

A Real Time Scheduling Method for Embedded
Multimedia Applications

Byoungchul Ahn* Ji-Hoon Kim

Department of Computer Engineering
Graduate School, Yeungnam University

Gyungsan, Korea

Dong Ha Lee Sang Heon Lee
Department of SW Research Team

Daegu Gyeongbuk Institute of Science & Technology
Daegu, Korea

Abstract –For applications of embedded systems, several
processors are scheduled on a processor because very
limited applications are used. Recently application areas
are broadened and used to be like personal computers.
Operating systems are considered one of critical factors to
develop embedded systems. Linux is becoming one of
popular operating systems for embedded applications,
because of open sources and royalty free. Since Linux is
designed for general purpose applications, it is not
suitable for embedded multimedia systems. For multimedia
applications, it is required that the scheduler operate
without jitters or jams. This paper presents a method to
schedule many processes by guaranteeing quality of
services for video and audio. This goal is achieved through
the mixed scheduling using critical based EDF and round
robin method to utilize the CPU time. Simulation results
show that the proposed algorithm decreases the number of
violations and schedules many processors effectively for
multimedia embedded applications.

Keywords: Real Time, Linux, Embedded Software,
Scheduling.

1 Introduction
 Linux operating system is implemented on different
hardware platforms and is used for embedded applications.
Most embedded systems are used to control or monitor
simple devices and they are required to fast response to
events. Nowadays embedded systems are required to
operate very complex tasks and also used to be personal
computers. Many current applications do not need to be
fully real-time systems, since they are applied to non-time
critical applications. However, it is very sensitive to time
for multimedia embedded applications. When they do not
deliver audio and video to users at the same time,
embedded systems do not provide the quality of services
because of still frames and jitters.

 Although present embedded operating systems are
relatively stable and suitable for special-purpose
applications, those are too big to use for limited resources
like embedded systems[2]. Since some operating systems
which provide very good development tools and assistance
are not opened to public as free of charge, Linux comes

into the spotlight and is used for embedded
applications[3,4,5].

 Linux is a general-purpose operating system, and it
uses time-sharing scheduling algorithm. Each process uses
a slice of operating time. The time-sharing scheduling
method on embedded Linux is not suitable to schedule
several processes optimally if it schedules video data, audio
data, game applications and so on. Each process of
embedded systems used for special purposes, has different
importance. For example, if there is a LCD graphics system
which plays animation software, the animation process
must have higher priority than any other processes. If the
animation process is not scheduled at pre-assigned time,
the system generates jitters or still frames to users.

 This paper proposes a scheduling scheme which
schedules a critical based EDF algorithm based upon task
importance to utilize CPU time instead of time-sharing
scheduling algorithm. In section 2, real time scheduling
schemes are explained briefly to use for embedded
multimedia applications. In section 3, the proposed
algorithm is introduced. Section 4 shows the simulation
results. The last section concludes with a summary.

2 Formatting instructions
 Embedded systems are designed to perform specific
applications. To design and implement embedded systems
for multimedia applications, the scheduling algorithm is the
most critical factor in operating systems. Several
scheduling algorithms are discussed briefly.

2.1 Linux Scheduling Algorithm
 Linux scheduling scheme is based upon the time-
sharing scheduling algorithm[6]. This algorithm shares a
CPU time and all processes use a quantum slice of
operating time. Each process is given a time quantum slice
to run. If it is not completely done by that time interval, a
process is suspended and another process is continued.
After all other processes have been given a quantum, the
first process gets its chance again. The time sharing
scheduler uses the time interrupt tick, the context switching
between processes is invisible to users.

2.2 Rate Monotonic Algorithm
 The rate monotonic scheduling algorithm, introduced
by Liu and Layland in 1973, is a static algorithm applied in
real-time systems by National Aeronautics and Space
Administration and European Space Agency [7]. It assigns
static priorities to tasks at the connection setup stage
according to their request rates. Subsequently, each task is
scheduled with the priority calculated at the beginning,
with no further rearrangement of priorities required. The
priority corresponds to the importance of a task relative to
other tasks. The task with the shortest period gets the
highest priority, and the task with the longest period gets
the lowest priority. It is an optimal and static, priority-
driven preemptive scheduling algorithm for preemptive,
periodic tasks[8].

2.3 Least Laxity First Algorithm
 Least laxity first algorithm(LLF) assigns priority
bases upon the slack time of a task. The laxity time is
temporal difference between the deadline, the remaining
processing time and the run time. LLF always schedules
first an available task with the smallest laxity. The laxity of
a task indicates how much the task will be scheduled
without being delayed. LLF is a dynamic scheduling
algorithm and optimal to use a exclusive resource. LLF is
commonly used in embedded systems. Since the run time is
not defined, laxity changes continuously. The advantage of
allowing high utilization is accompanied by a high
computational effort at schedule time and poor overload
performance.

2.4 Earliest Deadline First Algorithm
 The earliest deadline first (EDF) algorithm is the best-
known algorithm for real-time processing. At any arrival of
a new task, EDF immediately calculates a new order. It
preempts the running task and schedules a new process
according to its deadline. The interrupted task is
rescheduled later. EDF schedules not only periodic tasks,
but also tasks with arbitrary requests, deadlines, and
service execution times. However, EDF cannot guarantee
its performance under overload scheduling condition[12].

 EDF is an optimal and dynamic algorithm. A dynamic
algorithm schedules every instance of each incoming task
according to its specific demands. It may reschedule
periodic tasks in each period. For a dynamic algorithm like
EDF, the upper bound of processor utilization is 100
percent. If a set of tasks can be scheduled by any priority
assignment, EDF is optimal scheduling algorithm. To
schedule the continuous multimedia data by EDF on a
single processor, task priorities are likely to be rearranged
frequently. If EDF has already assigned the priority for a
new task, the scheduler must rearrange the priorities of
other tasks until the required priority is free. In worst case,

the priorities of all tasks have to be rearranged, which may
cause considerable overhead to the processor.[12].

3 Proposed Algorithm
 In Section 2, four algorithms are introduced briefly
and discussed their advantages and disadvantages. Those
are not suitable to schedule multimedia data for embedded
systems. The scheduling scheme of the proposed algorithm
is based upon the CPU utilization factor. If the utilization
factor is zero, CPU is idle. If the utilization factor is one,
CPU is loaded in full and there is no time quantum to use
other tasks.

 If the utilization factor is less than the threshold value,
the scheduler uses EDF algorithm. If the utilization factor
is equal to or higher than the threshold value, the scheduler
selects the most critical process first. The threshold value
is determined by applications of embedded systems

 Because EDF only considers the deadline of process
and does not select critical processes, critical processes
may not be scheduled at a given time. It is very important
to schedule the most critical process first. And the next less
critical processes or general processes must be scheduled.
This method guarantees CPU time for critical processes
properly. Figure 1 shows a simple flowchart of the
proposed algorithm.

Figure 1. Proposed scheduling algorithm

Is there
new

process?

Is there
new

process?

Start

CPU

Utilization

calculation

Utilization

> = Th ?

EDF

Select

earliest

deadline

Based on

critical factor

select

the most

critical

process first

NO YES

NO NO YES YES

4 Simulation
 The proposed algorithm is simulated and verified its
performance. CHEDDAR simulator is used to evaluate the
performance of the algorithm[13]. For simulation, the
number of deadline violation is measured while the number
of processes is increased. Processes for simulation are
categorized to three types, which are regular processes,
audio and video processes and mixed priority processes.
Also the number of context switching is measured. The
threshold value is 0.9 for this experiment.

4.1 Regular Processes
 Five algorithms are used to compare deadline
violations. The priorities of 10 processes among 24
processes are higher than the other processes.

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16 18 20 22 24

number of process

n
u
m

b
e
r

o
f

vi
o
la

tio
n
 p

ro
c
e
ss

TimeShare

RM

LLF

EDF

PROPOSED

Figure 2. Scheduling comparison for regular processes

 The simulation results show in Figure 2. Both RM
algorithm and time sharing algorithm show that deadline
violations start when the 7th process is scheduled. These
two algorithms do not schedule properly although the
utilization factor is smaller than 1. EDF algorithm and LLF
algorithm show that deadline violations start when the 11th
process is scheduled. The violation reason is that the
utilization factor is 1. The proposed algorithm schedules up
to the 16th process without violations. From the 17th
process, it shows the deadline violation because the
utilization factor is one. The violation number of the
proposed algorithm is increased slowly compared to LLF
and EDF algorithms when the utilization factor is 1.

 Figure 3 shows the number of context switching. At
the beginning stage, the difference of number of context
switching is about 10% but the difference is grows up to
60% as the number of processes is increased. The proposed
algorithm and EDF algorithm show very low context
switching compare to the other algorithms. The reason is
that proposed algorithm uses the EDF scheduling method
when utilization factor is smaller than the threshold value.
When the utilization factor is equal to or greater than the
threshold value and the proposed algorithm schedules the

higher process first. Therefore the number of context
switching is smaller than those of the other algorithms.

0

20

40

60

80

100

120

140

160

8 10 12 14 16 18 20 22

number of process

n
u
m

b
e
r
o
f
c
o
n
te

x
t
sw

it
c
h

TimeShare

RM

LLF

EDF

PROPOSED

Figure 3. Number of context switching

4.2 Audio and Video Processes
 To apply this algorithm to the video multimedia
application, numbers of audio and video processes are
increased and compared the performance of algorithms.

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24

number of process

n
u
m

b
e
r

o
f

vi
o
la

tio
n
 p

ro
c
e
ss

TimeShare

RM

LLF

EDF

PROPOSED

Figure 4. Scheduling comparison of video processes

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24

number of process

n
u
m

b
e
r

o
f
vi

o
la

tio
n
 p

ro
c
e
ss

TimeShare

RM

LLF

EDF

PROPOSED

Figure 5. Scheduling comparison of audio processes

 From Figure 4 and Figure 5, the proposed algorithm
shows much better scheduling performance. The proposed
algorithm can schedule up to 10 processes but EDF
algorithm shows 4 processes. After the proposed algorithm
meets the first violation, the increase rate of violations is
very slow. For simulation the time quantum requirement is
decided to satisfy QoS.

4.3 Mixed Priority Process
 To compare the scheduling performance, processes are
equally mixed with three different priorities, which are low
priority, middle priority and high priority, are set. After
shceduling the mixed priority processes, a new regualr
process is added one by one their scheduling is and
monitored. Figure 6 and Figure 7 show the violation
number of EDF algorithm and the proposed algorithm.
When many processes with different priority are scheduled,
the proposed algorithm schedules more stable than the EDF
algorithm.

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
number of processes

n
u
m
b
e
r
o
f
vi
o
la
ti
o
n
 p
ro

c
e
ss

e
s

High priority

Middle priority

Low priority

Figure 6. EDF scheduling for mixed priority processes

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

number of processes

n
u
m

b
e
r
o
f
vi
o
la
tio

n
 p

ro
c
e
ss

e
s

High priority

Middle priority

Low priority

Figure 7. Proposed scheme scheduling for mixed priority

processes

5 Conclusion
 Linux assigns CPU time to each process fairly but
real-time scheduling algorithms select the next process
according to its schedule policy. EDF shows the good
scheduling performance by simulation results. Since EDF
only considers deadline, it is not adequate for multimedia
embedded systems. For multimedia applications, the
proposed algorithm reduces the number of violation by
implementing the CPU utilization factor.

 Also the context switching number is reduced up to
60% compare to the time sharing scheme and up to 10%
compare to the EDF algorithm. This paper proposes a
method by modified EDF based on critical factor and CPU
utilization factor. The proposed algorithm shows low
deadline violations and stable although number of
processes is increased.

 Please address any questions related on this paper to,
Email: b.ahn@yu.ac.kr.

6 References
[1] M. Beck et al. Linux Kernel Internals, 2nd Ed,
Addison-Wesley, 1998.

[2] Sokolsky O., "Resource Modeling for Embedded
System Design," IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous System,
PP. 99-103, May. 2004

[3] Young-Hwan Park, Embedded System & Embedded
Linux, Scitec media, 2002

[4] Yoon-Mi Park, Embedded Linux System Design and
Implementation, SCI 2003 autumn , Apr. 2003

[5] Shahid H. Bokhari, "The Linux Operation System,"
IEEE computer, Vol. 28, No. 8, 1995

[6] Diniel P. Bovet, Marco Cesati, Understanding the
Linux Kernel, 2nd Edition, O' REILLY, September, 2003.

[7] C. L. Liu, J. W. Layland, "Scheduling Algorithm for
Multiprogramming in a Hard Real-Time Environment,"
Journal of the ACM, 20-91, Jan, 1973.

[8] Ralf Steinmetz, "Analyzing the Multimedia Operating
System," IEEE Multimedia, Spring, 1995.

[9] P. Goyal, X. Guo, H. M. Vin, "A hierarchical CPU
scheduler for multimedia operating system," Proc. of the
Symposium on Operating System Design and
Implementation, October, 1996.

[10] J. Y. T Leung, M. L. Merrill, "A Note on Preemptive
Scheduling of Periodic Real-Time Tasks," Information
Processing Letters, PP.115, Nov, 1980.

[11] C. M. Krishna, Kang G. Shin, "Real Time System,"
The McGraw-Hill Companies, Inc, 1995.

[12] R. Steinmetz, "Analyzing the multimedia operating
system," IEEE Multimedia, pp. 68, Spring, 1995.

[13] The cheddar project. "http://beru.univ-brest.fr/
~singhoff/ cheddar".

