

On the analysis part, the new TASTE-CV
tool exploits the Concurrency View (CV) to support
the validation of timing requirements through:
1. Feasibility tests that computes processor

utilization factor by using application (period,
deadline, etc.) and deployment (scheduling
protocol to be used, etc.) information. This part
of the process is supported by integrating
Cheddar [6], a schedulability analysis tool
developed in collaboration with Brest University.

2. Simulation that uses system description and
produces expected behaviour at run-time. For
that purpose, TASTE-CV integrates Marzhin, a
multi-agents execution engine initially developed
in collaboration by Virtualys [4] and Ellidiss [3]
which has been tailored to support the AADL

run-time semantics (threads state automata and
communication protocols). While simulating
system execution, Marzhin shows tasks
activation as well as synchronizations between
application components.
By using these two approaches, system

designers may assess specifications
feasibility (timing constraints to be met) and detect
potential design errors without coding effort. Yet,
such analysis may not be time accurate. Hence, we
complemented these tools, and propose the
validation of these traces with concrete
implementation so that designers can check that
execution is not only accurate from a functional point
of view, but also accurate with respect to timing as
seen on the target platform. This is done by an
automatic instrumentation of generated applications.

The TASTE tool-chain produces implementation
code from AADL description, generating glue code
to interface with user-provided models or code, as
well as tasks and communication buffers (see [7] for
more details). We adapted the code generation
process to add instrumentation instructions and
produce metrics at run-time. Thus, generated
applications output execution traces that report
similar information as generated during the
simulation (tasks activation time and data transfer
across applications components). Since the binary
will be executed on real hardware, the timing of
events will be more precise.

To avoid any impact between instrumentation
instructions and system metrics, integration of
measurement instructions has to be as lightweight
as possible. For this reason, instrumented
applications store metrics in buffers and flush them
once finished so that it avoids any I/O while
operating. For the context of this work, this
measurement capability was added on Linux targets.

To ease processing of traces, metrics are stored
in files using the VCD file format that can be
processed by open-source tools (such as GTKWave
[5]) to produce a graphical output. The VCD format
(Value Change Dump) is a widely used format from
the Electronic domain. It stores traces from
simulation of electronic circuit. It defines the
chronogram of events and activation of elements.
We used this format to preserve adaptability of the
toolchain. An example is provided in figure 2, it
shows activation time of two tasks.

By producing the same metrics, designers can
check system correctness and validate
implementation against validated specification either
at model-level or code-level depending on the
maturity of its design.

AADL models

Simulation
(TASTE-CV)

Implementation
(TASTE toolchain)

Simulation
report

Execution
traces

Implementation validation

 Page 4�/6�

Figure 2- Graphical representation

of VCD file using GTKWave

5. Case-Study
The following example is based on a basic
producer/consumer application distributed on two
nodes executing a regular linux kernel and
connected with an Ethernet bus. Application aspects
are designed using the TASTE-IV graphical tool,
which avoid to write AADL textual specifications by
hand. Application architecture, shown in figure 3,
defines two functions:

• The caller function that contains a cyclic
interface activator which purpose is to send data
to the other.

• The callee function with a sporadic interface
printval that receives a value and print it on the
standard output.

Figure 3- Functions and Interfaces of our case-study

Timing requirements of functions interfaces are
shown in figure 4 and figure 5:

• The activator cyclic interface (figure 4) has a
period of 15 ms and a Worst-Case Execution
Time (WCET) of 5 ms.

• The printval sporadic interface (figure 5) has a
Minimum Inter-Arrival Time (MIAT) of 10ms. It
means that the task has a maximum receiving
rate and is not triggered at each receiving data
instance. In addition, it has a WCET of 3 ms, so
that when activated, it consumes at most 3 ms of
processor time.

Figure 4 - Timing requirements of the

cyclic interface activator

Figure 5- Timing Requirements of the

sporadic interface printval

Then, the designer specifies the execution

environment and functions allocation on processing
resources. To do so, the TASTE-DV tool provides a
convenient graphical tool to capture these aspects.

The resulting deployment model of our
example is illustrated in figure 6. The platform
contains two nodes connected through a standard
Ethernet bus and executing a regular Linux
operating system. Each processor is associated with
one function so that the sender function is allocated
to the first processor while the receiver is bound to
the other.

Figure 6 - Deployment of application functions

Once application and systems concerns are

both specified, models are processed by validation
tools to check timing requirements.

 Page 5�/6�

Beforehand, it is important to notice that from an
implementation point of view, this application
description is mapped into execution entities
supported by the target operating system (threads,
mutexes, etc.). In our process, this is done by a
dedicated step called the Vertical Transformation
that refines the abstract application description
(Interface and Deployment views) into a model
specifying execution components (the Concurrency
View – CV – that specifies tasks, shared variables,
locking mechanisms, etc. to be instantiated by the
execution). Even if the description of this process is
not the topic of this article, it is important to
understand that our case-study is finally transformed
into an application with two tasks scheduled using
the traditional FIFO within Priorities scheduling policy
available in POSIX-compliant execution platforms:

• One periodic task corresponding to the activator
interface of the sender function. It has a period
of 15 ms and a WCET of 5 ms.

• One sporadic task corresponding to the
receive_int interface of the receiver function. It is
triggered when receiving incoming data and is
put to the idle state at least 10ms between two
occurrences of a new incoming data. Its WCET
value is 3 ms.

Figure 7 illustrates the scheduling validation

using TASTE-CV and Cheddar [6]. It performs
feasibility tests by processing tasks description with
state-of-the-art algorithms validation algorithms,
such as RMA. Thus, it computes processors
utilization factor and evaluates timing
requirements (tasks deadlines) enforcement. Using
this tool on our specification reports that timing
constraints are met with a processor utilization factor
of 0.3 using the RM analysis.

Figure 7 - Scheduling validation with feasibility tests

Figure 8 illustrates the simulation of the
sender node using TASTE-CV and the Marzhin [4]
multi-agent tool. The tool reports the execution
events occurrences of the tasks as well as produced
data instance by considering the worst case
scenario. In the following example (as shown in
figure 8), we notice that the simulated behaviour of
the sender task is compliant with the specification:

• It is activated on a 15ms basis (task period)

• At each activation, it consumes 5 ms of the
processing resource (task WCET)

• Once executed, one data item is produced

Figure 8 - Scheduling validation using Simulation

However, results issued from specifications
have to be compared with execution behaviour. For
that purpose, we tailored the TASTE code
generators and add instructions to report execution
events at run-time. As the objective is to check
application behaviour correctness (without
considering real-time concerns of the execution
platform), our experiments were done on a regular
Linux distribution for convenient purposes (easy file
management, etc.). However, it can also be
implemented on top of real-time specific run-time
such as RTEMS or Linux/Xenomai but would require
specific setup (such NFS mounts on RTEMS to store
traces, etc.)

 Figure 9 and figure 10 depict these
activation events for the sender task; the one
analyzed previously using the specifications.

Figure 9 – Activation events of the

sender task at run-time (1)

 Page 6�/6�

Figure 10 - Activation events of the
sender task at run-time (2)

 From these metrics, we can check timing
requirements correctness:

• The activation period is enforced, the task is
triggered each 15ms

• The WCET (5ms) complies with the
specifications; the task is never executed longer
than 5ms. However, this execution time is
smaller than during simulation because the
former reports the real execution time on the
target while the latter always consider the worst
case scenario.

6. Conclusion & Perspectives

The design and implementation of complex
real-time embedded systems requires multiple steps,
from early requirements elicitation down to final
coding. To ease this process, the TASTE toolchain
promotes extensive code generation from well-
defined semantics abstractions based on the AADL.

One difficulty in model-based engineering is
to understand precisely the behaviour of the system
under consideration. Simulation or virtual execution
of the system should be available early in the design
flow to increase confidence in the models.

In this paper, we demonstrated how
simulation at model-level and execution at binary-
level can be combined to have a first level of
analysis on early designs and then complete the
understanding of the actual system behavior through
execution of the system. Simulation capabilities are
provided through a multi-agent system. Run-time
traces are automatically integrated to generated
code, guaranteeing both accuracy and limited run-
time overhead. We evaluated this approach on a
case study, demonstrating increased confidence in
the system being built.

7. References

[1] Project website: www.assert-project.net
[2] Tools download:

http://download.tuxfamily.org/taste
[3] Ellidiss (TASTE toolsuite): www.ellidiss.com
[4] Virtualys (Marzhin): http://www.virtualys.com
[5] GTKWave: http://gtkwave.sourceforge.net
[6] Cheddar: a Flexible Real Time Scheduling

Framework. F. Singhoff, J. Legrand, L. Nana and
L. Marcé. ACM SIGAda Ada Letters, volume 24,
number 4, pages 1-8. ACM Press, New York,
USA. December 2004, ISSN:1094-3641. Also
published in the proceedings of the international
ACM SIGAda conference, Atlanta, Georgia, USA.

[7] Conquet, Eric and Perrotin, Maxime and Dissaux,
Pierre and Tsiodras, Thanassis and Hugues,
Jérôme The TASTE Toolset: turning human
designed heterogeneous systems into computer
built homogeneous software. (2010) In: European
Congress on Embedded Real-Time Software
(ERTS 2010), 19-21 May 2010, Toulouse,
France.

[8] Sanford Friedentahl, Alan Moore and Rick
Steiner. A Practial Guide to SysML: The Systems
Modelling Language. 2008. Morgan Kaufman
Publishers Inc.

[9] UML Profile for Modeling and Analysis of Real
Time and Embedded Systems (MARTE). OMG
standard.

[10] Parosh Abdulla, Johann Deneux, Gunnar
Stålmarck, Herman Ågren, Ove Åkerlund, Tiziana
Margaria and Bernhard Steffen. ”Designing Safe,
Reliable Systems Using Scade”. In Leveraging
Applications of Formal Methods. Lecture Notes in
Computer Science. 2006. Springer Berlin /
Heidelberg. ISBN: 978-3-540-48928-3. DOI:
10.1007/11925040_8

[11] Architecture Analysis & Design Language
(AADL). As-2 Embedded Computing Systems
Committee SAE. SAE standard,

8. Glossary

AADL: Architecture Analysis & Design Language
I/O : Input/Output
MIAT: Minimal Inter-Arrival Time
RMA: Rate Monotonic Analysis
RMS: Rate Monotonic Scheduling
TASTE: The Assert Set of Tools for Engineering
VCD: Value Change Dump
WCET: Worst Case Execution Time

http://www.assert-project.net/
http://download.tuxfamily.org/taste
http://www.ellidiss.com/
http://www.virtualsys.com/
http://gtkwave.sourceforge.net/

