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Abstract. Model-Based Engineering (MBE) can be used to build com-
plex and critical systems. At the core of MBE, model transformation
allows for the automatic processing of models to automatically generate
code of the application or to perform analysis. In the context of safety-
critical applications, qualification of MBE tools must provide evidence
that the model transformation process is “correct”. Its implementation
must (i) document the transformation process itself, and support valida-
tion (ii) to infer properties on this process. We propose to use contracts
to support qualification of the model transformation process. Contracts,
by providing a formal specification of a model transformation, can be
used in different ways, either to detect contract violations at run time
or to demonstrate properties of the model transformation at the design
time. This approach has been experimented in the context of Ocarina,
an AADL toolset (Architecture Analysis and Design Language).

Keywords: embedded systems, model-based engineering, model transforma-
tion, qualification, contracts, AADL

1 Introduction

Building embedded systems is a complex and critical task that requires dedicated
engineering techniques in order to fulfill both the functional and non-functional
requirements (e.g. performance, timing, safety or security requirements). The
process of developing embedded systems can be eased by tools implementing a
Model-Based Engineering (MBE) approach. In such an approach, models of the
system are created, then verified and finally transformed into an implementation
of the system as a collection of executable programs and configuration files. An
important challenge now is to qualify MBE tools for use by engineers, especially
in the aerospace domain.

In this article, we concentrate on model-based engineering using the Archi-
tecture Analysis and Design Language (AADL), a language dedicated to the
architecture of real-time safety-critical embedded systems [11,27]. With AADL,



system designers can use tools such as OSATE [30] to create a model of the sys-
tem architecture, both on the software and hardware point of views. The Ocarina
toolset [18] can then be used to either map the AADL model to analysis tools
like model checkers or schedulability analyzers, or generate C or Ada code for
real-time operating systems.

At its core, Ocarina relies on model transformation to map an AADL model
to analysis tools or execution platforms. An open research challenge is the qual-
ification of such a tool that can be seen as a high-level compiler.

There is a dynamic research community studying how to use formal methods
to verify model transformation (see surveys on this topic [6] or [1]). We note
that these works focus on general and theoretical aspects of model transforma-
tion verification and their multiple criteria, but do not provide a straightforward
solution to qualify model transformation in terms of the DO-330 aerospace stan-
dard [25] and support documents like [24].

The DO-330 standard lists a number of objectives that must be addressed
by the design and implementation steps, including a precise definition of the
tool operational requirements (the tool objectives) and the tool requirements
(low-level activities performed by the tool). This requires a proper definition of:

1. the subset of the input language supported by the tool
2. the transformation rules towards the output model

We actually note that there is a direct relationship between these two ques-
tions: transformation rules must operate on the whole subset of the language in
order to be complete, whereas the transformation rules must be self-consistent
and provide a one-to-one correspondence between input and output models, and
thus address a well-defined subset of the input language. The complexity of
transformation rules makes this effort challenging.

Contribution The core idea presented in this paper is to use contracts to move
towards qualification of the model transformation process. Contracts are lever-
aged to 1) extract the subset of the input language from the transformation
rules, and 2) to analyze the consistency of these rules using contracts.

Contracts provide formal artifacts to specify a model transformation and to
reason on it. A contract involves assumptions over a model to be eligible for
transformation, and guarantees over the output model specifying valid results.
Contract reasoning can then be used for two purposes: detect contract violations
at run time and prove properties of the model transformation at the design
level. In particular, we present two implementations of contracts around Ocarina:
using Ada 2012 for run time checking, or using SMT solvers for proving general
properties of the transformation at the design time.

Outline The paper is organized as follows. We firstly discuss related works in
Section 2. Section 3 then introduces contracts with formal definitions. Section 4
presents the implementation of contracts in both Ada 2012 and SMT-LIB, and
the properties that can be achieved with these implementations. We finally con-
clude the paper and sketch possible future works in Section 6.



2 Related works

In this section, we perform a first survey on the verficiation of model transfor-
mation, and the use of contracts to support this goal.

Verification of model transformation, in particular through formal methods,
is one possible way to achieve qualification. [6] and [1] present a literature review
on this topic. As [1] explains, a solution is a matching between a transformation,
the properties to be verified, and the technique used to verify these properties.
Therefore, there is a large number of approaches depending on the combination
of these components that could be used to verify model transformations.

In the following, we only consider contracts for modeling and reasoning on
model transformations, because (a) contracts are well-studied and used in soft-
ware engineering [19] or system design [3, 23] and (b) Ada 2012, our target
language for writing transformations, has built-in support for contracts.

Originally, assume-guarantee and contract reasoning have their roots in the
Floyd-Hoare logic [12, 16]. As regards theoretical aspects, a general description
of contracts together with a meta-theory can be found in [3]. A well-known ap-
plication of contracts is design-by-contract, an approach to design software popu-
larized by [19]. Since then, contracts have been investigated beyond the scope of
computer programming, for example to design Cyber-Physical Systems [10,28],
or to manage analysis activities in Model-Based Systems Engineering [4, 26]. In
particular, we note that the techniques explained in the two later works combine
contracts with SMT solving (resp. SAT solving) to analyze contracts at differ-
ent levels of abstraction. Contracts have also been investigated in the context of
model transformation. We review hereinafter some works that use contracts to
support verification of model transformations.

Cariou et al. [7–9] studied model transformation contracts written in OCL. In
their approach, transformation operations are associated with contracts. In fact,
contracts are constraints expressed on three kinds of components: constraints on
the source model, constraints on the target model and constraints on the evolu-
tion of elements from the source to the target models. Part of these constraints
can be implemented as OCL invariants and then checked using a standard OCL
evaluator. The other part requires to use a set of OCL utility functions. Thus,
the approach enables to ensure that a model transformation involving source and
target models conforms to a set of contracts with no need to execute the transfor-
mation. Yet, this approach suffer limitations such as being applicable in a single
expression context. Indeed, the use of OCL obliges to concatenate the source and
target model in an amalgamated model where to express OCL invariants and
perform verification. Another limitation is that the approach is applicable for
endogenous model transformation only, i.e. models with same source and target
metamodels.

The contribution in [15] is a language called PaMoMo to specify visual trans-
formation contracts and a process to compile and verify them. At first, contracts
enable to specify requirements on a model transformation through preconditions,
postconditions and invariants. The definition of a contract is implementation-
independent, that is a contracts is not specific to a particular transformation



language. When defined later, the model transformation is to be compiled with
its contract(s) into the QVT-R executable language for checking whether it ful-
fills the requirements or not (providing the user with information on which part
of contract failed and where).

These contributions propose high-level framework to reason on transforma-
tions. Yet, we note their qualification is itself a challenge: they rely on domain-
specific languages, on top of large Java-based framework built around Eclipse,
or academic languages. Hence, every single elements must be carefully designed
and tested. This adds a significant burden on the tool designer.

We opted for a different approach: we perform model transformation, but in
an “old-school” way. We consider metamodels as regular AST of a compiler, and
transformation rules as internal AST-to-AST mappings. We have implemented
Ocarina, an AADL model processor, in Ada 2012. We leverage well-known com-
piler design principles for managing AST, and performing model transforma-
tions: the model transformation is a set of organized visitor routines that process
the AST, and execute on-the-fly transformation rules; and meta-model elements
are specific AST nodes. This design strategy proved its efficiency for several
transformation backends (C, Ada, LNT, Petri Nets, Alloy, …).

In the next section, we present how this design choice allows us to attach
executable contracts to leaf transformation rules, and how to later perform ver-
ification activities so as to extract (1) the subset of the input language required
to perform the transformation, and (2) the set of operations to be performed
on the input model to produce the output model. For sake of readability, we
considered only the AADL to Cheddar ADL [13] set of transformation rules.

3 Transformation contracts

This section introduces ”transformation contracts”, the central notion in our
approach. We begin with a reminder about the concept of model transformation
with a special focus on its implementation in Ocarina. We then provide the
formal definition of contracts that supports our work.

3.1 Model transformation

In general terms, “a model transformation is the automatic generation of a target
model from a source model, according to a transformation definition” [17]. More
precisely, an input model, defined by a source metamodel (or language) Si, is
transformed into an output model, defined by a target metamodel (or language)
So, by executing a transformation definition.

Let us take an example involving AADL and Ocarina. An AADL model
describes the architecture of a system as a hierarchy of interacting software and
hardware components. For example, an UAV application can be modeled in
AADL with a process that includes several threads such as the one presented
in Listing 1.1. A thread behavior is defined with important timing parameters



(Period, Compute Execution Time, etc.) and refers to the actual source code
(Source_Text and Compute Entrypoint Source Text).

1 −− Thread implementation instantiated as Alt_Ctrl_Th
2
3 thread implementation altitude_control_task . Impl
4 properties
5 Dispatch_Protocol=> Periodic ;
6 Dispatch_Offset => 0 ms;
7 Period => 250 ms;
8 Compute_Execution_Time => 1478 us . . 1660 us ;
9 Source_Text => (” autopilot/main. c”) ;

10 Compute_Entrypoint_Source_Text =>”altitude_control_task ”;
11 end altitude_control_task . Impl ;

Listing 1.1: Example of a thread implementation in AADL (taken from [5,22]).

Several analyses can be performed from this model. For example, we may
want to analyze the schedulability of the modeled application, i.e. determine
whether a set of tasks will meet their deadlines according to a given scheduling
algorithm. In this case, the AADL model is to be transformed into an analysis-
computable model in specialized tools as Cheddar [29] or MAST [14]. Only
relevant data (in short, properties of threads, scheduling algorithms and various
structural information about threads) are extracted from the AADL model and
translated into a real-time task model like the one represented in Figure 1.

Fig. 1: Task model used to evaluate the schedulability of a real-time application.

Ocarina is the toolset used to perform transformation of AADL models. In
Ocarina, a transformation definition T involves a set of transformation rules



T = {R1, R2, ..., Rn}. A transformation rule maps a subset of the source language
to a subset of the target language R : Si 7→ So. For example, Ocarina executes
the transformation rules described in Table 1 to translate an AADL model into
its equivalent real-time task model in Cheddar ADL.

Name Mapping Operation

Map_Thread R1 : AADLThread 7→ CheddarTask - translate every thread into a task
- link the thread to a CPU
- link the thread to an address_space

Map_Processor R2 : AADLProc 7→ CheddarCPU - translate every processor into a CPU
Map_Process R3 : AADLProcess 7→ CheddarAddSpace - translate every process into an address_space
Map_Data R4 : AADLData 7→ CheddarResource - translate every shared Data into a Resource

- link the Data to a CPU
- link the Data to an address_space
- link the Data to a list of threads

Table 1: Rules to transform an AADL model into a Cheddar model.

3.2 Contracts

Generally speaking, contracts are formal specifications for software components
that use assumptions and guarantees [19]. Assumptions describe properties ex-
pected by a given component on its environment, whereas guarantees specify
properties provided by the component under these assumptions.

Contracts can be used to document transformation rules (and reason on
them), in particular to specify in which conditions the transformation rule ap-
ply and what is the expected result. More precisely, assumptions describe the
properties of the initial model or the output model that must be true in order to
apply the rule and guarantees define the properties verified by the output model
after the application of the transformation rule.

Let us formalize transformation contracts. We first define the domain used
to formally model the rules.

Definition 1. A contract domain is a first-order signature 〈Si,So,Ft,Pt,F ,P〉
where

– Si is a set of sorts typing the elements of the input model
– So is a set of sorts typing the elements of the output model
– Ft is a set of functions Si 7→ So representing the transformation rules
– Pt is a set of unary predicates apply_t over Si. apply_t(x) means that

transformation rule t has been applied on element x.
– F is a set of function symbols over Si, So and other classic sorts (integers

for instance). These functions are used to describe the input model.
– P is a set of predicate symbols over Si ∪ So representing properties of input

and output models. All sorts are equiped with an binary predicate representing
equality and denoted by =.



Definition 2. Let D be a contract domain. The language of contracts built on
D is a many sorted first-order language with equality on sorts [31].

For example, the transformation rule R1 translates an AADLThread element
into a CheddarTask element. In order for the output model to be valid, the Ched-
dar task must be linked to a Cheddar CPU obtained from an AADL processor
that should be linked to the thread.

In this example, we manipulate 4 sorts: AADLThread and AADLProc in Si

and CheddarTask and CheddarCPU in So. The transformation rule R1 will be
represented by a function R1 : AADLThread 7→ CheddarTask. Notice that the
function is uninterpreted: there is no particular first-order semantics associated
to the function. The predicate apply_R1 takes an element of AADLThread as
parameter and means that R1 has been applied on a particular thread.

In order to be correctly applied, the thread t given as a parameter of R1 must
respect some conditions:

– if t is a periodic or a sporadic thread, then its period must be specified to
be transformed into a Cheddar task.

– t must be linked to an AADL processor p and there must be a Cheddar CPU
c resulting of the transformation of p. There is thus a transformation rule
R2 : AADLProc 7→ CheddarCPU.

Notice that these two conditions belong to two different families of assump-
tions. The first one is directly linked to the input model and thus restrict the
possible input models (a periodic thread without a defined period cannot be
used with this transformation). The last one specifies properties of the output
model (the fact that a Cheddar CPU must already exist) by possibly using a
constraint of the input model (every thread has an associated processor in an
AADL model).

Considering t to be the parameter of R1, we can thus define two assumptions
for R1:

Ai
R1

(t) ≡ dispatch_protocol(t) = Periodic ∨ dispatch_protocol(t) = Periodic

→ ¬(period(t) = 0)

Ao
R1

(t, p, c) ≡ linked(t, p) ∧ c = Rp(p)

where dispatch_protocol is a function AADLThread 7→ AADLDispatchProtocol

and Periodic and Sporadic are constants built on AADLDispatchProtocol,
period is a function AADLThread 7→ Int and linked is a predicate on AADLThread×
AADLProc specifying that a thread is linked to a particular processor in the AADL
model.

Notice that Ao
R1

has 3 free variables: t represents the AADL thread, and
p and c represents respectively the AADL processor and the Cheddar CPU.
This is necessary, as the Cheddar CPU will be used in the guarantee of the
transformation rule, we thus need to be able to quantify existentially p and c
“over” Ao

R1
.



The guarantee of R1 should express that there is a Cheddar task that results
from the transformation of the thread and this task is linked to the Cheddar
processor resulting from the transformation of the AADL processor associated
to the thread and the created Cheddar task cannot be a previously created
Cheddar task

If t represents the parameter of the rule R1, the guarantee GR1
(t, c) is then

∃tc ∈ CheddarTask tc = Rt(t) ∧ linked(tc, c) ∧ (∀t′ ∈ AADLThread t 6= t′ → tc 6=
Rt(t

′)) where c is the Cheddar CPU that should be associated to the task3.
The contract of R1 can be viewed as the following formula: ∀t ∈ AADLThread ∀p ∈

AADLProc ∀c ∈ CheddarCPU Ai
R1

(t) ∧Ao
R1

(t, p, c) → (apply_R1 (t) → GR1(t, c)).
The semantics of this formula is the following: for all ADDL thread t, AADL

processor p and Cheddar CPU c, if t verifies the assumptions Ai
R1

(t), p is the
processor associated to t and c is the CPU obtained by transforming p, then if t
is transformed then the guarantees of R1 hold. Notice that the formula respects
the intuitive meaning of the contract: if the assumptions hold, applying the
transformation rule implies that the guarantee holds. If the assumptions do not
hold, then applying the rule does not imply that the guarantee holds.

4 Use of contracts in Ocarina
This section presents the application of contracts in Ocarina. We firstly present
the general model transformation approach. Then, we detail two use cases of con-
tracts in Ocarina: either to detect contract violations at run time or to demon-
strate general properties of the model transformation at the design level.

4.1 Approach overview
The Ocarina model transformation workflow (Figure 2) that includes contracts
encompasses three levels of operation: the execution level (Level 0), the definition
level (Level 1) and the analysis level (Level 2).

At Level 0, the tool executes a transformation to translate an input AADL
model into an output model, e.g. a real-time task model in Cheddar ADL, or
ARINC-653 code. The transformation is defined at level 1. The transformation
definition includes two parts: (1) a set of transformation rules describing how a
model in AADL is to be translated into a model in the target language; (2) con-
tracts specifying the conditions to fulfill prior to execute transformation rules.
Both the transformation rules and the contracts must be defined in terms of the
source and target metamodels. At level 3, we are able to analyze the transforma-
tion definition to demonstrate properties of the model transformation process or
find errors.

The next sections present an implementation of this workflow in Ocarina.
Section 4.2 explains how the Ocarina code is reorganized to make transformation
rules explicit and then extended with contracts and Section 4.3 presents the
analysis of contracts using SMT solving.
3 tc ∈ CheddarTask is a notation abuse to specify that tc is a variable on sort

CheddarTask.
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Fig. 2: Model transformation workflow implemented in Ocarina.

4.2 Integration of contracts in Ocarina

Ocarina is developed in Ada. The Ocarina code implementing model transfor-
mations can be reorganized to make both the transformation rules and the con-
tracts explicit: 1) transformation rules can be easily written as functions, 2) we
can express contracts directly in the code as Ada 2012 preconditions and post-
conditions, e.g. Pre in Listing 1.2. Notice that preconditions and postconditions
in Ada are semantically equivalent to assumptions (boolean predicates on input
AST nodes) and guarantees (boolean predicates on output AST nodes) in our
definition of contracts.

In Listing 1.2, the transformation rule concerning threads is implemented
via a dedicated Map_Thread function that takes a Node_Id parameter which is
an element of the AADL Instance Tree (the Ocarina internal representation of
the AADL model). In addition, the definition of the function involves a contract
expressed through Pre and Post. Preconditions in the example specify require-
ments on the input model and can be classified in three categories. First, typing
constraints specify the type of the input element in terms of AADL component
types. For instance, the input element E must be a thread, which requirement
is expressed by the Is_Thread (E) predicate at line 4. Property requirements
define all the properties that must be verified by this element (with possible
property values) in order to execute the transformation. For example, the as-
sertion Get_Thread_Dispatch_Protocol (E) \= Thread_None states that the
Dispatch_Protocol property must be specified for the thread element, just as
Compute_Execution_Time and Period properties must be defined (lines 11 to
15). Finally, architecture constraints describe prerequisites at the architectural
level. For example, a model is ready for transformation if the parent process of
the thread is bound to a processor which means that this specific thread is to be
executed on this particular processor. Thus, the precondition at line 19 asserts
that there is a processor P that is bound to the parent process of the thread E.
Postconditions must be expressed in a similar way on the output model.



1 Pre =>
2 (−− 1/ Typing
3 AINU. Is_Thread (E) and then
4
5 −− 2/ Property requirements
6 −− The thread a) has dispatch protocol specified , b)
7 −− has compute_execution_time specified , i f i t is
8 −− either periodic or sporadic , then i t has a period
9

10 (Get_Thread_Dispatch_Protocol (E) /= Thread_None) and then
11 (Get_Execution_Time (E) /= Empty_Time_Array) and then
12 ( i f Get_Thread_Dispatch_Protocol (E) = Thread_Periodic or else
13 Get_Thread_Dispatch_Protocol (E) = Thread_Sporadic then
14 Get_Thread_Period (E) /= Null_Time) and then
15
16 −− 3/ Architecture requirements
17 −− a) There is a linked processor P for E
18 ( for some P of Processors (Get_Root_Component (E) ) =>
19 AINU. Is_Processor (P) and then
20 P = Get_Bound_Processor
21 (Corresponding_Instance
22 (Get_Container_Process (Parent_Subcomponent (E) ) ) ) ) ) ;

Listing 1.2: Definition of a transformation rule in Ada, with preconditions.

With this approach, we are able to check contracts during a transformation
execution. Any condition evaluated to false at run time will raise an execution
error and the transformation will terminate. Therefore, an execution of trans-
formation rules with contracts allow us to state whether the input language and
the output language meet the specification of transformation rules or not. In
other words, a transformation will complete if and only if both the input and
output models fulfill all the contracts.

4.3 Analysis of transformation contracts

We use the Z3 SMT solver [20] to perform analysis of transformation contracts.
In order to do so, we first express input and output languages and contracts
in SMT-LIB [2] and then define algorithms to verify properties with Z3. This
activity is manual for the moment. Future work will consider its automation.

The SMT-LIB specification must describe contracts together with the subsets
of input and output metamodels that will be required by the contracts.

First, the specification in Listing 1.3 describes elements of the input and out-
put models (AADLThread, AADLProc, …) with sorts and possibly with associated
constants. In addition, static properties such as periods or dispatch protocols,
as well as structural properties, i.e. relations between elements, are described
through functions. For example, dispatch_protocol is a function that asso-
ciates a thread to a dispatch protocol; linked is a predicate asserting that a
particular thread is associated to a processor. Finally, assertions involving sorts
and functions are added to specify all the corrects instances of the metamodels,
i.e. valid models. For instance, a valid model must respect the following asser-
tion: ”every AADL thread in the set of AADL threads must be linked to an AADL
processor in the set of AADL processors”, which is expressed at line 16.



1 ; input model
2 ; ; input sorts and constants
3 (declare−sort AADLProc 0)
4 (declare−sort AADLThread 0)
5 (declare−sort AADLDispatchProtocol 0)
6 (declare−const periodic AADLDispatchProtocol)
7 (declare−const sporadic AADLDispatchProtocol)
8 (declare−const aperiodic AADLDispatchProtocol)
9

10 ; ; predicates and functions on input sorts
11 (declare−fun linked (AADLThread AADLProc) Bool)
12 (declare−fun dispatch_protocol (AADLThread) AADLDispatchProtocol)
13 (declare−fun period (AADLThread) Int )
14
15 ; ; constraints on input sorts
16 (assert ( forall (( t AADLThread) )
17 (exists ((p AADLProc) ) ( linked t p) ) ) )

Listing 1.3: Definition of the input model in SMT-LIB using sorts, constants,
predicates, functions and constraints.

The specification is then completed with all contracts. For instance, the as-
sumptions, guarantees and contract of rule R1 tranforming AADL thread to
Cheddar tasks is presented in Listing 1.4. This is a direct traduction of contract
modeling presented in Section 3.2.

The properties we want to analyze are the following:

– executability of the transformation: all the defined rules can be executed,
– determinism of the transformation: the behavior is fully deterministic, only

one rule can be fired at a time,
– non-redundancy: each rule supports a specific objective.

Analysis of these properties is achieved by checking satisfiability of our pre-
vious SMT-LIB modeling under assumptions [21]. In such an approach, analysis
of a given property is based on a set of assumptions that hold for a specific invo-
cation of the solver. The specification must therefore be completed with boolean
variables XXX−trigger to take particular formulas into account in the SMT solver.
For instance, the assertion

1 (assert (or (not pre−R1−input−trigger)
2 ( forall (( thread AADLThread) ) (pre_R1_input thread) ) ) )

defines a trigger for the contract assumptions of the rule R1 about the input
model. If we want to use this assumption in an analysis, we just need to check
satisfiability under the assumption pre−R1−input−trigger.

Executability. A transformation is executable if all rules can be, that is all con-
tracts’ assumptions can be satisfied at run time. In addition to checking contracts
at run time (see Section 4.2), we must pay particular attention to assumptions of
transformation rules that are guaranteed by other transformation rules. This is
the case for instance when a rule requires an element produced by another rule.
For example, the Map_Thread transformation rule translates an AADLThread into
a CheddarTask and link it to a CheddarCPU. To succeed, the rule requires a suit-
able CheddarCPU to be linked to the task. Thus, we must prove that there exists a



1 ; AADL thread transformation rule
2 ; ; mapping function for transformation
3 (declare−fun apply_R1 (AADLThread) Bool)
4
5 ; ; mapping function for transformation
6 (declare−fun R1 (AADLThread) CheddarTask)
7
8 ; ; assumptions
9 (define−fun pre_R1_input (( thread AADLThread) ) Bool

10 (implies (or (= (dispatch_protocol thread) periodic )
11 (= (dispatch_protocol thread) sporadic ) )
12 (not (= ( period thread) 0)) ) )
13 (define−fun pre_R1_output
14 (( thread AADLThread) (proc AADLProc) (cpu CheddarCPU) ) Bool
15 (and ( linked thread proc)
16 (= cpu (R2 proc) ) ) )
17 (define−fun pre_R1
18 (( thread AADLThread) (proc AADLProc) (cpu CheddarCPU) ) Bool
19 (and (pre_R1_input thread) (pre_R1_output thread proc cpu) ) )
20
21 ; ; guarantees
22 (define−fun post_R1
23 (( thread AADLThread) (cpu CheddarCPU) ) Bool
24 (exists (( task CheddarTask) )
25 (and
26 (= task (R1 thread) )
27 ( linked task cpu)
28 ( forall (( thread2 AADLThread) )
29 (implies (not (= thread thread2) )
30 (not (= task (R1 thread) ) ) ) ) ) ) )

Listing 1.4: Contract for the transformation rule R1 with assumptions and
guarantees.



transformation rule in the transformation definition that meets this requirement.
In our example, this is achieved through another rule named Map_Processor that
translates every AADLProc into a CheddarCPU.

Executability can be verified by checking for each contract that its assump-
tions can be obtained using the properties of the input and output models and
the guarantees of the other contracts. The procedure is described in Algorithm 1
and is intuitively the following: assert the negation of the each atomic assump-
tion of the given contract, assert the guarantees of the other contracts and ask
the SMT solver to check satisfiability of the set of produced assertions (with
constraints on input and output models). If the solver answers UNSAT, then the
transformation is executable, as it means that the assumption of the contract
is falsified by some guarantee or domain constraint, otherwise the assumption
cannot be obtained.

Algorithm 1: Check executability
Data: An ordered list of contracts C.
Result: YES if the transformation is executable, otherwise the assumption

that cannot be obtained and its contract
1 begin
2 foreach Ci ∈ C do
3 foreach Cj ∈ C| Ci 6= Cj do
4 assert guarantees Gj of Cj in the solver
5 foreach assumption Aj of Ci do
6 assert ¬Aj in the solver
7 if SMT check is SAT then
8 return (Ci, Aj)
9 else

10 remove ¬Aj from the solver
11 remove all guarantees previously asserted
12 return YES

Determinism. The transformation process is deterministic if, at run time, only
one rule can be fired on a particular element. As corollary, nondeterminism occurs
when more than one transformation rules can be fired at the same time because
these rules have compatible assumptions. In the same spirit than the previous
algorithm, determinism can be checked by asserting, for each contract, the nega-
tion of the assumptions of the rule together with other contracts assumptions
one by one, as described in Algorithm 2. The transformation is deterministic if
the SMT solver check returns SAT.

Non-redundancy. We expect each rule to do a specific job in the model trans-
formation process. Two rules doing the same job is a design error because it



Algorithm 2: Check determinism
Data: An ordered list of contracts C.
Result: YES if the trans. is deterministic, otherwise the redundant contracts.

1 begin
2 foreach Ci ∈ C do
3 assert assumption ¬Ai of Ci in the solver
4 foreach Cj ∈ C| Ci 6= Cj do
5 assert assumption Aj of Cj in the solver
6 if SMT check is UNSAT then
7 return ((Ci, Cj))
8 else
9 remove Aj from the solver

10 remove Ai from the solver
11 return YES

is a replicated, possibly unused, procedure or can cause indeterminate behav-
iors. Again, non-redundancy can be checked by considering, for each contract,
the negation of its guarantees together with all other contracts guarantees, as
described in Algorithm 3.

Algorithm 3: Check non-redundancy
Data: An ordered list of contracts C.
Result: YES if there is no redundancy, otherwise the contract that is

redundant.
1 begin
2 foreach Ci ∈ C do
3 assert ¬Gi for guarantee Gi of Ci in the solver
4 foreach Cj ∈ C| Ci 6= Cj do
5 assert guarantees Gj of Cj in the solver
6 if SMT check is UNSAT then
7 return Ci

8 else
9 remove all guarantees previously asserted

10 return YES

5 Lessons learnt

We applied this approach to analyse the AADL-to-Cheddar backend. This back-
end is made of 6 rules, one per input element to map (processor, threads, ports,
…). We note that the complexity of transformation rules is similar in other Oca-
rina backends. This experiment allowed us to evaluate our contribution on a
restricted set of rules.



We have defined contracts for these rules both in Ada2012 and in SMT-
Lib. Contracts are integrated in the Ocarina code written in Ada for run time
verification, whereas the analysis of contracts is performed through the SMT-LIB
language and the Z3 SMT solver.

Contracts can be used in two modes. At run time, we are able to detect
contract violations, thereby ensuring that the transformation process will fulfill
all the transformation contracts. At the design level, we are able to analyze
the transformation contracts to demonstrate several properties of the model
transformation process: executability and the determinism of the transformation
process, and non-redundancy of transformation rules.

In its current form, all SMT rules are proved by Z3, and corresponding
Ada2012 contracts are correctly processed. Z3 processing time for all rules is
a couple of seconds. Some of the checking algoritm have a quadratic compleixty
in the number of rules to be processed. Thus, we expect a significant increase as
the number of rules will increase.

We note that the Ada2012 contracts are close to the SMT-Lib ones, allow-
ing for traceability review. We will also evalute the capability to automatically
generate SMT-Lib elements from Ada2012 ones. The latter being the one closer
to the tool developer habits.

6 Conclusion and perspectives

This paper dealt with the problem of qualifying model-based engineering tools, in
particular tools that use model transformations. To justify the transformation
process itself, we investigated the use of contracts in two dimensions: first to
attach contract at run-time using Ada2012 pre/post condition mechanisms; then
to express contracts of transformation rules using SMT.

We presented several algorithms to analyze the completeness and the deter-
minism of the transformation process, and non-redundancy of transformation
rules to assess the consistency of the transformation rules. We applied this ap-
proach to the AADL-to-Cheddar backend of the Ocarina toolchain. This ap-
proach allowed us to better characterize the subset of the input languages being
used by this backend, and to assess its completeness.

Future works may take several directions. A first task will be to improve the
connection between Ada 2012 pre/post conditions and SMT-Lib rules. In fact,
we will be able to automatically extract contracts from the Ocarina code in Ada
so as to generate the SMT-LIB specification that interfaces with SMT solvers.

A further task will be to perform a thorough review of the DO330 stan-
dard regarding tool qualificaiton, and propose a stronger connections between
engineering artefacts (rules, pre/post conditions) and certification objectives.
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