Real-time Scheduling

After <u>isolating the scheduler</u>, it is now straightforward to implement additional scheduling polices. Real-time periodic scheduling algorithms are of special interest, since they can be easily implemented through a combination of the techniques explored in the previous exercises: scheduler, synchronizer and alarm. Remember that any scheduling policy is now implemented by keeping the scheduling queues ordered, so your new criteria must define operator int().

To do

Implement the following traditional periodic real-time scheduling algorithms: <u>Earliest Deadline</u> First and Rate-monotonic.

You can use the <u>Cheddar</u> real-time scheduling tool to check your implementation. It can produce execution traces for a task set under both scheduling policies that should be closely matched by the output of the following test programs: <u>RM test</u> (<u>traits</u>) and <u>EDF test</u> (<u>traits</u>). For your convenience, Cheddar traces for a task set compatible with that of the test programs are available here: <u>RM Cheddar trace</u> and <u>RM Cheddar trace</u>.

- 1. For a deeper insight on real-time scheduling, please refer to the following paper:
 - Giovani Gracioli, Antônio Augusto Fröhlich, Sebastian Fischmeister and Rodolfo Pellizzoni, <u>Implementation and Evaluation of Global and Partitioned Scheduling in a Real-Time OS</u>, In: Real-Time Systems, 49(6):669-714, 2013.

1 sur 1 09/11/2017 à 12:26