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Abstract 

MARTE (Modeling and Analysis of Real-Time and Embedded Systems) is the UML extension profile 

dedicated to the modeling of Real-time and Embedded Systems (RTES). Standardized by the OMG, 

UML-MARTE is well accepted in the Model Based Driven Engineering community. However there still 

exists a big gap to bridge for its use in operational space projects. Some of the identified limiting 

factors are (1) the high density of the MARTE specification which provides thousands of defined 

concepts and though requires a deep investment to be correctly handled and understood, (2) the 

absence of methodology associated to the notation and (3) the lack of experiences relating to the use 

of MARTE on realistic and operational system in space domain. This paper presents an experience of 

using UML-MARTE to model the dynamic architecture of an operational space On-Board Software 

(OBSW) to make a step towards the adoption of UML-MARTE. The modeling methodology adopted in 

this study is illustrated by a use case based on an operational OBSW.  This experience has been 

conducted in the scope of a R&D study founded by the CNES with the collaboration of Astrium 

Satellites and Atos.  

1. INTRODUCTION 

Objectives of dynamic architecture modeling. The expected benefits of modeling dynamic 

architectures are to bring capabilities of:  

- Providing an unambiguous communication support and an unambiguous expression of 

requirements and architecture; 

- Supporting the use of automated documents generation (as for instance SW-ADD document 

as required by ECSS standards in space domain); 

- Supporting the use of analysis tools, especially schedulability and performance analysis tools; 

- Supporting the use of automated code generation. 

Encapsulating in a unique model the necessary information to bring these capabilities is a pre-

condition for the adoption of an operational modeling methodology because it allows ensuring the 

coherency between documentation, analysis and generated code. In the scope of this study, we focus 

our effort on defining a dynamic architecture modeling strategy which allows handling the three first 

objectives. Although the use of automated code generation still requires additional investigations, the 

adopted modeling strategy and produced models have been conceived by keeping in mind this 

capability.  
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UML-MARTE. The UML-MARTE [1] notation has been chosen to support our modeling strategy for 

three main reasons. First, this profile extension for the modeling of real-time systems is a well-

accepted OMG standard which provides support for specification, design and verification/validation 

stages.  The second reason is the existing of Open Source modeling platforms and model editor which 

support customization features (Topcased platform and Papyrus editor in this study). The last reason 

is a more specific one and relies on the internal experience of Astrium: UML is already used in 

operational projects to model the static architecture of the OBSW. These models are used for 

automated documentation and code generation. In this context, the MARTE solution was the most 

adapted to ensure a consistency in terms of modeling techniques used in a global design process, and 

to ensure traceability of modeling artefacts.  

Organisation of this paper. This paper proposes in section 2 an overview of the methodology used 

to model the dynamic architecture of an operational system. Section 3 presents in details the 

formalization of the computational model used to model the dynamic architecture. Notice that MARTE 

is mainly used for the description of this computational model: other sub-models and diagrams make a 

sporadic use of MARTE concepts. Section 4 presents how to capture the dynamic architecture of the 

system by instantiating the computational model entities. Section 5 briefly discuss about the use of this 

model for schedulability analysis. To conclude, section 6 gives some feedbacks on the use of MARTE 

and associated tooling. 

2. MODELING METHODOLOGY OVERVIEW 

The Figure 1 presents the model organisation which supports the adopted methodology. 

 

Figure 1 : Overview of the Modeling Methodology 

The model is structured in 5 packages which catches different views of the system: 

The Static Architecture package contains the static architecture of the on-board software.  This 

model, formalized in term of class diagrams, has not been developed in the context of the CNES 

study: this model is the one operationally developed for the AS250 program. This model has been 

used to generate the C source code skeleton of the AS250 OBSW using the Acceleo UML2EC plugin 

of the Topcased platform. Some class operations of this model are referenced by the dynamic 

architecture via the activity diagrams which model the tasks control flows. 

The Execution Platform package contains the description of the Software and Hardware parts of the 

execution platform: 



1. The Software Computational model describes how computations are carried out in a system 

by prescribing the form of legal basic entities and their associated properties in the dimension 

of execution and synchronization, in time and space. The core elements defined in the 

computational model are instantiated in the dynamic architecture model. The MARTE 

Software Resource Modeling profile (SRM) is used to formalize the computational model of 

the AS250 OBSW. 

2. The Hardware Platform model describes the hardware part of the system. The hardware 

execution platform is formalised using the MARTE Hardware Modeling Resources sub-profile 

(HRM). In the scope of this study, the main purpose was to evaluate the use of MARTE for 

schedulability analysis purpose. As the use case was very simple (mono-processor), notice 

that this model as well as the deployment model is not very useful here for the schedulability 

analysis. For this reason, this model will not be discussed in the following. 

The Clocks Definition package allows modeling the full clock hierarchy of the system using the 

MARTE Time profile. The Time Expression language of MARTE allows to formally defining the clocks 

tree of the system by specifying the clock derivation constraints from one clock to another. 

The Dynamic Architecture describes the run-time instances of the system: tasks, synchronizations, 

protection mechanisms for shared resources… All entities defined in the dynamic architecture are 

instances of the basic entities defined in the Computational Model view. 

The Deployment package allocated application components on hardware platform component.  This 

view will not be detailed in this paper. 

3. COMPUTATIONAL MODEL 

The modeling of dynamic architecture and its use for schedulability analysis is intrinsically related to 

the Computational Model on which it relies. A computational model describes how computations are 

carried out in a system by prescribing the form of legal basic entities and their associated properties in 

the dimension of execution and synchronization, in time and space, of run-time entities. A 

computational model is significant and useful if: 

1. It can be related to analysis theories such as schedulability analysis theory for instance;  

2. It can be related to a Programming model which allows to convey the implementation of the 

dynamic properties statically asserted by analysis and so allows automated code generation 

perspectives; 

3. It is compliant with services offered by the operational system. 

Formal analysis tools rely on well-defined computational model such as the Ravenscar profile [2] 

which allows performing Rate-Monotonic Schedulability Analysis (RMA). However operational project 

uses rarely this computational model in concrete implementation. Keeping in mind the related 

objective to exploit the produced models at ends of code generation, the modeling strategy adopted in 

this paper relies on an explicit modeling of an operational computational model. This computational 

model is then a re-usable resource package which defines the types of dynamic entities to be used to 

describe the dynamic architecture of the OBSW. UML-MARTE is principally used for this purpose.  

As a consequence of this strategy, a transformation has to be defined to produce a model which can 

be analysed by existing analysis tool. This transformation needs to be formally defined to ensure that 



the source model relying on the operational computational model is equivalent to the transformed 

analysis model. 

3.1 DOMAIN MODEL: CORE ELEMENTS 
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Figure 2 : Domain Model: Core Elements 

The Figure 2 presents the Computational Model used for the architecture definition of the AS250 

observation satellite. The Dynamic Container is an abstraction which describes the handle by which 

the RTOS schedules the various processing.  

Execution Blocks. A Dynamic Container owned a main Execution Block. Execution Blocks are 

closely related to actual implementation of functional behaviour. An Execution Block can be 

decomposed in sub-blocks. Leafs of this tree structure represents a pure sequential piece of code 

which is characterised by its execution duration (WCET of the Execution Block). An Execution Block 

can wait and release Synchronisation through the Wait() / Release() interface  to conform to the 

constraints of strict behaviour sequencing and can request and release Locks to access shared 

resources by respecting mutual exclusion constraints. In order to ease schedulability analysis, some 

restrictions are imposed:  

 If an Execution Block waits for a Synchronisation, this wait is “at the beginning” of the 

Execution Block, before any CPU usage; 

 If an Execution Block releases a Synchronisation, this release is “at the end” of the Execution 

Block, after all CPU usage. 

 If an Execution Block requires use of Lock, it requires it for its whole duration, excluding 

Synchronisation accesses; 

 If an Execution Block is not a leaf Execution Block, its CPU use is zero (all CPU use is 

assigned to the leaf Execution Block). 

Tasks & ITHandler. ITHandler is a specialisation of Dynamic Container which have the following 

restrictions: it is associated which a single Execution Block that has limited capabilities: no Lock 

request, no “IN Synchronization” and has one “OUT Synchronisation”. 

Task is the other specialisation of Dynamic Container. It is associated with a set of Execution Blocks 

that includes at least one “IN Synchronization”. Task is characterised by its priority which is used by 

the RTOS scheduler to determine CPU allocation in case of competition. Tasks are specialized in 



Cyclic Tasks and Asynchronous Task. Difference is not structural but concerns the dynamic 

behaviour. A Cyclic Task has one constraint: it hosts an Execution Block that is controlled by a 

Synchronization linked to a periodical HW interrupt signal. A non-cyclic task is called by default 

Asynchronous. 

Synchronisations. A Synchronisation is a passive object that provides two interfaces to enforce a 

strict sequencing between one Execution Block (taken from the set of server Execution Blocks for this 

synchronization) and a set of Execution Blocks clients. Synchronisations are refined in three 

categories: OutAndGateSynchro which characterised a 1 to N Synchronisation (One Server, Multiple 

Clients); ControlSynchro is a refinement of OutAndGateSynchro that provides an additional interface 

operation called checkAndRelease() which checks whether all “expected” clients are actually blocked 

on a wait() call when the release is performed; Finally, InOrGateSynchro is an N to 1 

Synchronisation. 

3.2 COMPUTATIONAL MODEL : MARTE  MODEL (SRM) 

 

 

Figure 3 : Computational Model - MARTE::SRM Model 

The domain model for dynamic architecture definition exposed in the previous section has been 

formalized using the SRM clause of MARTE.  The SRM profile specifies a set of modeling artefacts 

that can be used to describe the structure of multi-tasking real-time applications built upon a real-time 

operating system (RTOS) [3]. More specifically it is looking to depict software resources and software 

services described in multi-tasking (API). The typical use of the MARTE::SRM sub-profile is the 

description in a unified way of software multi-tasking API in order to integrate the execution supports in 

the design flow. 

The Figure 3 shows the translation of the Astrium Computational Model in MARTE::SRM. Each core 

elements of the computational model has been successfully mapped onto MARTE::SRM except the 

Execution Block concept. The stereotype << NFP>> which stands for non-functional property has 

been used to add the significant properties of this concept: the execution duration and the deadline of 

the pure sequential piece of code. The meaning of each MARTE stereotypes is not the purpose of this 

presentation : more information is available in the MARTE standard.  



Notice that this model has to be done once and can be used as library artefact in others dynamic 

architecture models which relies on the same computational model. 

3.3 CLOCKS DEFINITION 

According to the computational model defined in the previous sections, periods of cyclic tasks are 

implicit in our model. This period attribute can be derived from the referenceClock property of the 

Periodic Synchronisation which releases the task.  

The clock tree hierarchy of the system is formalized using the MARTE::Time sub-profile. The first step 

is to define a type of chronometric clock. Then, all clocks are derived from the ideal clock using clock 

constraints. The Figure 4 presents a part of the clocks hierarchy defined in the AS250 case study. 

Clock constraints are formalized using the Time Expressions package of MARTE. For instance, the 

fastest 16Hz clock is defined using a clock constraint which stipulates the discretization step (62.5ms) 

and the stability of the clock. The other clocks (8Hz, 4Hz) are defined by under-sampling of the fastest 

clock. The “aocs_avb_end_acq” clock is defined has a 16Hz periodic clock with a 13700 us phase. 

 

Figure 4 : Clocks definition 

4. DYNAMIC ARCHITECTURE MODELING  

Once the modeling of the computational model has been done, the dynamic architecture can be 

formalized. This model is defined in three main steps as described in the following sub-sections. 

4.1.1 Identification of Execution Blocks 

The first step is to identify the execution blocks of the system. High Level Execution Block (HLEB) and 

Basic Execution Block (BEB) are identified in a UML Class diagram using a generalisation link pointing 

to HighLevelExecBlock and BasicExecBlock entities defined in the computational model. 

Figure 5 shows the decomposition of the Attitude And Orbit Control System (AOCS) of the AS250 

OBSW.  A main class AOCS_Appli  is defined.  This functional chain is composed of three HLEB. The 

AOCS_CYCL_HLEB which captures the cyclic functional behaviour of the AOCS is further 

decomposed in seven basic execution blocks. 



 

Figure 5 : Execution Blocks Definition (UML Class Diagram) 

4.1.2 Instantiation  

The second step is to associate a UML Composite diagram to the class which represents the 

considered functional chain. Figure 6 shows the composite diagram associated to the AOCS_Appli 

class.  

 

Figure 6 : Dynamic Architecture of AOCS_Appli  (UML Composite Diagram) 

 

At this stage synchronisations between execution blocks are defined. A synchronisation is represented 

as a ‘part’ of the composite diagram and is typed by one of the synchronization types defined in the 

computational model. For instance, the AOCS application chain defines two aperiodic 

synchronisations man_sync and action_sync.  A synchronisation is composed of two client server 

ports,   the first one is typed by the OutSynchro interface which provides the release() operation and 

the second one is typed by the InSynchro interface which provides the wait() operation. The use of 

these synchronisations by the execution blocks is represented by connectors between a client server 

port of the execution block and a client server port of the synchronisation instance. 

Lock instances which models mutual exclusion constraints are represented in the same way.  

Tasks.  As stated in section 3.2, a task is linked to a high level execution block which catches its 

execution flow. This link is represented in the same composite diagram. In the example provided in 

Figure 6 three parts typed by the Task entity of the computational model are defined: AOCS_cycl, 

AOCS_MAN and AOCS_Async. Links between execution blocks and tasks is formally defined using 

an <<Allocate>> dependency. 



Instance diagram for value specification of NFP. Although the concept of ‘parts’ in composite 

diagram maps with the concepts of instances, it is not possible to specify the value of the non-

functional properties defined in the computational model. For instance, when defining task instances in 

a composite diagram we are not able to specify the value of its priority attribute. This  UML issue in the 

definition of the composite diagram forced us to define an Instance Diagram to specify the values of 

these non-functional properties. Figure 7 presents a part of the composite diagram associated to the 

AOCS application chain to illustrate our concern. 

 

 

Figure 7 : Instance Diagram to specify the values of NFP 

 

4.1.3 Execution Blocks Behaviour & link with static architecture 

 

 

Figure 8 : Control Flow of AOCS_CYCL High Level Execution Block 

 

UML composite diagrams specify the structure of the application in terms of execution blocks and the 

set of synchronizations and locks used by each of these execution blocks. The last step in the 

definition of the dynamic architecture is to define the concrete execution flow of each execution block. 

UML Activity diagrams are used for this purpose. Each execution block owned an activity which is 

composed of a sequence of call operation actions. A call operation in such activity diagram is either:  

 a call to the wait() or release() operation of a synchronisation instance if the activity diagram 

stands for the execution sequence of a High Level Execution Block; 

 a call to the releaseLock() or requestLock() of a lock instance if the activity diagram stands for 

the execution sequence of a High Level Execution Block; 

 a call to the execute() method of an internal execution block if the activity diagram stands for 

the execution sequence of a High Level Execution Block; 



 a call to an operation defined in the static architecture of the application. Notice that such a 

call is only accept in an activity diagram which stands for the execution behaviour of a Basic 

Execution Block. 

OCL structural constraints have to be defined on activity diagrams to ensure that called operations are 

in the scope of visibility of the execution block as specified by the composite diagram and the 

structural rules previously defined. Figure 8 shows the activity diagram associated to the AOCS_CYCL 

High Level Execution Block. 

5. SCHEDULABILITY ANALYSIS 

The model presented in this article describes a dynamic architecture and temporal constraints. We 

want to check that these constraints can be matched by the architecture. To achieve this validation, 

we want to use the model as an entry point for a scheduling analysis tool. As it is a common approach 

different studies have proposed a mapping between MARTE and a scheduling analysis tool: from the 

GRM to Cheddar [4], from SRM to Cheddar [5] and from SAM to MAST [6]. 

In this experimentation, the starting point was an existing project with its own design rules. Some of 

these rules can be different from the traditional concepts of the scheduling theory. It implies specific 

translation rules to a scheduling analysis tool (Cheddar). Our model is has too much details, the 

translation act as an automatic abstraction. 

Identification of tasks. In our model, tasks consist of different HLEB. HLEBs have their own 

activation properties and consequently our tasks can have suspension points due to a wait on event 

synchronization. A task in the model cannot be mapped directly on a Cheddar task. In the most 

general case the HLEB is the closest concept from a Cheddar task. Some specific HLEB have a 

synchronisation with a periodic event during their execution. In this case the block must be divided in 

two tasks. 

Properties of Cheddar tasks. The priority is defined by the priority of the MARTE task on which the 

HLEB is allocated. The capacity corresponds to the sum of the WCET property of the BEB executed 

by the HLEB. The deadline is given by the deadline NFP of the last BEB executed by the HLEB. The 

activation is defined by the type of synchronisation resource that triggers the activation of an HLEB. 

Shared resource. Each lock instance corresponds to a shared resource in Cheddar. The access to 

shared resource is represented in the model by the connectors between an HLEB and a lock instance.  

In Cheddar we have to set the date of begin and end of the critical section. This information is given by 

the activity diagram of the HLEB. The begin date correspond to the sum of each BEB WCET called 

before the call of the “requestLock” service of the lock instance. The end date is the sum of the WCET 

steps until the “releaseLock”. 

Processor. The different properties used to describe a processor in Cheddar (scheduling policy, 

preemption) are defined by attributes of a MARTE scheduler. The association between a task and a 

processor in Cheddar corresponds to the property “schedulers” of the swSchedulableResource 

MARTE stereotype. 

6. CONCLUSIONS  

Results. This paper has presented an experimentation which proposed a specific use of the UML-

MARTE language to model dynamic architectures of space On-Board Software. This modeling 



strategy has been successfully applied on an operational use case using the Papyrus Editor on an 

Eclipse Platform. The resulting use case model has been exploited for schedulability analysis purpose 

using the Cheddar formal schedulability analysis tool. The proposed modelling strategy relies on a 

selected sub-set of UML-MARTE. The cornerstone of this methodology is the use of the SRM profile of 

MARTE to formally specify the computational model upon which is constructed the dynamic 

architecture. The deep encoding of this computational model allows defining a dynamic model very 

closed to the actual implementation of the application software. Such detailed dynamic model can be 

productively used for documentation generation, schedulability analysis and we hope for code 

generation purpose. Even if the gain is marginal in terms of coding effort, using automatic code 

generation could be a real benefit in terms of quality as it ensures a strong coherency between 

analysis results and actual implementation.   

Using UML & MARTE in Operational Context. This study shows that MARTE metamodel provides 

all the necessary concepts to model space OBSW dynamic architecture. However its adoption in an 

operational design process requires defining home guidelines to be respect by dynamic architecture 

designers. From Astrium point of view, the use of a home specific editor which enforces these 

guidelines is required to improve usability of MARTE and consequently reduce the cost of modelling 

activities. For instance, editors should not allow the user to use MARTE stereotypes which don’t 

belong to the MARTE sub-set defined by the modelling guidelines and mask the access to stereotype 

properties which are not relevant for its concern. Notice that Papyrus provides broad capabilities of 

customisation which could be sufficient to design such domain specific editor. 

Perspectives.  The design of dynamic architecture is an iterative process. The SRM profile is 

probably not adequate in first stages of the design process. The use of the HLAM sub-profile for these 

first stages and links between such abstract model and the detailed models proposed in this paper 

have to be investigated.  Automatic code generation using the SRM profile also needs investigation. 

The last perspective is to improve the tooling environment to be able to capture in the same modelling 

environment results coming from the formal analysis tools used for schedulability analysis. 
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