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Abstract

This paper describes the design of the OpenSTARS
real-time analysis tool.  The paper focuses on criteria
for  a  good  analysis  tool  including  correctness,
performance/scalability,  flexibility,  and  extensibility.
Several leading real-time analysis tools are surveyed
and  several  problems  with  the  tools  under  these
criteria  are identified.   The  paper  then  presents  the
basic  components and operation of  OpenSTARS and
how its design addresses these problems.

1.  Introduction

Developing  software  for  real-time  applications
faces two significant challenges.  First, the applications
often interact with the physical world in critical ways,
and thus require robust, well-analyzed software that is
verified before it is deployed.  Second, the requirement
to meet timing constraints adds a new dimension to the
development effort – a dimension that adds significant
complexity.   The  need  for  robust  software,  and  the
complexity associated with creating it, means that good
real-time  software  development  tools  are  essential.
There are several real-time development/analysis tools
(PERTS/RapidRMA  [1,2],  TimeWiz[3],  VEST[4],
Cheddar[5], are some).  While these tools do real-time
analysis fairly well, in general, they were not designed
with performance,  scalability,  flexibility,  and
extensibility in mind.

This  paper  describes  OpenSTARS (Open
Schedulability Tool for Analysis of Real-time Systems)
being  developed  at  the  University  of  Rhode  Island.
OpenSTARS is designed to  be an efficient,  scalable,
flexible,  and  extensible  open-source  tool  and
framework  that  real-time  systems  researchers  and
practitioners  can  use  for  both  offline  and  online
analysis,  and  into  which   they  can  insert  their  own
scheduling and quality of service (QoS) management
algorithms.  

Section 2 of this paper  elaborates on the criteria
for good real-time analysis tools. Section 3 evaluates
the  above-mentioned  real-time  analysis  tools  using
those  criteria.  Section  4  presents  OpenSTARS and
framework design.  Section 5 shows how OpenSTARS
addresses the criteria and the deficiencies in existing
tools.  Section  6  summarizes  and  outlines  the  further
development of the OpenSTARS tool.

2.  Criteria  For Good  Real-Time Analysis
Tools

We  use  four  classes  of  criteria:  Correctness,
Performance / Scalability, Extensibility, and  Usability
both to evaluate existing real-time analysis tools and to
provide the design principals for OpenSTARS.

Correctness Criteria.  The are two primary tests
for the correctness of a real-time analysis tool: 
1) If  the system is  not  schedulable,  the  tool  must

determine that it is not schedulable.
2) All parameters, such as response times, priorities,

and missed deadlines that result from the tool’s
analysis must be accurate.

Note  that  the  inverse  of  Correctness  Test  1  is  not
necessarily required – if the system is schedulable the
tool does not always need to determine this.  That is,
the analysis is, at times, allowed to be pessimistic.

Performance and Scalability  Criteria.
Performance  and  scalability  issues  fall  into  three
categories: 
1) Minimizing the resources used during analysis.
2) Allowing user  input  to  trade  off  thoroughness  of

analysis for speed of analysis.
3) Use of optimized algorithms to perform analysis.
Due  to  the  complexity  of  real-time  scheduling,  the
analysis of  non-trivial  systems can easily  exceed the
time  or  computing  resources  available  to  do  the
analysis. For instance, classic time demand analysis [6]
that  checks the interactions  of  tasks at  selected time
instances can take excessive time and resources if there
is a wide variation in the length of the periods of the
tasks.  To achieve good performance, the tool  should



yield results as quickly as possible while consuming as
few resources as possible.  It should also allow the user
to  choose  between  speed  and  thoroughness  of  the
analysis, perhaps allowing less than optimal analysis to
be  performed  more  quickly.   To  this  end,  the  tool
should be able to give the user hints as to how long an
analysis will take.  For scalability the analysis should
take special care in how it manages the analysis, using
algorithms that are computationally optimized, and by
breaking models with many tasks, resources, and time
intervals  into  smaller  pieces  that  can  be  analyzed
efficiently.

Flexibility Criteria.   Flexibility is related to how
much control the user has over the tool. There are two
primary areas of control that a tool could provide:
1) Control  of the algorithms and parameters of

analysis.
2) Control of the interface.
If more than one algorithm is available in the tool, then
a knowledgeable user should be able to select one or
more of them to run, possibly with guidance from the
tool.  The tool should make these decisions completely
for a user that does not want to make them. Similarly,
the tool should expose parameters that affect the tool’s
analysis so that a knowledgeable user could set them.
Another  facet  of  algorithm control  is  the  ability  to
extract the scheduling algorithms and analysis used in
the tool to be used in contexts other than as a stand-
alone tool.  For example, it might be useful to be able
to use the analysis “engine” in other projects such as
on-line schedulers.

For  interface  flexibility,  the  tool  should  have  a
well-defined input and  output file  format  so that  the
user  is  not  forced  to  use  a  particular  Graphic  User
Interface  (GUI)  to  model  the  system.   Many  users
already  have  a  preferred  modeling  tool  for  their
systems,  such  as  a  UML  based  tool,  or  a  general
modeling  tool  such  as  the  Generic  Modeling
Environment (GME) [7].  The real-time analysis tool’s
use of a well-defined input and output file format will
facilitate the custom design of the tool’s interface, or
its use with an existing modeling tool, or tool chain.  

Extensibility Criteria.  The tool should be able to
be extended to allow for the inclusion of new analysis,
scheduling,  and  QoS  management  algorithms.  Since
researchers are regularly producing new algorithms in
these areas,  it  is  important that  the tool’s framework
and design accommodate their inclusion into the tool.
Also, since many real-time applications require custom
analysis that is unique to the application, the ability to
easily extend the tool for domain-specific analysis can
be  important.   Three  primary  desirable  features  to
support extensibility are:
1) A  well-defined  interface  for  inserting  new

algorithms without  knowing the  internals  of
the tool.

2) A  well-documented  software  engineering
design of the tool  including use cases,  class
diagrams,  interaction  diagrams,  a  standard
testing procedure with test cases that support
component  testing,  integration  testing,  and
regression testing.

3) Open source code for those who need to know
the internals of the tool.

3.  Evaluating Existing Tools 
Existing  tools  that  we  have  investigated  are

described below:
• RapidRMA – is a comprehensive tool originating

from the PERTS project at University of Illinois,
and now owned by Tri-Pacific Software [1,2].

• VEST  (Virginia  Embedded  Systems  Toolkit) –
developed  at  University  of  Virginia,  uses  an
interface developed in GME.  VEST provides a
modeling environment for building software and
mapping  it  to  hardware,  and  interpreters  for
running  non-functional  tests  such  as  real-time
analysis [4].

• Cheddar – developed at the University of Brest,
is an open source framework written in Ada that
implements many real-time scheduling algorithms
[5].

• TimeWiz – developed by TimeSys Corporation, is
a comprehensive tool for real-time modeling and
analysis.   It  has  been  integrated  with  Rational
Rose,  now owned by IBM.   Unfortunately,  we
were not  able  to  obtain a  copy of TimeWiz to
evaluate.   Therefore  our  conclusions  are  based
solely on widely available documentation [3].

In evaluating these tools, we picked a handful of
special cases to test.  These include: (a) a large task set
where 200 tasks with a combined 95% utilization are
put on a single node and the task set is not schedulable;
(b)  a  pair  of  tasks  with widely varying periods  of  2
seconds and 1 day (86,400 seconds); (c) a task set in
which  two  tasks  span  two  nodes.   The  task
characteristics are listed in Table 1.  

Correctness  Evaluation.  All  of  the  tools
correctly  identified  that  the  first  test  case  was  not
schedulable.  (this was not the only correctness that we
ran, but we use it here as a representative case.)

Some tools  had  problems with accuracy.   In test
case  b,  it  is  easy to see that the second task (T2) is
preempted every two seconds, for one second, it will
take  twice  as  long  (or  57600  seconds)  to  complete.
Cheddar  correctly  produces  this  result.   RapidRMA
gives  a  result  of  57611,  which  while  this  may  be
acceptable, it is pessimistic.

For  test  case  c,  we found  that  RapidRMA again
leads  to  an  unnecessarily  pessimistic  result.   This



appears to be because RapidRMA has assumed that due
to the first two subtasks being of equal period, either
one could go in either order, and therefore RapidRMA
assumes that T1,2 and T2,2 must be assumed to start at
60.  This causes the system to be non-schedulable.  The
problem with this is one task will always go first, even
though we do not know which.  Whichever one does go
first (e.g., T1,1), its second subtask (T1,2) will be able to
execute concurrently with the other task’s first subtask
(T2,1,  in  our  example).   If  RapidRMA had  chosen
distinct priorities for each task it could have found this
result.

All of tools we could run gave correct results on the
rest of the tests given here.  We have found other errors
in  some  of  the  other  tools,  but  we  are  still  in  the
process of discussing them with those vendors.

Performance  and  Scalability  Evaluation.  The
preliminary testing  results  show that  for  test  case  a,
RapidRMA takes  approximately 30  seconds and  542
MB memory to find the result.  Increasing the number
of tasks to 300, caused RapidRMA to use 2.1 GB of
memory,  and  2.5  minutes  (part  of  which  is  due  to
swapping.  The system would only commit 1.5GB of
physical  RAM  to  the  process).   This  non-linear
resource  usage  raises  questions  of  RapidRMA’s
scalability.

Cheddar  requires  a  code  change  to  support  more
than 100 tasks or 30 processors, and doing so increases
its static data size.  Once this change is made, however,
it completes in a reasonable amount of time, assuming
the tasks are spread over a number of processors.  If
there  are  more  than  100  tasks,  it  starts  to  take
significantly longer.   It  will complete 100 tasks in 1
minute, but 200 tasks took Cheddar 11 minutes.  Note
that RapidRMA had completed the 200 tasks set (test
case  a) in 30 seconds, probably due to some form of
optimization.
Flexibility Evaluation.  Cheddar provides a very nice
simulation  engine,  however  it  has  one  significant
drawback:  It only allows maximum 1500 time units in
a simulation.  When doing a simulation of tasks with
phases,  you are  not  guaranteed to get  the worst-case
response time unless you simulate at least as far as the
Least Common Multiple (LCM) of the periods plus the
maximum phase.   Unless  the system only contains  a
few  small  periods,  or  many  of  the  periods  are
harmonic, it is likely that the LCM will be greater than
1500.

For  algorithm  parameter  selection,  RapidRMA
allows  the  user  to  change  the  priority  assignment
between  Rate  Monotonic  and  Deadline  Monotonic.
For  systems that contain tasks with deadlines shorter
than their periods, there is no indication to the user that
choosing Rate Monotonic is unnecessarily pessimistic.
Both RapidRMA and Cheddar allow a user to analyze a
system  with  dependencies  as  if  there  are  no
dependencies.  This can lead to confusing, and wrong,
results.

Both RapidRMA and Cheddar run more than one
schedulability test at once, but without letting the user
specify which one(s) are preferred.  VEST allows the
user to select which algorithm to use.

Of  the  tools  that  we  evaluated,  only  Cheddar
provides a framework API that can be invoked as part
of an online schedulability test.  All other  tools  only
provide  offline  analysis.   Unfortunately,  the Cheddar
API  does  not  provide  for  retrieving  all  of  the  vital
information  needed  for  implementing  the  schedule.
Therefore  none  of  the  tools   have  extractable
components that are suitable for an online scheduler.

All of the tools  in this evaluation require using a
GUI.  While GUI's are generally helpful in interpreting
the  results  and  for  single-use  modeling,  they can  be
limiting for using the tool as part of a tool chain or for
performing  a  suite  of  analyses.   Cheddar  partially
addresses this concern by using a simple XML format
for describing the tasks, but Cheddar has only a GUI
output.  RapidRMA has proprietary schema files that
describe  their  input  and “saved”  format but  they are
undocumented  and  difficult  to  interpret.   VEST
interprets  a  GME  model  directly,  so  its  input  file
format is the same as GME and it provides a only a
GUI output.  It is not clear from the documentation on
TimeWiz whether the input format is documented, but
it appears that the input and output is graphical only.
Of  these  tools  only  RapidRMA  provides  output
parameters that might help the run-time system, such as
the priorities it used when doing the analysis.

Extensibility  Evaluation.   As  for  extensibility,
RapidRMA, and  TimeWiz are  closed  source,  and so
they are not designed for user’s to extend or modify.
Cheddar  is  an open-source project,  and it  provides a
framework for people to extend it with new scheduling
algorithms or  use it  in other  environments.   Cheddar
allows adding simulation algorithms at  run-time in  a
specially  designed  language.   However,  since  it  is
written in Ada, which limits its ease of extensibility for
many users. 

4. OpenSTARS Design
This section describes our design of OpenSTARS.

The  tool  has  both  an offline  implementation and an
online implementation.  The online and offline designs



share a  unified data structure that represents the real-
time system and the real-time analysis algorithms.  The
offline  tool is  decomposed  into  the  following  three
major  phases:  Setup,  Analysis,  and  Result
interpretation.  For the online scenario we assume that
certain  parts  of  the  design  will  appear  in  different
pieces of a larger system, but that there will be at least
one piece that does the actual analysis. 

4.1. Goals
OpenSTARS has been designed to:

• Perform correct  real-time analysis as defined in
Section 2.

• Perform efficiently through optimizations  in  the
analysis  algorithms  and  optimizations  in  their
implementation.

• Be scalable to allow for thousands of tasks and
resources interacting over widely varying times.

• Be flexible by allowing knowledgeable users to
compare scheduling and analysis algorithms in the
tool.

• Be  flexible  by  providing  a  tool  “driver”  that
selects  the  proper  analysis  algorithms  for  users
that want this level of support.

• Be flexible by using well-defined XML formats
for both its input (see Appendix A) and output,
thus  facilitating  OpenSTARS’s  integration  with
many GUIs and tool chains.

• Be  flexible  by  supporting  the  extraction  of
modules for use in online run-time analysis and
scheduling,  thus  providing  consistency  between
offline analysis and run-time enforcement.

• Be extensible  through the release  of  the  source
code  and  through  use  of  procedures  that  allow

researchers  and  practitioners  to  contribute  new
modules back to the tool repository.

• Be extensible by providing an API for those who
do not wish to dig into source code to be able to
insert new scheduling and analysis algorithms.

• Be extensible through use of a complete software
engineering  model  and  complete  documentation
as part of the open source release.

• Be  easier  to  use  by supporting  domain-specific
components that facilitate constructing models in
the  system.  Example  components  are  forms  of
networks,  servers,  distributable  threads,  data
distribution, and message passing that are already
modeled and kept in a library for inclusion into
user models.

4.2 OpenSTARS Offline System Architecture
This  section  describes  the  basic  components  of
OpenSTARS,  then  it  describes  the  phases  of  its
operation.

The system is designed for both online and offline
use. The main difference between these two scenarios
is that in the offline case, input and output are in XML
file format, while in the online case, input and output
are in form of message calls.

(a) Offline

(b)Online

Figure 1: Offline and Online Tool Design

4.2.1  Basic OpenSTARS Tool Components

The  basic  components  of  OpenSTARS  are:  the
Domain  Object which  generalizes  special  purpose
domain  models  to  facilitate  their  inclusion;  the
SchedAlgorithm Object, which is the encapsulation of
the scheduling algorithm that the application will use;

Table 1. Test cases
(a) large task set with 200 tasks

Tasks Period Deadline Exec time Node
T1 2547 2547 9 0
T2 298 298 2 0
T… … … … 0
T200 132 132 1 0

(b) tasks with extreme task period
Tasks Period Deadline Exec time Node
T1 2 2 1 0
T2 86400 86400 28800 0

(c) 2 end-to-end tasks with 2 subtasks span on 2 nodes
Tasks Period Deadline Exec time Node
T1,1 100 100 30 0
T1,2 100 100 30 1
T2,1 100 100 30 0
T2,2 100 100 30 1



the  Driver  Object,  which  works  with  the  user  to
selectively either expose choices or make choices for
the user  in  the analysis process;  and  a  Result object
which contains the outcome of the analysis.

Domain  Object.   A  Domain  object  is  an
implementation of an abstract base type for a particular
sub-domain of a real-time system.  This allows for a
more natural representation of parts of the system.  The
interface for Domain objects includes a translation to
and from the basic  Task,  Resource,  and  Dependency
model  (TRDModel)  [8],  which  is  the  only  format
recognized by the scheduling algorithms.

Domain  objects  include  the  following  important
methods:  DomainToTRD,  TRDToDomain,  Interpret,
Parse, and  Key.  Key simply returns the name of the
domain as it is expected to appear in the XML input
file.  The  Parse method takes an XML structure and
parses all of the data in it into its native representation.
DomainToTRD converts  this  representation  into  a
TRDModel,  and  TRDToDomain converts back again.
Interpret is given the result of the analysis so that it can
perform  a  mapping  from  the  information  contained
therein to its own Result object.

SchedAlgorithm  Object.  The  SchedAlgorithm
object is also an abstract class that will be implemented
for  a  particular  real-time  analysis  algorithm.   The
interface for  SchedAlgorithm objects includes a set of
functions  that  take  a  list  of  characteristics  of  the
system,  and  report:  (a)  whether  the  algorithm  will
return a correct result, (b) how quickly it can return a
result,  (c)  what  the  likelihood  of  the  algorithm
returning an optimal result is, and (d) what information
it  will  provide  (in  terms  of  priorities,  worst  case
response times, utilizations, etc).

Initially,  we  are  implementing  a  subset  of  the
common algorithms.  These include:
• Utilization  Function:  This  calculates  the

utilization of a node to determine if a node is
schedulable.

• Optimized  Time  Demand  Analysis:   This  is
generally  the  same  as  the  Time  Demand
Analysis  given  in  [6],  but  with  several
algorithmic optimizations  that  make difficult
special cases easier [11].

• Deadline Monotonic Analysis with Offset [9]:
This algorithm handles tasks with offsets more
optimally  than  Time  Demand,  but  at  a
significant cost in time.

• Simulation:   This  runs  a  Simulation  of  the
tasks to determine worst-case response time.
Depending on the periods of the tasks, this can
also take a long time.

Driver Object.  The Driver object is the interface
between  a  real-time system model  and  a  scheduling
algorithm.  The  Driver acts as an intelligent agent by

using adaptive strategies in selecting the best algorithm
based on certain speed/optimality criteria.  It is often
the  case  that  a  given  real-time  system  could  be
analyzed correctly by several algorithms, however each
has  their  own  time  complexity  and  optimality
percentage for it.  Therefore, the Driver is used to rank
the estimates on the amount of work by comparing the
complexity analysis result of each of the algorithms.

Result Object.   The  Result  object  is  an abstract
class  that  holds  the  scheduling  analysis  result  and
domain information.   Result  in terms  of  sub-domain
representation  needs  to  be  extracted  from  the
TRDModel, since even the same result lead to different
meaning in different sub-domain.  For example, in an
end-to-end scheduling analysis, a worst-case response
time  bigger  than  period  is  considered  non-
schedulability,  however,  in  the  Data  Distribution
System  (DDS)  the  result  is  schedulable  as  long  as
worst-case response time is less than the deadline.

Moreover,  from a  usability  point  of  view,  users
generally  want  more  information  on  their  real-time
system than merely the schedulability.   We designed
the Result object as a holder for runtime information,
such as system utilization, etc.  Also, in case if a node
is not schedulable, the Result object could also hold in-
depth hints/suggestions like how we could change the
task set to make it schedulable.

4.2.2  OpenSTARS Operation

We now describe  the three phases of  the offline
OpenSTARS  tool:  setup,  analyze,  and  interpret.
Figure  2  gives  a  diagram  that  shows  the  major
participants in each phase.

Figure 2. Top-level system architecture



 

Figure 3.  Object model for SETUP

Setup. During  the  first  phase,  the  Controller
creates  Domain  objects  (one  per  Domain)  and  adds
them to the System.  Domains are registered with the
ConfigLoader with  a  Key corresponding  to  the  top
level  XML tag that  it  knows how to  parse.   As the
configuration file loaded, each section is passed to the
Domain objects.  After all XML parsing is complete,
the  Domains then  do  a  translation  between  their
representation and the basic TRDModel.

Figure 4.  Object model for ANALYZE

Analyze.   In the second phase,  the  Driver scans
the  TRDModel  collecting  statistics  about  the  set  of
tasks  and  resources.   The  Driver then  asks  each
algorithm  four  “questions”  (the  last  three  being
dependent on the first):
1. isApplicable – Will the algorithm be able to give a

correct result?
2. getSpeed – How quickly will the algorithm be able

to work?
3. getOptimality –  How  close  to  optimal  will  the

solution it gives be?
4. getInfo – What information will the algorithm give?

The Driver then builds a table with these answers
and sorts and compares them according to the criteria

given by the user (in this case, given by the command
line)  so  that  the  Driver can  choose  the  correct
algorithm  to  run.  The Driver  then  calls  the
SchedAlgorithm it  chose,  which will  return a  Result
object.  After that, the system passes that result to each
SchedAlgorithm to allow it to map information back to
its own structures.

 

Figure 5.  Object model for INTERPRET

Interpret.  The  Controller hands the TRDModel
and the  Result to each  Domain object  in the system.
The  Domain  object  maps the TRDModel  back to its
own data structures and adds more information to the
Result.  The Controller then asks each Domain object
to save and output the result.  Optionally, the system
will ask each Domain object to output its result to an
XML file; similarly it may ask  the TRDModel to write
itself to an XML file.

4.3 OpenSTARS Online System Architecture
For  the  online  analysis  the  steps  are  almost

identical  with  the  following  exceptions.   Instead  of
reading information from an XML file, there will be an
external  service  (for  instance  an  online  scheduling
service), which maintains its own Domain model.  The
online  OpenSTARS  tool  will  then  ask  that  Domain
model to do a transformation to the TRDModel.  (like
the Initialization step in the offline tool process).  In
the  analyze  portion, the external service will provide
the criteria.  Output of online analysis will be in form
of a data structure that is passed back to the caller with
updated  schedule  information  including:  a  yes/no
answer  to  whether  the  system  is  schedulable,
parameters and possible hints or  other meta-data.  In
addition, the online analysis will generate a log of each
transaction.

5.  Evaluating OpenSTARS
In this section we evaluate OpenSTARS according

to  the  criteria  specified  in  Section  2.   While  the
implementation of the tool is not complete, we evaluate
it based on the design and current implementation.

OpenSTARS Correctness.  OpenSTARS has  a
well-defined testing procedure.  First is a suite of test



cases that address special cases and have been verified
by hand.  The tests described in Section 3 are a few
examples.  Second, we have test cases that have been
run through other tools to compare their results to those
obtained by OpenSTARS.  Third, due to OpenSTARS
support  for  multiple  analysis  and  scheduling
algorithms, we can test one algorithm in OpenSTARS
by  using  other  algorithms  in  OpenSTARS.   For
example,  by  doing  a  simulation,  it  is  possible  to
determine the exact  worst-case  response  time, which
can  be  compared  against  algorithmically  determined
analysis.  

We  have  run  the  current  OpenSTARS
implementation  against  all  of  the  tests  described  in
Table 1 and it provides correct results for any test sets
without  dependencies.   We  are  currently  adding
support for task dependencies.

OpenSTARS  Performance  and  Scalability.
OpenSTARS  addresses  performance  on  two  fronts.
First, it gives the user the ability to specify how long
they  are  willing  to  wait  for  a  response,  and  how
thorough that they want the response to  be.   This is
used by the OpenSTARS Driver to choose the correct
scheduling  algorithm.   Secondly,  OpenSTARS
employs optimizations that we have developed that are
not incorporated in other tools.  For example, whereas
most tools require about 16 calculations to compute the
example that we gave earlier with a task of a period of
one  day,  OpenSTARS  does  it  in  2  calculations.
OpenSTARS can analyze task sets of 200 tasks in 3
megabytes  of  memory  and  1  second  due  to  the
optimizations that  we’ve applied  to  the classic  Time
Demand Analysis [11].   This is much faster and less
memory  usage  than  other  tools,  as  we  described  in
Section 3.  

OpenSTARS  Flexibility.   For  flexibility,
OpenSTARS  gives  the  user  the  ability  to  select
parameters such as speed and thoroughness, as well as
providing information that helps select which algorithm
it uses to determine schedulability.  OpenSTARS also
supports  use  of  the  offline  tool  components  in  an
online  environment  through  modularization  of  those
components.   OpenSTARS facilitates  use  with many
GUIs  and  tool  chains  through  a  very  simple  yet
comprehensive XML input and output  format that is
shown in Appendix A.

OpenSTARS  Extensibility.   There  are  several
ways  that  OpenSTARS  supports  extensibility.   The
first  is  in  facilitating domain specific representations
through  the  use  of  the  Domain  object  described  in
Section 4.2.  For algorithm support, OpenSTARS uses
a generic interface for all of the schedulability analysis
algorithms.   In  a  future  revision,  OpenSTARS  may
package  algorithms  as  libraries  instead  of
monolithically,  to  allow  better  control  over  the
algorithms that are available at runtime.

The OpenSTARS project is open source, so others
can extend it.   To facilitate OpenSTARS’s extension
by other  researchers  and  practitioners,  we also  have
compiled documentation at  each stage of the design.
Furthermore, the OpenSTARS test suite is available in
a  standard  form  to  facilitate,  unit,  regression  and
performance testing.

6.  Conclusion
This  paper  has  described  the  design  of  the

OpenSTARS real-time analysis tool being developed at
the University of Rhode Island.  The tool is meant to be
the  basis  of  open-source  project  to  which  real-time
researchers  around  the  world  can  contribute.   Our
efforts have focused on a sound software engineering
model for the tool,  clear source code,  a well-defined
external  interface  and  internal  interfaces  among  tool
components, and efficient, optimized base algorithms.
This emphasis is yielding a tool that is not only correct,
scalable, and flexible, but is also easily extensible by
other researchers and practitioners in the true spirit and
practice of open source projects.

We hope that by having a common implementation
of each of the scheduling algorithms, that people will
be encouraged to examine them and look for ways to
optimize the calculations done.  We have found several
optimizations to Time Demand Analysis, that allow it
to handle large variance in periods more gracefully, as
well as some simplifications that can be made for use in
an online environment.  There is a minor change to the
algorithm in [9] to reduce the amount of work done,
however we have not yet evaluated how much impact
this change will have.

We are currently setting up the OpenSTARS open
source repository.  This repository is modeled after the
university-hosted ACE portable  framework and TAO
middleware  open  source  repository  [10].   The
OpenSTARS  repository  will  allow  obtaining  source
code,  test cases, complete design documentation,  and
for  others  to  contribute  new  components  to
OpenSTARS.

Appendix A

<?xml version="1.0" encoding="UTF-8"
standalone="no" ?>

<OpenSTARS>
  <!-- Specify a machine as a node -->
  <node name="node0">
    <!-- Specify resources available on

this machine, such as cpu and mem-
ory -->

    <resource active="yes" name="cpu1"
preemptable="yes" rate="11"
type="cpu"/>



    <resource active="yes" name="cpu2"
preemptable="yes" rate="2"
type="cpu"/>

    <resource active="no" name="mem1"
preemptable="no" rate="1"
type="memory"/>

  </node>
  <node name="node1">
    <resource active="yes" name="cpu1"

preemptable="yes" rate="11"
type="cpu"/>

    <resource active="no" name="mem1"
preemptable="no" rate="1"
type="memory"/>

    <resource active="no" name="disk1"
preemptable="no" rate="1"
type="disk"/>

  </node>
  <!-- Specify a task graph.  Note all

subtasks will share the same peri-
od -->

  <end2endtask deadline="40"
importance="1" name="e2e1"
period="50" phase="5">

    <!-- Specify a subtask. Node/active
pair gives processor for this sub-
task -->

    <subtask active="cpu1" deadline="0"
exection_time="10" name="sub11"
node="node0">

      <successors>sub12</successors>
    </subtask>
    <subtask active="cpu1" deadline="0"

exection_time="20" name="sub12"
node="node1">
<!-- Specify dependencies.  Can be
specified backwards or forwards;
consistency check done at runtime.
-->

      <successors>sub13</successors>
      <predecessors>sub11</predecessors>
      <!-- Specify resource acquisition

and release. -->
      <resource_usage acq_time="3"

deacq_time="5" name="mem1"/>
    </subtask>
    <subtask active="cpu1" deadline="0"

exection_time="10" name="sub13"
node="node1">

      <predecessors>sub12</predecessors>
      <resource_usage acq_time="1"

deacq_time="2" name="disk1"/>
      <resource_usage acq_time="1"

deacq_time="2" name="mem1"/>
    </subtask>
  </end2endtask>
  <!-- Specify a network topology -->
  <network>
    <!-- Specify a switch/hub/router -->
    <lan bandwidth="100"

name="lan1">node0,node1</lan>
    <!-- Specify a direct link -->
    <link bandwidth="100" pointa="node0"

pointb="node1"/>
  </network>
</OpenSTARS>
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