
The Design of the OpenSTARS Adaptive Analyzer for Real-Time Distributed
Systems

Kevin Bryan, Tiegeng Ren, Jiangyin Zhang, Lisa DiPippo, Victor Fay-Wolfe
Computer Science and Statistics, University of Rhode Island

{bryank,rentg,zhang,dipippo,wolfe}@cs.uri.edu

Abstract

This paper describes the design of the OpenSTARS
real-time analysis tool. The paper focuses on criteria
for a good analysis tool including correctness,
performance/scalability, flexibility, and extensibility.
Several leading real-time analysis tools are surveyed
and several problems with the tools under these
criteria are identified. The paper then presents the
basic components and operation of OpenSTARS and
how its design addresses these problems.

1. Introduction

Developing software for real-time applications
faces two significant challenges. First, the applications
often interact with the physical world in critical ways,
and thus require robust, well-analyzed software that is
verified before it is deployed. Second, the requirement
to meet timing constraints adds a new dimension to the
development effort – a dimension that adds significant
complexity. The need for robust software, and the
complexity associated with creating it, means that good
real-time software development tools are essential.
There are several real-time development/analysis tools
(PERTS/RapidRMA [1,2], TimeWiz[3], VEST[4],
Cheddar[5], are some). While these tools do real-time
analysis fairly well, in general, they were not designed
with performance, scalability, flexibility, and
extensibility in mind.

This paper describes OpenSTARS (Open
Schedulability Tool for Analysis of Real-time Systems)
being developed at the University of Rhode Island.
OpenSTARS is designed to be an efficient, scalable,
flexible, and extensible open-source tool and
framework that real-time systems researchers and
practitioners can use for both offline and online
analysis, and into which they can insert their own
scheduling and quality of service (QoS) management
algorithms.

Section 2 of this paper elaborates on the criteria
for good real-time analysis tools. Section 3 evaluates
the above-mentioned real-time analysis tools using
those criteria. Section 4 presents OpenSTARS and
framework design. Section 5 shows how OpenSTARS
addresses the criteria and the deficiencies in existing
tools. Section 6 summarizes and outlines the further
development of the OpenSTARS tool.

2. Criteria For Good Real-Time Analysis
Tools

We use four classes of criteria: Correctness,
Performance / Scalability, Extensibility, and Usability
both to evaluate existing real-time analysis tools and to
provide the design principals for OpenSTARS.

Correctness Criteria. The are two primary tests
for the correctness of a real-time analysis tool:
1) If the system is not schedulable, the tool must

determine that it is not schedulable.
2) All parameters, such as response times, priorities,

and missed deadlines that result from the tool’s
analysis must be accurate.

Note that the inverse of Correctness Test 1 is not
necessarily required – if the system is schedulable the
tool does not always need to determine this. That is,
the analysis is, at times, allowed to be pessimistic.

Performance and Scalability Criteria.
Performance and scalability issues fall into three
categories:
1) Minimizing the resources used during analysis.
2) Allowing user input to trade off thoroughness of

analysis for speed of analysis.
3) Use of optimized algorithms to perform analysis.
Due to the complexity of real-time scheduling, the
analysis of non-trivial systems can easily exceed the
time or computing resources available to do the
analysis. For instance, classic time demand analysis [6]
that checks the interactions of tasks at selected time
instances can take excessive time and resources if there
is a wide variation in the length of the periods of the
tasks. To achieve good performance, the tool should

yield results as quickly as possible while consuming as
few resources as possible. It should also allow the user
to choose between speed and thoroughness of the
analysis, perhaps allowing less than optimal analysis to
be performed more quickly. To this end, the tool
should be able to give the user hints as to how long an
analysis will take. For scalability the analysis should
take special care in how it manages the analysis, using
algorithms that are computationally optimized, and by
breaking models with many tasks, resources, and time
intervals into smaller pieces that can be analyzed
efficiently.

Flexibility Criteria. Flexibility is related to how
much control the user has over the tool. There are two
primary areas of control that a tool could provide:
1) Control of the algorithms and parameters of

analysis.
2) Control of the interface.
If more than one algorithm is available in the tool, then
a knowledgeable user should be able to select one or
more of them to run, possibly with guidance from the
tool. The tool should make these decisions completely
for a user that does not want to make them. Similarly,
the tool should expose parameters that affect the tool’s
analysis so that a knowledgeable user could set them.
Another facet of algorithm control is the ability to
extract the scheduling algorithms and analysis used in
the tool to be used in contexts other than as a stand-
alone tool. For example, it might be useful to be able
to use the analysis “engine” in other projects such as
on-line schedulers.

For interface flexibility, the tool should have a
well-defined input and output file format so that the
user is not forced to use a particular Graphic User
Interface (GUI) to model the system. Many users
already have a preferred modeling tool for their
systems, such as a UML based tool, or a general
modeling tool such as the Generic Modeling
Environment (GME) [7]. The real-time analysis tool’s
use of a well-defined input and output file format will
facilitate the custom design of the tool’s interface, or
its use with an existing modeling tool, or tool chain.

Extensibility Criteria. The tool should be able to
be extended to allow for the inclusion of new analysis,
scheduling, and QoS management algorithms. Since
researchers are regularly producing new algorithms in
these areas, it is important that the tool’s framework
and design accommodate their inclusion into the tool.
Also, since many real-time applications require custom
analysis that is unique to the application, the ability to
easily extend the tool for domain-specific analysis can
be important. Three primary desirable features to
support extensibility are:
1) A well-defined interface for inserting new

algorithms without knowing the internals of
the tool.

2) A well-documented software engineering
design of the tool including use cases, class
diagrams, interaction diagrams, a standard
testing procedure with test cases that support
component testing, integration testing, and
regression testing.

3) Open source code for those who need to know
the internals of the tool.

3. Evaluating Existing Tools
Existing tools that we have investigated are

described below:
• RapidRMA – is a comprehensive tool originating

from the PERTS project at University of Illinois,
and now owned by Tri-Pacific Software [1,2].

• VEST (Virginia Embedded Systems Toolkit) –
developed at University of Virginia, uses an
interface developed in GME. VEST provides a
modeling environment for building software and
mapping it to hardware, and interpreters for
running non-functional tests such as real-time
analysis [4].

• Cheddar – developed at the University of Brest,
is an open source framework written in Ada that
implements many real-time scheduling algorithms
[5].

• TimeWiz – developed by TimeSys Corporation, is
a comprehensive tool for real-time modeling and
analysis. It has been integrated with Rational
Rose, now owned by IBM. Unfortunately, we
were not able to obtain a copy of TimeWiz to
evaluate. Therefore our conclusions are based
solely on widely available documentation [3].

In evaluating these tools, we picked a handful of
special cases to test. These include: (a) a large task set
where 200 tasks with a combined 95% utilization are
put on a single node and the task set is not schedulable;
(b) a pair of tasks with widely varying periods of 2
seconds and 1 day (86,400 seconds); (c) a task set in
which two tasks span two nodes. The task
characteristics are listed in Table 1.

Correctness Evaluation. All of the tools
correctly identified that the first test case was not
schedulable. (this was not the only correctness that we
ran, but we use it here as a representative case.)

Some tools had problems with accuracy. In test
case b, it is easy to see that the second task (T2) is
preempted every two seconds, for one second, it will
take twice as long (or 57600 seconds) to complete.
Cheddar correctly produces this result. RapidRMA
gives a result of 57611, which while this may be
acceptable, it is pessimistic.

For test case c, we found that RapidRMA again
leads to an unnecessarily pessimistic result. This

appears to be because RapidRMA has assumed that due
to the first two subtasks being of equal period, either
one could go in either order, and therefore RapidRMA
assumes that T1,2 and T2,2 must be assumed to start at
60. This causes the system to be non-schedulable. The
problem with this is one task will always go first, even
though we do not know which. Whichever one does go
first (e.g., T1,1), its second subtask (T1,2) will be able to
execute concurrently with the other task’s first subtask
(T2,1, in our example). If RapidRMA had chosen
distinct priorities for each task it could have found this
result.

All of tools we could run gave correct results on the
rest of the tests given here. We have found other errors
in some of the other tools, but we are still in the
process of discussing them with those vendors.

Performance and Scalability Evaluation. The
preliminary testing results show that for test case a,
RapidRMA takes approximately 30 seconds and 542
MB memory to find the result. Increasing the number
of tasks to 300, caused RapidRMA to use 2.1 GB of
memory, and 2.5 minutes (part of which is due to
swapping. The system would only commit 1.5GB of
physical RAM to the process). This non-linear
resource usage raises questions of RapidRMA’s
scalability.

Cheddar requires a code change to support more
than 100 tasks or 30 processors, and doing so increases
its static data size. Once this change is made, however,
it completes in a reasonable amount of time, assuming
the tasks are spread over a number of processors. If
there are more than 100 tasks, it starts to take
significantly longer. It will complete 100 tasks in 1
minute, but 200 tasks took Cheddar 11 minutes. Note
that RapidRMA had completed the 200 tasks set (test
case a) in 30 seconds, probably due to some form of
optimization.
Flexibility Evaluation. Cheddar provides a very nice
simulation engine, however it has one significant
drawback: It only allows maximum 1500 time units in
a simulation. When doing a simulation of tasks with
phases, you are not guaranteed to get the worst-case
response time unless you simulate at least as far as the
Least Common Multiple (LCM) of the periods plus the
maximum phase. Unless the system only contains a
few small periods, or many of the periods are
harmonic, it is likely that the LCM will be greater than
1500.

For algorithm parameter selection, RapidRMA
allows the user to change the priority assignment
between Rate Monotonic and Deadline Monotonic.
For systems that contain tasks with deadlines shorter
than their periods, there is no indication to the user that
choosing Rate Monotonic is unnecessarily pessimistic.
Both RapidRMA and Cheddar allow a user to analyze a
system with dependencies as if there are no
dependencies. This can lead to confusing, and wrong,
results.

Both RapidRMA and Cheddar run more than one
schedulability test at once, but without letting the user
specify which one(s) are preferred. VEST allows the
user to select which algorithm to use.

Of the tools that we evaluated, only Cheddar
provides a framework API that can be invoked as part
of an online schedulability test. All other tools only
provide offline analysis. Unfortunately, the Cheddar
API does not provide for retrieving all of the vital
information needed for implementing the schedule.
Therefore none of the tools have extractable
components that are suitable for an online scheduler.

All of the tools in this evaluation require using a
GUI. While GUI's are generally helpful in interpreting
the results and for single-use modeling, they can be
limiting for using the tool as part of a tool chain or for
performing a suite of analyses. Cheddar partially
addresses this concern by using a simple XML format
for describing the tasks, but Cheddar has only a GUI
output. RapidRMA has proprietary schema files that
describe their input and “saved” format but they are
undocumented and difficult to interpret. VEST
interprets a GME model directly, so its input file
format is the same as GME and it provides a only a
GUI output. It is not clear from the documentation on
TimeWiz whether the input format is documented, but
it appears that the input and output is graphical only.
Of these tools only RapidRMA provides output
parameters that might help the run-time system, such as
the priorities it used when doing the analysis.

Extensibility Evaluation. As for extensibility,
RapidRMA, and TimeWiz are closed source, and so
they are not designed for user’s to extend or modify.
Cheddar is an open-source project, and it provides a
framework for people to extend it with new scheduling
algorithms or use it in other environments. Cheddar
allows adding simulation algorithms at run-time in a
specially designed language. However, since it is
written in Ada, which limits its ease of extensibility for
many users.

4. OpenSTARS Design
This section describes our design of OpenSTARS.

The tool has both an offline implementation and an
online implementation. The online and offline designs

share a unified data structure that represents the real-
time system and the real-time analysis algorithms. The
offline tool is decomposed into the following three
major phases: Setup, Analysis, and Result
interpretation. For the online scenario we assume that
certain parts of the design will appear in different
pieces of a larger system, but that there will be at least
one piece that does the actual analysis.

4.1. Goals
OpenSTARS has been designed to:

• Perform correct real-time analysis as defined in
Section 2.

• Perform efficiently through optimizations in the
analysis algorithms and optimizations in their
implementation.

• Be scalable to allow for thousands of tasks and
resources interacting over widely varying times.

• Be flexible by allowing knowledgeable users to
compare scheduling and analysis algorithms in the
tool.

• Be flexible by providing a tool “driver” that
selects the proper analysis algorithms for users
that want this level of support.

• Be flexible by using well-defined XML formats
for both its input (see Appendix A) and output,
thus facilitating OpenSTARS’s integration with
many GUIs and tool chains.

• Be flexible by supporting the extraction of
modules for use in online run-time analysis and
scheduling, thus providing consistency between
offline analysis and run-time enforcement.

• Be extensible through the release of the source
code and through use of procedures that allow

researchers and practitioners to contribute new
modules back to the tool repository.

• Be extensible by providing an API for those who
do not wish to dig into source code to be able to
insert new scheduling and analysis algorithms.

• Be extensible through use of a complete software
engineering model and complete documentation
as part of the open source release.

• Be easier to use by supporting domain-specific
components that facilitate constructing models in
the system. Example components are forms of
networks, servers, distributable threads, data
distribution, and message passing that are already
modeled and kept in a library for inclusion into
user models.

4.2 OpenSTARS Offline System Architecture
This section describes the basic components of
OpenSTARS, then it describes the phases of its
operation.

The system is designed for both online and offline
use. The main difference between these two scenarios
is that in the offline case, input and output are in XML
file format, while in the online case, input and output
are in form of message calls.

(a) Offline

(b)Online

Figure 1: Offline and Online Tool Design

4.2.1 Basic OpenSTARS Tool Components

The basic components of OpenSTARS are: the
Domain Object which generalizes special purpose
domain models to facilitate their inclusion; the
SchedAlgorithm Object, which is the encapsulation of
the scheduling algorithm that the application will use;

Table 1. Test cases
(a) large task set with 200 tasks

Tasks Period Deadline Exec time Node
T1 2547 2547 9 0
T2 298 298 2 0
T… … … … 0
T200 132 132 1 0

(b) tasks with extreme task period
Tasks Period Deadline Exec time Node
T1 2 2 1 0
T2 86400 86400 28800 0

(c) 2 end-to-end tasks with 2 subtasks span on 2 nodes
Tasks Period Deadline Exec time Node
T1,1 100 100 30 0
T1,2 100 100 30 1
T2,1 100 100 30 0
T2,2 100 100 30 1

the Driver Object, which works with the user to
selectively either expose choices or make choices for
the user in the analysis process; and a Result object
which contains the outcome of the analysis.

Domain Object. A Domain object is an
implementation of an abstract base type for a particular
sub-domain of a real-time system. This allows for a
more natural representation of parts of the system. The
interface for Domain objects includes a translation to
and from the basic Task, Resource, and Dependency
model (TRDModel) [8], which is the only format
recognized by the scheduling algorithms.

Domain objects include the following important
methods: DomainToTRD, TRDToDomain, Interpret,
Parse, and Key. Key simply returns the name of the
domain as it is expected to appear in the XML input
file. The Parse method takes an XML structure and
parses all of the data in it into its native representation.
DomainToTRD converts this representation into a
TRDModel, and TRDToDomain converts back again.
Interpret is given the result of the analysis so that it can
perform a mapping from the information contained
therein to its own Result object.

SchedAlgorithm Object. The SchedAlgorithm
object is also an abstract class that will be implemented
for a particular real-time analysis algorithm. The
interface for SchedAlgorithm objects includes a set of
functions that take a list of characteristics of the
system, and report: (a) whether the algorithm will
return a correct result, (b) how quickly it can return a
result, (c) what the likelihood of the algorithm
returning an optimal result is, and (d) what information
it will provide (in terms of priorities, worst case
response times, utilizations, etc).

Initially, we are implementing a subset of the
common algorithms. These include:
• Utilization Function: This calculates the

utilization of a node to determine if a node is
schedulable.

• Optimized Time Demand Analysis: This is
generally the same as the Time Demand
Analysis given in [6], but with several
algorithmic optimizations that make difficult
special cases easier [11].

• Deadline Monotonic Analysis with Offset [9]:
This algorithm handles tasks with offsets more
optimally than Time Demand, but at a
significant cost in time.

• Simulation: This runs a Simulation of the
tasks to determine worst-case response time.
Depending on the periods of the tasks, this can
also take a long time.

Driver Object. The Driver object is the interface
between a real-time system model and a scheduling
algorithm. The Driver acts as an intelligent agent by

using adaptive strategies in selecting the best algorithm
based on certain speed/optimality criteria. It is often
the case that a given real-time system could be
analyzed correctly by several algorithms, however each
has their own time complexity and optimality
percentage for it. Therefore, the Driver is used to rank
the estimates on the amount of work by comparing the
complexity analysis result of each of the algorithms.

Result Object. The Result object is an abstract
class that holds the scheduling analysis result and
domain information. Result in terms of sub-domain
representation needs to be extracted from the
TRDModel, since even the same result lead to different
meaning in different sub-domain. For example, in an
end-to-end scheduling analysis, a worst-case response
time bigger than period is considered non-
schedulability, however, in the Data Distribution
System (DDS) the result is schedulable as long as
worst-case response time is less than the deadline.

Moreover, from a usability point of view, users
generally want more information on their real-time
system than merely the schedulability. We designed
the Result object as a holder for runtime information,
such as system utilization, etc. Also, in case if a node
is not schedulable, the Result object could also hold in-
depth hints/suggestions like how we could change the
task set to make it schedulable.

4.2.2 OpenSTARS Operation

We now describe the three phases of the offline
OpenSTARS tool: setup, analyze, and interpret.
Figure 2 gives a diagram that shows the major
participants in each phase.

Figure 2. Top-level system architecture

Figure 3. Object model for SETUP

Setup. During the first phase, the Controller
creates Domain objects (one per Domain) and adds
them to the System. Domains are registered with the
ConfigLoader with a Key corresponding to the top
level XML tag that it knows how to parse. As the
configuration file loaded, each section is passed to the
Domain objects. After all XML parsing is complete,
the Domains then do a translation between their
representation and the basic TRDModel.

Figure 4. Object model for ANALYZE

Analyze. In the second phase, the Driver scans
the TRDModel collecting statistics about the set of
tasks and resources. The Driver then asks each
algorithm four “questions” (the last three being
dependent on the first):
1. isApplicable – Will the algorithm be able to give a

correct result?
2. getSpeed – How quickly will the algorithm be able

to work?
3. getOptimality – How close to optimal will the

solution it gives be?
4. getInfo – What information will the algorithm give?

The Driver then builds a table with these answers
and sorts and compares them according to the criteria

given by the user (in this case, given by the command
line) so that the Driver can choose the correct
algorithm to run. The Driver then calls the
SchedAlgorithm it chose, which will return a Result
object. After that, the system passes that result to each
SchedAlgorithm to allow it to map information back to
its own structures.

Figure 5. Object model for INTERPRET

Interpret. The Controller hands the TRDModel
and the Result to each Domain object in the system.
The Domain object maps the TRDModel back to its
own data structures and adds more information to the
Result. The Controller then asks each Domain object
to save and output the result. Optionally, the system
will ask each Domain object to output its result to an
XML file; similarly it may ask the TRDModel to write
itself to an XML file.

4.3 OpenSTARS Online System Architecture
For the online analysis the steps are almost

identical with the following exceptions. Instead of
reading information from an XML file, there will be an
external service (for instance an online scheduling
service), which maintains its own Domain model. The
online OpenSTARS tool will then ask that Domain
model to do a transformation to the TRDModel. (like
the Initialization step in the offline tool process). In
the analyze portion, the external service will provide
the criteria. Output of online analysis will be in form
of a data structure that is passed back to the caller with
updated schedule information including: a yes/no
answer to whether the system is schedulable,
parameters and possible hints or other meta-data. In
addition, the online analysis will generate a log of each
transaction.

5. Evaluating OpenSTARS
In this section we evaluate OpenSTARS according

to the criteria specified in Section 2. While the
implementation of the tool is not complete, we evaluate
it based on the design and current implementation.

OpenSTARS Correctness. OpenSTARS has a
well-defined testing procedure. First is a suite of test

cases that address special cases and have been verified
by hand. The tests described in Section 3 are a few
examples. Second, we have test cases that have been
run through other tools to compare their results to those
obtained by OpenSTARS. Third, due to OpenSTARS
support for multiple analysis and scheduling
algorithms, we can test one algorithm in OpenSTARS
by using other algorithms in OpenSTARS. For
example, by doing a simulation, it is possible to
determine the exact worst-case response time, which
can be compared against algorithmically determined
analysis.

We have run the current OpenSTARS
implementation against all of the tests described in
Table 1 and it provides correct results for any test sets
without dependencies. We are currently adding
support for task dependencies.

OpenSTARS Performance and Scalability.
OpenSTARS addresses performance on two fronts.
First, it gives the user the ability to specify how long
they are willing to wait for a response, and how
thorough that they want the response to be. This is
used by the OpenSTARS Driver to choose the correct
scheduling algorithm. Secondly, OpenSTARS
employs optimizations that we have developed that are
not incorporated in other tools. For example, whereas
most tools require about 16 calculations to compute the
example that we gave earlier with a task of a period of
one day, OpenSTARS does it in 2 calculations.
OpenSTARS can analyze task sets of 200 tasks in 3
megabytes of memory and 1 second due to the
optimizations that we’ve applied to the classic Time
Demand Analysis [11]. This is much faster and less
memory usage than other tools, as we described in
Section 3.

OpenSTARS Flexibility. For flexibility,
OpenSTARS gives the user the ability to select
parameters such as speed and thoroughness, as well as
providing information that helps select which algorithm
it uses to determine schedulability. OpenSTARS also
supports use of the offline tool components in an
online environment through modularization of those
components. OpenSTARS facilitates use with many
GUIs and tool chains through a very simple yet
comprehensive XML input and output format that is
shown in Appendix A.

OpenSTARS Extensibility. There are several
ways that OpenSTARS supports extensibility. The
first is in facilitating domain specific representations
through the use of the Domain object described in
Section 4.2. For algorithm support, OpenSTARS uses
a generic interface for all of the schedulability analysis
algorithms. In a future revision, OpenSTARS may
package algorithms as libraries instead of
monolithically, to allow better control over the
algorithms that are available at runtime.

The OpenSTARS project is open source, so others
can extend it. To facilitate OpenSTARS’s extension
by other researchers and practitioners, we also have
compiled documentation at each stage of the design.
Furthermore, the OpenSTARS test suite is available in
a standard form to facilitate, unit, regression and
performance testing.

6. Conclusion
This paper has described the design of the

OpenSTARS real-time analysis tool being developed at
the University of Rhode Island. The tool is meant to be
the basis of open-source project to which real-time
researchers around the world can contribute. Our
efforts have focused on a sound software engineering
model for the tool, clear source code, a well-defined
external interface and internal interfaces among tool
components, and efficient, optimized base algorithms.
This emphasis is yielding a tool that is not only correct,
scalable, and flexible, but is also easily extensible by
other researchers and practitioners in the true spirit and
practice of open source projects.

We hope that by having a common implementation
of each of the scheduling algorithms, that people will
be encouraged to examine them and look for ways to
optimize the calculations done. We have found several
optimizations to Time Demand Analysis, that allow it
to handle large variance in periods more gracefully, as
well as some simplifications that can be made for use in
an online environment. There is a minor change to the
algorithm in [9] to reduce the amount of work done,
however we have not yet evaluated how much impact
this change will have.

We are currently setting up the OpenSTARS open
source repository. This repository is modeled after the
university-hosted ACE portable framework and TAO
middleware open source repository [10]. The
OpenSTARS repository will allow obtaining source
code, test cases, complete design documentation, and
for others to contribute new components to
OpenSTARS.

Appendix A

<?xml version="1.0" encoding="UTF-8"
standalone="no" ?>

<OpenSTARS>
 <!-- Specify a machine as a node -->
 <node name="node0">
 <!-- Specify resources available on

this machine, such as cpu and mem-
ory -->

 <resource active="yes" name="cpu1"
preemptable="yes" rate="11"
type="cpu"/>

 <resource active="yes" name="cpu2"
preemptable="yes" rate="2"
type="cpu"/>

 <resource active="no" name="mem1"
preemptable="no" rate="1"
type="memory"/>

 </node>
 <node name="node1">
 <resource active="yes" name="cpu1"

preemptable="yes" rate="11"
type="cpu"/>

 <resource active="no" name="mem1"
preemptable="no" rate="1"
type="memory"/>

 <resource active="no" name="disk1"
preemptable="no" rate="1"
type="disk"/>

 </node>
 <!-- Specify a task graph. Note all

subtasks will share the same peri-
od -->

 <end2endtask deadline="40"
importance="1" name="e2e1"
period="50" phase="5">

 <!-- Specify a subtask. Node/active
pair gives processor for this sub-
task -->

 <subtask active="cpu1" deadline="0"
exection_time="10" name="sub11"
node="node0">

 <successors>sub12</successors>
 </subtask>
 <subtask active="cpu1" deadline="0"

exection_time="20" name="sub12"
node="node1">
<!-- Specify dependencies. Can be
specified backwards or forwards;
consistency check done at runtime.
-->

 <successors>sub13</successors>
 <predecessors>sub11</predecessors>
 <!-- Specify resource acquisition

and release. -->
 <resource_usage acq_time="3"

deacq_time="5" name="mem1"/>
 </subtask>
 <subtask active="cpu1" deadline="0"

exection_time="10" name="sub13"
node="node1">

 <predecessors>sub12</predecessors>
 <resource_usage acq_time="1"

deacq_time="2" name="disk1"/>
 <resource_usage acq_time="1"

deacq_time="2" name="mem1"/>
 </subtask>
 </end2endtask>
 <!-- Specify a network topology -->
 <network>
 <!-- Specify a switch/hub/router -->
 <lan bandwidth="100"

name="lan1">node0,node1</lan>
 <!-- Specify a direct link -->
 <link bandwidth="100" pointa="node0"

pointb="node1"/>
 </network>
</OpenSTARS>

References.
[1] J. W. S. Liu, J. Redondo, Z. Deng, T. Tia, R. Bettati, A.

Silberman, M. Storch, R. Ha, and W. Shih, "PERTS: A
prototyping environment for real-time systems,
Technical Report: UIUCDCS-R-93-1802, 1993.

[2] Tri-Pacific Software Inc. – Rapid RMA Data Sheet
http://www.tripac.com/html/prod-fact-rrm.html

[3] Time Sys Corporation. – TimeWiz Data Sheet
http://www.timesys.com/files/prodlit/ TimeWiz%
20Data%20Sheet.pdf

[4] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,
M. Humphrey, and B. Ellis, ”VEST: An Aspect-Based
Composition Tool for Real-Time Systems,” The 9th IEEE
Real-Time and Embedded Technology and Applications
Symposium, Toronto, Canada, May 2003.

[5] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, "Cheddar:
a Flexible Real Time Scheduling Framework," ACM
SIGADA Conference, Atlanta, November 2004.
http://beru.univ-brest.fr/~singhoff/cheddar/

[6] J. P. Lehoczky, L. Sha, and Y. Ding, “The rate-monotonic
scheduling algorithm: Exact characterization and
average case behavior,” Proceedings of Real-Time Systems
Symposium, pp. 166-171, December 1989.

[7] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C.
Thomason IV, G. Nordstrom, J. Sprinkle, and P. Volgyes,
“The Generic Modeling Environment,” Workshop on
Intelligent Signal Processing, Budapest, Hungary,2001.

[8] J. W. S. Liu, Real-time Systems ISBN 0-13-099651-3,
pp.134, 2000.

[9] N. C. Audsley, Optimal Priority Assignment and Feasibility
of Static Priority Tasks With Arbitrary Start Times, tech.
report YCS164, Dept. Computer Science, University of
York (1991).

[10] Institute for Software Integrated Systems, Vanderbilt
University The ACE ORB. April 2004,
http://escher.isis.vanderbilt.edu/tools/get_tool?TAO

[11] K. Bryan, and T. Ren, “Optimizations on Time Demand
Analysis for Real-Time Schedulability Test,” tech. Report
TR05-302, Dept. Computer Science, University of Rhode
Island, 2005.

