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Abstract

The development of embedded systems is a complex and critical task, especially be-
cause of the non-functional requirements. In fact, embedded systems have to fulfill
a set of non-functional properties dictated by their environment, expressed for ex-
ample in terms of timing, dependability, security, or other performance criteria. In
safety-critical applications for instance (e.g. an airplane), missing a non-functional
requirement can have severe consequences, e.g. loss of life, personal injury, equip-
ment damage, environmental disaster, etc.

Models and analyses are valuable asset to design complex embedded systems. Mod-
eling enables to represent the system properties, whereas analysis makes it possible
to evaluate them. Yet, modeling and analysis techniques have been historically
investigated separately in software/systems engineering. On the one hand, Model-
Driven Engineering uses domain-specific models as primary artifacts to develop a
system. On the other hand, mathematically-based analysis techniques such as real-
time scheduling analysis, model-checking, dependability analysis, etc. makes it pos-
sible to analyze the diverse non-functional properties of computer systems. Thus,
a major contribution to improve the development of embedded systems, and the
main objective of this thesis, will be to integrate models, as defined by the basic
principles of Model-Driven Engineering (i.e. the triad model, metamodel, model
transformation), with mathematical-funded analysis approaches to analyze the non-
functional properties of embedded systems. This thesis aims at providing a general
and coherent view on this problem by investigating two fundamental questions:

• How to apply an analysis on a model? (technical issue)

• How to manage the analysis process? (methodological issue)

This thesis advances several important concepts regarding the integration issue.

First of all, we revisit the way model transformations are done to accommodate
specific analysis engines. Arguing that an analysis is less based on a particular
model syntax than specific data, we promote query mechanisms called accessor to
analyze the non-functional properties of a system at design time. These accessors
enable to extract data from a model and then analyze them. Expected benefit is
that analysis can be integrated to any kind of model as soon as an implementation
of accessors to model internals is provided.

Next, we aim at formalizing the analysis execution. We show that an analysis is ba-
sically a program with preconditions and postconditions. The preconditions are the
properties to hold true on an input model to successfully execute the analysis. Post-
conditions are the properties guaranteed on the model after the analysis execution.
With preconditions and postconditions, an analysis is complete and sound.

iii



Lastly, we abstract away from the execution aspect through the notion of contract.
A contract completely defines the interfaces of an analysis in terms of processed
data and properties. Inputs/Outputs (I/O) describe input and output data. As-
sumptions/Guarantees (A/G) describe input and output properties. SAT methods
can then be used to automatically reason about these interfaces, and provide greater
automation support: which analysis can be applied on a given model? Which are
the analyses that meet a given goal? Are there analyses to be combined? Are there
interference between analyses? Etc.

We evaluate different implementation of these concepts using multiple languages
including general-purpose programming languages (Python), constraint languages
(REAL), and specification languages (Alloy).

We investigate and apply these concepts for the timing analysis of architectural
models. We illustrate the capabilities of our approach to deal with concrete systems
coming from the aerospace: a drone, an exploratory robot and a flight management
system. In particular, we demonstrate that accessors enable to apply real-time
scheduling analyses onto different kinds of architectural models, e.g. written with
the industry standard AADL (Architecture Analysis and Design Language) or the
new time-triggered language CPAL (Cyber-Physical Action Language). In addition,
contracts make it possible to automate complex analysis procedures and, to some
extent, to mechanize the design process itself.

Keywords: Embedded Systems, Model-Driven Engineering, Analysis, Real-Time
Scheduling, Contracts, Architecture Description Languages.
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Chapter I

Introduction

Abstract

In this introduction chapter, we first present the context of the works and our research
motivations. Next, we state the problems that we aim to address in this context. After
that, we introduce the contributions which are provided in this thesis. We also detail
the work hypotheses that fix the limits of these contributions. Lastly, we describe the
organization of this manuscript.

I.1 Context and motivations

Software systems have become an integral part of our daily life, be it for work or
entertainment through Personal Computers or laptops, for transportation in auto-
mobiles, trains or airplanes, to communicate via mobile networks or the Internet, but
also for healthcare, energy management, economics and many other applications.

I.1.1 Non-functional requirements in embedded systems

An embedded system is a particular kind of computer system. Embedded systems
consist of hardware, software, and an environment to interact with. In particular,
embedded systems have to fulfill the non-functional requirements dictated by the
environment, expressed for example in terms of timing, dependability, security, or
other performance criteria. Embedded systems can be found in many application
areas, especially in safety-critical applications such as aeronautics, space or automo-
tive. In safety-critical applications, missing a non-functional requirement can have
severe consequences, e.g. loss of life, personal injury, equipment damage, environ-
mental harm, etc.

With ever increasing functionalities and growing complexity, embedded systems
oblige not only to innovate in terms of technologies (e.g. IMA or TTA architectures,
real-time computer networks, multi/many core systems, mixed criticality systems,
etc.) but also to provide techniques and tools to develop them. In this thesis, we
study state-of-the-art methods and tools to develop embedded systems.
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I.1. Context and motivations

I.1.2 Development process: towards analysis co-design

A system life-cycle is typically broken down in five main stages which are require-
ments engineering, design, implementation, Verification & Validation and, finally,
operation. Several studies notice that the distance between design and V&V activi-
ties in current development processes results in costly regressions and reworks (see
Figure I.1 for an example with the V-model).

Figure I.1: Benefits of Early Fault Discovery (taken from [1]). In current de-
velopment approaches, a majority of faults is introduced at early-stages while those
faults are discovered late in the development process, according to Feiler et al. 70%
of faults have their origins at design time while 80% of them are discovered after the
implementation phase.

Novel development approaches, such as Model-Driven Engineering [2] or Virtual
Integration [1], shift from a system/test to a model/analysis paradigm. The watch-
word for these approaches could be “model, validate, then build”1. The core idea is
to describe the system through many different models, possibly integrate the view-
points, and verify/validate the system at design time. Then, the system can be
manually built or (semi-)automatically generated from models. With this approach,
the design process consists of a set of modeling and analysis steps: models are used
to define the system from high-level models to low-level models and code, whereas
analyses are applied on such models to gradually validate or invalidate the design
choices. The system is “correct-by-design”.

In this thesis, we explore a Model-Driven Engineering approach that systematically
combines models and analyses to develop embedded systems, emphasizing especially
on the design phase.

1originally “integrate then build” in [1]

2



Chapter I. Introduction

I.1.3 Coupling models and analyses

Modeling and analysis are dual activities to comprehend any system, be it to explain
the Solar System, understand a social system, architect a house, or design a computer
system. Modeling enables to represent a system, whereas analysis makes it possible
to dissect this system.

In embedded systems engineering, modeling and analysis solutions have been investi-
gated separately. On the one hand, Model-Driven Engineering is an engineering ap-
proach that focuses on domain-specific models so as to develop software systems. On
the other hand, mathematical-funded analysis approaches such as real-time schedul-
ing analysis, model-checking, dependability analysis, etc. make it possible to analyze
the diverse non-functional properties of embedded systems.

A major contribution to improve the development of embedded systems, and the
main objective of this thesis, will be to integrate models, as defined by the basic
principles of Model-Driven Engineering (i.e. the triad model, metamodel, model
transformation), with mathematical-funded analysis approaches to analyze the non-
functional properties of embedded systems. In this thesis, we concentrate on ar-
chitectural modeling through Architecture Description Languages, and real-time
scheduling analysis. We explain the problem in greater detail and subsequent re-
search lines in the next sections.

I.2 Problem statement

The integration of models and analyses raises two fundamental questions:

• How to apply an analysis on a model? (technical issue)

• How to manage the analysis process? (methodological issue)

I.2.1 How to apply an analysis on a model?

Modeling and analysis features are usually provided as part of distinct tools:

1. languages such as AADL [3], EAST-ADL (combined with AUTOSAR) [4, 5],
or SysML and MARTE UML profiles [6, 7] provide standardized notations for
modeling system architectures;

2. analytical frameworks for Verification & Validation activities targeting real-
time scheduling tools [8, 9], model-checkers [10, 11], etc.

An approach commonly used to connect the toolsets, known as model transforma-
tion, is to translate a model used for design into a model used for analysis. For ex-
ample, see [12] for a survey on model transformations to analyze the non-functional
properties of AADL models (i.e. behavior, schedulability, timing and dependability).

In that context, one can either implement a comprehensive model transformation
(e.g. metamodeling under the MOF standard [13], in the Eclipse Modeling Frame-
work [14], transformation with a dedicated language such as ATL [15]); or more

3



I.2. Problem statement

probably relies on an ad hoc transformation chain to deal with the design and anal-
ysis models under different technical spaces. Yet, we note two main drawbacks with
this approach:

(1) one must define a multiplicity of transformations attached to specific tools,

(2) in the current state of the art, ensuring the correctness of model transforma-
tions is yet an unsolved problem (see works by Amrani [16] on this topic).

Depending on its complexity, we note that the analysis can be operated directly
from the modeling tool using query languages (e.g. OCL). Thus, a first research
direction in this thesis will be to further explore and compare means to analyze the
non-function properties of a system from architectural models.

Design
Model

Analysis
Model

Analysis
transfor-
mation

inputs result?

applicability?

Figure I.2: Analysis in Model-Based Systems Engineering is based on a transfor-
mation process. Design and analysis features are part of distinct tools: (1) a model
used for design in a first tool is translated into a model used for analysis in a third-
party tool; (2) the analysis in the third-party tool is then applied on its own model.
This approach does not address the validity of the transformation: is the analysis
applicable on the model which is considered? Upstream, the analysis result is not
handled: what is the meaning of the analysis result?

I.2.2 How to manage the analysis process?

From technical analysis solutions, engineers must be able to manage the analysis
process. These are some questions faced by an engineer when applying an analysis:

When to apply the analysis? On the one hand, an analysis is carried out according
to a precise analytical model, e.g. a task model. On the other hand, an analysis
fulfills a particular objective, e.g. it provides a result about the schedulability of
the system. The correct application of an analysis is thus a consistent association
between a model, an analysis and an objective: the model in input must comply with
the analysis expectations (data required by the analysis, respect of the assumptions
made by the analysis, etc.), and the analysis must meet the objectives of the engineer
in output.

What to do with the analysis result? Carrying out an analysis is not a dead-end.
Firstly, an analysis may report on an engineering goal: performances, timing, safety,
etc. Secondly, elementary analysis results may be combined to build wider results;
or must be computed in a precise order to be sound.

To answer these questions, we must investigate a more systematic approach that
will enable to manage analysis activities at design time. This approach must be
supported by MDE tools alongside modeling languages and analysis engines.

4



Chapter I. Introduction

In the next section, we explain the research lines explored in this thesis, and in-
troduce our contributions to tackle the aforementioned issues. We also explain the
hypotheses that delimit our works.

I.3 Lines of research and contributions

From the problem statement, we explore three complementary lines of research:

R1: exploration of means to analyze the non-functional properties of a system from
its models,

R2: investigation of the semantics of an analysis and reasoning on the analysis
process.

R3: practical application of these concepts and experimentation through case stud-
ies.

R1 and R2 target conceptual and practical solutions for the problems stated above.
R3 is more application-oriented and seeks to evaluate the benefits of combining
models and analyses for engineering real embedded systems. The remainder of the
section sums up the four contributions of this thesis with respect to these lines of
research.

I.3.1 Technical integration through model query

C1: model query focuses on the technical issue behind the analysis of a model.
We tackle the problem from a different standpoint compared to related works that
emphasize on model transformation. Arguing that an analysis is less based on a
particular model syntax than specific data, we promote query mechanisms called
accessor to analyze the non-functional properties of a system at design time. These
accessors enable to extract data from a model and then analyze them. An expected
benefit is that an analysis can be integrated to any kind of model as soon as an im-
plementation of accessors to model internals is provided. Another advantage is that
an analysis could be easily implemented by using a general-purpose programming
language (e.g. Python) instead of relying on specific analysis engines.

I.3.2 Semantic integration and decision through contracts

C2: semantics of an analysis. In a second time, we aim at formalizing the
semantics of an analysis. We show that an analysis is basically a program with
preconditions and postconditions (i.e. like a Floyd-Hoare triple). The preconditions
are the properties to hold true on an input model to successfully execute the anal-
ysis. Postconditions are the properties guaranteed on the model after the analysis
execution. We show that a full analysis, including preconditions and postconditions,
can be implemented through above-mentioned accessors.

5



I.4. Work hypotheses

C3: contract-driven analysis. We extend the previous contribution through
the notion of contract, semantically equivalent to a Floyd-Hoare triple. A contract
completely defines the interfaces of an analysis in terms of processed data and prop-
erties. Inputs/Outputs (I/O) describe input and output data. Assumptions/Guar-
antees (A/G) describe input and output properties. SAT methods can then be used
to automatically reason about these interfaces, and answer complex questions about
the analysis process: which analysis can be applied on a given model? Which are
the analyses that meet a given goal? Are there analyses to be combined? Are there
interferences between analyses? Etc. In practice, contracts can be defined with the
help of a specification language such as Alloy, and evaluated through associated SAT
solvers.

I.3.3 Proof-of-concept analysis and orchestration tool

C4: proof-of-concept tool. As an example of application, we propose a proof-
of-concept tool that enables not only to analyze architectural models but also to
orchestrate the analysis process. This tool implements several functions, each one
implementing a part of the concepts introduced earlier. In particular, our tool
provides accessors towards AADL and CPAL models, various real-time scheduling
analyses programmed in Python, and an orchestration module based on Alloy. We
illustrate the capabilities of such a tool on various case studies coming from the
aerospace. Through these case studies, we show that our tool enables not only to
automate the analysis process at design time but also to enhance the design process
by systematically combining models and analyses.

I.4 Work hypotheses

The three following hypotheses fix the limits of our contributions. These hypotheses
may be relaxed in future works.

H1: embedded systems. We concentrate on embedded systems [17]. Embedded
systems are computer systems that present two special features: (1) they consist
of hardware, software and an environment; (2) they have to meet non-functional
properties dictated by the environment.

H2: design through architectural description languages. We focus on early
design phases, especially the architectural design stage. For this purpose, we study
two particular Architecture Description Languages: the Architecture Analysis and
Design Language (AADL) [18], an industry standardized language to describe the ar-
chitecture of real-time embedded systems, and the Cyber-Physical Action Language
(CPAL), a new language for the model-driven development and real-time execution
of Cyber-Physical Systems (CPS) [19].

H3: real-time properties. We concentrate on real-time properties. A real-time
system is a system for which the “the correctness depends not only on the logical
result of the computation but also on the time at which the results are produced”
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[20]. Worst-Case Execution Times (WCET), Worst-Case Response Times (WCRT)
and Worst-Case Traversal Times (WCTT) are examples of real-time constraints to
be analyzed. For this purpose, we emphasize on a particular kind of analytical
methods called real-time scheduling analyses [21].

I.5 Thesis organization

This thesis is organized into nine chapters. The core chapters are split into two
subsequent parts: concepts and application.

Part 1 (Concepts) presents both the concepts preceding our works and the con-
cepts contributed in this thesis.

Chapter II (Background) introduces the necessary background concepts re-
lated to embedded systems, model-driven engineering and model-based analysis.
In particular, we present two Architecture Description Languages (ADL) used
in this thesis, namely the Architecture Description Language (AADL) and the
Cyber-Physical Action Language (CPAL). We also introduce the important con-
cepts of real-time scheduling analysis.

Chapter III (Model query) deals with model query. It presents query mecha-
nisms, called accessors, to analyze the non-functional properties of a system from
architectural models. This chapter explains the rationale behind model query
and presents an implementation of accessors through a dedicated Application
Programming Interface.

Chapter IV (Semantics of an analysis) focuses on the analysis, especially its
semantics. This chapter firstly shows that a full analysis consists of preconditions,
the analysis itself, and postconditions. Then, we evaluate several implementation
means, including both specialized constraint languages and more generic acces-
sors.

Chapter V (Contract-driven analysis) explores the notion of contract. Con-
tracts specify the interface of an analysis in terms of processed data and prop-
erties, and allow for automatic reasoning on analysis interfaces. In a proof-of-
concept, we show that contracts can be defined with the help of a specification
language such as Alloy, and evaluated through associated SAT solvers. In this
way, we are able to systematize the analysis activities at design time.

Part 2 (Application) presents an implementation of these concepts through a
tool prototype and experiments these concepts on various case studies.

Chapter VI (Tool prototype) describes a tool prototype that implements the
various concepts introduced in the first part of the thesis. This proof-of-concept
tool implements several functions so as to automate analysis activities at design
time. In particular, our tool implements accessors towards AADL and CPAL

7
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models, analyses programmed in Python, and an orchestration module based on
Alloy.

Chapter VII (Case studies) presents several case studies. We use the pro-
totype tool presented in the previous chapter to experiment a design workflow
that combines architectural models and analyses. We describe three cases stud-
ies: an open-source drone named Paparazzi, the Mars Pathfinder exploratory
robot, a Flight Management System. Through these case studies, we show that
the analysis is an integral part of the design process.

This dissertation finishes with a general conclusion and some perspectives.

Chapter VIII (Conclusion) recaps the content of this thesis and summarizes
the main results.

Chapter IX (Perspectives) sketches potential improvements, extensions and
research directions to continue the work initiated in this thesis.
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Chapter II

Background

Abstract

This chapter presents the general concepts that are necessary to comprehend the is-
sue tackled in this thesis and proposed contributions regarding methods and tools to
develop real-time embedded systems. We firstly present the special features of em-
bedded systems in Section II.1. In particular, a major problem related to embedded
systems is to cope with non-functional properties, e.g. real-time, safety or security.
We consider two complementary approaches to that end. On the one hand (Sec-
tion II.2), Model-Driven Engineering (MDE) is a generative engineering approach
based on the triad model, metamodel, model transformation. At the core of MDE,
Domain-Specific Modeling Languages enable to form models, especially through Ar-
chitecture Description Languages (ADL) during early stages of design. We present
two particular ADLs: the Architecture Analysis and Design Language (AADL) and
the Cyber-Physical Action Language (CPAL). On the other hand (Section II.3), we
focus on model-based analyses, that is to say approaches that apply mathematical rea-
soning from an analytical representation of the system to check some non-functional
properties. We concentrate on real-time scheduling analysis. Real-time schedul-
ing analysis determines whether a task system meet some timing constraints or not
(e.g. deadlines). In Section II.4, we discuss the link between MDE and analysis
that founded the motivation of our works. We finally conclude this chapter in Sec-
tion II.5.

II.1 Embedded systems

This thesis deals with the modeling and analysis of embedded systems at large. An
embedded system is a specific kind of computer system.

Definition 1 (Embedded system). An embedded system is an engineering artifact
involving computation that is subject to physical constraints. Embedded systems con-
sist of hardware, software, and an environment. [22]

In particular, an embedded system possesses the following core features [22, 23, 17,
24, 25, 26]:

• it is made up of a combination of hardware and software components,
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• it is designed to perform a fixed function, specific to an application,

• it interacts with the external physical world and has to meet the constraints
dictated by the environment,

• it is part of a larger system.

II.1.1 Hardware and software architecture

An embedded system combines hardware and software components in order to carry
out a fixed function, specific to the application. At the highest level, we can represent
the major elements of an embedded system with the layered model in Figure II.1.

Application Software

System Software

Hardware

Figure II.1: Embedded systems model (after [23]).

The hardware layer contains the physical components provided by an embedded
board. Hardware typically consists of processors, memories, data storage, input/out-
put devices, communication networks, etc. The system and application software
layers contain the software being executed by the embedded system. The system
software layer provides abstractions between the hardware and application software
such as device drivers, operating systems or middlewares. The application software
layer finally contains application-specific software that run on top of the system soft-
ware layer. With that architecture, the application can be programmed through the
various services provided by the system software layer, without interfacing directly
with the physical components.

II.1.2 Non-functional constraints

Embedded systems have to meet specific non-functional constraints [24, 27]. We
briefly present some of these constraints in the next paragraphs.

Small size, low weight. Embedded systems are physically located in larger sys-
tems. Therefore, they may have to fit into a restricted place between electrical
or mechanical components, for instance Electronic Control Units (ECU) in cars.
Weight may also be critical, for example for fuel economy or when it impacts the
dynamics of the embedding vehicle (aircraft, spacecrafts, small-sized vehicles such
as drones), or simply for ergonomics (portable equipment such as laptops).

Real-time operation. Embedded systems continuously interact with the external
physical world. Real-time, which is the physical time in the environment of the
system, is an integral part of embedded systems [25, 17].
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External

environment
Reactive

system

Input real-time

environmentsystem

Output

Figure II.2: Interaction between an embedded systems and the external physical
world.

Definition 2 (Real-time system). A real-time system is a system for which the
correctness depends not only on the logical result of the computation but also on the
time at which the results are produced [20].

More precisely, the computer system must react in constraint time to external events,
in order to keep control of the external process [28]. Typically, tasks executed by
the computer have deadlines, which is the time by which the task must be com-
pleted. More generally, embedded systems can have to fulfill many different kinds
of temporal constraints, not just deadlines: a task must be executed no earlier than
a precise time; a task must be executed strictly periodically, or can accept a jitter;
a task may be required to be executed after another task; etc.

Control/command systems or process control systems are typical examples of reactive/real-
time systems. We can further classify real-time systems according to their criticality
[29]. For example, we distinguish between hard [30, 31], soft [32] and mixed-criticality
[33, 34] real-time systems. Violating a temporal constraint in a hard real-time sys-
tem can have catastrophic consequences. Systems to pilot and aircraft, to control
a critical chemical process, or to monitor health of a patient are some examples of
hard real-time systems.

Safe and reliable. Embedded systems can be used in applications where deliv-
ering the correct service is vital to achieve the mission or ensure the safety of the
public or the environment. Those systems are referred to as mission- or safety-
critical systems [35]. A failure of the system (caused for instance by a real-time
fault or a hardware fault) can have catastrophic consequences: loss of life, personal
injury, equipment damage, environmental damage, etc. A life-support system in an
intensive care unit is an example of safety-critical systems. We can mention aircraft
flight control or nuclear systems as other examples.

Safety-critical embedded systems must be dependable. Dependability is “the ability
to deliver a service that can justifiably be trusted” (Avizienis et al. [36]). Depend-
ability is an integrating concept that encompasses numerous attributes such as safety
– the absence of catastrophic consequences on the user(s) and the environment –,
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reliability – the continuity of correct service –, availability – readiness for correct
service –, and so on.

Other performance constraints. Embedded systems may have to cope with a
wide range of performance constraints (i.e. performance measures) [23, 26]: power
consumption, processor throughput, various memory usage, network bandwidth, etc.

II.1.3 Development process

The development of embedded systems is a complex and critical task. It is hence
based on systematic activities as part of a development process. Each activity pro-
duces a different result (requirements document, design models, programs, etc.) with
the goal to produce the right system.

There exist plenty of development processes that lead to the production of a system.
There are fundamental activities which are common to all processes: requirements,
design, implementation, Verification & Validation and operations [37].

Requirements fully express the functionality that the system must provide, and
constraints on its operation. This activity is also called requirement engineering. We
distinguish the functional requirements which are the basic functions that the system
must provide (“what the system must do”) from the non-functional requirements
which are the constraints that the system must fulfill to correctly behave in its
operational environment (“how the system performs a specific function”). Real-time
operation, low power-consumption, dependability or security are examples of non-
functional requirements. Requirement activities output a requirements document.

Design defines all the aspects of the system which are necessary to meet the
requirements, including software and hardware concerns. A system design describes
for example the subsystems, the components of the (sub)systems, the interfaces
between components, the data used in the system, the algorithms, the protocols,
etc. The design process may involve the production of several models of the system
at different levels of abstraction.

Implementation realizes the system design with all the required material: hard-
ware, programs, configuration files, etc. The implementation phase results in an
executable system.

Verification & Validation ensure that the system meets the functional and non-
functional requirements. We distinguish two main approaches:

• analyses that are carried out on system models such as the requirements doc-
ument, design models and the program source code,

• tests which are conducted on the product system.
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Analyses can be performed at all stages of the process as they operate on a repre-
sentation of the system. Conversely, testing is only applicable at late design stages,
when the product system is available.

Operations represent the last phase of the development process. At this stage,
the system has been delivered and is operating in its environment. Operations may
involve extra activities such as correction of undetected errors, product improve-
ments, enhancement with new requirements, etc.

Process models represent system processes. For instance, Figure II.3 depicts the
aforementioned activities as separate process phases in the classic waterfall model
[38]. In this process, the phases/activities are “cascaded”. In theory, a phase can
only start if the previous one has finished. In practice, the process progress is rarely
linear and may involve several iterations over preceding and succeeding steps. Other
process models such as the V-model, the spiral model or the iterative model organize
these tasks in different ways [39, 37].

Requirements

Design

Implementation

Verification & 

Validation

Operations

Figure II.3: Waterfall development process model (after [38]).

II.2 Model-Driven Engineering

Model-Driven Engineering (MDE) is a paradigm which considers models as primary
artifacts to develop software systems.

Definition 3 (Model-Driven Development). Model-Driven Engineering describes
software development approaches in which abstract models of software systems are
created and systematically transformed to concrete implementations [2]

II.2.1 What is a model?

The watchword of Model-Driven Engineering is “everything is a model” [40]. The lit-
erature proposes plenty of definitions of the notion of model. We retain the following
definition in the context of this thesis.
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Definition 4 (Model). A model is a simplification of a system built with an intended
goal in mind. The model should be able to answer questions in place of the actual
system [41].

Therefore, a model is an abstraction of a subject system. We can possibly represent
a system with various models related with each other, e.g. as many different points
of view, e.g. see [42, 43].

The next definition emphasizes that a model must be written with a language. This
language might be plain English, a programming language, or a dedicated modeling
language called a Domain-Specific Language [44, 45].

Definition 5 (Model (language)). A model is a description of (part of) a system
written in a well-defined language. [46].

A well-defined language is a language with well-defined form ( syntax), and meaning
( semantics), which is suitable for automated interpretation by a computer [46].

Figure II.5 depicts the relationships between a model, the system it represents, and
the language in which it is written.

Language

is

written

in

Model System
represents

in

Figure II.4: Relationships between a model, a subject system, and a language
(after [46]).

General-Purpose Modeling vs. Domain-Specific Modeling. We usually
distinguish between general-purpose modeling languages (GPML) and domain-specific
modeling languages (DSML). Contrary to general-purpose modeling languages which
provide universal concepts (e.g. the UML [47]), domain-specific modeling languages
are specialized languages which focus on a particular domain [44, 45]. Domain-
specific modeling languages directly capture the high-level concepts of a subject
domain. Thereby DSMLs improve the efficiency of models as they are easier to
understand and learn for a domain expert, but also more easily transformable, ana-
lyzable, etc. Of course, the use of a DSML is restricted to a specific domain, meaning
that many DSMLs are necessary to cover all the aspects of a system. We discuss
the definition of DSMLs through metamodels in the MDE context hereinafter.

II.2.2 Notions of metamodeling

The mechanism to define a language in Model-Driven Engineering is called meta-
modeling.
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What is a language? Any language, be it considered in linguistic or in computer
sciences, consists of a syntax and a semantics. The syntax refers to the representa-
tion of a language, the elements that form the language – words, sentences, boxes,
diagrams, etc. –, while the semantics deals with the meaning of this language [48].

Definition 6 (Language). A language is a tuple {S, Sem} with S is the syntax of
the language and Sem is the semantics [46, 49].

In the context of modeling languages in particular [48, 49]:

• the abstract syntax, manipulated by a computer, defines the structure of the
language, that is the concepts of the language and the relationships between
them,

• the concrete syntax, manipulated by the end-user, describes a specific – human-
readable – representation of these concepts with a textual or graphical formal-
ism,

• the semantics of a modeling language is defined through a semantic domain,
and a mapping of the syntactic elements to the semantic domain. There are
several ways to describe the semantics of a language, among which operational
semantics or denotational semantics to define the behavioral semantics of a
domain-specific modeling language.

Figure II.5 represents the relationship between those concepts.

Abstract 

Semantics

Domain

mapping

Concrete

Syntax

Abstract 

Syntax
mapping

Figure II.5: Components of a language (after [49])

Metamodel. Naturally, in MDE, modeling languages are themselves defined by
specific models, called metamodels.

Metamodels enable to structure models by defining the abstract syntax of the mod-
eling language. A metamodel precisely define the elements that can be used in a
language together with their relationships, and complete the structural description
with the well-formedness rules that must be respected by the conforming models
[50].
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Yet, Kleppe notices that a metamodel is any model that is part of a language speci-
fication, not only defining the abstract syntax of the language but also the concrete
syntax or the semantic domain [51].

Definition 7 (Metamodel). A metamodel is a model that defines the language for
expressing a model.[13]

A metamodel itself must be written in a well-defined language. We call metalan-
guage this specific language used to describe modeling languages. Figure II.6 shows
the metamodeling approach. Because a metalanguage is itself a language, it should
be defined by a metamodel, called meta-metamodel, written in another metalan-
guage. To limit the number of abstractions, the meta-metamodel must be able to
describe itself.This phenomenon is known as the meta-circularity property of meta-
metamodels.

Examples of metalanguages include MOF and EMOF standards by the OMG [13],
Eclipse Ecore implementation of EMOF [14] or Kermeta [52].

Metalanguage

is

written

in 

Metamodel

is

Model Language

is

written

in 

is

defined

by

Figure II.6: Metamodels define models (after [46])

The four modeling layers. Therefore, the models can be represented in four
layers [46, 40] as shown in Figure II.7. A model at a level conforms to the model at
the upper level.

The M0 layer, the instances in the real world, corresponds to the running system.
The M1 layer contains models. A model represents the system with a language.
Metamodels at the M2 layer defines the modeling language used by M1. The M3
layer finally defines the meta-metamodel that describe the metalanguage. The meta-
metamodel is defined in terms of itself.

Every different metamodeling architecture defines a technical space [53, 54]. The left
part of Figure II.7 shows two examples of metamodeling architectures used in this
thesis, as part of different technical spaces. The first architecture contains elements
of the AADL language in a modelware, defined from the MOF meta-metamodel.
The second architecture depicts elements of the CPAL language in a grammarware,
based on the Extended Backus-Naur Form (EBNF). Examples of model instances
in the real world are execution of C/ARINC653 runnables generated from a AADL
model, or CPAL files interpreted on top of a Raspberry Pi platform.
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Definition 8 (Technical space). A technical space is a set of tools and techniques
attached to a pyramid of metamodels which is defined by a family of similar (meta-
)metamodels [55].

Metamodel

Meta-metamodel

conforms to

conforms to

M3

M2

the MOF meta-

metamodel

the metamodel

of  AADL in 

UML

EBNF

the CPAL 

grammar

conforms to
modelware grammarware

System

Model

conforms to

conforms to

M1

M0

a AADL model 

M

an execution X 

of  runnables R 

generated from

M

a CPAL model X

an interpretation

Y of  model  X 

on platform P

Two technical spaces

Figure II.7: A particular metamodeling pyramid defines a specific technical space.

II.2.3 Notions of model transformation

Model transformation is the third pillar of Model-Driven Engineering. It automates
various manipulations of models. Model refinement (vs. abstraction), synthesis/code
generation (vs. reverse engineering), translation or analysis are some intents behind
a model transformation [56, 16, 57].

Definition 9 (Model transformation). A model transformation is the automatic
generation of a target model from a source model, according to a transformation
definition [46].

Figure II.8 represents the elements that participate in a model transformation [46,
16]:

• an input model, written in a source language, is transformed into an output
model, written in a target language, by executing a transformation definition,

• a transformation definition, written in a transformation language, describes
how a model in a source language can be transformed into a model in a target
language,
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• source, target and transformation languages are defined in terms of a meta-
language.

Notice that a model transformation is a function between abstract syntax and/or
concrete syntaxes [51, 50]. Guaranteeing the semantics of model transformations is
the subject of dedicated researches, e.g. see [16].

Transformation 
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outputsinputs
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Figure II.8: Components involved in a model transformation (after [16]).

Model transformation can be classified following many different criteria, e.g. see
[58, 59, 56]. A common classification of model transformations considers the source
and target languages [58]. Endogenous transformation refers to models expressed
in the same language. At the opposite, exogenous transformations are defined on
different languages. Transformations can be further classified by considering the
abstraction level of the source and target models [58]. A horizontal transformation
is a transformation that considers source and target models at the same level of
abstraction. A vertical transformation considers source and target models at dif-
ferent abstraction levels. Czarnecki and Helsen [59] propose another classification
to distinguish between model-to-text and model-to-code transformation approaches.
Kleppe [60] proposes a taxonomy of transformations based on the elements of a lan-
guage, e.g. Kleppe defines in-place transformation, view transformations or structure
transformations according to the transformation between abstract syntaxes and/or
concrete syntaxes. More recently, Amrani et al. [56] proposed a classification of
model transformation based on an intent catalog.

There exist many transformations languages, based on different approaches [59]. We
can mention programming-based approaches that associate an internal model rep-
resentation to an API in order to manipulate models directly (e.g. based on JMI or
EMF [50]), or approaches based on dedicated model transformation languages such

20



Chapter II. Background

as ATL (Atlas Transformation Language) [15], Kermeta [52] or QVT (Query/View/-
Transform) [61, 62], the OMG standard language to specify model transformations.

II.2.4 Case study: Architecture Description Languages

In this thesis, we concentrate on a specific kind of domain-specific language called
Architecture Description Language (ADL) [63, 64].

Architecture Description Languages capture both the static structure of a system
and its behavior. ADL are especially useful during the preliminary – architectural –
design stage. For example, Figure II.9 shows the positioning of ADLs in the waterfall
model.

Definition 10 (Architecture Description Language). An architecture description
language is a formal language that can be used to represent the architecture of a
software-intensive system. By architecture, we mean the components that comprise
a system, the behavioral specifications for those components, and the patterns and
mechanisms for interactions among them. [63]

Requirements

Design

Implementation

Preliminary

Verification & 

Validation

Operations

Detailed

Design

Preliminary

Design

Architecture 

Description 

Languages

Figure II.9: Positioning of Architecture Description Languages in the (waterfall)
development process.

Numerous Architecture Description Languages exist. In this thesis, we study two
particular ADLs: the Architecture Analysis and Design Language (AADL), an SAE
International standard [3], and the Cyber-Physical Action Language (CPAL), a
new language inspired by the synchronous programming approach [19]. We briefly
present these languages thereafter.

II.2.4.A AADL: the Architecture Analysis and Design Language

AADL at a glance. The Architecture Analysis and Design Language (AADL) is
an ADL dedicated to “the specification, analysis, automated integration and code
generation of real-time performance-critical (timing, safety, schedulability, fault tol-
erant, security, etc.) distributed computer systems”1. AADL is an SAE International

1http://www.aadl.info/ accessed September 2016
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Figure II.10: Simplified meta-model of AADL (taken from [67])

standard [3]. AADL originates from the former MetaH language [65, 66] and has
been improved and revised several times2.

AADL is a textual language first, but also has a graphical representation [18]. It
represents both the static and dynamic architecture of a system:

• the static architecture consists in a hierarchy of interacting software and hard-
ware components,

• the dynamic architecture describes operational modes, connection configura-
tions, fault tolerant configurations, behaviors of individual components, etc.

AADL focuses on the definition of clear components interfaces, and separates the
implementations from these interfaces. From the separate description of these com-
ponents, one can build an assembly of components that represent the full system. To
take into account the multiple interactions between components, the AADL defines
different patterns: subcomponent, connection and binding.

An AADL model can incorporate non-architectural elements: non-functional proper-
ties (execution time, memory footprint, . . . ), behavioral or fault descriptions. Hence
it is possible to use AADL as a backbone to describe all the aspects of a system.

Figure II.10 depicts the main concepts of AADL. Let us review these elements in
more detail.

Components. An AADL description is made of components. Each component
category describes well-identified elements of the actual architecture, using the same

2AADLv2.1 is the latest version to date, from September 2012. AADLv2.2 and AADLv3 are in
the planning stage.
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18 CHAPITRE 2. MÉTHODES DE MODÉLISATION ET DE VÉRIFICATION

2.1 Modélisation d’architecture
De nombreux langages de modélisation ont été proposés dans le but d’aider à la conception des

systèmes embarqués et d’automatiser une partie des étapes de développement (par exemple en intégrant
de la génération automatique de code [32]). Parmi les langages les plus matures pour les applications
temps réel, nous pouvons citer MARTE (Modeling and Analysis of Real-time and Embedded systems) [53],
SysML (System Modeling Language) [54] et AADL (Architecture and Analysis Design Language) [46].
Chaque langage est focalisé sur différents niveaux d’abstraction des systèmes : par exemple SysML et
MARTE sont utilisés pour représenter une vision globale du système, alors qu’AADL est plus adapté pour
la description des détails d’implémentation des systèmes et de leur architecture physique. Des travaux
récents proposent de combiner les avantages des différents langages. Dans [19] les auteurs définissent
une extension de SysML permettant d’intégrer l’ensemble des détails d’implémentation définissables avec
AADL, et dans [45] les auteurs décrivent comment modéliser les principes d’AADL dans MARTE. Dans
la suite, nous nous intéressons à AADL dans la mesure où il existe des travaux (par exemple [43]) pour
modéliser et analyser des architectures fondées sur la norme ARINC 653. En particulier, une annexe
spécifique à AADL est en cours de standardisation pour prendre en compte la norme ARINC 653.

2.1.1 Le langage de description d’architecture AADL

Le langage de description d’architecture AADL a été introduit pour permettre la modélisation et
l’analyse formelle de systèmes embarqués temps réel. Dans ce langage, un système est décrit comme un
assemblage de composants qui peuvent être de nature logicielle, matérielle ou composite (un composant
peut être lui-même décrit comme un assemblage de composants). La figure 2.1, tirée de [46], résume la
syntaxe graphique des différents composants définis dans AADL V1.
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Figure 2.1 – Composants définis dans AADL V1

Nous détaillons les différents composants logiciels définis dans le langage, en précisant pour chacun
d’eux son utilisation dans le cadre de la modélisation d’un système IMA :

data : il s’agit d’une structure de données.
→ Chaque variable échangée entre les fonctions est modélisée à l’aide d’une structure de données de

type data.

thread : un thread sert à modéliser une tâche.
→ Nous ne détaillons pas l’ensemble des tâches réalisant une fonction. Un unique thread est utilisé

pour modéliser une fonction. Les informations telles que la période et la durée d’exécution de la
fonction sont contenues dans ce thread.

thread group : modélise la notion de hiérarchie entre différents threads.
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Figure II.11: Graphical representation of the main AADL components (taken from
[18])

vocabulary of system or software engineering. The AADL standard defines three
categories of components:

• application software components: data, thread, thread group, subprogram
and process,

• execution platform components: memory, bus, processor, device, virtual
processor, virtual bus,

• composite components (system) or imprecise (abstract).

Figure II.11 shows the graphical concrete syntax of the different kinds of components.

A component is to be declared in two parts: the component type and the component
implementation. The interface of a component is called the component type. A com-
ponent type firstly defines the external interface in terms of features. Features can
be ports, subprograms or data accesses depending on the communication scheme. In
addition, a components type defines properties. Properties are typed attributes that
specify constraints or characteristics that apply to the elements of the architecture
such as clock frequency of a processor, execution time of a thread, bandwidth of a
bus. Some standard properties are defined, e.g. for timing aspects; but it is possi-
ble to define new properties for different analysis (e.g. to define particular security
policies). Each type is optionally attached with one or several implementations. Im-
plementation describes the internal structure of the components: subcomponents,
their connections, behavioral specification, source code, etc. They can also refine
non-functional properties.
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1

2 −− Data
3 data a_data
4 properties
5 Source_Data_Size => 4 Bytes;
6 end a_data ;
7

8 −− Subprograms
9 subprogram Produce_Spg

10 features
11 output_parameter : out parameter a_data ;
12 properties
13 Source_Language => (C);
14 Source_Text => (" foo.c");
15 Compute_Execution_Time => 150 ms . . 200 ms ;
16 end Produce_Spg ;
17

18 −− Threads
19 thread Producer
20 features
21 out_data : out event data port a_data ;
22 properties
23 Dispatch_Protocol => Periodic ;
24 Period => 500 ms;
25 end Producer ;
26

27 thread implementation Producer .Impl
28 calls
29 call_subprogram : { the_subprogram : subprogram Produce_Spg ;

};
30 connections
31 parameter the_subprogram . output_parameter −> out_data ;
32 end Producer .Impl;
33

34 thread Consumer
35 features
36 in_data : in event data port a_data ;
37 properties
38 −− Omitted
39 end Consumer ;
40

41 thread implementation Consumer .Impl
42 −− Omitted
43 end Producer .Impl;
44

45 −− Process
46 process pc
47 end pc;
48

49 process implementation pc.Impl
50 subcomponents
51 Prod : thread Producer .Impl;
52 Cons : thread Consumer .Impl
53 connections
54 c1 : port Prod. out_data −> Cons. in_data ;
55 end pc.Impl;

Listing II.1: Producer/consumer software elements in AADL.
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Listing II.1 illustrates these concepts on a producer/consumer example. For in-
stance, a specific thread Producer type is declared at line 19. The component type
defines an output port to connect with another component, together with the main
real-time properties to describe the timing behavior of that type of thread. The
implementation at line 27 specifies subprogram calls to carry out this thread. The
subprogram type declared at line 9 references the actual source code of the program
within its properties.

Component declarations have to be instantiated into subcomponents of other com-
ponents in order to form the system architecture. For example, in Listing II.1,
the producer/consumer process at line 49 has two subcomponents, i.e. a producer
thread Prod and a consumer thread Cons. At the top-level, a system contains all the
component instances. Most components can have subcomponents, so that an AADL
description is hierarchical. A complete AADL description must provide a top-most
level system that will contain certain kinds of components (processor, process, bus,
device, abstract and memory), thus providing the root of the architecture tree. The
architecture in itself is the instantiation of this system, which is called the root sys-
tem. Listing II.2 depicts the Producer/consumer root system. At line 6, the system
implementation consists of the process and underlying software elements defined in
Listing II.1, the processor to schedule and execute the threads of the bound process,
and the memory to store the data.

1 −− System
2

3 system Producer_Consumer
4 end Producer_Consumer ;
5

6 system implementation Producer_Consumer .Impl
7 subcomponents
8 the_process : process pc.Impl;
9 the_processor : processor rm_processor .Impl;

10 the_memory : memory ram_mem ;
11

12 properties
13 Actual_Processor_Binding => ( reference ( the_processor ))

applies to the_process ;
14 Actual_Processor_Binding => ( reference ( the_memory )) applies

to the_process ;
15

16 end Producer_Consumer .Impl;

Listing II.2: Producer/consumer system in AADL

Component interactions. Components use their features to interact in many
different ways:

• Connections: the most common communication way uses ports, connecting
an out port of a component to an in port of another. AADL defines three
types of ports to transfer data, events (control), or both: data ports, event ports
and event data ports. For example, the pc process in Listing II.1 connects the
Prod and Cons threads (line 54) through their ports. access to data, buses or
subprograms, or parameters passed into and out of a subprogram are other
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examples of connections between components. Connections represent logical
flows (e.g. control or data flow) between components through their features,

• Calls to subprograms in a threads or another subprogram, as done in the
Producer thread (line 31 in Listing II.1),

• Bindings map application software components to execution platform compo-
nents. For example, a process is bound to a processor to specify that this
specific process must be executed by this specific processor (line 13 in List-
ing II.2).

Annex and property sets. In addition to the core language, AADL proposes
several user-defined extension mechanisms through property sets and annex sublan-
guages [68]:

• Property sets allow one to define custom properties to extend standard ones.
This is the path taken by the “Data modeling annex document” that allows
one to model precisely data types to be manipulated, or the“ARINC653 annex
document” that defines patterns for modeling ARINC653 systems,

• AADL annex sublanguages offer the possibility to attach additional consid-
erations to an AADL component like behavioral specification. They bind a
domain-specific language to components.

These extensions mechanisms are of particular interest to address project-specific
concerns such as modeling electric power consumption, modeling precise perfor-
mances of buses, or error modeling. The combination of core and user-defined ex-
tensions make it possible to customize architecture models and support specialized
analysis.

Analysis and code generation. AADL initial requirement document mentions
analysis as a key objective. AADL models can be analyzed with a large set of anal-
ysis theories and tools3: real-time analysis with scheduling theory (e.g. Cheddar [8],
MAST [9] or MoSaRT [69, 70] tools), real-time process algebra [71], real-time cal-
culus [72] or network calculus [73]; behavioral analysis through mappings to formal
methods and associated model-checkers based on Petri Nets [74] or other formal-
ism like FIACRE/TINA [75, 76], RT-Maude [77], UPPAAL [10, 78], BIP [79, 80],
CADP [81, 82], etc.; dependability assessment from the Error Model Annex, like the
COMPASS project [83] or ADAPT [84, 85]; security verification [86, 87]; etc.

In addition, AADL allows for code generation. For example, Ocarina [88] imple-
ments Ada and C code generators for a wide variety of regular real-time platforms
(RT-POSIX, FreeRTOS, Vxworks, RTEMS, Xenomai) and avionic platforms (AR-
INC653); or model transformations to synchronous programs in SIGNAL [89] or
LUSTRE [90], or to the hardware description language SystemC [91].

Related languages. We can mention UML-based languages SysML [6] and MARTE
[7] or EAST-ADL [4] among the languages providing concepts and abstractions sim-
ilar to AADL, as stated in [92, 93, 94].

3An updated list of supporting tools, projects and papers is available at http://www.aadl.info.
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MARTE (Modeling and Analysis of Real-Time and Embedded Systems) is a UML
profile dedicated to the modeling and analysis of real-time and embedded systems. It
relies on domain-specific extensions of the general UML to bring concepts to model
real-time and embedded applications. These extensions focus on non-functional ele-
ments of real-time applications. These elements may be defined to support modeling,
analysis, or both. For instance, Optimum [95] clarifies usage of MARTE concepts
for schedulability analysis, or [96, 97] use MARTE for dependability assessment.

EAST-ADL (Electronics Architecture and Software Technology - Architecture De-
scription Language) [4] is an Architecture Description Language for automotive em-
bedded systems, developed in several European research projects. It is based on
concepts from UML, SysML and AADL, but adapted for automotive needs and
compliance with AUTOSAR [5]. EAST-ADL has been designed to complement AU-
TOSAR with descriptions at higher levels of abstractions: vehicle features, functions,
requirements, variability, software components, hardware components and commu-
nications. EAST-ADL models can be analyzed. For instance, Chen et al. [98, 99]
discuss analysis of EAST-ADL models, focusing on model checking using SPIN,
safety analysis using Hip-Hops and some timing analyses.

We reviewed and compared these languages in more detail in a paper [100].

II.2.4.B CPAL: the Cyber-Physical Action Language

CPAL (Cyber-Physical Action Language) is a language to model, simulate, verify
and program Cyber-Physical Systems (CPS) [19, 101]. The language in itself is
inspired by the synchronous programming approach [102, 103] and time-triggered
languages such as Giotto [104]. The syntax of CPAL is close to the syntax of
the C language but provides concepts specific to embedded systems with a formal
execution semantics. In addition, CPAL is a real-time execution engine. CPAL
models are interpreted with the guarantee that a model will have the same behavior
in simulation mode on a workstation and in real-time mode on any embedded board.
CPAL is jointly developed at the University of Luxembourg and by the company
RTaW since 2011.

Functional architecture in CPAL. CPAL enables to represent the functional
architecture of the system. The functional architecture consists of the set of func-
tions, the activation scheme and the data flow between the functions. In addition,
a CPAL model describes the functional behavior of the functions, that is the code
of the function itself.

Processes are the core entities of a CPAL model. Processes have their own dynam-
ics: they are activated at a specified rate or when a specific condition is fulfilled.
CPAL processes are equivalent to the concepts of tasks, runnables or threads in
other domains-specific modeling languages. A process is firstly defined with a list of
parameters completed with the code of the function itself. One of several instances
of the process can then be created in the CPAL program.

Finite-State Machines describe the logic of a process based on the semantics of
Mode-Automata [105]. Each process embeds a FSM. The simplest version of a
process consists in a single state that is executed repeatedly. For instance, FSMs
can be used to describe the different running mode of a system. CPAL implements
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the following semantics for FSM: execute a possible transition first and then execute
the current state of the FSM.

Communication inter-processes is done via process arguments passed through in

and out ports. The argument can be either a global variable or a communication
channel that is a stack or a queue. The main difference is that a global variable
is passed by value to a process, meaning that the processes will work on copied
data, while a channel is a reference to the actual data. Communication channels
are more efficient in terms of speed and memory compared to communication by
global variables. In addition, communication channels provide more powerful data
buffering mechanisms. Queues and stacks respectively implement FIFO and LIFO
buffering.

Real-time is an integral part of CPAL with precise activation models and schedul-
ing policies. Process activation are specified through specific process parameters,
including periods and, possibly, offsets or specific activation conditions. Processes
are then scheduled according to a scheduling algorithm. FIFO (First-In First-Out),
Non-Preemptive Earliest Deadline First (NPEDF) and Non-Preemptive Fixed Pri-
ority (NPFP) are scheduling policies available in CPAL.

Figure II.12 illustrates the main constructs of CPAL through a monitoring process
example. The CPAL program defines a monitoring process which signals an abnor-
mal behavior and, possibly, raises an alarm after a while when a value measured
from a sensor exceeds a threshold. The first level alarm is to be confirmed from
another sensor by a second process executed at a higher rate. If it is the case, a
second level alarm is set. The CPAL program describes all the functional, logical
and real-time aspects.

Figure II.12: A monitoring process in CPAL (from [19]).

Analysis and execution of CPAL programs. The second objective of CPAL
right after modeling is to make it possible to evaluate and execute CPS. For this
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purpose, the CPAL core language is completed with analysis-specific language con-
structs called annotations, and an interpreter.

Annotations describe the non-functional properties of a system in great detail. Tim-
ing annotations for instance, defined in a dedicated @cpal:time block, specifies the
timing behavior of the CPAL program. CPAL provides execution-time annotations
(e.g. varying execution-time or WCET) and scheduling annotations (e.g. interarrival
times, jitters, scheduling parameters such as process priorities, deadlines, etc.). For
example Listing II.3, depicts a CPAL model that includes several execution time
annotations within process states, e.g. @cpal:time {State1.execution_time =

15ms;}. According to these annotations, the execution time of a state is static (for
instance at lines 6 or line 12) or dynamic (for example if it depends on a condition
at line 24 or line 26). Execution time could be equally expressed at the process level,
thus applying to all potential states of a process.

1

2 process def Varying_Execution_Time ()
3 {
4 state State1 {
5 @cpal:time {
6 State1 . execution_time = 15ms;
7 }
8 }
9 on (true) to State2 ;

10

11 state State2 {
12 @cpal:time {
13 State2 . execution_time = 35ms;
14 }
15 }
16 on (true) to State1 ;
17 }
18

19 process def Conditional_Execution_Time ()
20 {
21 state Main {
22 @cpal:time {
23 if ( uint16 . rand_uniform (0 ,2) ==0) {
24 Main. execution_time = 1ms;
25 } else {
26 Main. execution_time = 15ms;
27 }
28 }
29 }
30 }
31

32 process Constant_Execution_Time : p1 [70 ms ]();
33 process Conditional_Execution_Time : p2 [200 ms ]();

Listing II.3: CPAL program with timing annotations.

The interpreter enables to execute CPAL models. The interpreter runs either in
simulation mode or in real-time mode. An execution in simulation mode is as fast
as possible, meaning that the interpreter makes optimistic assumptions and the
program is not granted access to the hardware. For instance, the code executes in
zero-time except if timing annotations are provided in the code. Real-time mode
enables to actually execute the model on a platform, with access to the hardware.
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The interpreter does not consider optimistic assumptions but real execution, e.g.
code execution-time depends on the frequency of the processor, use of I/O devices,
etc. Table II.1 summarizes the platforms currently supported by the interpreter.

Platform
Supported

execution mode
Access to HW?

Windows 32/64bit Simulation 7

Embedded Windows
32/64bit

Real-time and
Simulation

7

Linux 64bit Simulation 7

Embedded Linux 64bit
Real-time and
Simulation

3

Mac OS X Simulation 7

Freescale FRDM-K64F Real-Time 3

Raspberry Pi
Real-time and
Simulation

3

Table II.1: Platforms supported by the CPAL interpreter.

CPAL provides different types of analyses based on the annotations and/or the
interpreter:

• simulation of the timing behavior of the system in a dedicated mode,

• mechanisms to measure the WCETs in real-time mode on a specific target,

• schedulability analysis using timing annotations, e.g. see [106].

For example, Figure II.13 represents a simulation of the CPAL program in List-
ing II.3, as displayed in the CPAL-Editor. The vertical bars represent the processes
activation based on the periods, whereas the widths of the bars depict the execution
times according to the execution time annotations. The processes are scheduled
according to a FIFO policy, while the execution time depends on the state of the
process defined in the FSM.

Related languages. Synchronous dataflow models provide an intermediate level
of abstraction between a low-level program and a high-level architecture model such
as AADL. More importantly, models with synchronous languages like LUSTRE [107],
SIGNAL [108], Esterel [109] or Prelude [110, 111] have a formal execution semantics
(i.e. the synchronous semantics). The synchronous approach is based on strong
mathematical foundations and naturally suits formal design and verification of re-
active systems, e.g. see [112, 113].

Giotto is a time-triggered architecture language [104]. A Giotto model depicts the
software architecture of a system with both the functional and timing aspects. At
its core, Giotto provides a formal execution semantics (i.e. the Giotto semantics).

Navet et al. [19] outline some links between synchronous architecture languages
and CPAL. They explain that CPAL is a lighter and easier to learn programming
language compared to synchronous programming languages, while being equally
able to guarantee the necessary timing predictability of the application. The authors
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Figure II.13: Gantt diagram representing the execution of the processes defined
in Listing II.3.

highlight bridges with the higher-level languages Prelude and Giotto. Yet, they note
that those languages are neither programming languages to define the functional
behavior of the tasks, nor an execution platform.

Works like [90, 114, 115] show overlaps between high-level ADLs and synchronous
ADLs. For instance, the authors in [90] translate a subpart of an AADL model to a
LUSTRE program; and evaluate AADL models with tools available for synchronous
programs. Henzinger et al. [104] noted some bridges between Giotto and MetaH,
the ancestor of AADL. In particular, Giotto captures some aspects of MetaH (e.g.
real-time tasks and communications) in an abstract and formal way. In the context
of this thesis, we present in Chapter VII a case study that combines CPAL to AADL
to fully model an avionic system.

II.3 Model-based analysis

Analysis and verification is an important aspect of the design of embedded systems.
These activities aim to check that the system will meet the non-functional properties
at run-time. In that context, models are valuable assets to investigate a system
design, answering questions in place of the real system.

II.3.1 Main analysis approaches

We can cite three main analysis approaches that are fully or partly based on abstract
models:

Simulation consists in a virtual execution of a given system according to
a model of the system and a simulation environment [90]. Simulation ap-
proaches are able to deal with large systems. Yet, a simulation is generally
unable to enumerate all potential system’s states and execute all possible
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Analysis
Approach

Supported
activity

Analysis
Support

Scope of
results

Simulation Design Simulation model Non-exhaustive
Model-checking Design Formal model Exhaustive
Analytical methods Design Analytical model Deterministic

Tests Verification
Test model
+ System

Non-exhaustive

Table II.2: Some special features of usual model-based analysis approaches.

scenarios. Therefore, a lengthy simulation time (the amount of time pro-
vided to the simulator to explore system’s states) may be necessary to com-
pute precise simulation results, but does not guarantee that these results
are complete.

Model-checking is a formal approach to automatically verify finite-state
software or hardware systems [116]. Model-checking considers a formal
model (e.g. Petri nets [117], timed automata [118], etc.) and properties
to verify, expressed in a logical formula. An algorithm explores all possible
states of the model and determines whether given properties hold or not. A
major impediment of model-checking is known as the state space explosion
problem that results in impracticable models.

Analytical methods are ad hoc mathematical-based approaches which do
not belong to the aforementioned analysis approaches. These approaches
consider an analytical model that is to be analyzed through an algorithm to
answer a given question about the system. For example, feasibility tests
determine whether real-time tasks will met their deadlines according to
a given scheduling algorithm [21]. Feasibility tests are based on a task
model and consist of equations to verify and algorithms that implement
them. Another example is Network Calculus, a mathematical approach that
reasons in terms of flows and servers to compute worst case performances
of networks [119]. Network Calculus tools implement algorithms based on
the min-plus algebra [120] to analyze such models, e.g. [121].

Tests operate on the product program. More precisely, “testing is the pro-
cess of executing a program with the intent of finding errors” [122]. Testing
consists in executing the system according to test cases in order to verify
that the system conforms to its specification. Testing cannot guarantee the
absence of all errors. A major issue in testing is hence to maximize the
detection of errors through efficient testing methods and effective test cases,
e.g. Model-Based Testing [123].

Table II.2 summarizes some key features of these analysis approaches. In particular,
the approaches differ with respect to the supported activities (e.g. design vs. verifi-
cation), the analysis support (product system vs. analysis model) and the scope of
the result (e.g. completeness, determinism).
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In this thesis, we concentrate on analytical methods. We are especially interested
in the analysis of real-time properties. We study two analysis approaches for this
purpose: scheduling analysis and network calculus.

II.3.2 Case study: real-time task scheduling analysis

A real-time system is made up of a set of tasks which much be executed on one or
more processors and possibly share some resources. The tasks must be executed such
that the temporal constraints required by the environment are met. The scheduler
is the component in charge of building up an execution order (i.e. a schedule)
that fulfills the temporal constraints with available resources. We firstly review the
basic concepts of real-time task and scheduling. We then introduce some analytical
approaches to analyze real-time scheduling.

II.3.2.A Real-time task model

Real-time tasks are the basic entities of a real-time system. A task is a logical unit
of computation in a processor [124], that is a set of program instructions that are to
be executed by a processor. Tasks may be also referred to as processes or threads
in other contexts. A task job is a specific instance of task execution.

A task τi can be characterized by temporal parameters. Table II.3 summarizes some
common task parameters.

Parameter Notation Note

computation time
(or capacity)

Ci

relative deadline Di

period or
minimum inter-release time

Ti

offset Oi
jitter Ji
priority
(if applicable)

Pi

release time ri,j periodic task: ri,j = Oi + (j − 1) · Ti
start time si,j si,j ≥ ri,j
finish time fi,j
absolute deadline di,j periodic task: di,j = ri,j +Di

response time Ri,j
Ri,j = fi,j − ri,j , a valid schedules requires
that ∀τi ∈ T , max∀j(Ri,j) ≤ Di

Table II.3: Usual real-time task parameters.

According to the occurrence of jobs, we usually distinguish between periodic, aperi-
odic and sporadic tasks. Jobs in a periodic task are released in a regular basis and
are separated by a constant interval of time called the period. Sporadic tasks occur
irregularly but can be characterized by a minimum inter-release time between con-
secutive jobs. Aperiodic tasks occur at unknown times. For example, Figure II.14
represents a periodic task execution with a Gantt diagram.
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ri,j

τi,j

si,j ei,j di,j

Di

Ri,j

Ci

ri,j+1

τi,j+1

si,j+1 ei,j+1 di,j+1

Di

Ri,j+1

Ci

Ti

Figure II.14: Representation of a real-time periodic task with a Gantt diagram.
For a task τi: Ti the period, Ci the computation time and Di the relative deadline.
τi,j denotes the jth job of a task i: ri,j is the release time, si,j the start time, ei,j
the completion time, di,j the absolute deadline. A system is schedulable if ∀τi ∈ T ,
∀Ri,j the response time respects Ri,j ≤ di,j.

II.3.2.B Scheduling

The objective of real-time scheduling is to define an execution order of the tasks that
fulfill the timing constraints with available resources. A scheduling takes account
of a set of tasks T = {τ1, τ2, . . . , τn}, a set of processor P = {P1, P2, . . . , Pm} to
execute the tasks and, possibly, a set of shared resources R = {R1, R2, . . . , Rs}.

Scheduling algorithm. Numerous scheduling algorithms have been proposed in
the literature. A scheduling algorithm provides a schedule of tasks, that is, at
any time, assigns ready task jobs to available processors and, if necessary, shared
resources. A real-time scheduling algorithm aims to provide a schedule that meets
all the timing constraints.

We do not provide a complete taxonomy of scheduling algorithms (see for example
[125]). Yet, we can distinguish the scheduling algorithms mentioned in this thesis
between:

• monoprocessor scheduling (or uniprocessor scheduling) if the system has only
one processor versus multiprocessor scheduling otherwise,

• off-line scheduling (or static scheduling) where the schedule is specified prior
to run-time in opposition to on-line scheduling (or dynamic scheduling) where
the schedule is calculated during the execution of the system,

• preemptive scheduling if the algorithm is able to suspend a task execution, to
execute a higher priority task, and then resume the execution of the first task;
and non-preemptive scheduling whether a task cannot be interrupted until its
execution is completed,

• priority-driven algorithms that assign a fixed or dynamic priority to tasks
(i.e. Fixed Task Priority), respectively jobs (i.e. Fixed Job Priority, Dynamic
Priority), and schedules at any time the task, resp. job, with the highest-
priority,
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• independent tasks scheduling that considers task sets with no precedence rela-
tionships and no shared resources; and dependent tasks scheduling that must
take account of precedence constraints, critical shared resources, or both.

Rate Monotonic (RM), Deadline Monotonic (DM) and Earliest-Deadline First (EDF)
are among the most popular real-time scheduling algorithms. Table II.4 summarizes
some features of the algorithms mentioned in this thesis with respect to the classi-
fication discussed earlier.

Figure II.15 represents a schedule produced by the Deadline Monotonic algorithm.
The Deadline Monotonic algorithm assigns a fixed priority to each task τi according
to its relative deadline Di. The task with the lowest relative deadline is assigned
the highest priority. D1 ≥ D2 ≥ D3 so P1 ≥ P2 ≥ P3. Thereby, the scheduler plans,
at each time, the task with the highest priority. The scheduling algorithm is able to
preempt a task to allocate the processor to a task which has an higher priority. For
example, τ3 is preempted at time 5 to execute the highest priority task τ1, and then
resumes at the completion of τ1 at time 6.
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Figure II.15: An example of schedule produced by the Deadline Monotonic algo-
rithm. τ1: C1 = 1, T1 = 5, D1 = 4 ; τ2 : C2 = 3, T2 = 10, D2 = 7 ; τ3 : C3 = 3,
T3 = 20, D3 = 8

II.3.2.C Scheduling analysis

Scheduling analysis aims to determine whether the scheduling algorithm will produce
a schedule that will meet the timing constraints at run-time.

Schedulability and feasibility. According to Davis and Burns [126]:

• a task set is schedulable according to a given scheduling algorithm if the sched-
ule produced by this algorithm satisfies all the deadlines.

• a task set is feasible if it exists any scheduling algorithm that makes it schedu-
lable.
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Chapter II. Background

Schedulability analyses , which can also be referred to as feasibility analyses
or feasibility/schedulability tests, are analytical methods based on the real-time
scheduling theory to state if a task set is schedulable according to a given scheduling
algorithm [21]. We usually distinguish between:

• exact tests that provide a sufficient and necessary condition with respect to
the scheduling of a set of tasks, hence allowing to state with certainty whether
the task set is schedulable or not; and

• approximate tests only provide a sufficient condition, telling only if the task
set is schedulable as soon as the test succeeds (and providing no conclusion
when the test fails).

There exist plenty of schedulability analyses. These analytical techniques evaluate
different performance metrics. For example:

• utilization-based tests evaluate the processor utilization factor to determine
the feasibility of a task set. That is, such tests checks that the fraction of
processor time used to execute the task set does not exceed the theoretical
bound admissible by a given scheduling algorithm, e.g. see [127, 128],

• response-time analysis calculates the worst-case response time of each task. A
necessary and sufficient schedulability test is then to check that the worst-case
response times are lower than the relative deadlines, e.g. see [129, 130],

• other analyses may consider the processor demand criterion [21], etc.

Liu and Layland [127] proposed for example an exact schedulability test for EDF
based on the processor utilization. They firstly defined the processor utilization
factor of a set of n periodic tasks by:

U =
n∑
i=1

Ci
Ti

(II.1)

Liu and Layland then proved that a set of n periodic tasks with Pi = Di is schedu-
lable according to the deadline driven scheduling algorithm EDF if and only if:

U ≤ 1 (II.2)

Many schedulability tests have been proposed so far, targeting the numerous task
models and scheduling algorithms proposed in the literature, or improving many
aspects of the tests (e.g. scope of the result, pessimism, computational complexity,
etc.) [21]. We do not discuss the evolution of real-time scheduling analysis in greater
depth. Sha et al. [21], Davis and Burns [126] and Stigge and Yi [131], for example,
have provided good surveys on the matter. Yet, we will be required to review some
evolution of task models and associated analyses in the context of Chapter III and
Chapter IV. Furthermore, we use various schedulability analyses throughout this
manuscript to illustrate and put into practice the concepts presented in this thesis.
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II.4. Discussion

II.4 Discussion

In this thesis, we emphasize on models to develop embedded systems. We firstly
review two approaches that consider model as first-class artifacts: model-based engi-
neering and model-driven engineering. Secondly, we discuss the link between models
and analysis that founded the motivation of our works.

II.4.1 Model-Driven Engineering or Model-Based Engineering?

Models are valuable assets to design embedded systems. Yet, the use of models
for system design has been explored in different directions: model-based software-
systems engineering, model-driven engineering, model-driven architecture, etc. These
different terminologies actually overlap.

Model-based is the wider denomination. It denotes such approaches that use mod-
els as the central artifact to support various activities in relation to engineering
systems, e.g. design only, development that target the creation of the system, or
engineering when considering the whole system lifecycle. According to the INCOSE
MBSE initiative [132], “model-based systems engineering (MBSE) is the formalized
application of modeling to support system requirements, design, analysis, verifica-
tion and validation activities beginning in the conceptual design phase and contin-
uing throughout development and later life cycle phases”. MBSE operates a shift
from a document-based to a model-based approach to enhance systems engineering.
Yet, MBSE is more a precept than (for the moment) a systemic approach (see the
roadmap proposed by the INCOSE initiative [132]). MBSE promotes methodolo-
gies, processes, methods, tools and environment that use models for the engineering
of complex systems. For instance, SysML is a language devoted to model-based sys-
tems engineering targeting specification, analysis, design, verification and validation
of complex systems. For further examples see a review by Estefan [133].

Model-driven engineering is a slight different view, with stronger bases. The motto
of MDE is “everything is a model”. As stated in Definition 3, MDE is firstly a
software development approach that partly or totally generates a software system
from models. MDE is secondly an architecture to that end, based on the triad model,
metamodel, model transformation. For instance, Model-Driven Architecture (MDA)
is a particular implementation of MDE with a set of OMG standards like MOF
(Meta Object Facility), UML (Unified Modeling Language), XMI (XML Metadata
Interchange) or OCL (Object Constraint Language).

Let us illustrate the difference between MBSE and MDE through AADL. AADL
supports an architecture-centric model-based engineering approach [18]. MBSE with
AADL is supported by a tool platform called OSATE [134]. This tool platform in-
cludes a model editor, analysis tools and generators. MBSE through AADL must
fully define a methodology, that is processes, methods, and tools, to develop a sys-
tem. MDE with AADL emphasize less on the methodological aspects but must
address the models “around” AADL, that is the definition of the AADL language
through metamodels in Ecore [14], definition of the couplings between models and
analyses, or definition of transformations between Platform Independent Models
(e.g. from AADL models to analysis-specific models) or to code.
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MDEMBE

methodology

process

model

language

metamodel

transformation

method
tool

megamodel

Figure II.16: Intersection between Model-Driven Engineering and Model-Based
Engineering.

MBSE and MDE are still under exploration at the present time. If numerous core
concepts have been established so far, with application in many tools, it is neither
possible to give a complete map of MBSE and/or MDE yet, nor to define clearly
the border between MBSE and MDE (there are many overlaps between the two
visions). For example, megamodeling is an initiative to define a theory about MDE
concepts through a dedicated model called a megamodel [135]. On the other hand,
the definition of a MBSE theory is part of the roadmap defined by the INCOSE
MBSE initiative [132].

The works presented in this thesis actually occur in the two contexts: MBE as we
emphasize on models at large to develop embedded systems, and MDE as we reuse
the fundamental concepts of model, metamodel (language) and model transforma-
tion.

II.4.2 Link between ADLs and analysis

Analysis tools are based on specific models that implement the analytical models.
Therefore, numerous works seek to analyze architectural models by bridging the gap
between architectural models and analysis-specific models. These works, referring
more or less explicitly to the principles of MDE, typically implement a model trans-
formation that translates an architectural model into a tool-specific model used for
analysis.

For example with AADL, model transformations have been implemented towards
terminal tools or intermediate frameworks: real-time specific languages Cheddar
ADL and MAST models with the OCARINA tool suite [136, 137] or MoSaRT [70];
transformations exist to map AADL models to model-checker UPPAAL [78], TINA
via FIACRE [75, 76] or CADP via LNT [82]; ADAPT to dependability analyses
[85]; etc. A more exhaustive list of analysis tools and transformations applicable to
AADL models is available in a survey [12].

We review the link between ADLs and analysis in greater detail in Chapter III.
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Analytical
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Analysis-
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Figure II.17: Link between Architecture Description Languages and model-based
analysis.

II.4.3 Design process: Design vs. Modeling vs. Analysis

Design, modeling and analysis are concepts closely intertwined. As discussed pre-
viously, modeling is the activity that consists in representing a system. As stated
by France and Rumpe [2], “models are created to serve particular purposes, for ex-
ample, to present a human understandable description of some aspect of a system
or to present information in a form that can be mechanically analyzed”. Analysis
hence represents the other side of the coin. Analysis is “a careful study of something
to learn about its parts, what they do, and how they are related to each other;
an explanation of the nature and meaning of something”4. Analysis helps to un-
derstand a system through dissection of its model. Design is finally the process of
creating the system from models and analyses. As represented in Figure II.18, the
creation (design) of embedded systems is based on an iterative process of modeling
and analysis.

If the use of models for the design of embedded systems is now better defined
by the Model-Driven Development, the use of analysis is less clear. In practice,
analysis remains considered as a side activity, if not ignored. Some solutions exist
through model transformations as discussed earlier or with integrated frameworks,
for example with well-known MATLAB/Simulink [138] or SCADE [113] in industry,
the Ptolemy project in academia [139], or AADL-based frameworks OSATE [134],
MASIW [140], ASIIST [141], etc. Yet, these solutions are incomplete. Integrated
frameworks hardcode models and analyses in a same environment, with the key
advantage of providing a solid integration of these artifacts. Nevertheless, they do
not always provide the way to use them in the design process. Another shortcom-
ing is that modeling and analysis capabilities are de facto restricted to a specific
and closed environment. The modeling and analysis capabilities can be extended
through model transformations, as discussed earlier. Yet, these model transforma-
tions, beyond the intrinsic problem of their implementation (treated in Chapter III),
do not give attention to the semantics of the analysis (tackled in Chapter IV and
Chapter V). The problem of defining exhaustively the design process goes far beyond
the scope of this thesis.

4according to http://www.merriam-webster.com/
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Chapter II. Background

1.3. THE DESIGN PROCESS

ing of the interaction between the dynamics of the embedded system (the quadrotor, the
robot) and its environment.

The rest of this chapter will explain the various parts of this book, using the quadrotor
example to illustrate how the various parts contribute to the design of such a system.

1.3 The Design Process

The goal of this book is to understand how to go about designing and implementing
cyber-physical systems. Figure 1.3 shows the three major parts of the process, modeling,
design, and analysis. Modeling is the process of gaining a deeper understanding of a
system through imitation. Models imitate the system and reflect properties of the system.
Models specify what a system does. Design is the structured creation of artifacts. It
specifies how a system does what it does. Analysis is the process of gaining a deeper
understanding of a system through dissection. It specifies why a system does what it does
(or fails to do what a model says it should do).

Figure 1.3: Creating embedded systems requires an iterative process of model-
ing, design, and analysis.

8 Lee & Seshia, Introduction to Embedded Systems

Figure II.18: Modeling and analysis is the design process (taken from Lee and
Seshia [17]). Designing an embedded systems involves several modeling and analysis
iterations.

II.5 Synthesis and conclusion

This chapter reviewed methods and tools to develop real-time embedded systems.
We firstly underlined two special features of embedded systems: hardware/software
architectures and non-functional constraints. We discussed in particular the crucial
role of models to develop complex embedded systems with strong quality constraints.
In essence, a model represents some aspect of a system and enables to analyze it.

We presented two methods based on models to cope with the constraints of embedded
systems development: model-driven engineering and model-based analyses.

Model-Driven Engineering is a development approach that partly of totally generate
a software system from models. We reviewed the core concepts of MDE: models,
metamodels, and model transformations. We presented a particular kind of domain-
specific language: Architecture Description Languages. An ADL captures the static
and dynamic architecture of a system in initial design phases. This architecture
model can then be used to automatically, semi-automatically or manually derive an
actual system. We presented two ADL used in this thesis in more detail: the Ar-
chitecture Analysis and Design Language (AADL), an SAE International standard,
and the Cyber-Physical Action Language (CPAL), a new language inspired by the
synchronous programming approach.

Model-based analyses are mathematical-based approaches applied on analytical mod-
els to check that the system will meet the non-functional properties at run-time. We
mentioned simulation, model-checking or analytical methods as examples of model-
based analyses. In this thesis, we concentrate on analytical methods, especially
real-time task scheduling analyses that determine whether a task system meet some
temporal constraints (e.g. deadlines) or not. We presented the important concepts
of real-time scheduling (analysis) employed in this thesis.
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In the last part of this chapter, we emphasized the link between design – MDE –
and analysis – mathematical-based methods – through models. This founded the
motivation of our work: by fully supporting the coupling between modeling and
analysis, we may greatly enhance the design of high-quality embedded systems.
The link between modeling and analysis has been explored in different ways by the
research community, e.g. trough a model transformation from an architectural model
to an analysis-specific model, or with “all-in-one” frameworks. Yet, these solutions
are incomplete. Integrated frameworks narrow the scope of modeling and analysis
to a specific and closed environment. Model transformations, beyond the intrinsic
problem of correctly implementing them, do not give attention to the semantic
aspects of the surrounding analysis. This “one-step” process results in practice in a
cul-de-sac for the designer: is the transformation correct? Is the analysis applicable?
What is the meaning of the result? How to consider analysis results in the design
process? And so on.

In the next chapters, we study both the technical-transformation (in Chapter III) and
semantic aspects (in Chapter IV and Chapter V) of the model/analysis integration
problem. We implement the proposed concepts in a prototype of tool (presented in
Chapter VI) and apply them so as to design various embedded systems (case studies
in Chapter VII).
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Chapter III

Model query

Abstract

This chapter deals with query mechanisms, called accessors, to analyze the non-
functional properties of a system at design time. In Section III.1, we present the
rationale behind model query. In particular, we review the analysis elements in
detail – analysis algorithms and data structures – and show how these elements
are linked with the notions of models and metamodels. In Section III.2, we present
several data structures that can be used for the analysis of real-time systems. Section
III.3 presents a first implementation of query mechanisms in Python. We finally
end this chapter with a discussion about transformation-based analysis approaches
(Section III.4) and a conclusion (Section III.5).

III.1 Rationale behind model query

In this section, we firstly identify the basic elements that exist in any analysis. In
particular, we show how these elements are linked to the notions of models and
metamodels. Then, we explain the notion of model query. Finally, we propose to
implement model queries through a dedicated Application Programming Interface.

III.1.1 Identifying the analysis elements

Analysis algorithm and data structure. An analysis is nothing more than a
particular program. An analysis is thus made of two parts: data structures to rep-
resent and organize the data, and algorithms to process them, and gain information
from them. Paraphrasing Wirth [142], we could say:

“Data Structure + Algorithm = Analysis Program”

For instance, a real-time scheduling analysis consists of data structures to describe
real-time workloads at different levels of abstraction, e.g. with a simple periodic
task models or with more exhaustive graph-based models [131]; and algorithms to
compute performance metrics from those data structures such as the processor uti-
lization factor, task response times, etc.
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III.1. Rationale behind model query

Link with models and metamodels. We distinguish between the analysis space
and the modeling space. In Figure III.1a, the data structures that are part of an
analysis can be represented to the user in a model. Figure III.1b clearly shows the
metamodel that defines the model. Thus, a relation must exist between the analysis
data structure and the metamodel: there should be a mapping between the analysis
data structures are the model concepts defined in the metamodel.

Let us finally note that what we previously referred to as“design-specific”or“analysis-
specific” models only differ in the abstraction gap that separates analysis structures
from model concepts. In fact, an “analysis-specific” model represents concepts for a
particular analysis problem (for example, concepts of the real-time scheduling the-
ory in MoSaRT and Cheddar ADL), whereas a“design-specific”model provides more
general concepts to fully design a system (for example, general concepts of system,
process and bus in AADL). In any case, analysis data are present in a model,
appearing more or less explicitly to the analyst.

In conclusion, before applying an analysis on a model, one must:

1. at design time,

(a) clearly define the data structures that are required by the analysis,

(b) define the model concepts which maps those data structures,

2. at run time, query the model, i.e. request and analyze the data from the
model, by taking into account (1a) and (1b).

Data Structure

Analysis
(algorithm) Model

instance of

applies on

applies on

(a) Implicit metamodel.

Data Structure

Analysis
(algorithm) Model

Meta-Model

instance ofapplies on

applies on

maps to

(b) Explicit metamodel.

Figure III.1: Elements involved in an analysis and their relationships. Analysis
algorithms and data structures on the one hand, models and metamodels on the other
hand are involved in the analysis process. The analysis of a model instance assumes
a mapping to the analysis data structure, possibly via a metamodel.
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III.1.2 Model query

In the same way as SQL queries enable to retrieve information from databases [143],
or Xquery for querying data from XML documents [144], accessors make it possible
to extract data from domain-specific models.

Definition 11 (Accessor). An accessor is a function that gives back a typed data
from a model according to the type of data structure passed as an argument, i.e.
data = acc(data structure type).

Figure III.2 depicts two use cases. In Figure III.2a, an Analysis1 that considers
Independent Tasks (IT) retrieves a task set from an AADL model. Other analyses
may extract different data structures from that model, e.g. a dependency graph

to analyze Dependent Tasks (Analysis2, DT) or a directed acyclic graph to
assess tasks with non-deterministic behaviors (Analysis3, DAG). In Figure III.2b
an analysis can extract the same data structure from many models (e.g. AADL,
CPAL, etc.). In conclusion, with accessors, many analyses can analyze many data
structures from many models.

(a) Use case: a model can be queried by many analyses. Three analyses query different type
of data structures (e.g. tasks and their dependencies) on a AADL model via the get_data

method.

(b) Use case: an analysis can query many models. An analysis query the same task data
structure from many models, e.g. AADL, CPAL and SysML models.

Figure III.2: Two use cases of data queries over design models.

In thesis, we implemented accessors in a specific Application Programming Interface
(API). This API makes it possible to extract data from any architectural model,
and manipulate them in an analysis program.
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III.1. Rationale behind model query

III.1.3 Implementation through an Application Programming in-
terface

We propose to implement accessors through a dedicated Application Programming
Interface (API). In Figure III.3, the Data Access API operates on top of various
architectural models. This API is to be implemented in two parts:

1. definition of the data structures that can be used by the analyses,

2. implementation of the accessors to retrieve the data from the models. For this
purpose, one must explore the model instances with the help of tool-specific
APIs.

In Section III.3, we present an implementation of the Data Access API in Python.
Accessors have been implemented towards AADL and CPAL models.

Figure III.3: Proposed Application Programming Interface. The Data Access
API defines and implements query methods to retrieve analysis data from various
models, using the low-level APIs to manipulate the model instances in AADL, CPAL
or SysML.

Taking advantage of stakeholder expertise. Design and analysis activities are
usually carried out by different stakeholders: (1) designers who define the models
and (2) analysts who concentrate on the study of the model data. The stakeholders
have their own expertise: definition and use of models on the one hand, definition
of data structures and analytical reasoning on the other hand.

In Figure III.3, we break up the application in three components: analyses on the
one hand, models on the other hand, Data Access API as the interface between
them. This approach brings several advantages:

1. separation of concerns, independence: the components are independent (e.g.
the API separates the analysis of data structures from the manipulation of
these data in models), the stakeholders can concentrate on the subject that
they understand the best,

2. collaboration: the collaboration between designers and analysts is eased by the
definition of clear a API that consist of data structures and methods to access
them in the models,
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3. reliability : the stakeholders can negotiate and implement the interfaces based
on their own expertise, i.e. definition of the data structures by the analysts,
communication of the data structures to the designers, and implementation of
the accessors to model internals by the model designers.

III.2 Data structures for the analysis of real-time sys-
tems

Task models are used to formally describe and analyze real-time workloads. In this
section, we investigate some important data structures proposed by the real-time
research community, which have been surveyed for example in [131], [21] or [126].
We only focus on preemptive uniprocessor systems. We present each data structure
as follows. First, we shortly present the theoretical model. Secondly, we describe
the data structure with a UML class diagram. Lastly, we provide an example of
representation with a concrete syntax, in Python (programming language), AADL
or CPAL (architecture description languages).

III.2.1 The basic periodic task model and its extensions

Real-time scheduling analysis grew up from the periodic task model. Since then,
this model has been extended many times.

III.2.1.A The periodic tasks model

Theoretical model. The periodic task model has been introduced by Liu and
Layland in 1973 [127]. It is based on the concept of task to realize a function, i.e.
each function to be performed is associated with one or more tasks.

A task τ = (T,C) is characterized by a period T and a computation time C (or
an upper bound of the computation time called WCET for Worst-Case Execution
Time). T and C are positive integers, i.e. T ∈ N and C ∈ N.

In addition, the model specifies a processor to execute the tasks and a schedul-
ing policy to decide the scheduling of the set of tasks on the processor, e.g. Rate
Monotonic (RM).

Data structure. Figure III.4 depicts the definition of the data structure of the
periodic tasks model with a class diagram. The elements of the theoretical model are
represented with various classes: Task, Processor and SchedulingPolicy are the
basic elements of the model. The attributes of the classes describe the elements prop-
erties, e.g. a PeriodicTask has a name, a period and a worst_case_execution_time.
The relationships between the elements are also defined, e.g. a classes association
denotes that the SchedulingPolicy is defined for a TasksSet over a Processor.

Concrete syntax. Listings III.1 and III.2 represent a task with two different
concrete syntaxes. The first representation uses the Python programming language.
The second representation uses the AADL language. The mapping between the
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III.2. Data structures for the analysis of real-time systems

Figure III.4: Data structure of a periodic tasks model represented with a class
diagram. Task, Processor and SchedulingPolicy are the basic elements of the
model

elements of the data structure in Figure III.4 and the elements of the metamodels
is given in Table III.1.

Data Structure Concrete syntax
Python AADL

class: Task class: Task (Data_Struct) Component Type: Thread

attribute: name attribute: name Component_Identifier

attribute: period attribute: period Thread_Properties: Period

attribute: best case execution time attribute: best case execution time Thread_Properties: Compute_Execution_Time

attribute: worst case execution time attribute: worst case execution time Thread_Properties: Compute_Execution_Time

Table III.1: Periodic model: mapping between the element of the data structure
and the elements of the AADL and Python metamodels.

III.2.1.B Later developments

Theoretical model. The periodic task model has been later generalized with the
sporadic task model and multiframe models. These models allow representing such
task sets which can have non-regular release times, worst-case execution times and
deadlines.

In the sporadic task model [145], task jobs are not released periodically but have to
respect a Minimum Inter-release Time (MIT) T . In addition, the model considers
an explicit deadline D (D ∈ N) to the task definition: τ = (T,C,D).

The Multiframe model [146] and the Generalized MultiFrame (GMF) model [147]
are able to express k jobs of different types, e.g. a task in the generalized multiframe
model involves a triple τ = (T,C,D) with three vectors to describe k potentiality
of frames:

• T = (T0, T1, . . . , Tk−1) are the minimum inter-release times,
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1

2 " A simple class to represent a task "
3

4 class Task( Data_Struct ):
5 name=’A_Task ’
6 " Timing values in milliseconds "
7 period =20
8 best_case_execution_time =0
9 worst_case_execution_time =10

Listing (III.1) Represented with Python concrete syntax.

1 thread A_Task
2 properties
3 Dispatch_Protocol => Periodic ;
4 Period => 20 ms;
5 Compute_Execution_Time => 0 ms .. 10 ms;
6 end A_Task ;

Listing (III.2) Represented with AADL concrete syntax.

Figure III.5: Example of a task model.

• C = (C0, C1, . . . , Ck−1) are the worst-case execution times,

• D = (D0, D1, . . . , Dk−1) are the deadlines.

Data structure. The tasks in a model can be defined in different ways. In the class
diagram depicted in Figure III.6, a Task can be a PeriodicTask, a SporadicTask

or a GeneralizedMultiFrame task.

Figure III.6: Data structure to represent several type of tasks with a class dia-
gram. Only the changing part is represented: a Task can be implemented with a
PeriodicTask, a SporadicTask or a GeneralizedMultiFrame task.
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III.2.2 Graph-based tasks models

Graphs are among the more expressive data structures to characterize real-time
workloads. We illustrate two cases of utilization: dependent tasks and tasks with
non-deterministic behaviors.

III.2.2.A Dependency graph.

Theoretical model. The periodic task model and its generalizations discussed in
the previous subsection assume independent tasks. In real systems, the tasks can be
dependent in many situations, e.g. when sharing resources such as buffers, network
buses or other hardware devices. We can use a graph G=(V,E) to represent the
dependencies between the tasks:

• V are vertices, each vertex is a task of the model V ⊆ T = {τ1, τ2, . . . , τn},

• E ∈ V × V are edges, representing a dependency between tasks.

In that case, the resources must be accessed in a mutually exclusive manner. In
order to cope with synchronization problems such as priority inversion in fixed-
priority preemptive systems, concurrency control protocol have been introduced,
e.g. Priority Inheritance Protocol (PIP) and Priority Ceiling Protocol (PCP) [148].

Data structure. The data structure of the dependent task model is represented
on with a class diagram Figure III.7. New elements are introduced:

• dependency graph: a Dependency can be associated with a Task,

• shared data: a Dependency can involve a SharedData; SharedData can be
further defined, e.g. Buffer, Bus, etc.

• protocol: several concurrency control protocols (ConcurrencyProtocol class)
can be used to manage the resources, e.g. PriorityInheritance or Priority
Ceiling protocols.

Concrete syntax. Figure III.8 depicts four tasks with the CPAL graphical syntax.
Three tasks Task1, Task2 and Task3, represented with rounded rectangles with
periods within brackets, use a shared data named aSharedData, represented with
a simple rectangle. Arrows depicts access modes: read or write. The last Task4 is
independent.

III.2.2.B Directed acyclic graphs

Theoretical model Task models based on Directed Acyclic Graph (DAG) can
be used to represent such tasks with non deterministic behaviors [131] – non deter-
ministic inter-release times, worst-case execution times and deadlines. In a DAG
structure G = (V,E):
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Figure III.7: Data structure to represent dependent tasks with a class diagram. A
graph can be used to denote the dependencies between the tasks, i.e. a Dependency

can be associated with a Task. Access to SharedData (e.g. Buffer or Bus) involves
a concurrency control protocol (ConcurrencyProtocol class).
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Figure III.8: Dependent tasks represented in the CPAL graphical syntax. Four
tasks are represented with rounded rectangles with periods within brackets. Three
tasks use a shared data represented with a simple rectangle. Arrows depicts access
modes: read or write. The fourth task is independent.

Figure III.9: Data structure to represent DAG tasks with a class diagram. Only
the changing part is represented: in a DAG task a graph is used to represent jobs
and release times, here a DAGTask is defined via Job classes that can be associated
with Release classes.
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• V are vertices, with each vertex v ∈ V represents the release of a job,

• E ∈ V × V are edges, and each edge (v, v′) ∈ E represents the inter-release
separation.

In addition, labels are assigned to the edges and vertices:

• a pair < e(v), d(v) > is associated to a each vertex to denote job execution
times and deadlines,

• a value t(v, v′) is associated to each edge (v, v′) to denote the minimum inter-
release times.

Data structure. Figure III.9 gives the definition of a DAG Task data structure
with a class diagram. A DAG task consists of several jobs and release times, hence
the class DAGTask has a composition relationship with Job and Release classes. In
the DAG task model, a release has input and output jobs, hence the class Release

has two associations input and output pointing to the class Job. The Job and
Release are further described by the attributes worst_case_execution_time and
deadline, and the attribute minimum_inter-release_time respectively.

III.3 Implementation of the Python API

Accessors enable to retrieve data structures from architectural models, and then to
analyze them. In the previous section, we presented various real-time task mod-
els and associated data structures. In this section, we show an implementation of
accessors in Python. Accessors have been implemented towards AADL and CPAL
models.

Figure III.10 represents the application layers implemented in our prototype. The
implementation of the prototype is based on the Python programming language. In
addition, we may use dedicated resources for low-level model manipulations, e.g. we
use the OCARINA [88] tool-suite to parse AADL models.

III.3.1 Data Structure, Data Model and Accessors

The data model is the centerpiece of the data access API. It contains the data
that are to be used by the analysis at run time. The data model is based on data
structures which are class-oriented implementations of the analysis data structures
presented in Section III.2.

At run time, an analysis uses the data model to: (1) get the data to process and (2)
store the result of this processing. Access to the data is implemented in two parts:

1. data model : different procedures to access the data structures and maintain
such data structures up-to-date,

2. low-level accessors to retrieve data from the domain-specific models if neces-
sary.
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Figure III.10: Prototype modules overview. The prototype is based on core mod-
ules to implement the analysis, an access module to retrieve data from the design
models and several backend modules. The analysis can be externalized to a third-party
tool via model generations.

For instance, Figure III.11 describes the procedure to get a data structure from the
data model. If the required data structure is not present in the data model, the data
model must retrieve such data structure from the domain-specific model. For this
purpose, it uses the sub-procedure Get Data Structure from Design Model.

We must implement the low-level accessors so as to extract data from the domain-
specific models. Such accessors are specific to the target models. For example, we
may need to explore the AADL Instance Tree (AIT) in order to retrieve data about
real-time tasks from a AADL model. We do not discuss such operations in greater
detail in this chapter. See Chapter VI for a thorough presentation of the prototype
(Section VI.2.2 for accessors).

III.3.2 Analysis

The analysis module implements the analysis algorithm. The analysis algorithm
consists of the basic sequence: (1) load the data model, (2) process the data model,
and (3) update the data model with analysis results.

As an example, feasibility analysis of a set of independent tasks scheduled with
Rate Monotonic can simply be implemented with the Python language as shown in
Listing III.3.

The data model used for the analysis is loaded at the beginning: self.list_of_tasks=data_model.getListOfTasks().
It consists of a list_of_tasks is made up of Task instances. The analysis computes
the processor utilization factor (_utilization_factor) for the list of tasks before
comparing this factor against the theoretical bound (_utilization_factor<=_test_bound).

A data structure representing the schedulability of the tasks set (Schedulability
class) is created and initialized with the analysis result. The data model is finally up-
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Figure III.11: Process Flowchart depicting the procedure to get a data structure
from the data model. If necessary, the data structure is accessed in the design model
via the sub-process Get Data Structure from Design Model.

1 def analysis (self , data_model ):
2 print "−−> Analysis execution : RMA"
3 #input: required data entity
4 self. list_of_tasks = data_model . getListOfTasks ()
5 # analysis implementation
6 _utilization_factor =0.0
7 for task in self. list_of_tasks :
8 _utilization_factor = _utilization_factor +task.

execution_time /task. period
9 _tasks_nbr = float(len(self. list_of_tasks ))

10 _test_bound = _tasks_nbr ∗(2.0∗∗(1.0/ _tasks_nbr )−1.0)
11 if _utilization_factor <= _test_bound :
12 _Sched ="OK"
13 else:
14 _Sched ="NOK (NAP)"
15 # output : provided data entity
16 data_model . update ( Data_Struct (" SCHEDULABILITY_TEST ", [

Schedulability (_Sched , []) ]))

Listing III.3: Feasibility analysis implemented with Python. Example of
implementation of a feasibility analysis.

55



III.4. Discussion

dated with the analysis result: data_model.update(Data_Struct("SCHEDULABILITY_TEST",
[Schedulability(_Sched, [])])).

III.4 Discussion

Query mechanisms enable to analyze the non-functional properties of a system from
one of its models. This section first discusses related works based on model trans-
formation, and then compares model transformations with model queries. We show
that the two issues are actually orthogonal.

III.4.1 Related works

Model transformation. Modeling and analysis activities are usually based on
distinct tools which use their own models. An approach commonly used to connect
the toolsets is hence to translate a model used for design into a model used for
analysis as represented in Figure III.12.

Figure III.12: Analysis based on a model transformation. Design and analysis
features are part of distinct tools: (1) a model used for design in a first tool is
translated into a model used for analysis in a third-party tool; (2) the analysis in the
third-party tool is then applied on its own model.

Numerous transformations have been defined to connect analysis tools to AADL
models. For example, transformations have been implemented to translate AADL
models into Cheddar ADL and MAST models with the OCARINA tool suite [136,
88], transformations chains exist towards UPPAAL [78], TINA [75, 76] or CADP
model-checkers [82],etc. A more exhaustive list of transformations applied to AADL
models is available in a survey [12]. Yet, we note several limitations with a transformation-
based analysis approach:

• How to define the transformation? One can either implement a comprehensive
model transformation (e.g. metamodeling under the MOF standard [13] in the
Eclipse Modeling Framework [14], transformation with a dedicated language
such as ATL [15]), or more often relies on an ad hoc transformation chain to
deal with the design and analysis models under different technical spaces (i.e.
tools).

• How many transformations are necessary? A transformation is defined in
terms of a couple of models, themselves being part of particular tools as repre-
sented in Figure III.12. Thus, it is necessary to define a multiplicity of models
attached to specific tools/models.
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• Is the defined transformation correct? An important challenge is to ensure the
correctness of the transformation process. To the best of our knowledge, very
few transformations applying on the analysis problem and which are discussed
in the literature are proved to be correct, e.g. see [76] for a discussion on
the subject. This is a huge problem as soon as an analysis result is the by-
product of a transformation process which is itself not trustworthy. Verifying
the correctness of models transformations is actually a problem in its own
right which is the object of ongoing and dedicated researches, e.g. see works
by Amrani [16].

In conclusion, in a transformation-based analysis approach, one must define a large
number of ad hoc transformations with weak guarantees on their correctness.

Improving transformations through a pivot model. The previous strategy
can be improved by using a pivot model. As depicted in Figure III.13, a pivot model
is used to carry out several analyses. Pivot models can be connected with designs-
specific models and/or analysis-specific models through model transformations.

Figure III.13: Analysis of a design model via a pivot model. The pivot model is
used to apply several analyses. Model transformations can be used to map the pivot
with design-specific models.

For instance, MoSaRT and Cheddar have been used as intermediate frameworks
between AADL models and temporal analysis tools [69, 149]; Fiacre is an inter-
mediate formal language that is mapped to design languages (e.g. AADL, SDL,
UML and SysML) in input and model checkers (e.g. Tina and CADP toolboxes)
in output [150]; ADAPT is an intermediate framework between AADL models and
dependability analysis tools based on Generalized Stochastic Petri Nets (GSPNs)
[85].

Using a pivot model brings the benefit of reducing the number of transformations
that are necessary to connect design models with analyses. Yet, this approach still
requires implementing an important number of ad hoc transformations with little
guarantees on their correctness.

III.4.2 Model query vs. model transformation

Figure III.14 depicts the elements that can be involved in the analysis of a design
model. We can observe that the query and transformation issues are actually “or-
thogonal”.

In the modeling space (bottom part of the figure), a model called ModelA represents
the system. ModelA is defined by its metamodel MetamodelA. ModelA can possibly
be transformed into another model named ModelB (to switch from a design-specific
model to an analysis-specific model for example). In this case the transformation
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is defined in terms of the source and target metamodels, i.e. MetamodelA and
MetamodelB respectively. Notice that model transformations are defined as syntac-
tic transformation, transforming a model’s syntax into another.

In the analysis space (top part of the figure), the analysis algorithm processes precise
data structures such as the periodic tasks model or graph-based tasks models. The
analysis can directly query the models by taking into account the mapping between
the analysis data structure and the model concepts. Notice that the link between
models and analyses are data.

Data Structure

Analysis
(algorithm)

Meta-ModelB

ModelB

Meta-ModelA

ModelA

instance of

maps to

applies on

instance of

transformation
”query/view/transform“

mappings

maps to

data querydata query

Analysis
space

Modeling
space

ViewA ViewB

Figure III.14: Model queries vs. model transformations. Analyses query data over
models according to the mapping between data structures and metamodels. Multiple
views involve model transformations defined in terms of source and target metamod-
els.

From those observations, we can clearly distinguish between a model transformation
and a model query. A model transformation is a syntactic operation, allowing to
transform a model’s syntax into another. A transformation occurs in the modeling
space as it only affects models. A model transformation requires a full definition of
metamodels and transformations (e.g. following the “query/view/transform” stan-
dard). In contrast, an analysis operates on data. Thus, a model query enables to
extract some relevant data from a model in order to process them in a program (i.e.
data structures + algorithm). A model query does not imply to reason in terms of
transformations between a source metamodel and a target metamodel (i.e. language
syntaxes) but data extraction by taking into account the mapping between analysis
data structures and model concepts. Thus, model queries connect the analysis space
with the modeling space.

Positioning with related works. The transformation-based analysis approaches
presented in Section III.4.1 mix the elements displayed in Figure III.14 in a confusing
manner.
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In Figure III.15, we firstly distinguish between the tool spaces: the design tool on
the left, and the analysis tool on the right. We secondly note that elements of the
analysis space, i.e. the data structures and analysis algorithms, are not explicitly
handled. Therefore, the data structures are only visible through the analysis-specific
model, and targeting the analysis-specific model through model transformation is
the only way to connect with the analysis. The transformation used to connect the
tool spaces is:

• unidirectional: a model used for design in a first tool is translated into a model
used for analysis in a third-party tool,

• exogenous: the models are defined in different technical spaces.

Data Structure

Analysis

Meta-ModelB

Analysis
Model

Design
Model

Meta-ModelA

instance of instance of

maps to

applies on

data query

transformation

maps to

Design tool Analysis tool

Figure III.15: Positioning with related model transformation approaches. The
approaches discussed in Section III.4.1 are a specific case of the view presented on
Figure III.14: a model used for design in a first tool is translated into a model used
for analysis in a second tool. The data structure is implicitly represented by the
target metamodel, and the analysis applied on its own model.

The main bias in this approach is to reason in terms of tool spaces, based on mod-
els, rather than business spaces, based on operations (i.e. modeling and analysis).
Analyses are hard-wired in a transformation framework that translates a model used
for design in a first tool into a model used for analysis in another tool, in order to
comply with the execution needs of a specific analysis engine. Therefore, the analysis
occurs at the end of a two-steps process: “horizontally” the transformation process,
and “vertically” by letting the analysis tool using its own mechanisms to query the
analysis-specific model. We already commented on the limitations of this approach
in Section III.4.1.
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III.5 Synthesis and conclusion

In this chapter, we presented query mechanisms called accessors to analyze the non-
functional properties of a system from architectural models.

We firstly presented the rationale behind model queries. In particular, we identified
the elements which are involved in the analysis of an architectural model – models
and metamodels are the design components on the one hand, algorithms and data
structures are the analysis components on the other hand – and the relations be-
tween them. We underlined the crucial role of the data structures at the core of
the analysis definition, and reviewed several data structures that can be used for
the analysis of real-time properties. We also emphasized the mapping that exists
between analysis data structures and metamodels, making it possible to link an
analysis to an architectural model.

This perspective led us to completely revisit the way analyses are applied on archi-
tectural models in Model-Driven Engineering. We showed that the application of
an analysis on a model does not always require to translate a model used for design
into a model used for analysis, and thus implement a complex and untrustworthy
transformation chain. In fact, we showed that accessors enable just as well to ana-
lyze a model. These mechanisms enable to extract some relevant data from a model,
and then analyze them. We implemented accessors through a dedicated Application
Programming Interfaces in Python. As an example, we used this API to analyze
real-time properties from AADL models.

In conclusion, accessors completely shift the way analyses are applied on domain-
specific models. It is no longer necessary to take a “detour” via an analysis-specific
models or a pivot model as soon as an implementation of accessors towards model in-
ternals is provided. The distinction between “design-specific” and “analysis-specific”
models does not hold anymore. An analysis-specific model is not a model to be im-
plemented in order to comply with a specific analysis engine, but simply represent
the system from a particular point of view. Furthermore, we are able to analyze
any model, as soon as an implementation of accessors towards these models is pro-
vided. Finally, implementation of accessors through a dedicated API facilitates the
collaboration between designers and analysts while enhancing the reliability of the
application.

In the next chapter IV, we will use those accessors to fully implement analyses,
including their preconditions and postconditions.
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Semantics of an analysis

Abstract

Accessors introduced in the previous chapter enable to query and analyze non-functional
properties of a system from architectural models. This chapter focuses on the anal-
ysis itself, especially its semantics. As an introductory example (Section IV.1), we
explain the difficulty to apply real-time scheduling analysis in a model-based engineer-
ing approach. We present our solutions in the following sections. In Section IV.2, we
propose a general formalism to define the semantics of an analysis, and instantiate
it to a simple real-time scheduling analysis. Section IV.3 evaluates several imple-
mentations with the help of accessors. This chapter terminates with a discussion
about related works (Section IV.4) and a conclusion (Section IV.5).

IV.1 Introductory example: model-based real-time schedul-
ing analysis

In this introductory example, we consider real-time scheduling theory in general and
feasibility tests in particular. We quickly remind the real-time task model used in
such tests and the real-time scheduling problem. We then discuss feasibility tests
and the difficulty to apply them in a model-based approach.

Task model. Let us consider a system that has to carry out a set of tasks. Flight
control, flight guidance or fuel control are some examples of tasks in an airplane.
In Figure IV.1, a task τi ∈ T (card(T ) = n, i, n ∈ N) is a software module, that
is a set of instructions to execute. A task can have several characteristics, e.g. in
the context of seminal works by Liu and Layland [127] the tasks are periodic. A
periodic task τi consists of an infinite sequence of jobs τi,j (j ∈ N). A task can admit
an offset Oi that is the amount of time for the first release of the task. This implies
that the jth job of a periodic task is released at time ri,j = Oi + (j − 1) · Ti where
Ti is the task period. Each job consumes an amount of processor time Ci called
computation time. Finally, a task has a relative deadline Di, or expressed on the
jth job of a periodic task: di,j = ri,j +Di.
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Real-time scheduling. Real-time scheduling is the problem of building up an
execution order such that timing constraints are met, usually deadline constraints.
In the case of on-line scheduling, a scheduling algorithm decides the scheduling of
a set of tasks T = {τ1, τ2, . . . , τn} on a set of processor P = {P1, P2, . . . , Pm} and,
possibly, a set of shared resources R = {R1, R2, . . . , Rs}. Rate Monotonic (RM) is
an example of scheduling algorithm which is mainly characterized by preemption
(i.e. it is able to suspend a task execution, to execute one or several other tasks, and
then resume the execution of the first task), deterministic deadlines (Di = Ti) and
fixed priorities according to the rule “the smaller the period, the higher the priority”.

ri,j

τi,j

si,j ei,j di,j

Di

Ri,j

Ci

ri,j+1

τi,j+1

si,j+1 ei,j+1 di,j+1

Di

Ri,j+1

Ci

Ti

Figure IV.1: Usual representation of a real-time task with a Gantt diagram. For
a task τi: Ti the period, Ci the computation time and Di the relative deadline. τi,j
denotes the jth job of a task i: ri,j is the release time, si,j the start time, ei,j the
completion time, di,j the absolute deadline. A system is schedulable if ∀τi ∈ T , ∀Ri,j
the response time respects Ri,j ≤ di,j.

Feasibility tests. Feasibility tests are analytical methods to state if there is a
schedule that will meet all deadlines for a given task set and scheduling algorithm,
i.e. check whether a task set is schedulable according to a given scheduling algorithm.

For instance, Liu and Layland [127] proposed a test which is based on the analysis
of the processor utilization factor U – the fraction of processor time used by the
tasks. They have shown that a set of n periodic tasks is schedulable with the RM
algorithm if:

U ≤ n(2
1
n − 1); with U =

n∑
i=1

Ci
Ti

(LL-test)

The LL-test is a proved sufficient condition for the scheduling of a set of tasks with
the Rate Monotonic algorithm and under the assumptions that all the tasks have no
offsets, the deadlines are equal to the periods and the tasks are independent (that
is, have no shared resources or precedence constraints).

Later developments have improved or proposed new feasibility tests, relaxed the
assumptions, or considered new task models. For instance, Sha et al. [148] deal with
real-time tasks with shared resources; the access to the resources is managed with a
concurrency control protocol. They have shown that a set of n periodic tasks using
the Priority Ceiling Protocol is schedulable with Rate Monotonic if the following
test is verified:

C1

T1
+ . . .+

Cn
Tn

+max

(
B1

T1
, . . . ,

Bn−1

Tn−1

)
≤ n(2

1
n − 1) (SRL-test)
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In Equation (SRL-test), Bi denotes the worst-case blocking time for a task τi, that
is the time that this task can be blocked by all the lower level tasks that can access
a shared resource.

Another approach is to not use a feasibility test but calculate the worst-case response
time Ri of each task. The set of task is schedulable by a given algorithm if and only
if the worst-case response time of each task is less or equal to its deadline, e.g.
see [151] for the response time analysis of a set of tasks scheduled under the Rate
Monotonic algorithm.

How to use feasibility tests? Since the origins of the real-time scheduling theory
in the 1970s, the research community has provided a multiplicity of feasibility tests,
targeting many task models and providing numerous feedbacks on these models.

In the first place, the application of a feasibility test depends on the model which
is provided for the analysis, e.g. there are at least 9 task models that can be used
to analyze real-time workloads for preemptive uniprocessors [152, 131]. Those task
models offer different trade-offs between expressiveness (modeling precision) and
computation cost (analysis complexity). For instance, the aforementioned Liu and
Layland’s task model [127] is simple and easily computable (a few parameters, its
complexity is linear in the number of tasks) but restricts the tasks to a representation
that does not always fit the reality. At the opposite, the timed automata formalism
[153] provides an accurate representation at the price of a much higher algorithmic
complexity.

For a given model, numerous feasibility tests can be chosen. To give an idea, 200+
articles are cited by Sha et al. [21] as regards the advances in real-time modeling
and associated analyses! In another survey, Davis et al. [126] examine the feasibility
tests which are provided for multiprocessor architectures; and list about 120 different
works. Last but not least, each analysis may report on schedulability in a different
way: computed metrics (e.g. processor utilization factor, worst-case response times),
scope of the result (e.g. exact test, sufficient condition only, necessary condition),
etc.

Thus, applying the right real-time scheduling analysis on the right model is a tedious
and error-prone task. The problem for the designer is first to define the conditions
under which an analysis can be applied (e.g. assumptions on the system model) and
then to state whether the input model complies with these conditions or not. In
addition, the analysis result (processor utilization factor, worst-case response times,
. . . ) must be completely interpreted in order to report on the schedulability status.
In the next section, we propose solutions to address this problem:

• by fully defining an analysis with pre and postconditions in Section IV.2,

• by exploring implementation means in Section IV.3.

IV.2 Semantics of an analysis

An elementary model-based analysis process consists of the following computation
chain, as pictured in Figure IV.2:
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Ê the analysis inputs data from a model,

Ë the analysis program processes the data,

Ì the analysis outputs data about the model (i.e. analysis results).

Model Analysis Result

A{P} {Q}

input data output data

is about

Ê
Ë

Ì

Figure IV.2: Elementary model-based analysis process. An analysis can be made
equivalent to a Hoare triple {P} A {Q}. Preconditions P express the properties to
hold true in an input model to successfully execute an analysis A. Postconditions
Q are the properties guaranteed on the model after the analysis execution, i.e. the
analysis results.

We can formally define the semantics of an analysis with a triple analogue to a Hoare
triple.

Definition 12 (Analysis (semantics)). An analysis is a triple {P} A {Q}:

• P is a logical assertion expressed on input data called the precondition of A,

• A is an analysis program to compute output data from input data,

• Q is a logical assertion expressed on output data called the postcondition of A.

Preconditions P express the properties that the model must satisfy prior to execute
an analysis. Postconditions Q express the properties that the analysis guarantees
in return. Thus, if P is true on a model, executing A can lead to a model where Q
is true. In practice, assertions can be expressed with first-order logic formulas and
checked through a dedicated verification engine.

Example: semantics of a feasibility test. Let us consider a simple input data
model that can be used for real-time scheduling analysis, consisting of the tuple
(T , G, P, S):

• T is the set of task, with each τi ∈ T is a tuple (Ti, Ci, Di, Oi) (respectively:
the period, the computation time, the deadline and the offset),

• G is the graph (V,E) giving the dependencies between tasks,

– V are vertices, each vertex is a task of the model V ⊆ T ,

– E ∈ V × V are edges and represent dependencies between tasks,

• P = {P1, P2, . . . , Pm} is the set of processors,

• S is the scheduling algorithm, S ∈ {FP,RM,DM}.
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Liu and Layland defined up to 10 assumptions on the task model to analyze with
their feasibility test [127]:

• mono-processor (p1): there is just one processor,

• periodic tasks (p2): all tasks are periodic,

• no jitter (p3): all tasks are released at the beginning of periods,

• implicit deadlines (p4): all tasks have a deadline equal to their period,

• independent tasks (p5): all tasks are independent, that is, have no shared
resources or precedence constraints,

• fixed computation times (p6): all tasks have a fixed computation time (or
at least a fixed upper bound on their computation times) which is less than or
equal to their period,

• no self-suspension (p7): no task may voluntarily suspend itself,

• preemption (p8): all tasks are fully preemptive,

• no overheads (p9): all overheads are assumed to be null,

• fixed priority (p10): all tasks have a fixed priority.

According to the input model defined previously and the assumptions given above,
we can define the preconditions with predicates in First-Order Logic:

PLL−test = {p1 ∧ . . . ∧ p10}

with:

• p1 : {P | card(P) = 1}
• p2 : {∀τi ∈ T | Ti 6= ∅}
• p3 : {∀τi ∈ T | Oi = 0}
• p4 : {∀τi ∈ T | Ti = Di}
• p5 : {G | card(V ) = 0}
• p4 : {∀τi ∈ T | Ci ≤= Ti}
• p10 : {P | S = RM ∨ S = FP}
• p7, p8 and p9 are axioms, alternatively the data model could be extended with

any suitable data structure onto which those predicates could be expressed
(for example a graph explaining the task behaviors).

Provided the respect of the preconditions, the analysis by Liu and Layland com-
putes the processor utilization factor U (see LL-test). Hence, the postcondition that
determines the schedulability of the task set is given by QLL−test = {q1} with:

• q1 : {U | U ≤ card(T )(2
1

card(T ) − 1)}

Section IV.3 presents a practical implementation of this formalism.
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Figure IV.3: Process Flowchart describing the analysis execution. The analysis
execution depends on the verification of analysis preconditions. The analysis result
is checked at the end of the analysis execution.
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IV.3 Implementation of the analysis execution

In the previous section, we discussed a general formalism to define the semantics of
an analysis. In this section, we explain how this formalism can be used to completely
and correctly analyze architectural models. We quickly explain our approach before
reviewing several implementations.

IV.3.1 Proposed approach

In the previous section, we showed that an analysis can be made equivalent to a
Hoare triple. In particular, the preconditions are the properties to be checked true
in an input model to successfully execute an analysis. The postconditions are the
properties guaranteed on the model after analysis execution. At run time, we hence
evaluate the preconditions prior to execute the analysis, and check the postconditions
at the end of the analysis execution.

Figure IV.3 explains the analysis process in greater detail with a Process Flow Dia-
gram. At the very beginning, we verify the analysis preconditions on the model (1).
If the model fulfills the preconditions then we can the carry out the analysis (2a).
Otherwise, the process terminates (2b). Lastly, we check the analysis postconditions
(3). The process ends whether the postconditions are confirmed or not.

In the following sections, we evaluate several ways to implement this approach:

• using general-purpose constraint languages, e.g. REAL [154] with AADL mod-
els (Section IV.3.2),

• using the generic query mechanisms introduced in the previous Chapter III
together with the Python programming language (Section IV.3.3),

• using transformation or metamodeling approaches (Section IV.3.5).

IV.3.2 A first implementation with constraint languages

We firstly implement the approach in Figure IV.3 by using the REAL constraint
language which can be used with AADL models.

IV.3.2.A REAL at a glance

In former works, Gilles et al. [154] proposed REAL (Requirements Enforcement and
Analysis Language) to express and verify constraints on AADL models. It has been
designed as an AADL annex language and comes with its own interpreter.

REAL considers theorems as basic execution units. A theorem expresses one or
more constraints to check on an AADL model based on model queries and analysis
capabilities.

For our concern, REAL provides key features:

• it makes it possible to manipulate the elements of an AADL instance model
as many sets (thread_set, bus_set, memory_set, etc.) with getters for their
properties (get_property_value),
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• it enables mathematical computing with classical operators (+, −, ×, etc.) or
high-level functions (cardinal, min, max, etc.),

• it provides a syntax for predicate calculus with quantifiers (∀, ∃), logical
operators (¬, ∧, ∨, etc.) and predicate functions (is_subcomponent_of,
is_bound_to, etc.).

IV.3.2.B Application to the Liu and Layland’s feasibility test

We can implement the analysis and its preconditions through dedicated REAL the-
orems.

Preconditions. In Listing IV.1, the periodic_task theorem implements the pre-
condition p2=“all tasks are periodic” in Section IV.2. The expression of this pre-
condition in a theorem is straightforward: we check that the Period property is
provided (property_exists predicate function) for each element in the task set
(the thread_set in the AADL instance model).

The theorems needed to express the mono-processor (p1), no jitter (p3), im-
plicit deadlines (p4), fixed computation times (p6) and fixed priority (p10)
preconditions are of similar complexity.

1 −− This theorem checks that the release period of each task exists
2 theorem periodic_tasks
3 foreach t in thread_set do
4 check ( property_exists (t, " Period "));
5 end periodic_tasks ;

Listing IV.1: An example of REAL theorem. A REAL theorem expresses
constraints on a AADL model. The simple theorem here is used to check that
the threads described in the model are periodic.

Listing IV.2 depicts the theorem for the precondition p5=“all tasks are independent”.
It translates the assertion for AADL models with two sub-theorems: no_tasks_precedences
and no_shared_data.

The first sub-theorem assumes that a precedence (task_precedence) involves a
connection between AADL threads ( Is_Connected_To (t2, t1) with t1 and t2

are elements in thread_set) and checks that the number of precedences is null
(cardinal (task_precedence) = 0).

In the second sub-theorem, we assume that a shared data situation occurs when at
least two AADL threads access a same AADL data (Is_Accessing_To (t,d) with
d in Data_Set and t in Threads_Set). We thus check that at most one thread
accesses each data (Cardinal (accessor_threads) <= 1).
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1 −− independent_tasks : this theorem checks that tasks are mutually
independent , ie

2 −− (1) tasks do not share ( access ) a same resource and
3 −− (2) tasks have no precedence relationships
4

5 theorem independent_tasks
6 foreach e in local_set do
7 requires ( no_tasks_precedences and no_shared_data );
8 check (1=1);
9 end independent_tasks ;

10

11 −− subtheorem
12 theorem no_tasks_precedences
13 foreach t1 in thread_set do
14 task_precedence := { t2 in thread_set | Is_Connected_To (t2 , t1

)};
15 check (( cardinal ( task_precedence ) = 0));
16 end no_tasks_precedences ;
17

18 −− subtheorem
19 theorem no_shared_data
20 foreach d in Data_Set do
21 accessor_threads := {t in Thread_Set | Is_Accessing_To (t, d)};
22 check ( Cardinal ( accessor_threads ) <= 1);
23 end no_shared_data ;

Listing IV.2: Independent tasks theorem. The theorem on top checks that
the threads in the AADL model are independent: (1) a task cannot precede
another, i.e. in AADL a thread cannot be connected to another one (second
theorem); (2) the threads cannot share data with each other (third theorem).
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Analysis and postconditions. Listing IV.3 depicts the full implementation of
the Liu and Layland’s feasibility test with REAL theorems. The topmost theorem
liu_layland_feasibility_test implements the feasibility test.

In this theorem, we first evaluate the (pre)conditions under which the analysis
is applicable (require keyword at line 6). The preconditions are listed in the
liu_layland_assumptions sub-theorem (lines 19 to 23) and fully defined in other
sub-theorems (e.g. we discussed the periodic_tasks and independent_tasks the-
orems in previous paragraphs, see Listings IV.1 and IV.2). If the preconditions are
met, then the test can be executed (the requires command at line 6 aborts the
main theorem if any predicate is false).

The analysis then executes (compute keyword at line 10). We calculate the processor
utilization factor (var U, line 10) via the processor_utilization_factor sub-
theorem (lines 30 to 34). This sub-theorem needs the set of threads, previously
retrieved from the AADL model at lines 9.

Lastly, we evaluate the postcondition (check keyword at line 12). We check that
the processor utilization factor is under the acceptable limit. If the test succeeds,
then the task set represented in the AADL model is schedulable.

IV.3.2.C Lessons learned in using REAL

We firstly observe that a constraint language is defined by a precise (meta)model.
Consequently, a constraint language can only be used with (meta)models that be-
long to the same technical space. For example, REAL is defined by the AADL
metamodel and can only be used with AADL models, OCL can only be used with
MOF-compliant models such as UML, etc.

From our practical experience, we note that a constraint language such as REAL
do not always meet our needs in terms of expressiveness, e.g. because of restricted
operators, limited control flow, etc. In particular, a major shortcoming is that model
queries must be defined in terms of design-oriented data, obliging to reason about
analysis data through design-oriented concepts. For example in this subsection, the
Liu and Layland’s feasibility test is defined through REAL theorems. Consequently,
the analysis must be tailored to both the REAL syntax and AADL design-oriented
concepts. Preconditions such as non self-suspension, preemption and no over-
heads cannot be expressed because AADL models do not enable to model such
cases. Behavioral modeling would be more adapted to represent these real-time
systems; provided that the constraint language enables to query this kind of models.

In conclusion, constraint languages such as REAL or OCL enable to query and
analyze data structures. However, as “design-specific” query languages, these lan-
guages suffer strong limitations in terms of queried models and expressiveness. In
the following, we solve this problem by combining generic accessors with the Python
programming language.
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1 −− liu_layland_feasibility_test : this main theorem implements a
feasibility test

2

3 theorem liu_layland_feasibility_test
4 foreach e in Processor_Set do
5 −− verification of the analysis preconditions
6 requires ( liu_layland_assumptions );
7 −− analysis of the "model of tasks"
8 Proc_Set (e) := {x in Process_Set | Is_Bound_To (x, e)};
9 Threads := {x in Thread_Set | Is_Subcomponent_Of (x,

Proc_Set )};
10 var U := compute processor_utilization_factor ( Threads );
11 −− Liu and layland ’s test
12 check (U <= ( Cardinal ( Threads ) ∗ (2 ∗∗ (1 / Cardinal ( Threads

))) −1));
13 end liu_layland_feasibility_test ;
14

15 −− subtheorem : verification of the test assumptions
16

17 theorem liu_layland_assumptions
18 foreach t in thread_set do
19 requires ( mono_processor and periodic_tasks
20 and no_offsets and implicit_deadlines
21 and independent_tasks and fixed_computation_times
22 and fixed_priority );
23 check (1=1);
24 end liu_layland_assumptions ;
25

26 −− subtheorem : computation of the processor utilization factor
27

28 theorem processor_utilization_factor
29 foreach e in Local_Set do
30 var Period := get_property_value (e, " period ");
31 var WCET := last ( get_property_value (e, "

compute_execution_time "));
32 var U := WCET/ Period ;
33 return (MSum (U));
34 end processor_utilization_factor ;

Listing IV.3: A complete feasibility test implemented in REAL. The analysis
starts in the theorem on top. At line 6, the preconditions are verified by calling
the second theorem. If all the assumptions associated to the test are true, then
the processor utilization factor is calculated by calling the third theorem at line
10. The postconditions are finally checked at line 12.
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IV.3.3 Implementation through accessors in Python

We acknowledged that constraint languages are dedicated to Domain-Specific Mod-
eling Languages (e.g. REAL is used with AADL models, OCL with UML models,
etc.) neither enable to address analysis data structures nor to express the analy-
sis logic easily. This second implementation combines accessors with the Python
programming language to fully implement an analysis.

IV.3.3.A Motivations for Python

In Chapter III, we introduced accessors so as to retrieve data from a model and an-
alyze them. Figure IV.4 reminds the approach: an analysis implemented in Python
is carried out via access to data on a model written for example with AADL. We
use the Python programming language to both extract the data from AADL models
and analyze them. In this subsection, we extend this approach to fully implement
an analysis, as previously depicted in Section IV.3.1.

Architectural
model

Analysis

(e.g. AADL) (Python)

acc(data structure)

* 1

Figure IV.4: Analysis of an architectural model using accessors. We carry out the
analysis via access to data on an architectural model represented with AADL. We
firstly retrieve the data in the model before analyzing them in a Python program.

For our concern, Python provides key features:

• usability: Python is high-level, general-purpose programming language that
support multiple programming paradigms, including object-oriented program-
ming,

• rich and simple syntax: Python provides numerous data types (e.g. Boolean,
signed integers or float to represent numbers, strings for sequence of characters,
sets or lists for sequence types, etc.) and operators on them (assignment,
arithmetic, logical, relational, etc.), usual control flow and decision mechanisms
(loops, branches, and function calls), and many customized tools via built-in
functions or in external libraries,

• extendibility: Python enables to structure the program with modules and
packages and, in doing so, to create reusable libraries, e.g. to help stakeholders
to reuse existing model accessors and analyses or develop new libraries,

• portability: Python is a cross-platform software that can run on a wide variety
of systems through code interpretation.
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IV.3.3.B Application to the Liu and Layland’s feasibility test

We implement both the analysis and its preconditions through a related function, the
necessary data structures being passed as function arguments. Listing IV.4 shows a
prototype of an analysis function with the def keyword in Python.

1

2 def analysis (self , required_data_structure ):
3

4 """ both the analysis and its preconditions are implemented in
Python through an analysis function with data structures

passed as arguments """

Listing IV.4: Definition of a precondition through a Python function.

Preconditions. Listing IV.5 depicts three precondition checks in a Python pro-
gram: mono_processor, fixed_computation_times and independent_tasks. Each
function is carried out on its own data structure passed as a function parameter,
that is processors_list, tasks_list and dependency_graph respectively.

1 """ Examples of functions to check preconditions in Python
2 Arguments : data structures
3 """
4

5 # precondition 1
6 def __mono_processor (self , processors_list ):
7 if len( processors_list ) != 1 :
8 return False
9 return True

10

11 # precondition 6
12 def __fixed_computation_times (self , tasks_list ):
13 for task in tasks_list :
14 if task. worst_case_execution_time != None and task.

worst_case_execution_time > task. period :
15 return False
16 return True
17

18 # precondition 5
19 def __independent_tasks (self , dependency_graph ):
20 for task in dependency_graph :
21 dependent_tasks = dependency_graph [task]
22 if len( dependent_tasks ) > 0:
23 return False
24 return True

Listing IV.5: Three precondition checks
implemented with Python. Preconditions are verified within functions (i.e.
mono_processor, fixed_computation_times and independent_tasks) with
help of data structures passed as parameters (processors_list, tasks_list

or dependency_graph respectively).

The mono_processor function implements the precondition p1=“there is just one
processor” in Section IV.2 by simply checking that there is only one element in the
processors_list.
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The fixed_computation_times function checks the precondition p6. We verify that
all tasks in tasks_list have a computation time (task.worst_case_execution_time)
which is less than or equal to their period (task.period).

The verification of the precondition p5=“all tasks are independent” is carried out
directly on the dependency_graph data structure. The graph is built out of lists and
dictionaries in Python: each key in the dictionary is a vertex of the graph (a task) and
the corresponding value is a list containing the vertices that are connected via an edge
to this vertex (that is, dependent tasks). For each key in the dictionary (i.e. task in

dependency_graph), we check that the corresponding value (i.e. dependent_tasks)
is empty.

1 """ Liu and Layland feasibility test in Python """
2

3 class liu_layland_fesibility_test ( Analysis ):
4

5 def analysis (self , model):
6

7 #input data structures (model access )
8 tasks_list =model.get(" LIST_OF_TASKS ")
9 processors_list =model.get(" LIST_OF_PROCESSORS ")

10 dependency_graph =model.get(" TASKS_DEPENDENCIES ")
11

12 try:
13 #check analysis preconditions
14 assert (self. __mono_processor ( processors_list )), "p1"
15 assert (self. __periodic_tasks ( tasks_list )), "p2"
16 assert (self. __no_offsets ( tasks_list )), "p3"
17 assert (self. __implicit_deadlines ( tasks_list )), "p4"
18 assert (self. __independent_tasks ( dependency_graph )), "p5"
19 assert (self. __fixed_computation_times ( tasks_list )), "p6"
20

21 # compute the analysis and check postcondition is true
22 assert (self. __ll_test ( tasks_list ),"q1"
23

24 except AssertionError as e:
25 print ’analysis aborted ’, e.args

Listing IV.6: A complete feasibility test implemented in Python. The test is
implemented by the analysis method in the liu_layland_feasibility_test

class. The preconditions are checked at the beginning of the function (assert
statements). If no exception is raised (try-except statement), we execute the
feasibility test via the ll_test function.

Analysis and postconditions. Listing IV.6 shows a complete implementation of
the Liu and Layland’s feasibility test with Python. We implement the feasibility test
through a liu_layland_fesibility_test class which has an analysis method.
First of all, the analysis retrieves the input data structures from the AADL model:
processors_list, tasks_list and dependency_graph (lines 8 to 10). Then the
preconditions are checked with useful functions and data structures (lines 14 to 19).
We use assert statements to evaluate the preconditions. An assertion raises an
exception, caught and handled with the try-except statement, if a precondition is
evaluated to false. If an exception occurs in the try clause, the analysis terminates.
Contrariwise if all the preconditions are true, then the feasibility test is to be ex-
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ecuted via the ll_test function (line 22). Violating the postcondition (i.e. assert
statement at line 22) raises a last program exception synonym of analysis failure.

IV.3.4 Constraint Language vs. accessors+Python

We saw that constraint languages enable to query model instances and analyze them.
In this chapter, we used the REAL constraint language to analyze AADL models.
However, we noted two main drawbacks when using constraint languages:

• queried models: constraint languages are limited in terms of addressable mod-
els as they are included in a specific technical space, e.g. REAL with AADL,
OCL with UML,

• expressiveness of constraint languages is not adapted to our use, e.g. oper-
ations concern design-oriented data (obliging to reason about analysis data
through design-oriented concepts), languages may have limited operations or
control flow (according to our practical experience with REAL), or be at times
unnecessary verbose and hard to read (both OCL and REAL languages).

To overcome these issues, we presented an improved implementation that combined
accessors (introduced in Chapter III) with the Python programming language. We
clearly separate data definition (data structures), from data extraction (accessors),
from data analysis (Python program). In this way, we enhance the implementation
of the analysis and its preconditions:

• queried models: accessors enable to analyze any model as soon as an imple-
mentation of accessors towards these models is provided; in addition, both the
data structures and the language used to evaluate these data structures are
independent of the models,

• expressiveness: this approach makes it possible to directly analyze analysis-
specific data structures rather than interpreting them through a third-party
metamodel; in addition, Python is general-purpose programming language
which enables to easily express analysis operations with a simple and rich
syntax, and additional libraries.

IV.3.5 Other possible implementations

The implementations presented in the previous sections combined different kind
of accessors with a dedicated language to analyze architectural models. Accessors
enable to extract data from a model, whereas a constraint language (e.g. REAL)
or a general-purpose programming language (e.g. Python) makes it possible to
analyze such data. We sketch some other possible implementations that we found
less optimal.

Implementing preconditions as part of the transformation process. This
first alternative implementation would apply in a situation where a transformation is
necessary to translate a model used for design into a model used for analysis (notice
that we dismissed this approach in the previous Chapter III, more arguments are
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provided Section III.4). In such a case, precondition checks could be implemented
as specific transformation rules, e.g. expressed with ATL [15]. Yet, we note sev-
eral limitations with this approach. First, this approach is only applicable within
a fully defined modeling framework with models, metamodels and transformation
languages; and is restricted to this specific technical space. The second main disad-
vantage is that analysis preconditions must be checked according to model syntaxes
(obliging to think analysis data structures in terms of design-oriented concepts) and
with help of the transformation language (which can have limited capabilities in
terms of data exploration, operations, and so on).

Well-formedness rules – constraining model instantiation. Another ap-
proach is to implement preconditions via well-formedness rules (WFR) as part of
the metamodel definition. Through WFRs, models are tuned to conform to a specific
analysis (or transformation) engine. In other words, model instances must satisfy
the WFR rules to apply an analysis. A constraint language such as OCL can be used
with UML-based metamodels. First, we note that this approach is very restrictive
as it constrains apply on the construction of the models (i.e. definition of the meta-
models). Secondly, we claim that this approach is paradoxical: models are tailored
to fit analysis aims, and not to implement system-specific requirements. Lastly, we
observe that analysis preconditions must be adjusted to DSML syntaxes (that is, to
both the design language and the constraint language).

The main advantage of our approach is to separate precondition checks from off-topic
transformation and metamodeling issues. First, we clearly separate concerns, i.e.
data definition, from data extraction, from data analysis. Secondly, we can use all
the powerful features provided by a general-purpose programming language, instead
of fitting preconditions into an unsuitable constraint or transformation language.

IV.4 Discussion: related works

This section discusses related works that aim at providing context-aware analyses,
and then compare to our works. We distinguish between implementation means and
analysis frameworks.

Implementation through constraint languages. OCL (Object Constraint Lan-
guage) [155, 156] is a constraint language working with UML models. In practice
OCL can be used for expressing many sorts of (meta)model queries, manipulations
and requirements. OCL is adopted as a standard by the OMG, the latest specifica-
tion of OCL is version 2.4 [157].

REAL (Requirements Enforcement and Analysis Language) is a language proposed
by Gilles [158], [154] aiming at expressing constraints on AADL models. REAL
has initially been designed to support system optimization in a model-based process
[159] but can be used more generally to enforce some semantics or consistency checks
on AADL models. REAL is available as an AADL annex language and comes with
its own interpreter integrated in the OCARINA tool [136, 88].

We firstly note that constraint languages can be used to express many kinds of
model queries. Thus, they do not provide specific guidelines to implement analysis
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at large. Constraint languages are query language towards design-specific models
(e.g. REAL/AADL, OCL/UML). Thus, constraints languages cannot inter-operate
and have a limited expressiveness (e.g. design-oriented data structures, operations,
control flow, etc.). See our experimentation with REAL in Section IV.3.2.

Analysis frameworks. We can mention works from Ouhammou [70] and Gaudel
[160] that preceded our works.

Ouhammou et al. [161] proposed an intermediate framework between real-time de-
sign languages and real-time analysis tools called MoSaRT (Modeling-oriented Schedul-
ing analysis of Real-Time systems). MoSaRT consists of a Domain Specific Modeling
Language providing the core concepts of real-time systems, and an Analysis Repos-
itory to analyze the models with help of the real-time scheduling theory. The main
novelty is the automatic selection of real-time scheduling analyses. For this purpose,
the authors firstly formalize the applicability of real-time scheduling analyses with
real-time contexts (i.e. a set of assumptions related to the tasks). Real-time con-
texts are then automatically checked on the models to choose a suitable analysis.
This feature is implemented through a set of OCL invariants representing analysis
assumptions.

Gaudel [160] build on architectural design patterns to select real-time feasibility tests
[162, 163] in the Cheddar tool. The authors define an architectural design pattern as
a set of applicability constraints applying on architectural models. They implement
their own algorithms to select the feasibility tests in the Cheddar tool [164]. This
algorithm aims at detecting the design patterns which are present in a model and
analyze their composition if multiple patterns are represented.

We note that the two approaches are devoted to specific DSMLs and tools (Cheddar
and MoSaRT). It is hence necessary to either re-implement the approach to reuse it
in another tool or to define bridges between tools, e.g. a transformation chain exists
from AADL to Cheddar or MoSaRT tools [137, 70], or more recently Gaudel et al.
[149] redefined architectural design patterns for AADL models though AADL sub-
sets. Let us note that these palliatives have several disadvantages: the semantics gap
between design languages, adaptation of technical solutions (for instance, constraint
language vs. ad hoc implementation of selection algorithms), weak guarantees on
the transformation correctness, etc.

Our approach builds on and generalizes the related works while proposing different
implementation means. We introduced a more general formalization of the seman-
tics of an analysis based on the Hoare notation. We note that this notation applies
for real-time scheduling analysis just as well as for any sort of analysis (depend-
ability, security, etc.). A full analysis, including preconditions and postconditions,
can be implemented in several ways, e.g. with constraint languages (REAL in Sec-
tion IV.3.2) or through accessors combined with a general-purpose programming
language (Python in Section IV.3.3). Our approach is naturally portable and inter-
operable through the generic accessors introduced earlier in Chapter III. We finally
note that we are able to implement an improved decision process based on contracts
to define analysis interfaces and SAT methods to evaluate them (this contribution
is presented in Chapter V).
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IV.5 Synthesis and conclusion

We showed in an introductory example the difficulty to correctly apply real-time
scheduling analyses in a MDE process. The problem for the designer is firstly to
define the conditions under which an analysis can be applied, and secondly to state
whether the input model fulfills these expectations or not. In addition, the analysis
result should be completely interpreted in order to report on the schedulability
status.

In this chapter, we formalized the analysis execution. We showed that an analysis
can be made equivalent to a Hoare triple {P} A {Q}. The preconditions P in this
triple are the properties to hold true in an input model to successfully execute an
analysis A. The postconditions Q are the properties guaranteed on the model after
analysis execution. With preconditions and postconditions, an analysis is complete
and sound. Hence, a full analysis requires first validating the preconditions, and
lastly checking the postconditions. We experimented two implementations of this
approach: constraint languages (REAL on AADL models) first, and accessors intro-
duced earlier in Chapter III combined with a general-purpose programming language
(Python) next. We noticed that the second implementation is more efficient: easier
implementation, better portability and interoperability.

We extend the work presented in this chapter to provide greater decision and or-
chestration support. The approach presented in Chapter V uses analysis contracts
to define analysis interfaces and SAT methods to evaluate them.
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Chapter V

Contract-driven analysis

Abstract

In the previous chapter we presented an approach based on pre and postconditions
to deal with the context associated to an analysis. We showed that model query
implemented either by a classic constraint language (e.g. REAL or OCL) or a
general-purpose programming language (e.g. Python) combined with a set of model
accessors could be used to check the preconditions. Yet, these artifacts, in the current
state, offer a limited decision support when analyses have to be considered in a
design workflow: e.g. which analysis can be applied on a given model? How to
handle the analysis results? Is it possible to combine analysis results? Are there
interference between analyses? Etc. To answer those questions, one must be able to
better characterize analyses with their interfaces and properties first and be able to
exhaustively interpret the analysis features afterwards.
In Section V.1, we explain that analyses as an integral part of Model-Based Systems
Engineering (MBSE) approaches must be handled in a systematic manner. In Sec-
tion V.2, we introduce contracts as a means to formally define the design components
– models, analyses, goals. We then explain in Section V.3 how contracts can be used
to systematize the analysis activities in the design process. In particular, we present
the proof-of-concept of a contract-driven analysis approach supported by Alloy. This
chapter ends with a discussion in Section V.4 and a conclusion in Section V.5.

V.1 Motivating context: analysis in a design process
supported by an architectural language

Architectural languages provide a support for the Model-Based Engineering of real-
time embedded systems [18]. An advanced design process supported for instance by
AADL involves conjoint modeling and analysis activities, as shown by Figure V.1:

1. the AADL model is the centerpiece of the process. The AADL model repre-
sents the top-level architecture of the system. It depicts the static software
architecture, the computer platform architecture with behavioral descriptions
in a single model,

2. analyses are carried out on the AADL model to provide feedbacks about the
system design. Analyses can be used for validation purposes (e.g. to assess the
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processor workload or analyze the schedulability of the task set) or to compute
new data that could be added to the model (for instance, we combined AADL
models with an analysis chain in order to define some network parameters for
a Flight Management System in [165, 166]),

3. the system is progressively defined and validated via the successive modeling
and analysis steps. Platform-Specific Models (runnables, configuration files,
etc.) can be fully or partially generated from higher level models (for instance,
see works by Lasnier [167])

captures

input - real-time

Specifications
document

- functional
- non-functional

Additional
extend

AnalysesAADL Model

System

Binaries, 
configs, etc.

feedbacks (results)

generation

input - real-time
- safety
- etc.

- validation
- correction
- refinement
- etc.

Additional
models

- programs
- annexes
- etc.

extend

Figure V.1: Architecture-centric Model-Based Systems Engineering process sup-
ported by AADL. AADL models capture the functional and non-functional archi-
tecture of an embedded system. We conduct analysis from AADL analytical repre-
sentations, e.g. to assess real-time or safety properties. The system is progressively
defined and validated via the successive modeling and analysis steps. Finally, we
generate Platform-Specific Models (PSM) such as runnables.

Yet, we note that, apart high-level principles and abstract guidelines, MBSE tools
such as OSATE (Open Source AADL Tool Environment) [134] provide little support
to carry out the modeling and analysis steps.

How to make the analysis systematic? Let us discuss a simple design flow
represented with a directed graph in Figure V.2. The vertices depict the modeling
and analysis activities while the directed edges represent the transitions between
activities:

• M : the designer starts by modeling the system with AADL,

• preA1, A1: the designer can apply a feasibility test (A1 vertex) to assess a
real-time property: are the tasks schedulable? Before the designer must
check the analysis preconditions (PreA1 vertex) as discussed in Chapter IV,

• G1, M ′: if the feasibility test succeeds the model is validated (G vertex: the
deadlines are met), if not the designer must propose a correction (vertex M ′).
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The process continues to assess other properties based on the validated AADL
model or its correction.

M

PreA1

...

A1

G M ′

...

initial AADL
model

feasibility test

the deadlines
are met

check preconditions

correction of
AADL model

are the tasks

schedulable?

are the analysis preconditions

respected?

yes no

yesno

Figure V.2: An example of design workflow. The design flow involves modeling
and analysis activities to achieve goals. Vertically: we assess temporal constraints
(goal) on an initial AADL model with feasibility tests (analysis). If the analyses do
not succeed we must correct the model. The process continues to achieve other goals.

We notice that the design flow on the figure V.2 systematically involves the following
elements:

1. one or several models that must be analyzed: M and M ′,

2. goals which are the properties that must be assessed on those models: G,

3. analyses that must be applied on the models to achieve goals: PreA1, A1.
Analyses can be combined to provide intermediate data (PreA1) or end data
(A1).

The problem for the designer is hence to handle a workspace which is made up of
models representing the system and analyses that should be applied to meet specific
goals. As stated by Vaziri and Jackson [168], classic constraint languages such as
OCL or REAL used for preconditions checks in the previous Chapter IV do not
provide the adequate decision support to tackle this problem. Indeed, one must be
able to fully characterize the design components – models, analyses, goals – with their
interfaces and properties. Analysis features should then be exhaustively interpreted
in order to answer specific questions such as: which analysis can be applied on a
given model? For a given goal? Are there analysis results to possibly combine? Are
there interference to forbid between analyses? Etc.

We present our solutions for this purpose in the next sections:
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• we first present analysis contracts in the Section V.2,

• we then explain how contracts can be used to systematize the analysis activities
in a design workflow Section V.3.

V.2 Contracts

In this section, we introduce contracts as a means to formally define models, analyses
and goals.

We provide preliminary definitions for models, analyses and goals. We then in-
troduce contracts and their properties. All the concepts discussed in this section
are illustrated with help of a simple example coming from the real-time scheduling
theory.

V.2.1 Preliminary definitions: models, analyses and goals

Model. A model is “a sound abstraction of an original that depends on the science
matter” [16], i.e. here an embedded system. We propose the following definition for
the approach presented in this chapter.

Definition 13 (Model). A model is a couple M = (S, P ):

• S is a set of data,

• P is a set of properties. A property is an association of data structures P :
S → S.

Data are defined as per basic data types such as mathematics-oriented types (e.g.
Boolean, integers, floats, etc.) or domain-specific types (e.g. scheduling algorithms
in real-time theory), or according to more sophisticated data structures (e.g. using
sets, lists, graphs, etc.). Data structures are closely related to the facets of the
system being considered (e.g. a set of tasks in a real-time system).

Properties can specify invariants such as tasks periods, processor scheduling policies,
but also a model status like being schedulable, safe, etc.

Analysis. Informally, we can define an analysis as a “a careful study of something
to learn about its parts, what they do, and how they are related to each other ; an
explanation of the nature and meaning of something1”. We propose the following
definition.

Definition 14 (Analysis (function)). An analysis is a function that operates over a
model A : M →M .

Goal. According to the previous definitions, we can combine models and analyses
to produce other models. We finally define goals as particular models.

Definition 15 (Goal). Let M be a set of models and A be a set of analyses. A goal
is a particular model required over a set of models and analyses G :M×A→M .

1general definition by http://www.merriam-webster.com/
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M=(
S,
P     )

A

M’=(
S,
P     )

Figure V.3: Analysis seen as a function. An analysis A inputs a model M and
outputs another model: M ′ = A(M).

Example. Let us discuss the models, analyses and goals of the design workflow
represented in Figure V.4.

M0=(Per,

Exec, A1Exec,

…)

A2

M2=(respTime,

…)
A3

A1

M3=( 

Dline,

…)

G1=( 

isSched)

Figure V.4: Models, analyses and goals in the design workflow of a real-time
system. From the periodic task model M0, either feasibility test (A1) or response
time analysis (A2) enables to conclude about the schedulability of the tasks (G1).
An additional analysis A3 inputs M2 together with an extra model M3 in order to
compare the responses times against the deadlines.

We can represent a real-time system through the periodic task model proposed by
Liu and Layland [127] (referred to as M0 in the following). This model represents
a set of tasks with periods and execution times plus a processor with a scheduling
policy, as specified by Table V.1.

The latter tasks model allows for several sorts of schedulability analysis. For in-
stance, we can use a feasibility test based on the computation of the processor
utilization factor [127] or a response time analysis [129] (respectively referred to as
A1 and A2 in the following).

Table V.2 depicts the results of the two analyses. The first model(M1 = A1(M0))
is made up of a property (isSched) which associates a Boolean value to a set of
tasks. true means that the set of tasks is schedulable and false means it is not.
The second model (M2 = A2(M0)) associates a worst-case response time to each
task (respTime data). The response time is the time taken to complete a task in
the worst-case scenario.

Any of M1 and M2 models can be a goal. In that case, it is referred to as G1 or G2.
We consider G1 in Figure V.4:
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• A1 (feasibility test) can be directly used to conclude about the schedulability
of the tasks: if the Boolean-valued property isSched is true, the system is
schedulable,

• A2 (response time analysis) requires further interpretation of the resulting
model M2. An additional analysis A3 inputs M2 together with an extra model
M3 in order to compare the task responses times against the task deadlines: if
the response-times respTime are lower than the deadlines Dline, the system
is schedulable (isSched is true).

V.2.2 Contracts

A contract formally defines the interfaces of a model, an analysis or a goal in terms
of data and properties.

Definition 16 (Contract). A contract, related to an element (i.e. a model, an
analysis or a goal), is a tuple: K=(I,O,A,G):

• I are inputs: the data required by the element,

• O are outputs: the data provided by the element,

• A are assumptions: the properties required by the element,

• G are guarantees: the properties provided by the element.

Notice that the ’data’ directly refer to the accessors presented in Chapter III, whereas
the ’properties’ relate to the preconditions and postconditions introduced in Chap-
ter IV. Hence, a contract is semantically equivalent to a Hoare triple as set out in
Chapter IV.

K{I} {O}

{A}

{G}

“inputs” “outputs”

“assumptions”

“guarantees”

Figure V.5: Representation of a contract. A contract formally defines the in-
terfaces of a model, an analysis or a goal in terms of required and provided data
and properties. It specifies the data through inputs and outputs, and properties via
assumptions and guarantees.
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Notation convention. A number of notation conventions are used throughout
this chapter:

• K.I, K.O, K.A and K.G denotes the various interfaces of a specific contract,
that is its inputs, outputs, assumptions and guarantees respectively,

• we use the notation K(x) to refer to the contract of an element x. We use an
uppercase letter M , A or G instead of x to refer to a model, an analysis or a
goal respectively,

• we use several indexes to point out an element of a set of contracts, models,
analyses or goals, e.g. Ki∈N, Mj∈N, Ak∈N, Gl∈N.

Example. Let us define contracts for our simple example.

The feasibility test A1 requires several data from the input model M1 (see previous
Table V.1). In addition, the test proposed by Liu and Layland relies on a set of
assumptions as specified in Table V.3 (see Section IV.2 for the complete list of the
assumptions).

contract I O A G

K1(M0) ∅
Per,

∅ ∅Exec,
. . .

K2(A0)
Per,

∅ ∅
perTasks,

Exec, fixedExec,
. . . . . .

K3(A1)
Per,

U
perTasks,

isSchedExec, fixedExec,
. . . . . .

K4(A2)
Per,

respTime
perTasks,

∅Exec, fixedExec,
. . . . . .

K5(M3) ∅ Dline ∅ ∅

K6(A3)
respTime,

∅
perTasks,

isSchedDline fixedExec,
. . .

K7(G1) ∅ ∅ isSched ∅

Table V.4: Contracts for the various models, analyses and goals from Section V.2.1.
We must use an additional analysis A0 to check Liu and Layland’s assumptions.

Under the Liu and Layland’s assumptions, this analysis provides the processor uti-
lization factor (U data) and a guarantee about the schedulability of the system
(isSched property).

We hence define the contract for A1 as follows: K3(A1) = (I3, O3, A3, G3) with

I3 = {Per,Exec,Sched, . . .},

O3 = {U},
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A3 = “Liu and Layland’s assumptions” = {perTasks,fixedExec,fixedSched, . . .}

and G3 = {isSched}.

Following the same method we are able to define the contracts for the various models,
analyses and goals represented in Figure V.4. Table V.4 summarizes those contracts.
Notice that we use an additional analysis (A0 in the following) to check Liu and
Layland’s assumptions.

V.2.3 Contracts complementarity

We note that the interfaces (inputs and outputs, assumptions and guarantees) of
two distinct contracts can be complementary. In that case, there is a precedence
order between the underlying elements (models, analyses or goals).

Vertical precedence. A vertical precedence denotes a precedence between two
elements with respect to properties computation (from assumptions to guarantees).

Property 1 (Vertical precedence (informal)). There is a vertical precedence of an
element X over a distinct element Y if and only if the guarantees of X and the
assumptions of Y are complementary.

Property 2 (Vertical precedence (formal)). Let:

• E be a set of elements, with (X,Y ) ∈ E distinct elements (X 6= Y ),

• K(X) and K(Y ) be the contracts of X and Y respectively.

X vertically precedes Y , that is next vertical(X,Y ) = true, iff K(Y ).A∩K(X).G 6=
∅.

Horizontal precedence. An horizontal precedence denotes a precedence between
elements with respect to data computation (from outputs to inputs).

Property 3 (Horizontal precedence (informal)). There is an horizontal precedence
of an element X over a distinct element Y if and only if the outputs X and the input
of Y are complementary, and there are elements K and N to satisfy the assumptions
of X and Y respectively.

Property 4 (Horizontal precedence (formal)). Let:

• E be a set of elements, with (K,N,X, Y ) ∈ E distinct elements (K 6= N 6=
X 6= Y ),

• K(X) and K(Y ) be the contracts of X and Y respectively,

• next vertical(K,X) and next vertical(N,Y ) be vertical precedences over ele-
ments of E.

X horizontally precedes Y , that is next horizontal(X,Y ) = true, iff K(Y ).I ∩
K(X).O 6= ∅ and (K(X).A = ∅ or next vertical(K,X) = true) and (K(Y ).A = ∅
or next vertical(N,Y ) = true).
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Example. A graphical representation of the precedences involving the contracts
of Table V.4 is given in Figure V.9.

According to Properties 1 and 2, there are 5 cases of vertical precedence. For in-
stance, between an analysis and another: K3.A∩K2.G = {perTasks,fixedExec, . . .} 6=
∅ ⇐⇒ next vertical(A0, A1) = true.

According to Properties 3 and 4, there are 5 cases of horizontal precedence. For
instance, between a model and an analysis: K3.I ∩K1.O = {Per,Exec, . . .} 6= ∅ ∧
K1.A = ∅ ∧ next vertical(A0, A1) = true ⇐⇒ next horizontal(M0, A1) = true.

Figure V.6: Example of data flow between models, analyses and goals. The com-
plementarity between the contracts in Table V.4 bring out precedences between the
models, analyses and goals. Horizontal precedences refer to data (computed from
outputs to inputs) while vertical ones concern properties (computed from guarantees
to assumptions).

V.3 Contract-driven analysis

In this section, we explain how contracts can be used to systematize the analysis
activities in a design workflow. We discuss the general approach first. We then
present a proof-of-concept with Alloy.

V.3.1 Proposed approach

We propose the approach represented with a Process Flow Diagram in Figure V.7.
Our approach relies on the detection of contracts complementarity to set up analysis
paths in order to reach goals for any input model. The approach consists of 3 main
steps.
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Contracts

definition
Analyses

Process starts

Contracts

evaluation

Models + 

Goals

Analysis

graph

Contracts

Process ends

Analysis graph 

execution

evaluation

Results

Goals graph

Figure V.7: Process Flowchart for contract-driven analysis. The analysis flow
is executed (step 3) according to the definition (step 1) and evaluation (step 2) of
analysis contracts.
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(1) Definition of the contracts. We define contracts for the input configuration.
A configuration consists of:

• a set of models,

• a set of analyses,

• a set of goals.

Contracts specify the interfaces of an element with FOL formulas from both the
data (inputs/outputs) and properties (assumptions/guarantees) points of view.

(2) Evaluation of the contracts. Subsequently, we evaluate the contracts. Dur-
ing this step, we use (a) the contracts from step 1 together with (b) the rules de-
scribing under which conditions two contracts are complementary (Properties 1 to
4 in Subsection V.2.3). Then, we proceed as follows:

(i) given (a) and (b), we search the complementarity between the contracts,

(ii) if a complementarity between two contracts exists, we set the precedence be-
tween the underlying elements.

This is a problem about the satisfiability of contract formulas. A satisfiable inter-
pretation of the contracts defines an analysis graph compliant with a model and a
goal.

The implementation with Alloy discussed in the next subsection is optimal in the
sense that it allows us to identify all the analysis paths to fulfill a goal according to
an input model.

(3) Execution of the analyses. Finally, we proceed to the execution of the
analysis graph. The analyses are executed with their tools according to the analysis
graph resulting of step 2 to produce sound result(s) on the model.

Implementation of steps 1 and 2 is discussed in next Section V.3.2. Implementation
of step 3 is discussed in Chapter VI.

V.3.2 Proof-of-concept with Alloy

As a proof-of-concept of the general approach represented in Figure V.7, we imple-
ment contracts definition (step 1) and their evaluation (step 2) with help of Alloy.
Notice that the execution of the analysis graph (step 3) is not part of the Alloy prob-
lem. We discuss the execution part in the context of a more advanced prototype in
Chapter VI (in particular, Section VI.2.4 deals with the visit of the analysis graph).

In this section, we firstly give a quick overview of Alloy. We then describe the
toolchain used for proof-of-concept, mixing modeling and analysis tools together
with the Alloy tool. We finally discuss an experimentation of the contract-based
approach on several case studies.
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V.3.2.A Alloy at a glance

Motivations. Our objective is to define contracts as precisely as possible to then
provide a correct, exhaustive and time-efficient interpretation of these contracts.

We chose not to use a classic constraint language such as OCL or REAL for several
reasons. As state by Vaziri and Jackson [168]:

1. constraint languages are not stand-alone languages: they need an accompany-
ing model, e.g. OCL needs an UML, REAL focus on AADL models. In our
case, contracts must be expressed independently of any design-oriented model,

2. constraint languages are not conceptual languages: they use low-level opera-
tions and complicated type systems, expressions are hard to read, etc. Conse-
quently, they are hardly amenable to automatic and extensive analysis.

Instead, we choose Alloy [169], a language for expressing complex structural con-
straints completed with a tool for analyzing them. For our concern, it provides key
advantages:

• Alloy is a formal language with abstract and analytical notations based on
first-order logic that we use to specify contracts,

• Alloy provides a constraint solver to analyze and Alloy specification; we use
the Alloy analyzer to evaluate contracts.

Alloy specification. Alloy is based on a specification that contains signatures.
Signatures may have fields to define relationships with other signatures. In addition,
facts express constraints on the signatures and fields.

We define contracts with Alloy in two parts:

• a basic signature specifies the structure of a contract: fields are not only used
to represent the contract interfaces (inputs, outputs, assumptions and guar-

antees) but also dependencies with other contracts (nextHoriz and nextVer-

tical). Listing V.1 depicts the contract structure in Alloy syntax,

• signature facts specify the specific constraints about the contract instances.
Listing V.2 represents a contract instance of a feasibility test called DC_FPP_RTA

with the specification of inputs, outputs, assumptions and guarantees.

The Alloy specification is completed in Listing V.3 with VerticalPrecedence and
HorizontalPrecedence facts. They define the logical conditions under which the
nextHoriz and nextVertical relationships hold between two contracts.

Alloy analysis. The Alloy analyzer provides full and automatic analysis of an
Alloy specification. The Alloy analyzer is a ’model finder’: it searches a model that
satisfies the logical formula generated from the Alloy specification. If there is a
solution that makes the formula true, Alloy will find it. Alloy provides several SAT
solvers for this purpose.
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1 /∗ Basic signatures manipulated in Alloy specification ∗/
2

3 /∗ Definition of Data and Properties signatures ∗/
4 abstract sig Data {}
5 abstract sig Property {}
6

7 /∗ Definition of the structure of a contract ∗/
8 abstract sig Contract {
9 // interfaces

10 input: set Data , // required−provided data
11 output :set Data ,
12 assumption : set Property , // required−provided

properties
13 guarantee : set Property ,
14 // relationships with other contracts
15 nextHoriz :set Contract , // output−>input
16 nextVertical :set Contract // guarantee−>assumption
17 }

Listing V.1: Basic signatures of the Alloy specification. Signatures in Alloy
describe the entities to reason about. Here, the contract signature specifies
the structure of a contract: fields are not only used to represent the contract
interfaces (input, output, assumption and guarantee) but also dependencies
with other contracts (nextHoriz and nextVertical).

1 /∗ Data structures in a AADL model ∗/
2 abstract sig Component extends Data {
3 subcomponents : set Component ,
4 type: lone ID ,
5 properties : set ID
6 }
7

8 /∗ An analysis contract on such structure ∗/
9 one sig DC_FPP_RTA extends Contract {

10 }{
11 // specification of input data structure
12 input ={S: Component |
13 S.type= system and (
14 some sub:S. subcomponents | sub.type = processor

and ( scheduling_protocol +
preemptive_scheduler ) in sub. properties ) and

(
15 some sub:S. subcomponents | sub.type= process and
16 thread in sub. subcomponents .type and
17 ( let th=sub. subcomponents & thread .~ type

|
18 ( dispatch_protocol + period +

compute_execution_time + priority
+ deadline ) in th. properties and

19 (not ( offset ) in th. properties )
20 )
21 )
22 }
23 // specification of output data structure
24 // assumptions and guarantees
25 [...]
26 }

Listing V.2: Specification of an analysis contract. Input/output fields are
defined with respect to the Component data structure used for AADL modeling.
Here, the analysis expects a precise hierarchy of components which consists of a
system with processors and threads; with properties attached to the components,
e.g. periods are required, offset are not required.
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1 /∗ Predicate specifying contracts inter−dependencies ∗/
2

3 // between inputs / outputs
4 fact HorizontalPrecedence {
5 all c_current : Contract |
6 c_current . nextHoriz ={ c_next : Contract |
7 ( c_current . output & c_next .input != none) and
8 (all a : c_current . assumption | a in Contract . guarantee ) and
9 (all a : c_next . assumption | a in Contract . guarantee )

10 }
11

12 // between assumptions / guarantees
13 fact VerticalPrecedence {
14 all c_current : Contract |
15 c_current . nextVertical ={ c_next : Contract |
16 ( c_current . guarantee & c_next . assumption != none)
17 }

Listing V.3: Additional constraints on signatures and fields expressed with
facts. Here, the inter-dependencies between
inputs/outputs and assumptions/guarantees fields of contracts are defined by
HorizontalPrecedence and VerticalPrecedence facts respectively.

Given contracts in an Alloy specification, the analyzer finds dependencies between
models, analyses and goals. The solution visualized from Alloy in Figure V.9 rep-
resents dependencies under the form of a graph. Here, the graph exhibits the
analysis paths that should be executed to conclude about the schedulability of a
satellite system modeled with AADL. We experiment Alloy more exhaustively in
Section V.3.2.V.3.2.C.

V.3.2.B Toolchain

We propose a toolchain to model and analyze real-time systems (see Figure V.8):

• Modeling: the system architecture is represented with AADL [170, 134],

• Analysis:

– MAST [9] and Cheddar [8] tools provide several analyses to assess real-
time workloads,

– we use RTaW-Pegase [121] and RTaW-Sim [171] tools to calculate net-
works traversal times. RTaW-Pegase focuses on network calculus to com-
pute communication delays in Rate-Constrained networks (e.g. AFDX
networks). RTaW-Sim provides a set of analyses for the performance
evaluation of CAN networks,

– we can define user-specific analyses (e.g. precondition checks) with help
of REAL or Python (see section IV.3),

• Orchestration: we use Alloy to both define the contracts and evaluate them.
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Analysis tools

Contracts generation Contracts generation

Alloy

(Contracts)

Modeling tool

Analysis tools

RTaW-

Pegase
CheddarMAST

RTaW-

Sim…

AADL 

(OSATE)

REAL Python

transfo.

access

Figure V.8: Proposed toolchain for the proof-of-concept. The toolchain mixes
modeling and analysis tools together with Alloy. An AADL model represents the
system. Several analysis tools enable to assess real-time workloads at tasks and
networks levels. We use Alloy to both define the contracts and evaluate them. Solid
arrows represent currently implemented bridges between tools.

Backends. REAL is natively supported by the OSATE/OCARINA plugin. Python-
based analyses rely on the query mechanisms introduced in Section IV.3. Transfor-
mations from AADL models to tool-specific models and contracts are partly sup-
ported by the OCARINA tool [88]. Currently implemented bridges are represented
with solid arrows in Figure V.8.

V.3.2.C Experimentation and lessons learned

We evaluated the strengths and shortcomings of an implementation with Alloy. We
experimented the orchestration of real-time scheduling analysis for various AADL
models.

Models. We consider 5 models2:

• M1 : a multitasked real-time system implementing the ravenscar profile [173].
Several tasks access a shared resource in an asynchronous way according to a
priority inheritance protocol,

• M2 : a simple distributed real-time system. The system is made up of 2 calcula-
tors to execute tasks. We consider a Fixed-Priority Preemptive (FPP) policy
to schedule the tasks. An Avionics Full Duplex-Switched Ethernet (AFDX)
network supports inter-calculators communications,

• M3 : the mars pathfinder system [125]. The system consists of a stationary
lander and a micro-rover. Each sub-system schedules the tasks following the

2the models are part of the AADLib project accessible online [172]
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Rate-Monotonic Scheduling (RMS) algorithm. CAN buses support communi-
cations,

• M4 : a simplified satellite system. We represent the software part together with
the platform part of an on-board satellite system. Functional chains involves
task scheduling according to a Fixed-Priority Preemptive (FPP) algorithm and
1553B-based communications,

• M5 : a Flight Management System (FMS) [174, 175]. We consider a subpart
of the FMS that consists of five functions to execute in 4 calculators according
to the ARINC653 standard. CAN buses and AFDX virtual links support
inter-calculators communications,

• we finally consider an “all-in-one” model M6 = M1 ∪M2 ∪M3 ∪M4 ∪M5.

The AADL models represent systems of different complexity. Table V.5 depicts some
metrics related to the complexity of the AADL models: number of lines of code,
number of components, number of properties, and average number of properties
by component. We propose an additional metrics OAADL mixing the number of
components and the number of properties present in the AADL model:

OAADL(Mn) =
NOC(Mn)×NOP (Mn)

NOC(M5)×NOP (M5)
(V.1)

In Table V.5, apart from M6, the model of the FMS is the most complex according to
OAADL: OAADL(M5) = 1. The AADL model using the ravenscar profile is the least
complex: OAADL(M5) ≈ 16×OAADL(M1). The “all-in-one” model M6 is obviously
more complex than the model of the FMS as OAADL(M6) = 9×OAADL(M5).

AADL model LOC NOC NOP NOP
NOC OAADL

M1 148 7 39 5,57 0,06
M2 337 20 57 2,85 0,25
M3 395 24 51 2,125 0,27
M4 464 27 85 3,148 0,5
M5 753 47 97 2,064 1
M6 2097 125 329 2,632 9,02

Table V.5: Several metrics representing the complexity of the AADL models. We
consider the number of number of lines of code (LOC), the number of components
(NOC), the number of properties (NOP ) and the average number of properties
defined per component (NOP/NOC). We propose an additional metrics OAADL
mixing the number of components and the number of properties present in the AADL
model. The models are ordered by ascending complexity following OAADL.

Analyses. The toolchain (see Figure V.8) provides 14 analyses in total. MAST,
Cheddar, RTaW-Pegase and RTaW-Sim tools implement 7 analyses to assess tasks
schedulability and networks traversal times. In addition, 4 analyses use REAL or
Python to check analysis preconditions. We finally consider 3 analyses also based
on REAL or Python to compare response times and traversal times against their
deadlines.
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Goals. We focus on a single goal which is to conclude about the schedulability of
the system, that is schedulability at task and network levels.

Analysis graph. The Alloy analyzer found a solution satisfying the Alloy speci-
fication for each AADL model.

Figure V.9 represents the analysis graph visualized from Alloy for the satellite case
study:

• the Alloy analyzer finds the analyses which are directly applicable on the
AADL model (6 analyses connected to the aadl_model vertex),

• it also finds all the dependencies between analyses (15 dependencies repre-
sented by edges between analyses),

• it finally identifies the analyses that that are needed to reach the goal (4
analyses connected to the is_schedulable vertex).

We can then use the graph found by Alloy to execute the analyses: here, there are
4 complete paths to execute (from aadl_model down to is_schedulable).

Contracts processing times. Let us now focus on the time taken by the Alloy
analyzer to find the analysis graph. We call contracts processing time (CPT ) the
time taken by Alloy to analyze the contracts together with the precedence constraints
in the Alloy specification, and find the solutions that satisfy the specification. The
CPT encompasses two dimensions: (1) the generation time (GT ) of the formula to
be solved and (2) the resolution time (RT ) of the formula. This is simply summarized
by:

CPT = GT +RT (V.2)

Figure V.10 outlines the Contracts Processing Times (CPT ) experienced for the
various case studies.

Firstly notice that the generation times (GT ) increase exponentially with the com-
plexity of the AADL models (OAADL). The best case (GT = 639ms) corresponds to
the ravenscar profile model (M1). The worst case is experienced with the model of
the flight management system (M1) with GT = 121159ms (≈ 2min). In that case
where we handle all the models at once (M6), the generation time is multiplied by
20 (GT ≈ 40min) compared to the case involving the FMS only. A better strategy
is to break such a wide resolution space in smaller affordable pieces, interpret them
separately and then aggregate the results. For instance, we are able to reduce the
processing time of M6 from 40 minutes to less than 3 minutes by simply handling
the input models independently and subsequently.

We secondly observe that, for all the case studies, almost entire part of the contracts
processing times (CPT ) is devoted to the generation of the formula to be solved
(GT ). The resolution time itself (RT ) never exceeds 1 second (RT = 856ms being
the worst-case experienced).
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Figure V.10: Contracts processing time CPT = GT + RT dependence of the
input model complexity OAADL. The generation times (GT ) of the Boolean formula
increases exponentially with the complexity of the AADL models (OAADL). The
resolution times (RT ) evolves to a lesser extent as it never exceeds 1 second (RT =
856ms is the worst-case experienced).

Lessons learned. We showed that our approach is applicable on sets of models,
analyses and goals of realistic complexity in an affordable time.

Despite of the important resolution spaces to handle, the Alloy analyzer is able to
find solutions in a reasonable time (the worst processing time is about 2 minutes).

We secondly experienced the scalability of our approach: we applied our approach
on a configuration including all the models together (which represents 5 models,
125 components and 329 properties). Notwithstanding that this strategy is poorly
efficient (the processing time increases exponentially to 40 minutes), we are able to
find all the solutions. A better strategy to avoid huge processing times is to break
wide resolution spaces into smaller pieces, compute them subsequently and finally
aggregate the results. That way we reduce the processing time from 40 minutes to
less than 3 minutes.

A major benefit of an implementation of the contract-based approach with Alloy
is that if any solution exists for the specification, the analyzer will always find it.
Furthermore, the Alloy analyzer is able to find all the solutions. As disadvantages,
the use of Alloy requires a minimal expertise to define the contracts and, possibly,
adjust manually the resolution scope of the SAT solver.

V.4 Discussion

The notion of contract is the keystone of the approach presented in this chapter:
it formally captures analysis features and enables to reason about them. Contracts
can then be used in various settings to systematize the analysis activities in a de-
sign workflow. We discuss related works on contracts and sketch possible future
improvements around this notion.
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V.4.1 Related works

Background on contracts. Contracts have been formerly introduced and used
in various contexts.

Assume-guarantee and contracts reasoning have their roots in Floyd-Hoare logic
[176, 177]. Contracts explicitly handle pairs of properties called assumptions and
guarantees: assumptions represent the properties expected by a given system on
its environment while guarantees summarize the properties provided by the system
under these assumptions. Intuitively, a contract says: (1) under which context the
system operates and (2) what its obligations are. A contract can refer to any kind
of system but usually allude to software or systems components in contract-based
design [178].

A well-known application of contracts is design-by-contract, an approach to design
software popularized by Meyer [179]. More recently, contracts have been investigated
for the design of Cyber-Physical Systems [180, 181]. A more exhaustive description
of general contracts together with a meta-theory is discussed in [182].

Related works. To the best of our knowledge, few works focus on contracts to
deal with analysis problems.

We can cite works from Ruchkin et al. [183, 184, 185] that focus on a problem
close to ours. Ruchkin et al. [183] deal with integration of Cyber-Physical Systems
analysis in the context of the OSATE/AADL tool environment. They acknowledge
that properties of AADL models can be computed by tools coming from different
scientific domains (e.g. schedulability, power consumption, safety or security). They
hence use the contract formalism to capture the semantics of analysis domains and
avoid the execution of conflicting tools (invalidation of properties computed by a
tool with one another). This is made possible with a language to specify contracts
(being part of AADL) and a verification algorithm (based on SMT solving) to find
inter-dependencies between contracts. They detail implementation of this approach
through the ACTIVE tool in [184].

Although we share a root formalism, we develop and investigate it in quite distinct
contexts. Firstly, the works of Ruchkin et al. take place in the development of the
OSATE tool. Contracts are thereby intrinsically bound to AADL in their devel-
opment. For instance: Ruchkin et al. [183] define the contracts in terms of the
AADL type system (AADL property sets, AADL components such as threads and
processors) through a sub-language annex; the ACTIVE tool presented in [184]
is developed within the OSATE/AADL infrastructure; analyses as part of OSATE
relies on more traditional ad hoc model transformations. For our part, we define
an holistic approach based on (i) analysis data structures and accessors to query
them on any type of model (be it designed with AADL, CPAL, SysML or another
language) in Chapter III, (ii) the definition of the semantics of an analysis in Chap-
ter IV, (iii) analysis contracts as an extension of (ii) to make the analysis systematic
in a design workflow.

Let us note secondly that Ruchkin et al. focus on the interaction between analyses
coming from heterogeneous domains (e.g. schedulability, power consumption, safety
or security). This problem is here again strongly linked with the AADL/OSATE
tool platform that integrates analysis plugins from multiple domains. They thus use
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contracts to prevent the incorrect order of analyses where the result of one analysis
is invalidated by the result of another analysis executed afterwards. In our view,
contracts are neither relevant to analysis domains only (but also to intra-domain
analysis) nor to be considered from a “destructive” point of view (but should be
rather handled in a “constructive” way). In this thesis for instance, we use contracts
to handle various kind of analyses coming from the real-time scheduling domain only
(we consider for instance execution times analysis, schedulability analysis, response
times analysis, or traversal times analysis). We have shown in addition that data
dependencies between analyses could be used to (1) build wider analyses and (2)
compute expected results (goals). We believe that contracts can be extended to cover
more advanced use cases (see the next discussion about possible improvements).

V.4.2 Improvements

Advanced use cases. A first improvement is to enrich contracts with metrics: e.g.
complexity, rapidity of an analysis execution, precision of a result. This will enable
to deal with more advanced use cases through additional reasoning capabilities. For
instance:

• to handle the analysis dynamics more precisely: coarse-grained but fast anal-
yses such as feasibility tests can be used during the early design stages, e.g.
for prototyping; in-depth and costly analyses such as model-checking are more
relevant at the last stages of the design process (before the implementation
phase), when early results should be consolidated,

• to enable more advanced design space exploration and/or optimization [186,
187]. In this case, numerous design strategies could be proposed on the base of
heuristics mixing model states, analysis properties and multiple goals expressed
in terms of non-functional requirements.

Let us note that the evaluation of the metrics adds little algorithmic complexity
and can be quite easily integrated to our approach, e.g. by looking for the shortest
analysis paths on a weighted analysis graph. Yet, investigation of design strategies
and heuristics is a problem on its own that will require fully dedicated researches
(see works by Gilles [158] and Cadoret [187] for instance).

Contract language. The proof-of-concept presented in this chapter is based on
Alloy. We motivated our use of Alloy through several key arguments, mainly: Alloy
is standalone high-level language with powerful analysis features.

We already reported some limitations from experimentation of Alloy. In particular,
it is necessary to modify manually the Alloy specification in some contexts, e.g. to
define manually the contracts for analyses and goals, or to adjust the resolution
scope. Moreover, we note that the grammar of Alloy does not enable a neophyte to
deal with contracts in a straightforward way.

A perspective is hence to define a domain-specific language that captures well the
concept of contract and allows for automatic processing. Additional investigations
will enable to move forward this topic and find the most efficient implementation of
the contract-based approach. For our concern, we present our prototype including
Alloy in Chapter VI.

100



Chapter V. Contract-driven analysis

V.5 Synthesis and conclusion

Analysis, as a set of model assessment activities, takes an active part in the con-
struction of a system, be it to validate a specific property or compute new data that
could be added to the model.

In this chapter we presented an approach to systematize the analysis activities in a
design workflow. We define the interfaces of a model, an analysis or goal through
generic contracts, semantically equivalent to a Hoare triple as set out in Chapter IV.
We then use SAT methods to reason about the data structures and properties defined
in contracts. In particular, we are able to find: (1) the analyses that are applicable
on a model; (2) the analyses that meet a given goal; (3) the data dependencies that
bring out analysis combinations. In the proof-of-concept, we used Alloy to support
both the contracts definition and their evaluation. We can use the analysis graph
thereby obtained to execute the analyses in a systematic manner. A typical case
study is to combine heterogeneous real-time analyses to assess the schedulability of
a system including tasks and networks.

Defined through contracts in close relation with system models and engineering
goals, analyses are no longer considered apart from the design process but become
first-class citizens in the design workflow. We present a more advanced prototype
involving contracts in the next Chapter VI.
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Chapter VI

Tool prototype

Abstract

In this chapter, we present a tool prototype that implements the various concepts
introduced in the first part of this thesis. The tool implements various functions so
as to automatically handle the analysis process when designing an embedded system.
We firstly present the modular architecture of the tool (Section VI.1). In particular,
we introduce the basic functions of the tool and provide an object-oriented design of
the software. We implemented the first version of the prototype with a set of scripts
written in Python that we run on top of modeling tools – OSATE, CPAL-Editor –
and, possibly, external analysis tools – TkRTS, MAST, Cheddar, etc. Section VI.2
deals with the key elements of implementation. We present the workflow supported
by the tool in Section VI.3. Section VI.4 finally concludes this chapter.
The tool prototype presented in this chapter will allow us to experiment a type of
design process that systematically combine architectural models and analyses. We
further explore the case studies in the next Chapter VII.

VI.1 Tool architecture

We firstly describe the general architecture of the tool and the basic functions. We
then present the object-oriented architecture that we implemented in Python.

VI.1.1 General architecture and basic functions

The tool is made up of 4 modules-functions (or layers) as represented in Figure VI.1.
Tool modules shown in colors interface with external resources shown in light gray.
We presented the foundations of each layer in the first part of the thesis. The
next paragraphs present the modules in a few words. We sketch the object-oriented
architecture of the software in Section VI.1.2 and introduce some key elements of
implementation in Section VI.2.

Models enable to fully or partly represent an embedded system. We use Domain-
Specific Languages such as AADL or CPAL (see Section II.2.4) for this purpose.
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Analysis

Orchestration Alloy

External Tools

(TkRTS, etc.)

Data Access
OCARINA /

CPAL runtime

Domain-Specific Models (AADL, CPAL)

Figure VI.1: Modular and layered tool architecture. The tool involves the solutions
presented in the previous chapters within separate modules in colors. The modules
from modeling to orchestration are organized in layers. We interface these modules
with external tools in light gray.

Analysis. This module makes it possible to analyze some properties of the system
from (one of) its model(s). This module provides domain-specific analysis such as
real-time scheduling analyses (feasibility of a task set, computation of communica-
tion delays in embedded networks for example), dependability, etc. This module
provides in addition some specific analyses to verify the preconditions of above-
mentioned analyses (see Chapter IV). It is possible to outsource the analysis to
third-party tools (e.g. bridges exist towards REAL, TkRTS, Cheddar, MAST, etc.
through OCARINA).

Accessors. The interaction between models and analyses is managed by means of
accessors (see Chapter III).

From an analysis perspective, accessors consist of programming interfaces to be used
in an analysis program, that is getters and setters to the data model. The data model
hold data about the system from one of its representations (e.g. in AADL or CPAL).
It relies on standard data structures. For example, real-time tasks, processors, shared
resources and scheduling algorithms are some data structures required to analyze
real-time workloads.

Accessors to model internals must then be implemented. These are implemented
in three parts: (1) providing access to the data model at the topmost level; (2)
providing access to the domain-specific models in possibly distinct technical spaces
(mapping for example the data model to AADL and CPAL models); (3) possibly,
combining the accessors to build wider accessors. We use functionalities provided
by dedicated tools to interface with the domain-specific models. We use for example
OCARINA to parse AADL models, or the cpal2x tool to extract data from CPAL
source files.

Orchestration. The orchestration module directs the analysis process according
to the input model(s), the repository of analysis, and the analysis goal(s).
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The orchestration relies on the concept of contract to firstly represent and then eval-
uate the interfaces of an analysis (see Chapter V). We use SAT resolution methods
to find the interdependencies between analyses. Alloy is used to that end. The
orchestration module finally visits the graph, executing the analysis path that both
fulfill input models and goals.

VI.1.2 Object-oriented design

We developed the tool with the Python language. We implement the basic functions
in Figure VI.1 with classes in Python. Figure VI.2 shows the architecture of the tool
as a class diagram. The diagram represents the basic functions-classes as well as the
relations between them. From top to down:

DataModel

data_model : DataStructure [1..*]{unique}

Orchestration

analysis_graph : Graph [1]

init(analysis_graph : Graph)

visit(analysis_graph : Graph)

AADL

aadl : Model [1]
get_list_of_tasks
(list_of_tasks : Tasks_List)

CPAL

cpal : Model [1]
get_list_of_tasks
(list_of_tasks : Tasks_List)

Accessors

model : Model [1]
get_list_of_tasks(list_of_tasks : 
Tasks_List)

Analysis

analyze(data_model : DataModel)

ll_rm_test

analyze(data_model : 
DataModel)

ll_context

analyze(data_model : 
DataModel)

uses
dataModels[1]

accessorss[1..*]

gets and updates
analysiss[1]

dataModels[1]

executes
orchestrations[1]

analysiss[1..*]

Figure VI.2: Object-oriented tool architecture. We implement the various modules
with classes in Python.

The orchestration class relies on an analysis graph. It provides two methods to
use the graph: (1) a method to initialize the graph; (2) a method to visit the graph
(analyses are executed when the graph is visited).

An analysis is an interface. It makes possible the analysis of a data model via a
specific method analyze(data_model Data_Model). The ll_rm_test is a specific
implementation of this interface that analyzes a task set with the help of the test
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of Liu and Layland, and determines whether the task set is feasible or not. The
ll_context is another analysis that checks if the test assumptions defined by Liu
and Layland hold or not.

The data model (i.e. DataModel) is made up of a set of data structures (i.e. DataS-
tructure) to organize the data about the system. The aforementioned ll_rm_test

uses data structures such as real-time tasks, processors, scheduling algorithms, etc.
On the one hand, the data model provides methods to get and update the data
structures, i.e. the high-level accessors. On the other hand, the data model uses
low-level accessors to the domain-specific models.

The accessor interfaces define the methods to implement in order to retrieve data
from a domain-specific model, e.g. get_list_of_tasks. An implementation of this
interface is specific to a technical space. For example, the class AADL_accessor

implements the method get_list_of_tasks for the AADL technical space with the
help of the Python/OCARINA API. The class CPAL_accessor implements the same
method working on top of CPAL models by using the cpal2x tool.

Interaction between the modules. The sequence diagram in Figure VI.3 rep-
resents a typical execution of the tool:

• the orchestration module directs the analysis process. The init() method
compute the analysis graph first. The orchestration module then visit the anal-
ysis graph with the visit() method, and execute the analyses with the anal-

ysis() method. As defined by the analysis graph, we execute the ll_context
analysis, that checks a set of preconditions, before the ll_rm_test,

• the analyses ll_context and ll_rm_test compute result from input data.
These analyses firstly use the get method to retrieve input data from the data
model. The analyses finally update the data model (i.e. update method) with
the computed result,

• the data model use accessors to domain-specific models when necessary, for
example the get_list_of_tasks method retrieves data about real-time tasks
from a AADL or CPAL model.
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Figure VI.3: Sequence diagram representing a typical tool execution. The diagram
represents the timeline of each object (i.e. module), the various functions executed
within each timeline and the interactions between the objects.
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VI.2 Key elements of implementation

In this section, we present some key elements of implementation. We implement
the software architecture described in the previous section. We used the Python
programming language to develop a first prototype of the tool.

VI.2.1 Data model and data structure

The data model consists of a collection of data structure instances and methods to
access them. Listing VI.1 illustrates the principles of implementation of the data
model and its use in a Python program.

1

2 """ A simple script to create and use a data model
3 """
4

5 # declaration of a ’Task ’ data structure via a class
6 class Task:
7

8 def __init__ (self , name , period , best_case_execution_time ,
worst_case_execution_time , deadline , offset ):

9 """ This function initializes the class
10 Arguments : task properties
11 """
12 self.name=name
13 self. period = period
14 self. best_case_execution_time = best_case_execution_time
15 self. worst_case_execution_time = worst_case_execution_time
16 self. deadline = deadline
17 self. offset = offset
18

19 # declaration of several objects using that class
20

21 # some tasks
22 T1=Task("A task", 10, 2, 3, 10, 0)
23 T2=Task(" Another task", 5, 1, 3, 5, 0)
24 T3=Task("A third task", 20, 1, 1, 20, 0)
25

26 # a list of tasks with previous objects
27 list_of_tasks =[T1 , T2 , T3]
28

29 # a a graph of dependencies between tasks
30 dependency_graph = dependency_graph ={T1: [T2],T2: [T1],T3: []}
31

32 # declaration of the data model and update with previous objects
33 data_model ={}
34 data_model . update ({" LIST_OF_TASKS ": list_of_tasks })
35 data_model . update ({" TASKS_DEPENDENCIES ": dependency_graph })

Listing VI.1: Implementation and use of a simplified data model in a Python
program.

In this simplified example, we firstly declare a data structure that represents a task
with the help of a class. We can then instantiate several tasks with their respective
properties, i.e. T1, T2 and T3. We can also use the task data structures to build
more complex data structures: a list of tasks and a graph of task dependencies.
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Last, we can update the data model with these various objects. These objects can
be used later by any analysis through the reverse method get.

Our prototype implements a little more sophisticated data model than the one
sketched in Listing VI.1. In particular, a comprehensive data model must bind the
high-level get and update methods to low-level accessors so as to retrieve data rep-
resented in domain-specific models. Figure VI.4 (copied from Chapter III) describes
the extended procedure to get a data structure from the data model. This procedure
executes an alternative thread in the event that the required data structure is not
yet present in the data model: the sub-procedure Get Data Structure from De-

sign Model builds a data structure from its counterpart in a domain-specific model.
We discuss a more detailed implementation of this data sub-procedure in the next
subsection.

Parse the Data 

Collection

Data 

Structure 

Identifier

Get Data Structure from Data Model :

Data 

Collection

Is the 

Data Structure in the 

Data Collection ?

Return : 

Data Structure

Get Data 

from Design 

model

Design 

model

Add Data 

Structure in Data 

Collection

NO

YES

Figure VI.4: Process Flowchart depicting the procedure to get a data structure
from the data model. If necessary, the data structure is accessed in the design model
via the sub-process Get Data Structure from Design Model.

VI.2.2 Accessors

The low-level accessors are the methods to retrieve data about a system from its
model. These methods implement low-level routines to query the domain-specific
models such as reading of the AADL Instance Tree (AIT) or extraction of data
from CPAL source files. Notice that data are accessed once in the domain-specific
model and then stored as data structures in the data model, thus minimizing costly
and useless operations on the domain-specific models (see Figure VI.4 and previous
subsection).
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AADL accessors. Listing VI.2 shows for example the Python code of the ListOf-
Tasks accessor towards an AADL model. In this method, we explore the AADL
Instance Tree (AIT) so as to retrieve the task set in the AADL model. We use the
Python API provided by the OCARINA tool:

• the method lmp.getInstances(’thread’) at line 12 returns a list of tasks
from an AADL model, i.e. it returns all instances of AADL thread components
from an AADL model,

• the methods lmp.getInstanceName and ocarina.getPropertyValueByName

respectively return task names and various properties of tasks, i.e. ’period’,
’compute_execution_time’, ’dispatch_offset’, etc. in the AADL syn-
tax.

CPAL accessors rely on the cpal2x tool which is part of the CPAL development
environment [101]. Among other features, this tool extracts given data from CPAL
source files and formats them in an easy-to-read output data file, e.g. in a JSON

or rt-format textual data format. Figure VI.5 represents the cpal2x toolchain
underlying CPAL accessors.

CPAL 
cpal2x generates reads

CPAL 

Source

file

data file

(JSON, 

rt-format, …)

CPAL 

accessors

Figure VI.5: Implementation of CPAL accessors by means of the cpal2x tool.

Generation of tool-specific data models. Accessors can also be used to gen-
erate a data file in a tool-specific format when the analysis is to be externalized.
Figure VI.6 depicts the toolchain that generates of a tool-specific data file from
accessors to analyze these data with an external tool.

Externalgenerated from reads

Accessors Tools

(TkRTS, etc.)

tool-specific

data file

Accessors

Figure VI.6: Using accessors to generate a tool-specific data file.

Each generation program uses its own adequate means to generate a tool-specific
data file, according to the expected target format. Target data files range from
lightweight text files (e.g. TkRTS [188]) to comprehensive data models defined by
target metamodels (e.g. Cheddar [8], MAST [9], RTaW-Pegase [121], etc.).
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1

2 """ A function to return a list of tasks from an AADL model
3 """
4

5 def ListOfTasks (self):
6

7 #local variables
8 _task_name = _period = _best_case_execution_time =

_worst_case_execution_time = _deadline = _offset = _priority =
_respTime =None

9 _list_of_tasks =[]
10

11 #we must specify the properties to get in the aadl instance
model

12 properties =[’period ’, ’priority ’, ’deadline ’, ’
compute_execution_time ’, ’dispatch_offset ’]

13 property_value =None
14

15 #we then explore− the AADL Instance Tree
16 #get tasks from the AADL Instance Tree
17 aadlInstances =lmp. getInstances (’thread ’)[0]
18

19 #get task properties
20 for task in aadlInstances :
21 #task name
22 _task_name =lmp. getInstanceName (task)
23 print ’ ’ ∗ self. _indentation , _task_name
24 # various properties
25 for prop in properties :
26 #if the property exists
27 if ocarina . getPropertyValueByName (task ,prop) [0][1] != ’

KO’:
28 property_value = ocarina . getPropertyValueByName (task ,

prop) [0][1]
29 print ’ ’ ∗ self. _indentation , prop+’=’+ property_value
30 #we process values and store them
31 for case in switch (prop):
32 if case(’period ’):
33 _period =util. getValueFromAADLTime ( property_value , ’

ms’)
34 break
35 [...]
36 else:
37 print ’ ’ ∗ self. _indentation , prop+’ not found in

the model!’
38 #we create a Task object and add it to the list
39 _list_of_tasks . append (Task(_task_name ,_period ,

_best_case_execution_time , _worst_case_execution_time ,
_deadline ,_offset ,_priority , _respTime ))

40 #we finally return the list of tasks
41 return _list_of_tasks

Listing VI.2: Implementation of a specific AADL accessor using the
OCARINA-Python API (ListOfTasks accessor).
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VI.2.3 Analysis

An analysis carries out a set of operations and calculations from the data model.
When completed, the analysis updates the data model with the calculated results.
Our prototype enables two types of implementations: through an internal program
in Python or by referencing an external tool.

Analysis with a Python program. Listing VI.3 shows a schedulability analysis
written in the Python programming language. We implement the analysis from Sha
et al. [148] via the analysis() method of the specific class srl_pcp_test_th16.
The data model is an argument of this method. Any analysis must implement the
following procedure:

1. retrieve the data to analyze from the data model. Here, the analysis requests
a list of tasks at line 13,

2. analyze the data. Schedulability analysis is performed with a call to the built-in
function __srl_pcp_test_theorem16 at line 16. This function firstly calcu-
lates an upper admissible bound of the processor utilization factor (line 39). It
then compares the actual utilization rate against the threshold (the effective
processor utilization is calculated in the for loop at line 42, comparison to the
upper limit occurs at line 47). The test result is stored in the isSched variable
from the function return,

3. update the data model with the analysis result. The analysis updates the data
model with the schedulability property (line 21) through a specific data struc-
ture task_meta that contains the isSched result (set at line 20).

Analysis through an external tool. The analysis can be outsourced to a third-
party tool. Listing VI.4 shows how to reference an external tool. In this example,
we use the commands provided by the MAST tool to launch the remote analysis
(line 18). We must beforehand generate a tool-specific data model from accessors
(line 15, see also Generation of tool-specific data models in Section VI.2.2).

VI.2.4 Orchestration

The orchestration module is implemented in two parts. First, we initialize the anal-
ysis graph. Then, we visit the analysis graph to execute the analyses.

Workspace Alloy – generation of Alloy files from AADL models. Initial-
ization of the analysis graph relies on contracts manipulated in Alloy. In particular,
we write the contracts with the Alloy language and evaluate them with the SAT
solvers provided by the Alloy tool.

Figure VI.7 gives an overview of the Alloy workspace:

• main is the file to execute with Alloy. It defines the resolution scope and
references all the files to analyze with the SAT solvers,
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1 """ Example of analysis class
2 """
3

4 class srl_pcp_test_th16 ( Analysis ): # define an analysis
5

6 def analysis (self , model):
7 """ This function implements the basic analysis process
8 Arguments :
9 model ( DataModel ): the data model

10 """
11

12 # read data from the data model
13 tasks_list =model.get(" LIST_OF_TASKS ")[0]
14

15 # execute the main test
16 isSched =self. __srl_pcp_test_theorem16 ( tasks_list )
17

18 # write data in the data model
19 task_meta =model.get(" TASKS_META ")
20 setattr (task_meta , ’isSched ’, isSched )
21 model. update (" TASKS_META ", task_meta )
22

23

24 # return the result to the orchestration module
25 return isSched
26

27 def __srl_pcp_test_theorem16 (self , tasks_list ):
28 """ This function implements the business analysis
29

30 Arguments :
31 tasks_list ([ Task ]): a list of tasks
32 """
33

34 # local variables
35 utilization_factor =0.0
36 res=None
37 blockingTime_factor =[]
38

39 # compute the test bound
40 test_bound = float (len( tasks_list ))∗(2.0∗∗(1.0/ float(len(

tasks_list )))−1.0)
41

42 # compute the utilization factor
43 for task in tasks_list :
44 utilization_factor += task. worst_case_execution_time /task.

period
45 blockingTime_factor . append (task. blockingTime /task. period )
46

47 # compare the utilization factor against the test bound
48 if utilization_factor +max( blockingTime_factor ) <= test_bound :
49 # test is successful
50 res=True
51 else:
52 # test is successful
53 res=False
54

55 return res

Listing VI.3: An example of schedulability analysis written in Python.
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1 """ A class to externalize an analysis
2 """
3

4 class classic_rm_MAST ( Analysis ):
5

6 def analysis (self , model):
7 """
8 This function outsources the ’classic_rm ’ analysis to the MAST

tool
9

10 Arguments :
11 model ( DataModel ): the data model
12 """
13

14 # generate the MAST model from the data model
15 self. generate_mast_input (model)
16

17 # run the mast analysis with that generated model
18 os. system (" mast_analysis classic_rm mast−model.txt")

Listing VI.4: An analysis can be outsourced to a third-party tool.

• model, analysis and goals describes the contracts associated to models, anal-
yses and goals respectively,

• lib (i.e. library) defines the set of data structures and properties that can be
declared in contracts,

• meta defines the concepts manipulated in the Alloy specification, that is to say
the concept of contract and associated constraints (in particular the precedence
constraints).

We implemented new functionalities to OCARINA in order to generate part of the
Alloy workspace within an AADLib workspace. We generate the blue-colored files
in Figure VI.7 from AADL models. The other files (in red- and white-color) are
generated as static files. The red-colored files can be edited manually to add new
contracts (we generate samples only).

The generated Alloy specification is ready to be evaluated by the Alloy analyzer.
We finally inject the graph found by Alloy in the orchestration Python program.
This is done either manually in the first version of the prototype, or through an
intermediate graph-formatted file in improved versions.

Visit of the analysis graph. The analysis graph found by Alloy provides the
analysis paths to execute. We implemented methods methods to visit the analysis
graph and execute the analyses.

Listing VI.5 shows how to define and use an analysis graph in a Python program. We
must previously define the accessors (line 3), the data model (line 4) and the various
analyses (lines 7 to 10). The orchestration module visits the graph, defined from line
16 to line 23 and represented in Figure VI.8, with the method exec_analysis(...).
This method considers a starting node that is the AADL_model, and an arrival node
that is the isSched goal.
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meta

lib

model analysis goal

main

Figure VI.7: Components of the Alloy workspace.

1

2 """ A script that creates an analysis graph with its components
and visit it

3 """
4

5 # declaration of the data model with accessors
6 aadl_accessors = AADL_accessors () # aadl accessors
7 data_model = DataModel ( aadl_accessors ); # data model using the

accessors
8

9 # declaration of analyses
10 ll_context = ll_context () # preconditions
11 srl_pcp_context = srl_pcp_context ()
12 ll_rm_test = ll_rm_test () # analyses
13 srl_pcp_test = srl_pcp_test ()
14

15 # declaration of the orchestration module
16

17 # the analysis graph is hardcoded according to an Alloy solution
18 # an example of graph for the mars pathfinder case study
19 analysis_graph = {
20 " AADL_model " : [ll_context , srl_pcp_context , ll_rm_test ,

srl_pcp_test ],
21 ll_context : [ ll_rm_test ],
22 srl_pcp_context : [ srl_pcp_test ],
23 ll_rm_test : [" isSched "],
24 srl_pcp_test : [" isSched "],
25 " isSched " : [],
26 }
27

28 o = Orchestration ( analysis_graph )
29

30 # visit the analysis graph from " AADL_model " to " isSched " goal
31 # execute the analyses with help of the data model
32 o. exec_analysis (" AADL_model ", " isSched ", data_model )

Listing VI.5: Creation and visit of an analysis graph in a Python program
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We could visit the graph in many ways, e.g. performing topological ordering prior
to execute the analyses, finding the shortest paths between nodes, or using common
algorithms to traverse a graph such as Depth-First Search (DFS) or Breadth-First
Search (BFS), etc. The chosen strategy must fulfill two constraints:

1. the graph must be visited such that the data and properties used by an analysis
are computed the graph must be visited such that the data and properties used
by an analysis are computed beforehand,

2. the analyses for which the preconditions are no met must not be executed; more
widely, the analysis paths that include analyses for which the preconditions are
no met must be aborted.

For the time being, the prototype implements a Breadth First Search (BFS) algo-
rithm. In addition, the preconditions are verified in priority, i.e. before the sub-
sequent analyses. When a precondition is not met, the subsequent analysis paths
are removed from the execution stack. That way, the orchestration module fulfills
the above-mentioned constraints. According to this policy, the graph represented
in Figure VI.8 is visited in the following order: aadl_model -> ll_context -

> srl_pcp_context -> ll_rm_test -> srl_pcp_test -> isSched. Notice that
the aadl_model and isSched elements that denote the starting and ending nodes
are not be executed. This execution stack enables to compute the data and proper-
ties in a correct order. In addition, if a precondition (represented with red arrows
in Figure VI.8) is not satisfied the subsequent elements are removed from the exe-
cution stack. For instance, if the property computed by the ll_context analysis is
false then the subsequent ll_rm_test analysis will not be executed. Let us finally
note that discarding a path does not prevent from reaching the goal isSched if an
alternative – correct – path exists. That is, by executing here the srl_pcp_context

and srl_pcp_test analyses for which the results must be true.

aadl_model

ll_context srl_pcp_context

ll_rm_test srl_pcp_test

isSched

Figure VI.8: Example of analysis graph to be visited by the orchestration module.

More sophisticated algorithms to visit analysis graphs can be proposed in future
version of the prototype in order to address more advanced use cases, e.g. to detect
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redundant paths, to find optimal paths according to customized metrics, to (re-
)execute a subpart of a graph, and so on.

VI.3 Working with the tool

Figure VI.9 illustrates the activities that are supported by the tool. The tool imple-
ments the following workflow:

1. Creation of the analysis repository: the first task is to create the models,
analyses and goals that form together the analysis repository. We can make
a model with the help of a language such as AADL or CPAL. We can fully
program an analysis in Python, or reference an external tool, and add it to the
analysis repository. Last, we can specify the analysis objectives. Presently, the
models can be created via their respective editors, i.e. OSATE and the CPAL-
Editor. The analyses must be coded separately and then included manually in
the tool program. The goals must be defined in Alloy.

2. Analysis of the repository, in two steps:

(a) Evaluation of contracts: we semi-automatically generate the Alloy
specification that we then evaluate through SAT resolution methods. The
analysis graph found by the Alloy solvers is injected in the Python pro-
gram,

(b) Execution of the analyses: the tool automatically executes the analy-
ses from the analysis graph. The execution takes into account the input
model(s) and the analysis goal(s). The analyses use accessors to query
data from models.

3. Feedbacks: the tool finally provides feedbacks about the models. These feed-
back are trustworthy (contextualized) and fulfill the analysis objectives, e.g.
answering questions about the schedulability of the system, computing precise
dependability attributes, etc. The tool is able to adapt the analysis process to
the input models, the available analyses and the analysis goals.

Listing VI.6 shows a typical execution of the tool. The trace involves the various
modules presented earlier in this chapter: orchestration, analysis, data model and
accessors. We firstly initialize the different modules, by choosing for instance the
input model which is an AADL model of the mars pathfinder robot in this example
(see Section VII.2 for a complete description of this case study). We also initialize
the orchestration module with the analysis graph, the data model with the AADL
accessors as well as the various analyses referenced by the tool. The tool then visits
the nodes-analyses of the graph according to the Breadth-First Search algorithm.
At each visited node, we execute the associated analysis and update the execution
stack in accordance with the analysis result.

The graph which is the same of Figure VI.8 includes some nodes-analyses in order
to verify the schedulability of the mars pathfinder system modeled with AADL.
The visit starts with the AADL_model node at iteration 1. At iteration 2,
the ll_context analysis is unsuccessful, meaning that the preconditions of the
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Modeling – AADL, CPAL Contracts evaluation – Alloy

(1) (2)Generation of  the 

Alloy specification

Feedbacks

(1)

Analysis – Python, 

external tools

(3)

Initialization of  

the analysis graph

Accessors

Figure VI.9: Workflow supported by the tool.

ll_rm_test analysis are not met. The ll_rm_test is therefore discarded. In-
stead, at iteration 4, the graph executes the srl_pcp_test by firstly checking
its preconditions via the srl_pcp_context analysis at iteration 3. The system is
schedulable according to the srl_pcp_test. The visit of the graph ends at iter-

ation 5: the goal isSched is met. The tool finally summarizes the nodes-analyses
visited and their results.

VI.4 Synthesis and conclusion

In this chapter, we presented a tool prototype that implements the concepts intro-
duced in the first part of this thesis. The prototype implements several functions in
order to integrate models and analyses in a same framework. By that means, the
tool takes on the analysis process when designing an embedded system. In particu-
lar, the tool is able to adapt the analysis process to the input models, the available
analyses and the analysis goals.

Our prototype implements several modules-functions, each one implementing a part
of the concepts presented in the first part of this thesis. We implemented the first
version of the prototype through a set of scripts written in Python and various model
processors (e.g. parsers, model generators, SAT solvers, etc.). We run the scripts
on top of modeling tools – OSATE, CPAL-Editor – and, possibly, external analysis
tools – TkRTS, MAST, Cheddar, etc.

This tool prototype will allow us to apply a design workflow that systematically
combines architectural models and analyses. We present case studies in Chapter VII.
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$ python main . py
main thread . . . i n i t i a l i z e s components . . .

Ava i l ab l e models are : (1 ) fms (2 ) paparazz i (3 ) pa th f inde r (4 ) s a t e l l i t e
P lease choose a model ( number ) : 3
∗∗ F i l e s d i r e c t o r y : aadl model / path f inde r

[ . . . ]
main thread . . . execute ana ly s e s from c o nt r a c t s . . .
v i s i t i n g graph accord ing to b f s a lgor i thm . . .
∗∗ i t e r a t i o n 1

execute node AADL model . . .
AADL model i s not an executab l e node

prepare graph . . .
ad jacent node found . . .
l l c o n t e x t added in queue f o r execut ion
s r l p c p c o n t e x t added in queue f o r execut ion
l l r m t e s t added in queue f o r execut ion
s r l p c p t e s t t h 1 6 added in queue f o r execut ion
∗∗ i t e r a t i o n 2

execute node l l c o n t e x t . . .
Check p r e c o n d i t i o n s f o r LL−t e s t . . .
p r e cond i t i on f a i l e d ( ’ t a sk s are dependent ’ , )

prepare graph . . .
update graph . . . d e l e t e subsequent paths . . .
∗∗ i t e r a t i o n 3

execute node s r l p c p c o n t e x t . . .
Check p r e c o n d i t i o n s f o r SRL−PCP−t e s t . . .
OK

prepare graph . . .
ad jacent node found . . . s r l p c p t e s t t h 1 6
s r l p c p t e s t t h 1 6 a l r eady in execut ion queue , sk ip
∗∗ i t e r a t i o n 4

execute node s r l p c p t e s t t h 1 6 . . .
SRL−PCP−t e s t i s s a t i s f i e d , U=0.725420 <= 0.728627 −> the ta sk s s e t i s

s chedu lab l e !

prepare graph . . .
ad jacent node found . . . i sSched
s t r added in queue f o r execut ion
∗∗ i t e r a t i o n 5

execute node i sSched . . .
i sSched i s not an executab l e node

prepare graph . . .
End o f graph : no more a n a l y s i s to execute
v i s i t e d nodes : [ [ ’ AADL model ’ , None ] , [ ’ l l c o n t e x t ’ , Fa l se ] , [ ’

s r l p c p c o n t e x t ’ , True ] , [ ’ s r l p c p t e s t t h 1 6 ’ , True ] , [ ’ i sSched ’ , None ] ]

Listing VI.6: Record of a typical tool execution displayed in the terminal.
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Chapter VII

Case studies

Abstract

In the first part of this thesis, we reviewed several concepts in order to analyze non-
functional properties in a Model-Driven Engineering approach. We implemented
these concepts through a tool prototype introduced in Chapter VI. In this last contri-
bution chapter, we show several case studies that systematically combine architectural
models and analyses so as to design embedded systems.
We present three case studies in this chapter. Section VII.1 deals with the continuous
timing validation of the Paparazzi drone throughout the design process. In the second
case study (Section VII.1), we use our approach to resolve the original design error
that caused a serious failure of the Mars Pathfinder system. The last case study
in Section VII.1 concerns the design space exploration of an avionic system that
comprises a Flight Management System (FMS) and a Flight Control System (FCS).
To implement these case studies, we use the tool prototype presented in the previous
chapter together with architecture description languages (i.e. AADL and/or CPAL)
and many real-time scheduling analyses.

VII.1 Continuous validation of the Paparazzi UAV de-
sign

This section deals with the Paparazzi case study [189, 190]. We firstly present the
Paparazzi UAV project. We then introduce the analysis problem that occurs at
design time. We finally apply our approach to resolve this problem.

VII.1.1 System overview

Paparazzi UAV and Papabench. Paparazzi UAV (Unmanned Aerial Vehicle)
is an open-source drone launched at the ENAC school in 2003 [189, 191]. The
Paparazzi project encompasses hardware and software such as the source code –
airborne and ground station – and various design documents. As a free and open-
source project, Paparazzi encourages reuse, extension and improvement of these
elements, in particular to port the UAV on various platforms. Paparazzi developers
include researchers, companies or hobbyists.
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In our case, we consider the Paparazzi UAV in order to experiment the approach
presented in this thesis. We updated, corrected and extended the AADL models
originally developed by Nemer et al. [190], Nemer [192]. The source models are
part of Papabench [190, 193], a benchmark for WCET evaluation at IRIT (used in
[194, 192] or more recently in [195]).

Architecture. The Paparazzi system basically consists of an airborne system and
a ground control station. The subsystems communicate with each other via a radio
link. We only consider the embedded system for our experimentation.

The embedded system includes hardware, e.g. a control card with power supply
and processors (dual micro-controllers), sensors (infrared sensors, GPS, Gyroscope),
actuators (servos, motor controllers) and other payloads (camera and video trans-
mitter). The airborne system also comprises a R/C receiver and a radio modem to
communicate with the ground station.

The software uses a dual processor architecture: the first processor MCU1 com-
mands the aircraft (Fly-By-Wire system) while the second MCU0 manages navi-
gation, sensors, payloads communications and other processing (Autopilot system).
The two micro-controllers communicate via a Serial Peripheral Interface (SPI) bus.

More information about the functions or hardware and software components is avail-
able in the Paparazzi documentation, for instance [189, 191].

VII.1.2 Problem: validation throughout the design process

The design of an embedded system such as the Paparazzi UAV is progressive. The
designer starts for example with a definition of the task set from the functional de-
scription of the system. He or she then defines the way these tasks are to be activated
(e.g. strictly periodically, sporadically, according to a mixture of periodic, sporadic
and aperiodic activation, etc.) according to task parameters (e.g. periods or min-
imum inter-release times, worst-case execution times, deadlines, etc.). In addition,
the designer has to set the scheduling policy that will meet the timing constraints.
A full and correct design must also take account of task dependencies. To this end,
the designer defines some appropriate policy for inter-task data exchanges, possibly
implements synchronization mechanisms, enforces task dependencies, etc.

Throughout the design process, the designer must be able to evaluate the hypotheses
and choices made. An analysis enables to validate, or conversely, invalidate some
choices. The goal is to define an architecture that will meet the functional and non-
functional requirements (in our case, the real-time constraints). It is thus necessary
to adjust the analysis process to the models provided at each stage in the design
process. The analysis to apply greatly differ at the early and late stages in the
design process, whether a model is simplified, coarse-grained, far from reality at the
beginning of the design, or, on the contrary, more exhaustive, complex, and close to
the final system in the last design stages.

To illustrate this case study, we defined, through AADL models, several task sets at
various stages of the design process of the Paparazzi system:
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(a) Topmost architecture of the airborne system.

(b) Architecture of the autopilot subsystem.

Figure VII.1: Architecture of the Paparazzi system in AADL
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• step 1: we assume periodic, non-preemptive tasks and aim to evaluate either
a Fixed Task Priority (e.g. Rate Monotonic) or Fixed Job Priority scheduling
algorithm (e.g. Earliest Deadline First),

• step 2: we rather consider preemptive tasks, still periodic and scheduled
according to a Fixed Priority algorithm,

• step 3: we model the system more accurately and consider a mixture of
periodic and aperiodic tasks, with preemptive and Fixed Priority scheduling,

• step n: the design can continue to further describe task dependencies, task
precedences, inter-task caches, etc.

Our problem is thus to adapt, at each step in the design process, the scheduling
analysis to the input AADL model in order to check that the system fulfills the
timing constraints (i.e. satisfies all the deadlines). Table VII.1 summarizes the
various task parameters. We study the Autopilot system only (the process would be
identical for the Fly-By-Wire).

Task Description
Parameters

T C

I4 interrupt-spi-1 50 ms1 {251 µs, 447 µs}
I5 interrupt-spi-2 50 ms1 {151 µs, 228 µs,}
I6 interrupt-modem 100 ms1 {303 µs,520 µs}
I7 interrupt-gps 250 ms1 {283 µs,493 µs}
T6 radio-control 25 ms {15,6 ms, 21,1 ms}
T7 stabilization 50 ms {5681 µs, 6654 µs}
T8 link-fbw-send 50 ms {233 µs, 471 µs,}
T9 receive-gps-data 250 ms {5987 µs, 6659 µs}
T10 navigation 250 ms {44,42 ms, 54,35 ms}
T11 altitude-control 250 ms {1478 µs, 1660 µs}
T12 climb-control 250 ms {5429 µs, 6241 µs}
T13 reporting 100 ms {5 ms, 12,22 ms}

1applies for step 1 and step 2 only.

Table VII.1: Task parameters of the Paparazzi UAV (taken from [192] and [195]).

VII.1.3 Application of our approach

We apply our approach in order to analyze the schedulability of the Paparazzi system
throughout the design process. We model the software architecture with the help of
the AADL language, at each stage in the design process described in the previous
section (i.e. step 1, step 2 and step3).

Analysis repository. We consider the following analyses:

• schedulability tests:

126



Chapter VII. Case studies

– srl rm test which is a schedulability test contributed by Sha et al. [148],

– lss sporadic test, another schedulability test by Lehoczky [196] and stud-
ied later by Bernat and Burns [197],

– rts periodic npfp that is a schedulability test based on worst-case re-
sponse times [130].

• analyses to check the preconditions of above-mentioned schedulability tests:
srl rm context, lss sporadic context and periodic npfp context

Table VII.2 sums up the preconditions of the various analyses.

hhhhhhhhhhhhhhhhhPrecondition
Analysis

srl rm test lss sporadic test rts periodic npfp

mono-processor 3 3 3

periodic tasks 3 3 3

aperiodic tasks 7 ¬ 7

offsets Oi ≥ 0
jitters 7 7 7

implicit deadlines 3 3 3

fixed computation times 3 3 3

dependent tasks 7 7 7

self-suspension 7 7 7

preemption 3 3 7

overheads 7 7 7

scheduling algorithm RM RM NP − FP

¬ aperiodic tasks must be scheduled via a Sporadic Server (SS).

Table VII.2: Analysis preconditions for the Paparazzi case study. 3: the predicate
must be true. 7: the predicate must be false. #: special conditions. Otherwise, the
expected condition is stated explicitly.

First of all, we set the precedences between these analyses. Figure VII.2 portrays
the analysis graph. The rectangular-shaped elements represent the starting (the
aadl_model) and ending nodes (the isSched goal). Elliptic forms represent the
analyses. Black arrows display data dependencies while red arrows show property
dependencies. This graph, which is to be executed at each stage in the design
process, will enable us to evaluate the AADL model in a systematic and dynamic
way.

Step 1. At the first stage in the design process, we assume strictly periodic tasks.
The model describes a set of n tasks Π = {τ1, . . . , τn} with τi = (Ci, Ti, Di), Ci
is the worst-case execution time, Ti is the period and Di is the deadline such that
Di = Ti. We consider a non-preemptive scheduling algorithm, either with Fixed Task
Priorities (FTP, e.g. Rate Monotonic) or Fixed Job Priorities (FJP, e.g. Earliest
Deadline First).

We visit the graph displayed in Figure VII.2. Figure VII.3 recaps the analysis process
during the first design stage. First and foremost, we execute the preconditions anal-
yses: Ê lss sporadic context, Ë srl rm context and Ì periodic npfp context.
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aadl_model

lss_sporadic_context srl_rm_context

lss_sporadic_test srl_rm_test

periodic_npfp_context

rts_periodic_npfp

isSched

Figure VII.2: Analysis graph for the Paparazzi UAV case study.

The properties computed by the lss sporadic context and srl rm context are false:
the tasks are non-preemptive. Thus, the preconditions of the lss sporadic test and
srl rm test are not fulfilled, meaning that these analyses cannot be executed. The
properties calculated by the periodic npfp context analysis are true. Therefore, we
can execute the Í rts periodic npfp analysis.

2

3

false false true

4

1

true

4

Figure VII.3: Analysis process during the first design stage of the Paparazzi UAV.

We carry out the rts periodic npfp analysis via the TkRTS tool [188, 198]. We
evaluated both the FTP and FJP scheduling cases through NP-FP (priorities defined
according to RM) and NP-EDF algorithms respectively. Table VII.3 and Table VII.4
summarize the results.

The results are successful in the case of a FTP scheduling given an optimal priority
assignment calculated by the tool. For each task, the worst-case response time bound
in Table VII.3 is lower than the deadline D. On the contrary, in the case of a FJP
scheduling, the produced schedule does not meet all the deadlines. The laxity in
Table VII.4, that is the remaining time to deadline at the task completion, can be
negative for two tasks (i.e. interrupt_spi_th1 and interrupt_spi_th2), meaning
that several deadlines can be missed. As a consequence, the designer would select
the NP-FP scheduling algorithm instead of the NP-EDF.
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Algorithm Task C (µs) T (µs) D (µs) bound (µs)

np-fp

ctrl_by_rc_th 21100 100000 100000 21100
interrupt_gps_th 493 250000 250000 493
interrupt_modem_th 520 100000 100000 520
interrupt_spi_th2 228 50000 50000 228
interrupt_spi_th 447 50000 50000 447
send_grd_station_th 12220 100000 100000 12220
send_mcu1_th 471 250000 250000 471
stab_th 6654 100000 100000 6654
climb_ctrl_th 6241 250000 250000 6241
nav_th 53350 250000 250000 53350
alt_ctrl_th 1660 250000 250000 1660
data_acq_filt_th 6659 250000 250000 6659

Table VII.3: Result of the rts periodic npfp analysis computed via the TkRTS

tool.

Algorithm Task C (µs) T (µs) D (µs) bound (µs) laxity (µs)

np-edf

ctrl_by_rc_th 21100 100000 100000 95193 4807
interrupt_gps_th 493 250000 250000 152562 97438
interrupt_modem_th 520 100000 100000 95193 4807
interrupt_spi_th2 228 50000 50000 54024 -4024
interrupt_spi_th1 447 50000 50000 54024 -4024
send_grd_station_th 12220 100000 100000 95193 4807
send_mcu1_th 471 250000 250000 152562 97438
stab_th 6654 100000 100000 95193 4807
climb_ctrl_th 6241 250000 250000 152562 97438
nav_th 53350 250000 250000 152562 97438
alt_ctrl_th 1660 250000 250000 152562 97438
data_acq_filt_th 6659 250000 250000 152562 97438

Table VII.4: Result of the rts periodic npedf analysis computed via the TkRTS

tool
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Step 2. During this second analysis stage, we aim at evaluating the following
scheduling configuration: periodic tasks to be scheduled according to a Fixed Tasks
Priority, preemptive algorithm.

Similarly to step 1, we execute the precondition analyses in the first place: lss sporadic context,
srl rm context and periodic npfp context. That time, only the srl rm test can be
carried out as: (i) the result of the srl rm context analysis is true; (ii) the prop-
erties calculated by the lss sporadic context and periodic npfp context are false
(the tasks are not to be periodic for the first analysis and must not be preemptive
for the second). Therefore, the lss sporadic test and the rts periodic npfp analysis
cannot be used.

We carry out the srl rm test with the help of our tool. According to the analysis
result shown in Listing VII.1, the task set does not pass the test. Indeed, the amount
of processor time used by the task set is above the limit not to be exceeded so as
to be sure that the task set is schedulable. This test in exact (i.e. provides a
sufficient and necessary condition) and, thus, we conclude that the task set is in fact
unschedulable.

$ python main . py
[ . . . ]
Execute SRL−RM−t e s t ( theorem 15) . . .
[ . . . ]
Number o f e r r o r s : 0 − number o f abor t i on s 3
SRL−RM−t e s t aborted : the system i s not s chedu lab l e !

Listing VII.1: Result of the srl rm test computed via our tool.

Step 3. At the third design step, we model the system more accurately. We no
longer assume that all the tasks are periodic. Rather, we characterize the Paparazzi
system with a mixture of periodic and aperiodic tasks. Thus, the model describes a
set of n periodic tasks Πp = {τ1, . . . , τn} and an additional tasks τs to serve the k
aperiodic tasks Πap = {τ1, . . . , τk}. Aperiodic tasks are scheduled through a Sporadic
Server (SS) characterized by a maximum capacity CSSs and a replenishment period
TSSs [199]. We define these parameters as follows:

• the server capacity such that CSSs =
∑

{τj∈Πap}
Cj ,

• TSSs = min Ti,τi∈Πp in order to execute the server task with the highest priority.

We still consider a FTP priority algorithm (i.e. Rate Monotonic), which is able to
preempt tasks.

In this new context, the preconditions of the srl rm test and rts periodic npfp
are no longer satisfied: the tasks are not periodic. Hence, we cannot execute these
analyses. Alternatively, we can use the lss sporadic test as the properties computed
by the lss sporadic context analysis are true.

The test by Lehoczky [196] computes the amount of processor time that is used
by the set of tasks. In this case, the processor utilization factor encompasses two
dimensions: the fraction of processor time consumed by the periodic tasks Up and
the fraction of processor time used by the sporadic server USSs . Lehoczky [196]

130



Chapter VII. Case studies

defined a limit not to be exceeded:

Up ≤ ln
2

USSs + 1
(LSS-test)

According to the result of the lss sporadic test, displayed in Listing VII.2, this
threshold is respected, meaning that the system is schedulable under Rate Mono-
tonic.

$ python main . py
[ . . . ]
Execute l s s s p o r a d i c t e s t . . .
l s s s p o r a d i c t e s t i s s a t i s f i e d , U i s 0 .673264 <= 0.676408064556 −> the ta sk s

s e t i s s chedu lab l e !

Listing VII.2: Result of the lss sporadic test computed via our tool.

Figure VII.4 recaps the analysis paths applied at each design step, displayed as
Step 1 , Step 2 and Step 3 . The analysis paths shown with plain-blue arrows

comprise the analyses used to verify the schedulability of the task set at each stage
in the design process (step 1 to 3 described in previous paragraphs). Sub-paths
shown with dashed-red arrows include analyses in order to verify the preconditions
of the diverse schedulability tests.

Step 1Step 3 Step 2

Figure VII.4: Analysis paths executed at each design stage of the Paparazzi UAV.

Step n. The model can be enriched to represent the Paparazzi system even more
finely: data dependencies and/or precedences between tasks, synchronization mech-
anisms, inter-task caches, etc.

The approach that we applied during the early stages can be applied at any stage
in the design process, including the late stages. Our approach is applicable to any
type of model (nature, complexity) and to a large panel of analyses.

VII.1.4 Conclusion

The design of an embedded system such as the Paparazzi drone is progressive. Dur-
ing this process, the designer conceives the system through a multitude of models,
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e.g. from a simple, coarse-grained model at an early design stage to a more complex
and accurate one during late design steps. The designer must be able to evaluate a
model at any stage in the design process. An analysis enables to validate, or on the
contrary, discard some design choices, assumptions made about the system, etc. It is
hence necessary to automatically tune the analysis process according to the models
provided at each stage in the design process.

We illustrated this case study with various AADL models to represent the Pa-
parazzi UAV at different design stages. These models delineates several task sets,
e.g. strictly periodic tasks versus a mixture of periodic and aperiodic activation,
preemptive against non-preemptive scheduling, Fixed Task Priority or Fixed Job
Priority scheduling algorithms, etc.

First of all, our approach identifies the interdependences between analyses. For this
specific case study, this information enables us to find any analysis A0 that can
be used to check the set of preconditions {P1} of any analysis A1. Afterwards,
our tool executes the analyses according to the (completeness of the) input model,
the interdependences between analyses and the analysis goal. We have been able
to adjust the analysis process to verify the schedulability of the task sets defined
through the AADL models at different stages in the design process (i.e. Step 1 ,

Step 2 and Step 3 in Figure VII.4)

Let us finally note that the approach applied in this case study could be used similarly
at more advanced design stages: to model and analyze task dependencies and/or
task precedences, to propose and evaluate policies for inter-task data exchanges
and/or synchronization mechanisms between tasks, to represent and assess inter-
tasks caches, etc. In addition, this approach can be applied just as well with more
complex analyses, more important analysis repositories, and models of diverse kinds
(e.g. see the case study including CPAL in Section VII.3), typically as part of a
complete design environment.

VII.2 Correct design of the Mars pathfinder system

This section deals with the Mars Pathfinder case study [200, 125]. First of all, we
provide an overview of the Mars Pathfinder system. Next, we present the software
error that occurred during the Mars Pathfinder mission and caused a major failure
of the system. Last, we show that our approach would have detected and fixed this
error trough a combination of architectural models and systematic analysis of these
models at an early design stage.

VII.2.1 System overview

Mars Pathfinder mission. The Mars Pathfinder mission was a discovery mission
that took place in the late 1990s in the frame of the MESUR (Mars Environmental
SURvey) program conducted by the NASA.

Mars Pathfinder is a robotic spacecraft that landed on Mars and released an ex-
ploratory robot. The Mars Pathfinder system consists of a stationary lander and a
microrover named Sojourner.
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VII.2. Correct design of the Mars pathfinder system

Sojourner is a six-wheeled vehicle controlled from Earth. This control is done by
means of high frequency radio waves, between the lander and Earth and between the
lander and the rover. Both the lander and the rover are equipped with instruments
to investigate the surface of Mars: cameras, spectrometers, atmospheric structure
instrument and meteorology. Among those instruments, we can mention an altimeter
and an accelerometer embedded on the station on Mars and a sun sensor and a star
analyzer on the rover. During the mission the spacecraft collected gigabytes of data
about the Martian environment (images, measurements about the atmosphere, etc.).

Hardware and software architecture. Figure VII.5 represents the simplified
hardware architecture of the Mars Pathfinder system. The subsystems (lander and
rover) include processing and memory resources together with control and mea-
surement devices (radio, altimeter, accelerometer, thrusters, etc.). The components
communicate with each other through VME or 1553 buses. Two couplers connect
the subsystems (high frequency communication link).

The software architecture is based on real-time operating system (VxWorks) and
includes over 25 tasks. Figure VII.5 depicts the simplified software architecture of
the Mars Pathfinder system. The tasks in the exploration mode are:

• bus scheduling task that controls the transactions on the 1553 bus,

• data distribution task to collect the data from the 1553 bus and write them
in the shared data buffer,

• control task to control the rover,

• radio task to communicate between the lander and Earth,

• measure task to control the lander camera.

• measure task and meteo task for the various measurements (altimeter, ac-
celerometer, meteorological, etc.).

All the tasks are to be executed by the RTOS according to their periods. In addition,
four tasks access a Data resource in a concurrent way. Table VII.5 summarizes the
tasks with their properties.

VII.2.2 Problem: original design error

During the Mars Pathfinder mission, the spacecraft experienced several resets, each
one resulting in losses of data. After some investigations, the failure proved to come
from a typical priority inversion phenomenon.

Figure VII.7 shows the execution sequence leading to the system failure with a
temporal diagram. In that scenario, the meteo task has an execution time equal
to 75 ms (3 with reduced parameters). The RTOS schedules the tasks according
to the priority given in Table VII.5. Yet, the temporal diagram shows that the
data distribution task misses its deadlines during its third job. This fault causes a
reset of the system.

The failure comes from a priority inversion problem. The meteo task accesses the
resource at time 9 and blocks during it whole execution. The data distribution
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Figure VII.6: Software architecture of the Mars Pathfinder system in AADL.

Task Priority
Parameters

(ms)
Reduced

parameter
Critical
section

T C T C

bus scheduling 1 125 25 5 1 -
data distribution 2 125 25 5 1 1
control task 3 250 25 10 1 1
radio task 4 250 25 10 1 -
camera task 5 250 25 10 1 -
measure task 6 5000 50 200 2 2
meteo task 7 5000 {50,75} 200 {2,3} {2,3}

Table VII.5: Task parameters of the Mars Pathfinder system (taken from [125]).
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Figure VII.7: Faulty schedule of the Mars Pathfinder task set (taken from [125])

task, which has an higher priority, awakes at time 10. Nevertheless, it cannot ex-
ecute has the data resource is blocked. During this blocking time, the radio task
and camera task can execute as pradio task < pcamera task < pmeteo task. There is a
priority inversion phenomenon as tasks with intermediate priorities (radio task and
camera task) execute before the task which has the higher priority (data distribution)
because it share a resource with a task of lower priority (meteo task). The prior-
ity inversion brings about an abnormal blocking time of the data distribution task
which finally leads to a violation of deadline.

The system failure experienced during the Mars Pathfinder comes from a design
error due to a lack of analysis during early-stages design activities. We show in the
next section how this system can be designed correctly by combining architectural
models with systematic analyses.

VII.2.3 Application of our approach

We apply our approach to design the software architecture of the Mars Pathfinder
system. We model the system with the help of AADL on the one hand, and system-
atically analyze these models on the other hand.

Analysis repository. We consider the following analyses:

• schedulability tests: ll rm test [127] and srl pcp test [148],

• a schedule simulator: cheddar simu [8],

• several analyses to check preconditions: ll context, srl pcp context and cheddar simu context.
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Table VII.6 summarizes the preconditions of the various analyses. Figure VII.8
depicts the precedences between analyses, computed from contracts.

hhhhhhhhhhhhhhhhhPrecondition
Analysis

ll rm test cheddar simu srl pcp test

mono-processor 3 3 3

periodic tasks 3 N.R 3

offsets N.R. N.R. N.R.
jitters 7 N.R. 7

implicit deadlines 3 N.R. 3

fixed computation times 3 3 3

dependent tasks 7 N.R. 3

self-suspension 7 7 7

preemption 3 N.R. 3

overheads 7 7 7

scheduling algorithm RM N.R. RM
concurrency control protocol N.A. N.R PCP

Table VII.6: Analysis preconditions for the Mars Pathfinder case study. 3: the
predicate must be true. 7: the predicate must be false. Otherwise, the expected
condition is stated explicitly. N.A.=not applicable, N.R.=no restriction.

aadl_model

ll_context srl_pcp_context

ll_rm_test srl_pcp_test

cheddar_simu_context

cheddar_simu

isSched

Figure VII.8: Analysis graph for the Mars Pathfinder case study.

Analysis of the original model. We firstly consider a faulty AADL model that
would lead to the execution error and final system failure that we explained in the
previous Section VII.2.2.

The tool visits the graph from Figure VII.8 as presented in Figure VII.9. It firstly
checks the various preconditions with the following analyses: Ê ll context, Ë
srl pcp context and Ì cheddar simu context. The results of the ll context and
srl pcp context analyses are false: on the one hand the tasks are not independent,
on the other hand no protocol is defined to access the shared resources. Thus, we
cannot execute the ll rm test and srl pcp test. On the contrary, the result of the
cheddar simu context analysis is true; therefore we apply the Í cheddar simu.
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1 2

3

4

false false true

4

false

Figure VII.9: Analysis process performed from the original AADL model of the
Mars Pathfinder system.

The simulation is carried out with the Cheddar tool. We observe from the result
schedule displayed in Figure VII.10 that the third job of the data distribution task
does not complete before its deadline at time 15 (i.e. 375ms). This violation of
deadline comes from a priority inversion phenomenon as explained in Section VII.2.2.

?
deadline missed

Figure VII.10: Simulation of an invalid schedule of the Mars Pathfinder task set
computed with Cheddar (cheddar simu).

Correction. We propose to implement a dedicated protocol called Priority Ceiling
Protocol (PCP) in order to handle concurrent access to the shared resource. This
protocol enables to avoid priority inversions and also prevent from blocking the
system due to mutual exclusions (i.e. deadlocks).
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Listing VII.3 shows a sys_mars_pathfinder.correct extension of the initial sys_
mars_pathfinder.impl AADL model. This corrective specifies the aforementioned
Priority_Ceiling protocol as a specific property of the prs_PSC.data_rw resource.

1 system implementation sys_mars_pathfinder . correct
2 extends sys_mars_pathfinder .impl
3 properties
4 Concurrency_Control_Protocol => Priority_Ceiling applies to

prs_PSC . data_rw ;
5 end sys_mars_pathfinder . correct ;

Listing VII.3: Extension and correction of the original AADL model of the
Mars Pathfinder system.

Validation. We finally analyze the corrected AADL model. Figure VII.11 summa-
rizes the analysis process at the second design iteration. We check the analysis pre-
conditions first, through the Ê ll context, Ë srl pcp context and Ì cheddar simu context
analyses. The result of the ll context analysis is negative because the tasks are de-
pendent: we must not use the ll rm test. According to the result of the srl pcp context
which is true, we can execute now execute the Í (a) srl pcp test. Indeed, the cor-
rected model specifies a protocol to access the shared resource (the Priority Ceiling
Protocol). Alternatively, the Í (b) cheddar simu is still applicable as the result of
the cheddar simu context analysis remains true.

1 2

3

4b

false true true

4b

4a

true true

Figure VII.11: Analysis process performed from the corrected AADL model of
the Mars Pathfinder system.

The srl pcp test checks that the amount of processor time needed to execute the
tasks is acceptable (in other words, the actual processor utilization factor must be
under a specific threshold to make sure that the task set is schedulable under a given
algorithm). Unlike the test by Liu and Layland [127], the processor utilization factor
that is computed with the test by Sha et al. [148] takes into account the time that
each task may be blocked when attempting to access a shared resource. The result
of the srl pcp test, computed from our tool, is displayed in Listing VII.4. As the
calculated utilization factor is under the acceptable limit, the system is schedulable
(sufficient condition), meaning that all the tasks will meet their deadlines at run
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time. Cheddar also simulates a valid schedule. However, a valid simulation is only
a necessary condition, in contrast to the test by Sha et al. [148] that provides a
sufficient condition.

$ python main . py
[ . . . ]
Execute SRL−PCP−t e s t ( theorem16 ) . . .
SRL−PCP−t e s t i s s a t i s f i e d , U=0.725420 <= 0.728627 −> the ta sk s s e t i s

s chedu lab l e !

Listing VII.4: Result of the srl pcp test computed via our tool.

VII.2.4 Conclusion

This case study showed that analyses are of paramount importance to design an
embedded system. Indeed, this is a design error in the software architecture that
caused a significant failure of the system used during the Mars Pathfinder mission.
Although it could have been fixed at design time, this error was very difficult to
detect at that time given the lack of an holistic modeling/analysis approach and as-
sociated tools. Thus, the early design error came undetected before system operation
and caused the system to shut down.

We showed that our approach was suitable to resolve this problem. First, our tool
detects the interdependences between the analyses. This information is important to
build a correct sequence of analyses. Next, the tool executes the analyses according
to the input model (an AADL model representing the Pathfinder system in this
example) and expected results (here, the goal was to verify the schedulability of the
system).

We saw that the analysis process changes with the input model and analysis results
(in particular the preconditions). We were able to firstly select an appropriate anal-
ysis for each AADL model, and then analyze the models to correct or validate them.
That way, we were able to detect the original design error of the Mars Pathfinder
system, propose a corrective and finally validate the corrective.

VII.3 Design space exploration of an avionic system

In this section, we deal with the design space exploration of an avionic system. First,
we give an overview of the system with a functional description and a brief presen-
tation of the target platform called Integrated Modular Avionics (IMA). Next, we
combine two architecture description languages, AADL and CPAL, to model the
various aspects of the avionic system. Last, we apply our approach to automatically
analyze timing properties from the architectural models. We show that the system-
atic analysis of the architectural models enables to explore the design space of the
embedded system.

140



Chapter VII. Case studies

VII.3.1 System overview

Firstly, we present the avionic system that we study in this section. Secondly, we
give an introduction to the Integrated Modular Avionics (IMA) platform that hosts
the avionic embedded system.

VII.3.1.A Avionic system

The avionic system comprises a Flight Management System (FMS) [175, 174] and a
Flight Control System (FCS) [110, 201].

Flight Management System. The primary task of a Flight Management System
(FMS) is in-flight management of the flight plan. The Flight Management System
uses values measured from various sensors to compute the flight plan in flight and
guide the aircraft. The crew interacts with the FMS by means of a Multi-Function
Control and Display Unit (MCDU).

Figure VII.12 portrays the functional architecture of the Flight Management Sys-
tem. This system is made up of five main functions. The Keyboard and cursor
control Unit (KU) handles requests from the crew while the Multi Functional Dis-
play (MFD) displays data from the flight plan such as waypoints or the Estimated
Time of Arrival. The Flight Manager (FM) computes the flight plan by querying
static data (waypoints, airways, etc.) from the Navigation Data Base (NDB) and
dynamic data (altitude, speeds, position, etc.) from the Air Data Inertial Reference
Unit (ADIRU).

Crew

KU MFD

FM

ADIRU NDB

Sensors

req disp

wpInfowpId

query

answerspeed

pres

Figure VII.12: Functional architecture of the flight management system. The
functional architecture depicts the set of functions and the data flow among the
functions.
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Flight Control System. The Flight Management System also interfaces with
several other avionic systems in order to accomplish these functions. Figure VII.13
shows the connection between the Flight Management System and the Flight Control
System (FCS). The aim of this system is to control the altitude, the speed and the
trajectory of the aircraft from the flight plan [110]. In this section, we use the
functional architecture coming from the ROSACE (Research Open-Source Avionics
and Control Engineering) case study [201].

Flight
Management

Flight
ControlTactical cmds,

modes

Roll axis cmds,
pitch axis cmds,
thrust axis cmds

Figure VII.13: Interface between the Flight Management System and the Flight
Control System.

VII.3.1.B Integrated Modular Avionics platform

The functions are to be stored and executed an Integrated Modular Avionics (IMA)
platform. The IMA defines the use of the hardware and software resources through
two standards:

• the ARINC 653 [202] for computational resources,

• the ARINC 664 (part 7) [203] for communication resources.

One particular objective of the IMA is to ensure timing predictability. In the fol-
lowing, we review some important concepts of its core standards. This description
emphasizes on the parameters that are to be analyzed later on in this section.

Calculators – ARINC 653. The ARINC 653 is a standard to share processing
and memory resources between several functions in a hardware module, or calculator.
According to the ARINC 653, each function is to be hosted in a specific partition
with a strict access to processing and memory resources:

• temporal partitioning ensures that partitions are executed during specific time
slots defined at system start-up,

• spatial partitioning guarantees that each partition has a reserved memory space
defined at system start-up.

Hence, an ARINC 653 schedule is both static and cyclic. Partitions are scheduled
according to several parameters:

• at module level: a major time frame is defined for each module (MAFm);
possibly, a minor cycle can also be defined (MIFm).
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• at partition level: an offset (Omp) that is the delay between the MAFm origin
and the start of the partition execution; and a duration (Dmp) that is the time
allocated to each partition to access the processor.

Each partition is planned one or several times during the major cycle. This major
cycle is then repeated indefinitely. In a partition, a function is realized through one
or several processes. These processes are scheduled at the partition level according
to a specific scheduling algorithm (e.g. FIFO or NP-FP).

Networks – ARINC 664. The ARINC 664 standard defines a predictable com-
munication network called Avionics Full Duplex-Switched Ethernet (AFDX). It uses
full-duplex links to convey the packets and switches to route a packet from a source
to one or several sink(s). AFDX implements the core concept of Virtual Link (VL) to
share the network bandwidth between the data flow. A VL is a unidirectional logical
connection from one sender to one or several receiver(s) (i.e. unicast or multicast
VLs). In particular, each VL has:

• a limited bandwidth (ρv) according to two parameters: the Bandwidth Al-
location Gap (bagv) that is the minimum time interval between two frames
sending; and the maximal allowed packet size (smaxv); ρv = smaxv

bagv
,

• a predefined and static route (routev) crossing one or several switch(es).

VII.3.2 Co-modeling with AADL and CPAL

We model the various aspects of the avionic system with two Architecture Descrip-
tion Languages: AADL and CPAL.

Operational architecture in AADL. We represent the highest-level operational
architecture of the avionic system with AADL. Initially, only the Flight Management
System (FMS) is represented. The model uses AADLv2 core specifications and the
ARINC653 Annex [68]. Figure VII.14 shows the graphical view of the model. The
model represents four ARINC653 calculators to host the avionic functions connected
through an AFDX network1.

The model follows the initial specifications and AADL design patterns for ARINC653
systems: a module is a distinct system (containing a global memory and a proces-

sor) that hosts partitions (each is a process) bound to separate memory segments
and virtual processors (representing spatial and temporal partitioning). thread
components contained in partitions realize the avionic functions. Thanks to annex
guidelines, we can model precisely the ARINC653 components and associated pa-
rameters (modules Major Frames, partition duration, partition scheduling policies,
etc.).

AADL does not provide specific guidelines for modeling AFDX networks. The AADL
concept of virtual bus defines a connection supported in a bus. We use this con-
cept to define AFDX virtual links. Switches are represented by device components

1The full AADLv2 textual model is part of the AADLib project, see http://www.openaadl.org

for more details.
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bound to the virtual links. A dedicated property set has been defined to model
parameters attached to virtual links, end systems and switches.

FCS processes in CPAL. A functional description of the calculators completes
the highest-level operational architecture. For example, we model the functions (i.e.
processes) of the Flight Control System (FCS) with the CPAL language (the CPAL
models of the FCS come from [204]).

Figure VII.15 shows the functional architecture of the FCS in CPAL graphical syn-
tax. The functional architecture represents the processes, their activation scheme
and the data flow between them. For instance, the process az_filter executes at a
rate of 100Hz (i.e. Taz filter = 10ms). It computes an output variable az_meas used
by another process named vz_controller from input variables Az_Filter_Conf

and az .

Figure VII.15: Functional architecture of the flight controller in CPAL.

In addition, the CPAL model describes the logic of each process with a Finite-State
Machine (FSM). For example, the states of the FSM in Figure VII.16 implements
two distinct running modes of the altitude_holder process: Manual and Auto. The
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operations in each state are specified in a textual syntax close to the syntax of the
C language, e.g. Altitude_Holder process in Listing VII.5.

Figure VII.16: Logic of the altitude_holder process defined as a Finite-State
Machine.

VII.3.3 Problem: exploration of the design space

An architectural model captures different facets of a system. For instance, we used
AADL together with CPAL to represent three aspects of the FMS as shown in
Figure VII.17: the functions, the IMA platform that implements the functions and
the non-functional properties to comply with. We observe that the modeling views
depicted in Figure VII.17 are interdependent:

Allocation. The functional architecture must be allocated to the hardware archi-
tecture. The operational architecture maps the functions and variables to the IMA
platform. For example:

• we fix the cyclic frame of the modules (MAFm and MIFm) according to the
periods of the functions (Tf ): MAFs and MIFs are the lcm (least common
multiple) of the periods and the shorter period respectively,

• we define the duration of a module partition depending on the related function
execution time: Dmp ≥ Cf ,

• we set the parameters of the virtual links (bagv and smaxv) from the number
of messages to be sent by the linked function (nf ), and the maximum size of
the messages that can be sent by this function (mf ).

Compliance with non-functional constraints. In addition, the operational
architecture has to fulfill non-functional constraints. For instance:

• response time is the time needed to realize an activity,

• traversal times are communication delays between functions,
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1

2 process def Altitude_Holder (
3 in Flight_Mode : mode ,
4 in float64 : Vz_input ,
5 in float64 : Vz_link ,
6 in float64 : h_f ,
7 in float64 : h_input ,
8 out float64 : y
9 )

10 {
11 static var float64 : integrator = 532.2730285;
12

13 state Auto {
14 var float64 : error = h_f − h_input ;
15

16 if (error < −50.0) {
17 y = Vz_link ;
18 } else if (error > 50.0) {
19

20 y = −Vz_link ;
21 } else {
22 /∗ Output ∗/
23 y = Kp_h ∗ error + Ki_h ∗ integrator ;
24 /∗ state ∗/
25 integrator = integrator + ( float64 .as(self. period ) / float64

.as(1s)) ∗ error;
26 }
27 }
28 on (mode == MANUAL ) to Manual ;
29

30 [...]
31

32 }

Listing VII.5: Textual description of the altitude_holder process.
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Functional view
Non-functional

Functional view
view

Platform view

ARINC 

653

ARINC 

664

allocation compliance

Operational view

AADL

Architectural 

model
capture

Figure VII.17: Different Views captured in an architectural model An AADL
model represents the functions, the IMA platform that implements the functions and
the non-functional properties to comply with.

• end-to-end latencies encompass response times and traversal times.

One must take these constraints into account when defining the architecture:

• the parameters of calculators (scheduling policies, execution times, etc.) im-
pact the response times,

• the configuration of the AFDX network (VLs parameters, topology and routing
strategies) influences the traversal times,

• the interaction between the platform components (calculators, networks) causes
latencies along functional chains.

Towards exploration of the design space. The problem is hence to explore
potentially large design spaces that integrate multiple interrelated views, e.g. func-
tional aspects, platform concerns, non-functional constraints. We show in the fol-
lowing that the automatic analysis of architectural models enables to explore and
evaluate many different design proposals. In particular, we explain how to dimension
some important platform parameters from a functional description of the system,
and fulfill the timing constraints.

VII.3.4 Application of our approach

We apply our approach to explore design proposals and evaluate them. We apply
a systematic analysis approach based on the AADL and CPAL models presented
in Section VII.3.2. In particular, we dimension several parameters of the avionic
system in order to meet the real-time constraints expressed at tasks and networks
levels.

VII.3.4.A Analysis repository

We set up the analysis graph in Figure VII.18 from contracts. The graph depicts
the analysis process that will enable us to check that the avionic system represented
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with AADL and CPAL models (respectively aadl_model and cpal_model nodes
in the graph) respects the timing constraints (isSched node in the graph). See
Section VII.3.2 for a presentation of the AADL and CPAL models.

The analysis graph comprises two analysis flows that run separately at the beginning
of the process and then converge towards the same goal:

(1) the left-hand analysis flow, starting from the aadl_model, includes several
analyses in order to iteratively define parameters of the AFDX network and
finally validate them;

(2) the right-hand analysis flow, starting from the cpal_model, enables to check
the schedulability of the tasks described in CPAL models, which are part of
the ARINC653 processes to be represented in AADL;

(3) the distinct flows meet at the arinc653_dimensioning analysis. First, we
define the ARINC653 parameters in the AADL model from tasks parameters
defined in the CPAL model. Then, we validate the ARINC653 parameters.

We explain the various analysis flows in greater depth, providing experimental re-
sults, in the following sections.

VII.3.4.B From the analysis of CPAL processes to the dimensioning of
ARINC 653 modules

This first experimentation aim at fully validating the timing behavior of the software,
that is to verify that all the processes will meet their deadlines at run time. For this
purpose, we need to dimension a new ARINC 653 module for the Flight Control
System.

Ê WCET analysis and Ë (b) simulation . A CPAL model can be simulated
so as to evaluate the timing behavior of the software. The CPAL simulator uses the
following data:

• the scheduling algorithm which can be FIFO, NP-FP or NP-EDF in a CPAL
model,

• the task activation model that basically consists of few tasks parameters, e.g.
periods and offsets,

• timing annotations that may be execution times, jitters, priorities or deadlines.

The processes execute in zero time when the code is not annotated. Timing anno-
tations defined within a @cpal:time block specifies the timing behavior that must
have a CPAL program at run time. In the first place (step A), we measure the
WCET experienced by the processes on several target platforms with the help of the
CPAL-interpreter option --stats. Next (step B), we inject the measured WCET
as timing annotations in the CPAL model in order to make the simulation more
accurate.

Table VII.7 and Table VII.8 display the WCET measured on two execution plat-
forms:
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• Embedded Linux 64-bit : a laptop with a processor Intel Core i7-4710HQ @2,50GHz
(4 cores), 7895 MiB of RAM, and running under Ubuntu 14.10 operating sys-
tem,

• Raspberry Pi : a single-board embedded computer Raspberry Pi 2 - Model B
V1.1 with a processor ARM Cortex-A7 (Broadcom BCM2836) @900MHz (4
cores), 1 GiB of RAM, and running under Raspbian operating system.

Process
WCET (µs)

Vertical
Speed

Airspeed Climb

va filter 298.961 71.177 39.989
vz filter 218.330 70.387 103.836
q filter 131.875 29.189 70.725
az filter 55.561 71.162 43.751
h filter 298.590 69.999 110.573
altitude holder 43.108 70.526 74.800
vz controller 207.780 270.470 123.423
va controller 170.519 1326.751 32.260

Table VII.7: WCET measured on an Embedded Linux platform (wcet analysis).

Process
WCET (µs)

Vertical
Speed

Airspeed Climb

va filter 498.210 241.769 259.894
vz filter 188.797 252.915 192.916
q filter 440.518 218.801 209.739
az filter 3402.323 371.920 190.832
h filter 543.221 303.957 238.227
altitude holder 162.448 164.531 262.551
vz controller 194.634 263.957 216.561
va controller 208.125 232.967 241.405

Table VII.8: WCET measured on a Raspberry Pi platform (wcet analysis).

Figure VII.19 displays the timing simulation of the CPAL model of the flight con-
troller in the Vertical Speed scenario. The bars represent process activation according
to the periods and offsets (which are null). The processes are scheduled according
to a FIFO (First-In First-Out) policy, i.e. the processes are executed in the exact
order of their activation. The width of the bars represents process execution times.

We observe from the simulation result in Figure VII.19 that the schedule fulfills
the timing constraints: (1) the process activation respects the periods; (2) only one
process is scheduled on the processor at every time; (3) all the processes complete
before their deadlines, i.e. before the activation of the next job.
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Figure VII.19: Timing simulation of the flight controller (cpal simu) under FIFO
scheduling in the V erticalSpeed scenario.

Ë (a) Scheduling analysis. Static scheduling analyses (i.e. schedulability tests)
are in general safer than a simulation. Indeed, the simulation of a valid schedule is
usually a necessary condition while schedulability tests provide sufficient and, possi-
bly, necessary conditions. We evaluate the task response times from the CPAL model
with the help of the TkRTS tool. Table VII.9 shows the worst-case response times (i.e.
bound) under NP-FP scheduling in the Airspeed scenario. Table VII.10 displays the
worst-case response times under NP-EDF scheduling in the Climb scenario.

Algorithm Task C (ns) T (ns) D (ns) bound (ns) laxity (ns)

np-fp

altitude_holder 164531 20000000 20000000 2049989 17950011
va_controller 232967 20000000 20000000 2049989 17950011
vz_controller 263957 20000000 20000000 1885458 18114542
va_filter 241769 10000000 10000000 1652491 8347509
h_filter 303957 10000000 10000000 1410722 8589278
az_filter 371092 10000000 10000000 1146765 8853235
q_filter 218801 10000000 10000000 842808 9157192
vz_filter 252915 10000000 10000000 624007 9375993

Table VII.9: Worst-case response times computed by the rts periodic np analysis
under NP-FP scheduling in the Airspeed scenario.

The results are conclusive in the two scenarios. Every calculated worst-case response
times bound is less than its related deadline D. Thus, every laxity, which is the
remaining time to deadline, is positive. Therefore, the task set is schedulable in
the Airspeed scenario, resp. Climb scenario, according to the NP-FP scheduling
algorithm, resp. NP-EDF scheduling algorithm.

Í dimensioning ARINC653 partitions and Î validation. From a validated
schedule of the FCS processes, we can now safely set up an ARINC 653 module M5

to host these processes.
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Algorithm Task C (ns) T (ns) D (ns) bound (ns) laxity (ns)

np-
edf

va_controller 241405 20000000 20000000 1812125 18187875
vz_controller 216561 20000000 20000000 1812125 18187875
altitude_holder 262551 20000000 20000000 1812125 18187875
h_filter 238227 10000000 10000000 1354158 8645842
az_filter 190832 10000000 10000000 1354158 8645842
q_filter 209739 10000000 10000000 1354158 8645842
vz_filter 192916 10000000 10000000 1354158 8645842
va_filter 259894 10000000 10000000 1354158 8645842

Table VII.10: Worst-case response times computed by the rts periodic np analysis
under NP-EDF scheduling in the Climb scenario.

The simplest approach is actually to define a unique partition for all the processes.
We can simply dimension this partition from the parameters of the processes:

• the MAF5 is equal to the least common multiple of the process periods,

• a different MIF5 is not necessary as there is only one partition, hence MIF5 =
MAF5,

• the duration to execute the single partition is D51 = MAF5

In this particular case, the scheduling analysis is quite trivial as there is only one
partition and the MAF is set to the hyperperiod of the processes. Figure VII.21
depicts a schedule of the FCS partitions and processes. The MAFs depict the rep-
etition of the major cycle. A unique partition is scheduled during this major cycle,
as represented with red rectangles. We note that the duration of the partition is
equal to the MAF. Finally, the CPAL processes are scheduled within the partition
according to a FIFO algorithm.

If we choose a different partitioning of the processes (i.e. by assigning processes to
different partitions), we must use a specialized scheduling analysis. In fact, the global
schedule encompasses two hierarchical levels, i.e. the partition level schedule and
the process level schedule(s). For example, a compositional analysis methodology
could be applied to determine whether the processes are schedulable [205].

VII.3.4.C Iterative definition of the Bandwidth Allocation Gap (BAG)
from the AADL model

Let us consider an incomplete AADL model. Listing VII.7 partly depicts the system
architecture: the modules that implement the functions and part of the AFDX
network (the connections (variables) between the functions and the network devices).
One problem at that level is to allocate the dataflow to network resources (e.g.
Virtual Links) and define the routing strategy. In Listing VII.6, the problem is to
define the properties of a Virtual Link (e.g. the Bandwidth Allocation Gap) that
meet the latency constraints expressed on the dataflow.

At this stage, dimensioning the BAG can be a difficult task. According to [203],
any BAG must be defined such that BAG= 2kms with k ∈ {1, 2, . . . , 7}. If we
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MAF MAF etc.

Figure VII.20

Figure VII.21: “Pen & paper” simulation of an ARINC 653 schedule (FCS hard-
ware module, V erticalSpeed scenario).

assume one VL per dataflow then the design space comprises 8α solutions, with α
the number of dataflow.

1 −− This subpart of the AADL model defines the Virtual Links
2

3 virtual bus VL
4 properties
5 −− generic parameters from the standard
6 AFDX_Properties :: AFDX_Frame_Size => AFDX_Properties ::

AFDX_Std_Frame_Size ;
7 AFDX_Properties :: AFDX_Tx_Jitter => AFDX_Properties ::

AFDX_Std_Tx_Jitter ;
8 end VL;
9

10 −− definition of a Virtual Link
11 virtual bus implementation VL.vl1
12 properties
13 −− we must define the properties to meet the latency

constraints
14 AFDX_properties :: AFDX_Bandwidth_Allocation_Gap => 32 ms;
15 end VL.vl1;

Listing VII.6: Specification of a Virtual Link in AADL.

We visit the analysis graph in Figure VII.18. We use two analyses to define the
BAG:

1. bnh_bag_dimensioning to define the suitable BAG for each VL in the network,

2. pegase_nc_analysis that relies on Network Calculus to compute upper bounds
on communication delays (worst-case traversal times) in AFDX networks.
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1 −− This AADL model represents a basic architecture of the Flight
Management System

2

3 −− root system
4 system fms end fms;
5

6 −− system implementation = FMS architecture
7 system implementation fms.impl
8 subcomponents
9 −− ARINC653 modules

10 module1 : system subsystem :: m1_system .impl;
11 module2 : system subsystem :: m2_system .impl;
12 [...] −− other modules and devices
13

14 −− AFDX components
15 afdx_network : bus fms_hardware :: physical_afdx_link .impl;
16 sw1 : device subsystem :: afdx_switch ;
17 sw2 : device subsystem :: afdx_switch ;
18 sw3 : device subsystem :: afdx_switch ;
19

20 −− we define the data flow with connections
21 connections
22 nt_wpId : port module1 . ph_wpId1 −> module2 . ph_wpId1 ;
23 [...] −−other connections between modules
24

25 flows
26 wpId_fl : end to end flow module1 . wpId_src −>
27 nt_wpId −> module2 . wpId_sink ;
28 [...] −− other data flow: wpInfo , query , answer , etc.
29

30 −− and we finally define the temporal constraints
31 properties
32 Latency => 0ms .. 15 ms applies to wpId_fl ;
33 [...] −− other latency constraints
34

35 −− one problem is to allocate the dataflow to Virtual Links
36 −− for instance :
37 Actual_connection_binding => ( reference ( afdx_network .VL1))
38 applies to nt_wpId ;
39

40 −− we must also define the routing strategy
41 end fms.impl;

Listing VII.7: Incomplete specification of the Flight Management System in
AADL.
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Ï BAG dimensioning from latency evaluation. We proposed in [166] an
analysis to evaluate the latency experienced by any message in the AFDX network,
including the delay in the end systems. The latency suffered by a message in the
network is the sum of the delays experienced in each crossed element: from the
source end system, through the successive switches, up to the sink end system(s).
In few words, the formula of the Worst-Cased Latency Time (WLn,v) suffered by
the last frame of the message n in the VL v is:

WLn,v = bagv×(pn,v−1+

n−1∑
k=1

pk,v)+
(
lag + 2× smaxv

BW
× (1 + rv) + jmax

)
+Dsw v

(VII.1)

with


Dsw v =

∑rv
k=1WSCLn,k

lag = 2×WETeL+ r ×WSTeL
subv − 1 = 1 (sub-vl are not considered)

From that formula, we can calculate the BAG of each VL to meet the latency
constraints expressed on the message LCn (i.e. WLn,v ≤ LCn):

bagv ≤
LCn −Dsw −

(
lag + 2× smaxv

BW × (1 + rv) + jmax
)

pn,v − 1 +
∑n−1

k=1 pk,v
(VII.2)

Thus, the model must provide several data to calculate the BAG:

• information about the messages: the maximal number of messages (nbrf ) that
a function can send through a virtual link; the maximal size of each message
(mn); the latency constraint expressed on each message LCn,

• AFDX-specific parameters defined in the standard: the bandwidth (BW ),
technological delays (lag) and a maximal transmission jitter in a end system
(jmax).

We can do the following assumptions if the other data are not set in the model:

• one virtual link is allocated to each dataflow (i.e. set of messages sent by a
function) with the same source/receiver(s) couple,

• the smaxv is set to:

– smaxv = mv + 67 bytes if mv ≤ 1471 bytes,

– its maximum value smaxv = 1538 bytes else,

• all the messages can be fragmented, that means that pn,v ≥ 1 with
pn,v = d mn

smaxv−67e,

• if the routing strategy is missing, we assume that there is one crossed switch
per VL:
rv = Card(routev) = 1,

• if unknown, the delay in the switches Dsw v = 0.
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Ð Network Calculus. Network Calculus is a mathematical theory designed to
compute worst case performances of networks [119]. The Network Calculus (NC)
theory can be used to compute upper bounds on communication delays in AFDX
networks. For example, the NC has been used to certify the AFDX network of the
Airbus’ A380 [206].

NC handles incoming flows expressed by an arrival curve α(t) and server elements
offering a minimal service specified through a service curve β(t). Given α(t) and
β(t), at time t, it is possible to estimate the backlog – the amount of bits held in the
network element – and the virtual delay – the delay suffered by a bit to cross the
element. The worst delay experienced by a flow in a server is given by the greatest
horizontal deviation between the curves: d = h(α, β). Furthermore, in accordance
with the input flows and the offered service expressions, the resulting output flow
α∗(t) is given by α∗(t) = α(t+ d). Afterwards, it is possible to cascade the servers,
i.e. to bind the output of a server to the input of another, in order to propagate the
data flow along its route and to compute the end-to-end delay.

We can use the NC technique to calculate the delay in the switches Dsw v. For this
purpose, the model must detail the data needed to set the arrival curves belonging
to each virtual link v and the service offered by the end systems e and switches s:

• αv(t) depends on the bagv and the smaxv,

• βe(t) and βs(t) depend on: smaxv, BW , lag and jmax.

We define smaxv, BW , lag and jmax as for the BAG dimensioning. In addition to
the VL parameters, the NC considers:

• the network topology made up of end systems, switches and links,

• the static routing table.

These data can either be part of the input model or we can assume them. In
particular, we can combine data from the model with assumptions. This brings two
advantages: (1) we can evaluate and possibly refine model parameters according
to a virtual but realistic network configuration; (2) we can evaluate several routing
strategies.

We carry out the NC analysis with the help of the RTaW-Pegase tool [121]. We
also use NETAIRBENCH [207], an AFDX benchmark generator provided with the
RTaW-Pegase tool. NETAIRBENCH makes it possible to generate realistic avionic
data flow according to user-defined parameters. Figure VII.22 shows one instance
generated by NETAIRBENCH where the FMS and the FCS are included in a net-
work architecture of realistic size.

Iterative process. We execute the iterative process represented in Figure VII.23.
We refine the model at each iteration (m1, m2 and m3) according to (1) analysis
results (successive BAGv and Dsw v) and (2) modeling assumptions (as1, as2).

At Step 1 , the bnh_bag_dimensioning analysis (BAG in Figure VII.23) inputs the

incomplete model (m1, also represented in Listing VII.7) together with some assump-
tions (as1) discussed in the previous paragraphs (in particular, Dsw v is unknown
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Figure VII.22: Realistic network architecture and background traffic generated
by the NETAIRBENCH tool. The topology and background traffic is generated from
user-defined parameters. A typical AFDX topology can contain 100+ end systems
and 8 switches. The AFDX switches form the central backbone. The FMS and
FCS represented with yellow-colored components are included in the overall system
generated by NETAIRBENCH.

and thus assumed to be null). We define five VLs for the FMS, following the assump-
tion ‘one virtual link per dataflow’. Table VII.11 summarizes the analysis results,
that is the maximal BAGs that meet the latency constraints. Notice that this first
coarse-grained analysis discards: bag solutions for m1 − bag solutions for m2 =
85 − 1440 = 31328 incorrect BAG solutions.

We execute the pegase_nc_analysis (NC in Figure VII.23) at Step 2 . The NC

analysis evaluates the upper delay suffered by each frame in a Virtual Link (Dm2
sw vli

)
from the first evaluation of the BAG. We defined each BAG in m2 with the greatest
value available in the range computed by the bnh_bag_dimensioning. In addition,
we assume the topology computed by NETAIRBENCH depicted in Figure VII.22
with an average utilization of switch ports of 25% (as2). We also suppose a static
shortest path routing. Table VII.12 details the analysis results (Dm2

sw vli
).

At Step 3 , the bnh_bag_dimensioning analysis refines the BAG to meet the la-

tency constraints (LCm1
vli

) according to the delays computed by the pegase_nc_analysis.
We narrow the set of correct BAGs (BAGm3) for all the VL excepted for V L1 and
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Figure VII.23: Bandwidth Allocation Gap dimensioning process Dimensioning
the BAG requires an iterative process of modeling and analysis, i.e. Steps 1 to 5.
Model data used at the various steps are represented on the left in blue-headed shapes.
Analyses are represented on the center in green and orange rectangles. Assumptions,
which are represented on the right in purple-headed shapes, may be required at certain
steps to move forward. Dashed arrows, resp. solid arrows, depict analysis inputs,
resp. analysis results.

V L2: bag solutions for m2− bag solutions for m3 = 1440− 720 = 720 additional
solutions do not meet the latency constraints.

At Step 4 , we must calculate the delays suffered by the frames in the Virtual Links

(Dm3
sw vli

) with the pegase_nc_analysis according to the new definition of the BAGs
(BAGm3

vli
); and then refine the BAGs sets (BAGm4

vli
) with the bnh_bag_dimensioning

analysis if necessary ( Step 5 ). This iteration from m3 shows that: (1) the delays

in a VLs do not evolve (Dm3
sw vli

= Dm2
sw vli

); thus, (2) it is not necessary to adjust
the BAGs (BAGm4

vli
= BAGm3

vli
). We reach a fixed-point: the model m3 cannot be

refined anymore with respect to the Bandwidth Allocation Gap if the analysis data
(input data and assumptions) remain identical.

Virtual nm1 sas1max LCm1 BAGm2
max BAGm2

Link (bytes) (ms) (ms) (ms)

V L1 2 142 15 14,27456 {1, 2, 4, 8}
V L2 3 692 15 7,04928 {1, 2, 4}
V L3 2 192 10 9,25856 {1, 2, 4, 8}
V L4 2 567 35 34,13856 {1, 2, 4, 8, 16, 32}
V L5 2 567 20 19,13856 {1, 2, 4, 8, 16}

Table VII.11: Results of the bnh bag dimensioning analysis at Step 1 The anal-
ysis computes the set of suitable BAG from the input model m1 and assumptions
as1. AFDX parameters (BW , lag, jittermax) not appearing in the table are set
according to the standard, i.e. ras1vli

= 1 and Dm1
sw vli

= 0
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Virtual sas1max BAGm2 Dm2
sw LCm1 ras2 BAGm3

Link (bytes) (ms) (ms) (ms)

V L1 142 8 2,774 15 2 {1, 2, 4, 8}
V L2 692 4 2,922 15 2 {1, 2, 4}
V L3 192 8 3,118 10 2 {1, 2, 4}
V L4 567 32 2,774 35 2 {1, 2, 4, 8, 16}
V L5 567 16 4,189 20 3 {1, 2, 4, 8}

Table VII.12: Results of the pegase nc analysis at Step 2 and

bnh bag dimensioning analysis at Step 3 First, the NC analysis computes

the upper bound on communication delays in each VL (Dm2
sw vli

) from the largest
BAG calculated at the previous step, and maximal frame sizes. Then, the BAG
analysis computes the set of BAG that meet the latency constraints LC. Apart from
the number of crossed switches (ras2vli

), the other inputs remain identical.

VII.3.5 Conclusion

This third case study dealt with the design of complex system: an avionic system
composed of a Flight Management System (FMS) and a Flight Control System
(FCS). Our design approach includes:

1. a description of the system architecture at different levels of abstraction: over-
all and operational architecture of the system in AADL, functional architecture
of the applications in CPAL,

2. a repository of multiple analyses: WCET, scheduling, communication delays,
various simulators, etc.

3. a tool that automatically executes analyses according to input models and
analysis goals.

We have been able to explore the design space of the FMS/FCS from the systematic
analysis of the architectural models. In particular, we defined several parameters of
the ARINC653 calculators and the AFDX network in order to fulfill the real-time
constraints.

VII.4 Synthesis and conclusion

In this chapter, we experimented the concepts contributed in this thesis (see chapters
III, IV and V), and implemented through a tool prototype (see Chapter VI). We
presented three case studies: the timing validation of the Paparazzi drone, the design
of the Mars Pathfinder system, and the design of an avionic system an avionic system
composed of a Flight Management System (FMS) and a Flight Control System
(FCS).

These case studies highlight several use cases of our approach. Table VII.13 sum-
marizes the use cases encountered in this chapter.

Interoperability : our approach separates models from accessors and from analyses.
Therefore, analyses are independent of models; or, in other words, analyses can work
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`````````````̀Use cases
Case studies

Paparazzi Pathfinder FMS

Interoperability 7 7 3

Interdependencies 3 3 3

Context-aware analysis 3 3 3

Iterative process 7 3 3

Table VII.13: Use cases of our approach.

with any architectural model for which an implementation of accessors to model
internals is provided. For example, we analyzed the avionic system equally from
AADL or CPAL models.

Interdependencies between analyses: for each case study, we evaluate analysis con-
tracts to initialize the analysis graph. This graph represents the data flow between
analyses and, thereby, the precedences between analyses. The analysis graph is
necessary to execute the analyses in a correct order (preserving results) or to build
wider analyses (building results). We experimented the two cases in the case studies,
for example when we check the preconditions before applying an analysis (preserv-
ing results); or, when data computed by an analysis are used by another (building
results).

Context-aware analysis: our tool is able to adapt the analysis process depending
on an input model, available analyses and some analysis goals. In the Paparazzi
UAV case study, we were able to analyze the AADL models at different design
stages with suitable schedulability analyses in order to verify timing constraints
throughout the design process. In the Mars Pathfinder case study, we automatically
chose schedulability analyses depending on a AADL model. Thereby, we were able
to select an appropriate analysis to detect the design error that caused an important
failure of the system during the Mars Pathfinder mission.

Iterative process: more generally, we can apply an automatic or semi-automatic
design process that takes into account three parameters: a set of system models,
a repository of multiple analyses and goals in terms of non-function requirements.
Analysis becomes an integral part of the design process as depicted in Figure VII.24:

• analyses determine whether the system models meet some non-functional re-
quirements (system validation),

• analyses enable to fulfill the non-functional requirements from a model (system
dimensioning).

We applied the iterative process represented in Figure VII.24 to design a subpart
of the avionic system and, to a lesser extent, design the software architecture of the
Mars Pathfinder system. In the Mars Pathfinder case study, we applied different
scheduling analyses to AADL models in order to verify that the system satisfies
the timing constraints. We were able to detect the original design error with the
right analysis, correct the model and finally validate the corrected model. In the
more complex avionic case study, we combined different analyses so as to dimension
and then validate the architecture of the avionic system based on AADL and CPAL
models. We defined important parameters of the ARINC653 calculators and the
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M A G

{ M } { {ϕ} A {ψ} } { G }

Figure VII.24: Iterative design process.

AFDX network, including Virtual Link parameters for example, and checked them
to comply with the real-time constraints.
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Chapter VIII

Conclusion

Abstract

This thesis dealt with the coupling between models and analyses so as to increase the
efficiency and quality of critical embedded systems development, especially within
Model-Driven Engineering. This penultimate chapter summarizes our contributions
regarding this problem and provides the main results of this thesis. The last Chap-
ter IX details some possible perspectives and future works.

VIII.1 Summary of the thesis

Non-functional requirements. The development of embedded systems is a com-
plex and critical task, especially because of the non-functional requirements. In fact,
embedded systems have to fulfill a set of non-functional properties dictated by their
environment, expressed for example in terms of timing, dependability, security, or
other performance criteria. In safety-critical applications for instance (e.g. an air-
plane), missing a non-functional requirement can have severe consequences, e.g. loss
of life, personal injury, equipment damage, environmental disaster, etc.

A better integration of the analysis of non-functional properties in Model-Driven
Engineering will increase the efficiency and quality of critical embedded systems
development. This thesis aims at providing a general and coherent view on this
problem by investigating two fundamental questions:

• How to apply an analysis on a model? (technical issue)

• How to manage the analysis process? (methodological issue)

In Part 1, we advanced several important concepts regarding the integration issue.

1) revisiting model transformation for analysis. First of all, we revisited
the way model transformations are done to accommodate specific analysis engines
(Chapter III). Arguing that an analysis is less based on a particular model syntax
than specific data, we promoted query mechanisms called accessor to analyze the
non-functional properties of a system at design time. These accessors enable to

163



VIII.2. Main results

extract data from a model and then analyze them. Expected benefit is that an
analysis can be integrated to any kind of model as soon as an implementation of
accessors to model internals is provided. Another advantage is that an analysis
can be easily implemented by using a general-purpose programming language (e.g.
Python) instead of relying on specific analysis engines.

2) semantics of an analysis. Next, we formalized the analysis execution (Chap-
ter IV). We showed that an analysis is basically a program with preconditions and
postconditions. The preconditions are the properties to hold true on an input model
to successfully execute the analysis, whereas the postconditions are the properties
guaranteed on the model after the analysis execution. With preconditions and post-
conditions, an analysis is complete and sound. We showed that a full analysis, includ-
ing preconditions and postconditions, can be implemented through above-mentioned
accessors.

3) contract-driven analysis. We abstracted away from the execution aspect
through the notion of contract (Chapter V). A contract formally defines the in-
terfaces of an analysis in terms of processed data and properties. Inputs/Outputs
(I/O) describe input and output data. Assumptions/Guarantees (A/G) describe
input and output properties. Notice that the ’data’ directly refer to the accessors,
whereas the ’properties’ relate to the preconditions and postconditions. SAT meth-
ods can then be used to automatically reason about these interfaces, and provide
greater automation support: which analysis can be applied on a given model? Which
are the analyses that meet a given goal? Are there analyses to be combined? Are
there interference between analyses? Etc. In practice, contracts can be defined with
the help of a specification language such as Alloy, and evaluated through associated
SAT solvers.

Then in Part 2, we implemented these concepts and experimented them through
various case studies.

4) prototyping and application. We implemented a proof-of-concept tool to
demonstrate and evaluate these concepts (Chapter VI). This tool implements several
functions, each one implementing a part of the concepts introduced earlier. In
particular, our tool provides accessors towards AADL and CPAL models, various
real-time scheduling analyses programmed in Python, and an orchestration module
based on Alloy. We finally illustrated the capabilities of our approach to deal with
concrete systems coming from the aerospace: a drone, an exploratory robot and a
flight management system (Chapter VII).

VIII.2 Main results

We experimented our contributions for the timing analysis of architectural mod-
els. On the one hand, we demonstrated that accessors enable to apply real-time
scheduling analyses onto different kinds of architectural models, e.g. written with
the industry standard AADL (Architecture and Analysis Design Language) or the
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new time-triggered language CPAL (Cyber-Physical Action Language). In fact, the
benefit of using accessors is dual:

1. analyses can be applied on various types of models,

2. as analyses can originate from many models, one can combine these models to
build wider analyses.

In addition to accessors and analyses, contracts make it possible to automate com-
plex analysis procedures and, to some extent, to mechanize the design process itself.
From a modeling and analysis repository, we are able to define and execute the anal-
ysis process that fulfills precise goals, e.g. is the system schedulable? To answer this
final question, the analysis process may need to consider tasks and networks defined
in the models, compute some missing data in the model, build a sound analysis
order, etc.

The Flight Management System (FMS) provided a good illustration of the capabil-
ities of our approach. We designed a subpart of the FMS from a combination of
two architectural descriptions languages (i.e. AADL and CPAL) and various timing
analyses. The models provided different abstractions from which we were able to
carry out the analysis process, whereas the analysis process enabled to dimension
and then validate the system from these complementary views.

This thesis provided some arguments and contributions supporting the idea that
analysis should become first-class citizen in the design of critical embedded systems.
Defining the coupling between models and analyses was a first step in this direction.
This thesis advanced important concepts to make analysis visible and usable by
engineers in the design workflow. Future work may improve or extend the concepts
presented in this thesis, relax some initial work hypotheses, equip the approach
with tools or additional language constructs, or explore the notion of design space
and design space exploration through analysis contracts. Chapter IX presents these
perspectives in more detail.
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Chapter IX

Perspectives

Abstract

In this chapter, we sketch possible directions to continue the work initiated in this
thesis. Some of the future works are direct improvements that may be carried out
in the short term; others are part of more substantial research works to be pursued
on their own. We detail five possible lines of research that follows the development
of this thesis: immediate improvements and extensions of the concepts presented in
this thesis (Section IX.1), definition of (a) language(s) that improve(s) the efficiency
of these concepts (Section IX.2), development of a more advanced analysis and or-
chestration tool (Section IX.3), researches around the notion of design space and
design space exploration (Section IX.4), and several relaxations of the initial work
hypotheses (Section IX.5).

IX.1 Improvement and extension of the concepts

Part 1 presented several concepts so as to analyze the multiple non-functional prop-
erties of embedded systems in a MDE approach. A natural perspective will be to
enhance and/or extend these concepts. The next subsections outline some potential
improvements.

IX.1.1 Factorization of accessors

Accessors must be implemented in a one-to-one fashion, pairing an accessor im-
plementation with a specific model (Chapter III). Therefore, there exist as many
accessors to implement as there are technical spaces (i.e. metamodeling pyramids)
to address.

A possible improvement will be to “factorize” the implementation of accessors. A
particular way to proceed would be to implement something like an interchange data
format between several modeling environments. This approach would bring several
benefits:

• reducing the number of accessor implementation: the number of accessor im-
plementations would be reduced to the number of interchange data formats,
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• further separation of concerns and reliability : being implemented in two parts
(i.e. generic accessors towards the interchange data format at the highest
level, generation of the interchange data format at the lowest level) accessors
are more reliable.

The definition of a data interchange format can be a consensus a minima between
several domain experts (e.g. the rt-format to exchange data between tools of the
real-time research community); or defined through of a more systematic approach
(e.g. works about ontology).

IX.1.2 Additional contract evaluations and strategies

Another improvement would be to enrich contracts (presented in Chapter V) with
quality metrics (e.g. rapidity of an analysis execution, precision of a result). This
will allow to handle the analysis dynamics more precisely: coarse-grained but fast
analyses can be used during the early design stages, e.g. for prototyping; in-depth
and costly analyses are more relevant at the last stages in the design process (before
the implementation phase), when early results should be consolidated. We note that
the evaluation of the quality metrics adds little algorithmic complexity as it can be
performed on a weighted analysis graph, e.g. by looking for the shortest analysis
paths.

IX.2 Analysis and orchestration language(s)

The notion of language is prominent in this thesis. In fact, we mentioned multiple
languages throughout this thesis: architecture description languages to represent
a system architecture (AADL, CPAL), metalanguages to define metamodels, lan-
guages to program analyses (Python), language to express model constraints (REAL,
OCL) or specify contracts (Alloy).

Future works may investigate the set of languages that capture well the concepts
presented in this thesis. Defining one or several domain-specific languages would
improve the:

• effectiveness of the concepts through optimal implementation means,

• usability of these concepts by engineers through customized representations.

Several languages may be defined:

Analysis and query language to express both model queries and analysis op-
erations.

Constraint languages (e.g. OCL, REAL) can be used to express queries on domain-
specific languages. Yet, we note two important shortcomings with constraint lan-
guages. First, constraints languages are defined by specific metamodels (e.g. UML
or AADL metamodels) and, consequently, can only express queries about domain-
specific concepts (rather than focusing on analysis data). Secondly, these languages
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have a syntax that does not enable to describe easily the analysis logic (data struc-
tures, control flows, operations, etc. are limited). We showed in this thesis that
a high-level programming language such as Python is perfectly able to describe all
the aspects of the analysis logic. However, a general-purpose programming language
comes with a sometimes too rich syntax, and extra, useless, features.

Thus, an ideal query and analysis language would provide an intermediate level
of abstraction between constraint languages (model query with analysis data struc-
tures) and programming languages (analysis logic with control flows, basic operators,
mathematical operators, etc.), without all the unnecessary features and superfluous
syntactic elements.

Constraint and contract language in order to describe analysis contracts, i.e.
the analysis interfaces. In fact, contracts have two purposes: (1) check whether an
analysis can be applied on a model, (2) check whether the analyses can be combined.
Thus, the choice of the language is strongly related to its final use. In the first case,
a constraint language (e.g. OCL, REAL) or a classic programming language (e.g.
Python), may be sufficient. The second case is a constraint satisfaction problem. We
used Alloy that provides both abstractions to represent contracts and SAT methods
to automatically reason about analysis interfaces.

New, existing or original, languages may be experimented in order to find the most
efficient way to capture contracts and evaluate them (for example, see works by
Ruchkin et al. [184] where the authors define contracts through an AADL annex
language).

Goal language to specify goals. In this thesis, we specify analysis goals through
specific contracts written in Alloy. Goals may be expressed through a dedicated
formalism (e.g. see the goal-structuring notation [208, 209]). A dedicated notation
would enable to exhaustively specify the goals in terms of expected data and/or
properties, and reason about them (hierarchization of goals, definition of assump-
tions, presentation of solutions, etc.).

IX.3 Analysis and orchestration tool

Part 2 firstly presented a proof-of-concept tool that implements the various concepts
introduced in this thesis (Chapter VI). Through diverse case studies, we showed
that this tool is capable to automate the analysis process at design time but also
to enhance the design process by systematically combining models and analyses
(Chapter VII). However, at this stage, this tool is not mature enough to be used
by engineers. An interesting direction will be to further implement the concepts
presented in this thesis in a working prototype, either as a standalone tool or as a
tool add-on (e.g. as an Eclipse plug-in). This working prototype would be used to
both carry on experimentation and act as a demonstrator showing the capabilities of
our approach. We discuss possible lines of research and/or development hereinafter.

Models and accessors. Models and accessors form together the first part of the
prototype. We already implemented accessors towards AADL and CPAL models.
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Accessors towards other architectural models will be implemented in the short term,
e.g. towards SysML, MARTE, Cheddar ADL, MoSaRT, etc.

From accessors, it will be interesting to explore the modeling and analysis synergies
offered by these various kinds of models. First of all, system-wide models could be
used to represent the essential aspects of a system: overall system representation
using SysML, operational architecture in AADL, functional architecture and real-
time execution from CPAL, etc. System-wide models may be completed with more
specialized models, representing particular system views: real-time (e.g. Cheddar
ADL, MoSaRT, MAST, etc.), behavioral, dependability, security, etc. All these
models may overlap (provide the same data), complement one another (provide
complementary data), or be totally distinct (provide different data).

Analysis repository. The analysis repository is the second fundamental compo-
nent of the tool. The analysis repository should be implemented in two parts. First,
every analysis must be programmed. For this purpose, we may use a constraint
language, a general-purpose programming language as done in this thesis, or use a
dedicated language (see next Section IX.2). Secondly, it is necessary to add every
analysis to the repository. More advanced plug-in mechanisms may be provided to
this end.

From a broad repository of models, accessors and analyses, we will be able to explore
more combinations of these elements, and, we hope so, implement more powerful
analysis and design processes.

Feedbacks. Providing information about the analysis process, i.e. feedbacks,
would be a great functionality for the user. We may envision three main types
of feedbacks, besides raw analysis results:

• analysis solutions: indicate the analyses that are applicable on a (subpart of
a) model, signify the analyses that fulfill goals, show possible (or to avoid)
analysis combinations, show all analysis paths, or only optimal analysis paths
according to quality metrics (e.g. complexity, rapidity, precision), . . .

• advanced analysis results: explain analysis results, notify the corrections to
make on a model if applicable, provide automatic integration of results in
models, . . .

• debugging: point out missing data to apply an analysis, handle assumptions,
provide a full trace of the analysis process, indicate which part of the analysis
process is to be re-executed when a model is modified, . . .

From effective feedbacks, we may greatly improve the way engineers interact with
models and analyses when designing an embedded system, thereby increasing the
impact of models and analyses on the design activity.
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IX.4 Integration of models and analyses in the design
process

This thesis emphasized on the coupling between models and analyses so as to design
embedded systems. Applying our solutions on concrete case studies coming from the
aerospace (Chapter VII), we showed that our approach enables not only to automate
the analysis process at design time but also to automate some part of the design
process through analysis. In other words, analysis, as a set of model assessment
activities, is an integral part of the design process.

Hence, a natural research direction would be to explore more deeply such a design
that encompasses models and analyses, i.e. the notion of design space quickly saw
through the FMS case study (Section VII.3). The main idea would be to define the
overall system (i.e. design space) and process (i.e. design space exploration) that
includes the notions of models and analyses. For example, these works will define
(1) the elements that make up the design space (models, analyses, goals, etc.); and
(2) the techniques that enable to explore the design space (algorithms, constraints
solving, heuristics, optimization techniques, etc.).

This substantial research work will build on our contributions to move forward the
formal definition of the design process and its automation. Bridges may exist with
more specialized works: requirements engineering, systems synthesis, systems opti-
mization, etc.

1.3. THE DESIGN PROCESS

ing of the interaction between the dynamics of the embedded system (the quadrotor, the
robot) and its environment.

The rest of this chapter will explain the various parts of this book, using the quadrotor
example to illustrate how the various parts contribute to the design of such a system.

1.3 The Design Process

The goal of this book is to understand how to go about designing and implementing
cyber-physical systems. Figure 1.3 shows the three major parts of the process, modeling,
design, and analysis. Modeling is the process of gaining a deeper understanding of a
system through imitation. Models imitate the system and reflect properties of the system.
Models specify what a system does. Design is the structured creation of artifacts. It
specifies how a system does what it does. Analysis is the process of gaining a deeper
understanding of a system through dissection. It specifies why a system does what it does
(or fails to do what a model says it should do).

Figure 1.3: Creating embedded systems requires an iterative process of model-
ing, design, and analysis.

8 Lee & Seshia, Introduction to Embedded Systems

Figure IX.1: Modeling and analysis is the design process (taken from Lee and
Seshia [17]). In future works, we may define more precisely how models and analyses
drive the design process.

IX.5 Relaxing the work hypotheses

In this thesis, we sought to define generic concepts that can be applied as widely as
possible, i.e. concepts that are not specific to particular kind of models or a specific
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analysis domain. We successfully applied these concepts to architectural models and
real-time scheduling analyses.

Widening abstraction levels and semantics domains. A major challenge is
now to apply these concepts to other types of models and analyses. We believe that
our approach provides enough stability and genericness for this purpose. Yet, some
improvements and/or extensions may be necessary in order to address new abstrac-
tion levels, or semantic domains. For example, in another analysis context such as
model-checking , the analysis must be realized at a different level of abstraction, i.e.
on a behavioral model (Petri nets, behavioral annex or AADL, etc.) rather than an
architecture representation. In consequence, extensions and improvements include:

(1) New accessors to address various kinds of models: architectural, behavioral,
etc. In the short term, accessors towards models at the same level of abstraction as
AADL and CPAL will be implemented with a minimum of effort (e.g. UML-based
languages SysML and MARTE, or Analysis-specific Languages such as MoSaRT,
Cheddar ADL and MAST, synchronous dataflow languages). Accessors towards
other types of abstractions will require more investigations to precisely define the
data structures and mappings with metamodels,

(2) Enriched contracts to express and evaluate all types of analysis interfaces, i.e.
all types of data and properties that can be computed by analyses. We can proceed
as follows:

(a) list the interface types for different analysis domains (real-time, behavioral,
dependability, security, etc.)

(b) define the suitable means to express these types of interfaces (for example
the type of logic to use: First-Order Logic, Linear Temporal Logic, etc.); and
maybe propose new methods to evaluate them (SAT resolution methods, SMT
methods, etc.).

Application to the development of complex systems? Other work hypothe-
ses were about development phases (the design phase) and the type of system (em-
bedded systems). We believe that our approach is more general than just these
activities and systems. Future works may experiment our approach to support
other development phases such as requirements engineering, implementation, and
even operation phases; and target all complex systems which have non-functional
requirements.

172



Appendix A

Summary of publications

This appendix provides a list of the publications issued from this thesis. We pre-
sented the motivations behind this thesis in a position paper [HB14]. The Confer-
ence paper [BHN15] introduced contract-driven analysis and constituted the core of
Chapter V. Proposed Journal article [BHN17] will provide an overview of the sys-
tematic analysis problem, thus covering the most important aspects of Chapter IV
and Chapter V, and some parts of Chapter VI. Part of the Flight Management Sys-
tem case study in Chapter VII has been published as a Technical Report [BHN13a],
and presented in a short version in a Workshop [BHN13b].
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[57] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. M. Selim, E. Syr-
iani, and M. Wimmer, “Model transformation intents and their properties,”
Software & systems modeling, pp. 1–38, 2014.

186

https://books.google.lu/books?id=9U9TpwAACAAJ


Bibliography

[58] T. Mens and P. Van Gorp, “A taxonomy of model transformation,” Electronic
Notes in Theoretical Computer Science, vol. 152, pp. 125–142, 2006.

[59] K. Czarnecki and S. Helsen, “Classification of model transformation ap-
proaches,” in Proceedings of the 2nd OOPSLA Workshop on Generative Tech-
niques in the Context of the Model Driven Architecture, vol. 45, no. 3. USA,
2003, pp. 1–17.

[60] A. Kleppe, “Mcc: A model transformation environment,” in European Confer-
ence on Model Driven Architecture-Foundations and Applications. Springer,
2006, pp. 173–187.

[61] Object Management Group (OMG), Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.3, Std., June 2016.

[62] I. Kurtev,“State of the art of qvt: A model transformation language standard,”
in International Symposium on Applications of Graph Transformations with
Industrial Relevance. Springer, 2007, pp. 377–393.

[63] P. C. Clements, “A survey of architecture description languages,” in Proceed-
ings of the 8th international workshop on software specification and design.
IEEE Computer Society, 1996, p. 16.

[64] N. Medvidovic and R. N. Taylor, “A classification and comparison framework
for software architecture description languages,” IEEE Transactions on soft-
ware engineering, vol. 26, no. 1, pp. 70–93, 2000.

[65] P. Binns, M. Englehart, M. Jackson, and S. Vestal, “Domain-specific software
architectures for guidance, navigation and control,” International Journal of
Software Engineering and Knowledge Engineering, vol. 6, no. 02, pp. 201–227,
1996.

[66] S. Vestal, “Metah support for real-time multi-processor avionics,” in Parallel
and Distributed Real-Time Systems, 1997. Proceedings of the Joint Workshop
on. IEEE, 1997, pp. 11–21.

[67] J. Hugues, “Architecture in the Service of Real-Time Middleware,” Institut
Sup’erieur de l’A’eronautique et de l’Espace (ISAE), HDR, 2017.

[68] SAE/AS2-C, Data Modeling, Behavioral and ARINC653 Annex document for
the Architecture Analysis & Design Language v2.0 (AS5506A), October 2009.

[69] O. Yassine, G. Emmanuel, and H. Jérôme,“Mapping AADL models to a reposi-
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[77] P. C. Ölveczky, A. Boronat, and J. Meseguer, “Formal semantics and analy-
sis of behavioral aadl models in real-time maude,” in Formal Techniques for
Distributed Systems. Springer, 2010, pp. 47–62.

[78] A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat, “Automated verifi-
cation of aadl-specifications using uppaal,” in 14th International Symposium
on High-Assurance Systems Engineering (HASE). IEEE, 2012, pp. 130–138.

[79] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time compo-
nents in bip,” in Fourth IEEE International Conference on Software Engineer-
ing and Formal Methods (SEFM’06). Ieee, 2006, pp. 3–12.

[80] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis, “Translating aadl into
bip-application to the verification of real-time systems,” in Models in Software
Engineering. Springer, 2009, pp. 5–19.

[81] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “Cadp 2011: a toolbox for
the construction and analysis of distributed processes,” International Journal
on Software Tools for Technology Transfer, vol. 15, no. 2, pp. 89–107, 2013.

[82] H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel, “From aadl model to lnt spec-
ification,” in 20th International Conference on Reliable Software Technologies
Ada-Europe. Springer, 2015, pp. 146–161.

[83] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri,
“The COMPASS Approach: Correctness, Modelling and Performability of
Aerospace Systems,” in Proceedings of the 28th International Conference
on Computer Safety, Reliability, and Security, ser. SAFECOMP ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 173–186. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04468-7 15

188

http://dx.doi.org/10.1007/978-3-642-04468-7_15


Bibliography

[84] A.-E. Rugina, “Dependability modeling and evaluation–from aadl to stochastic
petri nets,” Ph.D. dissertation, Institut National Polytechnique de Toulouse,
2007.

[85] A.-E. Rugina, K. Kanoun, and M. Kaâniche, “The ADAPT tool: From AADL
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Vancouver, Canada: Linköping University Electronic Press, December 3 2013,
pp. 29–32.

194



Bibliography

[166] ——, “Refinement of AADL models using early-stage analysis methods – An
avionics example,” Laboratory for Advanced Software Systems, Tech. Rep.
TR-LASSY-13-06, 2013.

[167] G. Lasnier, “Une approche intégrée pour la validation et la génération de sys-
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[201] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The rosace case
study: from simulink specification to multi/many-core execution,” in 2014
IEEE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2014, pp. 309–318.

[202] ARINC Report 653P0 Avionics Application Software Standard Interface, Part
0, Overview of ARINC 653. Aeronautical Radio Incorporated.

[203] ARINC Report 664P7-1 Aircraft Data Network, Part 7, Avionics Full-Duplex
Switched Ethernet Network. Aeronautical Radio Incorporated.

[204] L. Fejoz, “ROSACE Case Study: A CPAL implementation (version 1.0),”
RealTime-at-Work, Tech. Rep., September 2016.
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