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Abstract: High-integrity systems operate in hostile 
environment and must guarantee a continuous 
operational state, even if unexpected events 
happen. In addition, these systems have stringent 
requirements that must be validated and correctly 
translated from high-level specifications down to  
code. All these constraints make the overall 
development process more time-consuming. This 
becomes especially complex because the number of 
system functions keeps increasing over the years. 

As a result, engineers must validate system 
implementation and check that its execution 
conforms to the specifications. To do so, a traditional 
approach consists in a manual instrumentation of the 
implementation code to trace system activity while 
operating. However, this might be error-prone 
because modifications are not automatic and still 
made manually. Furthermore, such modifications 
may have an impact on the actual behavior of the 
system. 

In this paper, we present an approach to 
validate a system implementation by comparing  
execution against simulation. In that purpose, we 
adapt TASTE, a set of tools that eases system 
development by automating each step as much as 
possible. In particular, TASTE automates system 
implementation from functional (system functions 
description with their properties – period, deadline, 
priority, etc.) and deployment (processors, buses, 
devices to be used) models. 

We tailored this tool-chain to create traces 
during system execution. Generated output shows 
activation time of each task, usage of 
communication ports (size of the queues, instant of 
events pushed/pulled, etc.) and other relevant 
execution metrics to be monitored. As a 
consequence, system engineers can check 
implementation correctness by comparing simulation 
and execution metrics. 
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1. Introduction 
 
 High-integrity systems are operating in hostile 
environment and must be designed to work safely 
even if unexpected event happens. They also 
perform mission- or life-critical operations so that a 
failure may have catastrophic impacts (mission 
abortion, loss of life, economic impacts, etc.). 
 Thus, engineers must demonstrate 
implementation correctness regarding its operating 
and environment constraints. However, this is 
difficult because the number of systems functions 
increase significantly by the time and they also have 
a large number of requirements that originate from 
different domains (electric, physics, etc.). 

One solution is to abstract system 
representation and specify its properties and 
constraints using models. Such abstraction level 
may be used for different purposes: communication 
(exchange of models between engineers from 
different area of specialization), validation, etc. 
Depending on their engineering domain and their 
background, different languages and tools are used. 

As such, model-based development (MBD) 
is now a widely accepted solution to perform a whole 
range of analysis prior to actually implement the 
system. This “virtual” test-bench relies on a well-
defined set of concepts for modelling the building 
blocks of a system (interfaces, associated types), 
topology of connections and eventually links to 
concrete software and hardware elements. This is 
the path chosen by many tools like Simulink, 
SCADE, and also standards like OMG/SysML[8], 
OMG/MARTE [9] or the SAE AADL[11]. 

Companion tools support designer activities 
when modelling and navigating its model, but also to 
understand its actual behaviour through 
simulation (e.g. model animation or execution of 
scenarios step-by-step), verification activities 
through complete enumeration of the model state 
space (model checking techniques) and coupling 
with observer like techniques. In addition, traceability 
of model elements to requirements can be 
performed. Hence, the designer can be convinced 
his model is complete enough to faithfully represent 
a potential solution to its initial objective.   
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2. Problem 
 
 However, if models are accurate for 
abstracting system, turning requirements into a 
candidate solution and easing the communication 
across development teams, several issues need to 
be solved. In particular, one needs to translate 
models into an implementation code and thus, 
ensures that systems properties, requirements or 
constraints demonstrated at model level are 
correctly mapped or preserved. This step is usually a 
manual translation from the models to source code. 
This step is done based on the understanding of the 
engineer, but also with target limits (particular API, 
coding guidelines, etc.). 
 This implementation method is error-prone: 
source code correctness relies on the understanding 
of a software engineer and additional testing. Thus, 
implementation may contain bugs related to a 
misunderstanding of the specification or error due to 
the code itself. Furthermore, any change in the 
specifications (requirements modification or issues 
discovered when running the implementation code) 
may cause a significant code reengineering. 
 To address such issues, MBD toolchain now 
proposes mechanisms to generate implementation 
code from models. Existing tools can generate either 
application or architecture code (task and 
communication skeletons) from the system 
architecture, automating the implementation of each 
aspect of the system. 
 However, even if these approaches 
strengthen the overall development process, they do 
not provide any guarantee on system behavior 
correctness. In particular, it does not guarantee that 
system execution at code-level is equivalent to the 
model -level. As a consequence, validation of the 
system is still done manually, which remains error-
prone and costly. Demonstrating such equivalence is 
a challenge for both the industrial and academic 
communities. As of today, only the SCADE tool 
chain [10] demonstrated this equivalence, but for a 
limited semantics based on the synchronous model 
of computation.  
 
3. Approach 
 
 Early verification of real-time requirements of 
an application firstly requires the use of a modeling 
language that supports the same semantics as the 
actual run time system.  
Concretely, it means that the modeling language 
must precisely define real-time concepts like: 

• scheduling protocols (rate monotonic, 
deadline monotonic, highest priority first, …) 

• thread dispatch protocols (periodic, 
sporadic, background, …) 

• thread scheduling and execution states 
(suspended, ready, running, …) 

• thread real-time properties (period, deadline, 
Worst Case Execution Time, …) 

• inter-threads communication and 
synchronization protocols (events, shared 
data, subprogram calls, …) 

The second step consists in developing new 
analysis tools or adapting existing ones, so that they 
can work on such models.  

Finally, it must be ensured that the actual real-
time properties that are in use at the model 
verification layer are compatible with those in place 
in the actual run-time system that is operating for the 
final application. 

If all these constraints can be met, it becomes 
realistic to consider performing an early verification 
of real-time software at a model level. Such 
verification activities may consist for instance of 
schedulability analysis using analytical methods or 
less deterministic approaches like non-exhaustive 
simulation. It is then possible to compare execution 
traces obtained while running these analysis tools 
with the execution of the actual running software. 

The Architecture Analysis and Design 
Language (AADL) [11] fits these requirements and 
tools such as Cheddar [6] for schedulability analysis 
and Marzhin [4] for non-exhaustive simulation can 
be used for early verification of AADL models. 
Combined with code generation strategies 
embedding trace generation, the designer can 
simulate its design, but also extract execution traces 
of its system and compare them. This is the 
approach (illustrated in fig 1) presented in this paper. 

 
4. Supporting the process 

We implement this approach in the TASTE 
tool-set [1,2], which is the outcome of the European 
project ASSERT [1]. TASTE aims at providing 
guidance to system developers by reducing manual 
development efforts and detects potential errors as 
early as possible during the design process. TASTE 
imposes a stringent design process, inherited from 
best practice mandated in space projects, from early 
functional designs, mapping of the functions to 
devices and finally code generation. 

TASTE requires capturing application and 
system concerns using a single modelling language, 
AADL. It specifies both architecture (processor, 
buses, devices) and application concerns (functions 
to be called and their interaction) with respect to 
their properties (tasks period, events inter-arrival 
time, etc). The tool chain provides two tools that 
produce AADL models from a graphical 
representation: TASTE-IV (Interface View, 
description of functions) and TASTE-DV 
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(Deployment View, description of target hardware). 
These tools enforce separation of functional and  
deployment concerns, possibly performed by 
different teams. These AADL descriptions are then 
combined and processed by dedicated tools to both 
analyze requirements correctness and generate 
system implementation. Interface and deployment 
views are analyses and transformed into a 
Concurrency View (CV) that represents the 
combination of functions defined by the user and the 
set of threads and communication buffers required to 
run them on top of the embedded Operating System. 

 
In that context, we tailored the TASTE tools 

to check requirements by simulating the system or 
by retrieving metrics during execution. Both 
outputs (simulation/validation reports and execution 
traces) are compared to check implementation 
correctness with respect to validation (figure 1). 

 
 

 
Figure 1- Application validation process 

 

On the analysis part, the new TASTE-CV 
tool exploits the Concurrency View (CV) to support 
the validation of timing requirements through: 
1. Feasibility tests that computes processor 

utilization factor by using application (period, 
deadline, etc.) and deployment (scheduling 
protocol to be used, etc.) information. This part 
of the process is supported by integrating 
Cheddar [6], a schedulability analysis tool 
developed in collaboration with Brest University. 

2. Simulation that uses system description and 
produces expected behaviour at run-time. For 
that purpose, TASTE-CV integrates Marzhin, a 
multi-agents execution engine initially developed 
in collaboration by Virtualys [4] and Ellidiss [3] 
which has been tailored to support the AADL 

run-time semantics (threads state automata and 
communication protocols). While simulating 
system execution, Marzhin shows tasks 
activation as well as synchronizations between 
application components. 
By using these two approaches, system 

designers may assess specifications 
feasibility (timing constraints to be met) and detect 
potential design errors without coding effort. Yet, 
such analysis may not be time accurate. Hence, we 
complemented these tools, and propose the 
validation of these traces with concrete 
implementation so that designers can check that 
execution is not only accurate from a functional point 
of view, but also accurate with respect to timing as 
seen on the target platform. This is done by an 
automatic instrumentation of generated applications. 

The TASTE tool-chain produces implementation 
code from AADL description, generating glue code 
to interface with user-provided models or code, as 
well as tasks and communication buffers (see [7] for 
more details). We adapted the code generation 
process to add instrumentation instructions and 
produce metrics at run-time. Thus, generated 
applications output execution traces that report 
similar information as generated during the 
simulation (tasks activation time and data transfer 
across applications components). Since the binary 
will be executed on real hardware, the timing of 
events will be more precise. 

To avoid any impact between instrumentation 
instructions and system metrics, integration of 
measurement instructions has to be as lightweight 
as possible. For this reason, instrumented 
applications store metrics in buffers and flush them 
once finished so that it avoids any I/O while 
operating. For the context of this work, this 
measurement capability was added on Linux targets. 

To ease processing of traces, metrics are stored 
in files using the VCD file format that can be 
processed by open-source tools (such as GTKWave 
[5]) to produce a graphical output. The VCD format 
(Value Change Dump) is a widely used format from 
the Electronic domain. It stores traces from 
simulation of electronic circuit. It defines the 
chronogram of events and activation of elements. 
We used this format to preserve adaptability of the 
toolchain. An example is provided in figure 2, it 
shows activation time of two tasks. 

By producing the same metrics, designers can 
check system correctness and validate 
implementation against validated specification either 
at model-level or code-level depending on the 
maturity of its design. 

 

AADL models 

Simulation 
(TASTE-CV) 

Implementation 
(TASTE toolchain) 

Simulation 
report 

Execution 
traces 

Implementation validation 
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Figure 2- Graphical representation  

of VCD file using GTKWave 

5. Case-Study 
The following example is based on a basic 
producer/consumer application distributed on two 
nodes executing a regular linux kernel and 
connected with an Ethernet bus. Application aspects 
are designed using the TASTE-IV graphical tool, 
which avoid to write AADL textual specifications by 
hand. Application architecture, shown in figure 3, 
defines two functions: 

• The caller function that contains a cyclic 
interface activator which purpose is to send data 
to the other. 

• The callee function with a sporadic interface 
printval that receives a value and print it on the 
standard output. 

 

 
Figure 3- Functions and Interfaces of our case-study 

 
Timing requirements of functions interfaces are 
shown in figure 4 and figure 5: 

• The activator cyclic interface (figure 4) has a 
period of 15 ms and a Worst-Case Execution 
Time (WCET) of 5 ms. 

• The printval sporadic interface (figure 5) has a 
Minimum Inter-Arrival Time (MIAT) of 10ms. It 
means that the task has a maximum receiving 
rate and is not triggered at each receiving data 
instance. In addition, it has a WCET of 3 ms, so 
that when activated, it consumes at most 3 ms of 
processor time. 

 

 
Figure 4 - Timing requirements of the  

cyclic interface activator 

 

 
Figure 5- Timing Requirements of the  

sporadic interface printval 

 
Then, the designer specifies the execution 

environment and functions allocation on processing 
resources. To do so, the TASTE-DV tool provides a 
convenient graphical tool to capture these aspects. 

The resulting deployment model of our 
example is illustrated in figure 6. The platform 
contains two nodes connected through a standard 
Ethernet bus and executing a regular Linux 
operating system. Each processor is associated with 
one function so that the sender function is allocated 
to the first processor while the receiver is bound to 
the other. 
 

 
Figure 6 - Deployment of application functions 

 
Once application and systems concerns are 

both specified, models are processed by validation 
tools to check timing requirements. 
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Beforehand, it is important to notice that from an 
implementation point of view, this application 
description is mapped into execution entities 
supported by the target operating system (threads, 
mutexes, etc.). In our process, this is done by a 
dedicated step called the Vertical Transformation 
that refines the abstract application description 
(Interface and Deployment views) into a model 
specifying execution components (the Concurrency 
View – CV – that specifies tasks, shared variables, 
locking mechanisms, etc. to be instantiated by the 
execution). Even if the description of this process is 
not the topic of this article, it is important to 
understand that our case-study is finally transformed 
into an application with two tasks scheduled using 
the traditional FIFO within Priorities scheduling policy 
available in POSIX-compliant execution platforms: 

• One periodic task corresponding to the activator 
interface of the sender function. It has a period 
of 15 ms and a WCET of 5 ms. 

• One sporadic task corresponding to the 
receive_int interface of the receiver function. It is 
triggered when receiving incoming data and is 
put to the idle state at least 10ms between two 
occurrences of a new incoming data. Its WCET 
value is 3 ms. 

 
Figure 7 illustrates the scheduling validation 

using TASTE-CV and Cheddar [6]. It performs 
feasibility tests by processing tasks description with 
state-of-the-art algorithms validation algorithms, 
such as RMA. Thus, it computes processors 
utilization factor and evaluates timing 
requirements (tasks deadlines) enforcement. Using 
this tool on our specification reports that timing 
constraints are met with a processor utilization factor 
of 0.3 using the RM analysis. 
 

 
Figure 7 - Scheduling validation with feasibility tests 

 

Figure 8 illustrates the simulation of the 
sender node using TASTE-CV and the Marzhin [4] 
multi-agent tool. The tool reports the execution 
events occurrences of the tasks as well as produced 
data instance by considering the worst case 
scenario. In the following example (as shown in 
figure 8), we notice that the simulated behaviour of 
the sender task is compliant with the specification: 

• It is activated on a 15ms basis (task period) 

• At each activation, it consumes 5 ms of the 
processing resource (task WCET) 

• Once executed, one data item is produced 
 

 
Figure 8 - Scheduling validation using Simulation 

However, results issued from specifications 
have to be compared with execution behaviour. For 
that purpose, we tailored the TASTE code 
generators and add instructions to report execution 
events at run-time. As the objective is to check 
application behaviour correctness (without 
considering real-time concerns of the execution 
platform), our experiments were done on a regular 
Linux distribution for convenient purposes (easy file 
management, etc.). However, it can also be 
implemented on top of real-time specific run-time 
such as RTEMS or Linux/Xenomai but would require 
specific setup (such NFS mounts on RTEMS to store 
traces, etc.) 

 Figure 9 and figure 10 depict these 
activation events for the sender task; the one 
analyzed previously using the specifications. 
 

 
Figure 9 – Activation events of the  

sender task at run-time (1) 
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Figure 10 - Activation events of the 
sender task at run-time (2) 

 
 From these metrics, we can check timing 
requirements correctness: 

• The activation period is enforced, the task is 
triggered each 15ms 

• The WCET (5ms) complies with the 
specifications; the task is never executed longer 
than 5ms. However, this execution time is 
smaller than during simulation because the 
former reports the real execution time on the 
target while the latter always consider the worst 
case scenario. 

 
6. Conclusion & Perspectives 

The design and implementation of complex 
real-time embedded systems requires multiple steps, 
from early requirements elicitation down to final 
coding. To ease this process, the TASTE toolchain 
promotes extensive code generation from well-
defined semantics abstractions based on the AADL.  

One difficulty in model-based engineering is 
to understand precisely the behaviour of the system 
under consideration. Simulation or virtual execution 
of the system should be available early in the design 
flow to increase confidence in the models.  

In this paper, we demonstrated how 
simulation at model-level and execution at binary-
level can be combined to have a first level of 
analysis on early designs and then complete the 
understanding of the actual system behavior through 
execution of the system. Simulation capabilities are 
provided through a multi-agent system. Run-time 
traces are automatically integrated to generated 
code, guaranteeing both accuracy and limited run-
time overhead. We evaluated this approach on a 
case study, demonstrating increased confidence in 
the system being built. 
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8. Glossary 

AADL: Architecture Analysis & Design Language  
I/O : Input/Output 
MIAT: Minimal Inter-Arrival Time 
RMA: Rate Monotonic Analysis 
RMS: Rate Monotonic Scheduling 
TASTE: The Assert Set of Tools for Engineering 
VCD: Value Change Dump 
WCET: Worst Case Execution Time 

http://www.assert-project.net/
http://download.tuxfamily.org/taste
http://www.ellidiss.com/
http://www.virtualsys.com/
http://gtkwave.sourceforge.net/

